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Introduction

Overview

@ Martin-Lof Type Theory
© Evaluation
@ Type Checking and Subtyping
@ n-Equality and Normalization by Evaluation
@ Models of Type Theory
© Typed Equality

@ Remarks on Calculus of Constructions
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Expressions and Values

@ Expressions of core Martin-L6f Type Theory

S = 0 (i >—1) sorts Type;
* = 4 base sort set
M,N, T,U == s|x|MN
| AxM domain-free A
| NUT function type
Mx:U. T = NUMT

@ Values as closures

p € environment (variables — values)
af, A F == s|MAF constructed values

| (AxM)p  closures

| e neutral values
e = X|ea
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A Simple Interpreter

@ Evaluation (M), suspends at \.

s) = s

(
MU, = NI,
Ky = o)
MN), = (M), (N),
M), = (AxM)

@ Application f - a continues suspended evaluation.

(/\XM)p-a = (]MDp[XHa]
e-a = ea neutral application
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Introduction

Bidirectional Type Checking

@ Two judgments/logic programs (A environment):
A 1= A inference: expr. I has principal type value A
A+ C &= A checking: expr. C can be assigned type value A

@ Checkable expressions C are (3-normal forms.
@ Inferable expressions / are Cs except ).

I == s|x|IC|NI\xI)
C = I|xxC
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Introduction

Type Inference Rules

Typing Inference
Mk
MO Oy AFLO =0
rk

I =x:T(x) A Fx = Ax)
r=M:TTUMT re=N:U AFIZ=NTAF  AFC&A

FrEMN:(AXT)N A+IC=F-(C)
M= U: sq Nx:UFT:s AFI=s A,X:WDFW:{SQ
I =N UMXT : max(sy, S2) A F NI AxI" = max(sy, Sp)
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Introduction

Type Checking Rules

Typing
Mx:UEM:T

Checking
AXx:AFCE& F-(x)

F=AxM:NTUMT
r-=mM:T r-7<T

A FXMCe=NMAF
AFIZ=A A<A

r-mM:T

AFI=A

@ Soundness: Letl = T:sand A = (I).

o fAFC=(T)thenl -C:T.
o fAFI=(T)thenl F1/:T.

@ Completeness: Let A = (I)

o IfTr-C:Tthen A+ C &= (T).

o lfr'H/:TthenA 1= Aand A< (T).
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Introduction

Checking Subtyping (modulo 3)

@ A < A’ is checked by
@ computing the 3-normal forms Ry A and Rq A’,
@ checking contravariant subtyping on the normal forms.

@ Normalization / readback R, A (Leroy/Gregoire 2002)

Rms = S

Rm(MAF) = N(RmA)(RmF)
Rm((AxM)p) = Axm. Ryt (AXM)p - Xm)
Rm x = X

Rm(ea) = (Rme)(Rma)

@ Injust 7 slides: normalizer and type checker!

@ Efficient normalization (like compiled reduction): adapt evaluation
and application.
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Introduction

Extension to n-Equality

@ Values extended by markers 147, |AF for ;-expansion.
af,AF == s|MAF|(\xM)p|e|1"Fe
e n= X|ed
d c= al| |"AFf n-expanded values

o "e=eand |[fa=afor A£T.
@ Modify application:

MM)p-a = (M

plx—d]
(1""e)-a = 17

(el?a)

N~
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Introduction

n-Normalization

@ Adapt readback R, A. Closures replaced by |"AF f.
Rms = s
Rm(MAF) = M (RmA)(RmF)
Rm(1"AFF) = M. R (LF 150 (F - 14 xm)
Rmx = X
Rm(ed) = (Rme)(Rmd)

@ New identity environment pa (x) = 12() x for evaluation in type

checker.
AFI=NAF AFC=A AxAFC=F-(X),
AFIC=F-(O),, A+ xC—MAF

A+ = sq A‘/X:GIDPA FI'=s
A F T AxI" = max(sq, S2)
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Subset Model

@ Evaluation and readback are a priori partial.
@ Show totality through model of type theory.
@ By induction on i:

e define [;] € D inductively,
e simultaneously define [A] C D by recursion on A € [J;.

@ Assume extension of D by constants N, z, s for natural numbers.

@ Define N C D inductively.

acN
zeN saeN
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Introduction

Inductive-Recursive Definition

@ Define base universe [«| C D.

Nepg  N=N
A e [4]
Al. F- *
vaen[A]Fe[i]e[] [MAF]={feD|vaclAl.f acF-al}

@ Define next universe [[g] C D.
A € [#]
A € [Op] x € Oy

[A], [+] already def.

A € [Oo]
Vae [A]l. F-ae [
MAF ¢ [Do]
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Introduction

Correctness of (Sub)typing

@ Let p e [Iiff p(x) € [(F(x)),] for all x.
@ Soundness of typing rules. Let p € [I].

@ Ifr - M: Tthen (M), € [(T),].
Q Ifr - T < T andthen [(T),]  [(T),]-

@ Needs (7)), = (T'), if T =5, T'.
@ Our notion of evaluation is not extensional enough.
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Introduction

Applicative Structures and A\-Models

VAR (XD = p(x)

APP (MN), = (M), - (N),

BETA™  (AxM), - a= (M) jx—g

IRR (M), = (M), it p =o' | FV(M)

SUBST (MIN/X])p = (M) pxi- )

BETA™T M), = (M), it M =5 M

XI QAXMDP = GAXM,DP/ if Va. (]MDp[XHa] = QM,D/)’[X'—M’:I]
ETA-  (Ax.Mx), C (M), if x ¢ FV(M)

EXT f="~ ifva.f-a=f-a
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_____Introduction |
PER Model

@ Move extensionality from untyped A-model (D, _- _, () ) to model
of type theory.

@ Equip subsets [A] C D with equivalence relation.

@ Equivalently, define partial equivalence relations [A] C D x D.

A=A €[« Va=d e[A.F-d=F -d €[4
MAF=NAF €[4
[MAF]={(f,f)|Va=4d €[A.f-a=f-d €[F-a]}

@ Move from untyped equality to typed equality.

Lx:UFEM:T r-N:u r-=M:nNuT x ¢ dom(T")
M= (Ax.M)N = M[N/x]: T[N/x] FrEXx.Mx=M:NIUT

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 15/19



Introduction

Subtyping in the Model

@ For A, A’ € [J] define A < A’ inductively

i<j
0 <0

A<A VaclA]l.F-a<F'-a
NAF<OAF

@ Semantic soundness A < A’ implies [A] C [A].

@ Gives injectivity of M : IfMAF <A F'then A < Aand
Vac[A]l.F-a<F'-a
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Introduction

Explicit substitutions

@ Our applicative structure (D, _- _, (-)_) does not model substitution.

suBsT  (M[N/xX]), = (M) i, ]

@ Build explicit substitutions into typed equality.
@ Leads to categorical presentation (CwF).
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Introduction

Normalization via Model

@ Type normalization Nber T = Ro(T),,

@ Soundness: If ' = T :O;thenT = T = Nber T : [J;.

@ Completeness: If I = T = T’ : [J; then Nber T = Nber T".

@ Completeness follows from PER model: If A= A" € [[J;] then
RoA=RgA.

@ Soundness requires Kripke logical relation between expressions
and values (similar to PER model).
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Introduction

Remarks on Calculus of Constructions

@ Universes cannot be defined inductively. Need candidates instead.

@ Main problem: injectivity does not fall out of semantic construction.

@ |dea: Injectivity from NbE: soundness, completeness, and
uniqueness of typing.

@ To do:

@ Construct logical relation for CoC.
@ Extend PER model to infinite universe hierarchy.
© Replace uniqueness of typing by principal typing.
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