Remarks on Typed Equality for the Calculus of
Constructions

Andreas Abel

INRIA, Team 7r2
PPS Lab, Paris

GT Types and Semantics

INRIA, Paris, France
12 November 2009

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 1/19

Introduction

Overview

@ Martin-Lof Type Theory
© Evaluation
@ Type Checking and Subtyping
@ n-Equality and Normalization by Evaluation
@ Models of Type Theory
© Typed Equality

@ Remarks on Calculus of Constructions

Andreas Abel (INRIA) Typed Equality GT TypesSem '09

2/19

Expressions and Values

@ Expressions of core Martin-L6f Type Theory

S = 0 (i >—1) sorts Type;
* = 4 base sort set
M,N, T,U == s|x|MN
| AxM domain-free A
| NUT function type
Mx:U. T = NUMT

@ Values as closures

p € environment (variables — values)
af, A F == s|MAF constructed values

| (AxM)p closures

| e neutral values
e = X|ea

Andreas Abel (INRIA) Typed Equality GT TypesSem '09

3/19

A Simple Interpreter

@ Evaluation (M), suspends at \.

s) = s

(
MU, = NI,
Ky = o)
MN), = (M), (N),
M), = (AxM)

@ Application f - a continues suspended evaluation.

(/\XM)p-a = (]MDp[XHa]
e-a = ea neutral application

Andreas Abel (INRIA) Typed Equality GT TypesSem '09

4/19

Introduction

Bidirectional Type Checking

@ Two judgments/logic programs (A environment):
A 1= A inference: expr. I has principal type value A
A+ C &= A checking: expr. C can be assigned type value A

@ Checkable expressions C are (3-normal forms.
@ Inferable expressions / are Cs except).

I == s|x|IC|NI\xI)
C = I|xxC

Andreas Abel (INRIA) Typed Equality GT TypesSem '09

5/19

Introduction

Type Inference Rules

Typing Inference
Mk
MO Oy AFLO =0
rk

I =x:T(x) A Fx = Ax)
r=M:TTUMT re=N:U AFIZ=NTAF AFC&A

FrEMN:(AXT)N A+IC=F-(C)
M= U: sq Nx:UFT:s AFI=s A,X:WDFW:{SQ
I =N UMXT : max(sy, S2) A F NI AxI" = max(sy, Sp)

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 6/19

Introduction

Type Checking Rules

Typing
Mx:UEM:T

Checking
AXx:AFCE& F-(x)

F=AxM:NTUMT
r-=mM:T r-7<T

A FXMCe=NMAF
AFIZ=A A<A

r-mM:T

AFI=A

@ Soundness: Letl = T:sand A = (I).

o fAFC=(T)thenl -C:T.
o fAFI=(T)thenl F1/:T.

@ Completeness: Let A = (I)

o IfTr-C:Tthen A+ C &= (T).

o lfr'H/:TthenA 1= Aand A< (T).

Andreas Abel (INRIA) Typed Equality

GT TypesSem '09

7/19

Introduction

Checking Subtyping (modulo 3)

@ A < A’ is checked by
@ computing the 3-normal forms Ry A and Rq A’,
@ checking contravariant subtyping on the normal forms.

@ Normalization / readback R, A (Leroy/Gregoire 2002)

Rms = S

Rm(MAF) = N(RmA)(RmF)
Rm((AxM)p) = Axm. Ryt (AXM)p - Xm)
Rm x = X

Rm(ea) = (Rme)(Rma)

@ Injust 7 slides: normalizer and type checker!

@ Efficient normalization (like compiled reduction): adapt evaluation
and application.

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 8/19

Introduction

Extension to n-Equality

@ Values extended by markers 147, |AF for ;-expansion.
af,AF == s|MAF|(\xM)p|e|1"Fe
e n= X|ed
d c= al| |"AFf n-expanded values

o "e=eand |[fa=afor A£T.
@ Modify application:

MM)p-a = (M

plx—d]
(1""e)-a = 17

(el?a)

N~

Andreas Abel (INRIA) Typed Equality GT TypesSem '09

9/19

Introduction

n-Normalization

@ Adapt readback R, A. Closures replaced by |"AF f.
Rms = s
Rm(MAF) = M (RmA)(RmF)
Rm(1"AFF) = M. R (LF 150 (F - 14 xm)
Rmx = X
Rm(ed) = (Rme)(Rmd)

@ New identity environment pa (x) = 12() x for evaluation in type

checker.
AFI=NAF AFC=A AxAFC=F-(X),
AFIC=F-(O),, A+ xC—MAF

A+ = sq A‘/X:GIDPA FI'=s
A F T AxI" = max(sq, S2)

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 10/19

Subset Model

@ Evaluation and readback are a priori partial.
@ Show totality through model of type theory.
@ By induction on i:

e define [;] € D inductively,
e simultaneously define [A] C D by recursion on A € [J;.

@ Assume extension of D by constants N, z, s for natural numbers.

@ Define N C D inductively.

acN
zeN saeN

Andreas Abel (INRIA) Typed Equality GT TypesSem '09

11/19

Introduction

Inductive-Recursive Definition

@ Define base universe [«| C D.

Nepg N=N
A e [4]
Al. F- *
vaen[A]Fe[i]e[] [MAF]={feD|vaclAl.f acF-al}

@ Define next universe [[g] C D.
A € [#]
A € [Op] x € Oy

[A], [+] already def.

A € [Oo]
Vae [A]l. F-ae [
MAF ¢ [Do]

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 12/19

[MAF]={feD|vac[A.f-ac|[F-al}

Introduction

Correctness of (Sub)typing

@ Let p e [Iiff p(x) € [(F(x)),] for all x.
@ Soundness of typing rules. Let p € [I].

@ Ifr - M: Tthen (M), € [(T),].
Q Ifr - T < T andthen [(T),] [(T),]-

@ Needs (7)), = (T'), if T =5, T'.
@ Our notion of evaluation is not extensional enough.

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 13/19

Introduction

Applicative Structures and A\-Models

VAR (XD = p(x)

APP (MN), = (M), - (N),

BETA™ (AxM), - a= (M) jx—g

IRR (M), = (M), it p =o' | FV(M)

SUBST (MIN/X])p = (M) pxi-)

BETA™T M), = (M), it M =5 M

XI QAXMDP = GAXM,DP/ if Va. (]MDp[XHa] = QM,D/)’[X'—M’:I]
ETA- (Ax.Mx), C (M), if x ¢ FV(M)

EXT f="~ ifva.f-a=f-a

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 14/19

_____Introduction |
PER Model

@ Move extensionality from untyped A-model (D, _- _, ()) to model
of type theory.

@ Equip subsets [A] C D with equivalence relation.

@ Equivalently, define partial equivalence relations [A] C D x D.

A=A €[« Va=d e[A.F-d=F -d €[4
MAF=NAF €[4
[MAF]={(f,f)|Va=4d €[A.f-a=f-d €[F-a]}

@ Move from untyped equality to typed equality.

Lx:UFEM:T r-N:u r-=M:nNuT x ¢ dom(T")
M= (Ax.M)N = M[N/x]: T[N/x] FrEXx.Mx=M:NIUT

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 15/19

Introduction

Subtyping in the Model

@ For A, A’ € [J] define A < A’ inductively

i<j
0 <0

A<A VaclA]l.F-a<F'-a
NAF<OAF

@ Semantic soundness A < A’ implies [A] C [A].

@ Gives injectivity of M : IfMAF <A F'then A < Aand
Vac[A]l.F-a<F'-a

Andreas Abel (INRIA) Typed Equality GT TypesSem '09

16/19

Introduction

Explicit substitutions

@ Our applicative structure (D, _- _, (-)_) does not model substitution.

suBsT (M[N/xX]), = (M) i,]

@ Build explicit substitutions into typed equality.
@ Leads to categorical presentation (CwF).

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 17/19

Introduction

Normalization via Model

@ Type normalization Nber T = Ro(T),,

@ Soundness: If ' = T :O;thenT = T = Nber T : [J;.

@ Completeness: If I = T = T’ : [J; then Nber T = Nber T".

@ Completeness follows from PER model: If A= A" € [[J;] then
RoA=RgA.

@ Soundness requires Kripke logical relation between expressions
and values (similar to PER model).

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 18/19

Introduction

Remarks on Calculus of Constructions

@ Universes cannot be defined inductively. Need candidates instead.

@ Main problem: injectivity does not fall out of semantic construction.

@ |dea: Injectivity from NbE: soundness, completeness, and
uniqueness of typing.

@ To do:

@ Construct logical relation for CoC.
@ Extend PER model to infinite universe hierarchy.
© Replace uniqueness of typing by principal typing.

Andreas Abel (INRIA) Typed Equality GT TypesSem '09 19/19

	Introduction

