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Introduction Types

Type Systems

Basic types Int, Word from machine (CPU)

Data types (record, objects, variants) describe structures

Higher types (function, polymorphism, monads) describe
computations

Strong typing: check at compile-time
1 Enable code optimizations
2 Catch errors early
3 Document code and libraries
4 Allow (partial) verification
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Introduction Dependent Types

Types for verification

Types for physical units (F#)

Polymorphic types: A more general type has less inhabitants

Security types: Control access to resources

Resource types: Control complexity (time/space)

Dependent types

Express arbitrary (logical) properties of a function in its type
Pre- and postconditions

Vision: dependent types as universal type system

Lightweight incorporation of security, resource, . . . types
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Introduction Dependent Types

Dependent types

Dependent function type Π:

(x : A) → B x

Codomain B can depent on argument value x .
Dependent record type Σ:

record Seq (A : Set) : Set where

field

length : N
elements : Vec A length

The type of a field can depend on the value of a previous field.
Full dependent types:

Sum : N → Set

Sum 0 = N
Sum (n + 1) = N → Sum n

Shape of type can depend on value.
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Introduction Curry-Howard

Curry-Howard-Correspondence

Constructive propositional logic corresponds to simply-typed
lambda-calculus

Logic Programming

Proposition Type
Proof Program
Implication ⇒ Function type →
Conjunction ∧ Cartesian product ×
Disjunction ∨ Disjoint sum +
Truth > Biggest type (unit) >
Absurdity ⊥ Least type (empty) ⊥

One language for types and specifications

One language for programming and proving
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Introduction Curry-Howard

Curry-Howard for Predicate Logic

Constructive predicate logic corresponds to dependently-typed
lambda-calculus (Martin-L”of Type Theory)

Logic Programming

Proposition Type
Proof Program
Universal q. ∀x : τ. P x Depend. function t. (x : A)→ B x
Existential q. ∃x : τ. P x Depend. pair t. (x : A)× B x
Predicates P t Indexed type A t
Type τ Type A
Term t Program t

Unification of concepts ⇒ lean language.

Program extraction: discard proofs
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Agda

Some Dependently Typed Languages

NuPrl: Extensional Type Theory (ETT)
Cornell, US (Bob Constable, ...) 1980s–

Coq: Impredicative Intensional Type Theory (ITT)
INRIA, France (Huet, Coquand, ...) 1980s–

Epigram: Predicative ITT
McKinna, McBride 2000s–

Agda: Predicative ITT
Chalmers, Sweden 1990s–: Alf, Alfa, Agda, AgdaLight
Agda 2 (Norell, ...) 2006–
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Agda

Agda 2

Haskell-like syntax +

mixfix identifiers
Parametrized modules

People

Implemented by Ulf Norell
Library by Nils Anders Danielsson (Nisse)
Maintained by Ulf, Nisse, and me
Contributions by 20 more...

Compiles to

Haskell (M. Takeyama)
C (via Epic) (Gustafsson)
JavaScript (A. Jeffrey)

Agda is implemented in Haskell

cabal install Agda
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Agda

Agda tour (interactive)

Numbers

Vectors

Logic

Sorted lists
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Theory of Agda

Theory of Agda

Type checking = proof checking

Termination

Automation

Higher-order unification
Program synthesis = proof search
Overloading via instance search (type classes)

Program extraction

Identify computationally irrelevant terms (proofs)
Eliminate uniquely determined terms (singletons)
Exploit rich type information for optimizations
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Theory of Agda Termination

Termination

Looping programs prove anything

loop : ⊥
loop = loop

Agda accepts only terminating programs

Current termination checker searches for lexicographic structural
descent

Plan: certify termination by sized types

Type-based termination (Pareto 1996, Giménez 1998, ...)
My PhD thesis: non-dependent language + sized types
MiniAgda: study sized types and pattern matching

Coinduction: non-terminating, but productive programs

Induction: consume input in each iteration
Coinduction: produce output in each iteration
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Theory of Agda Termination

Consistency

Logical consistency proved by model

Term model: Model types by sets of terminating programs

Proves also decidability of type checking

No model for all of Agda published

Dependently-typed lambda-calculus
Inductive types
Indexed types
Recursive functions and pattern matching
Universes

Current status: extrapolation from models that consider a subset of
features

Plan: simpler model through sized types
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Theory of Agda Higher-Order Unification

Unification

Type-checking decidable, but infeasible

Excessive amount of (repetitive) type arguments

◦ : {A B C : Set} → (B → C) → (A → B) → A → C

g ◦ f = λ x → g (f x)

◦ {A} {B} {C} g f = λ x → g (f x)

Reconstruction: Omit arguments, solve by unification

Higher-order unification = solve equations over lambda-terms

Undeciable (Hilbert’s 10th problem) ⇒ constraints

Agda: Sound and complete constraint simplification
Only finds unique solutions
Coq: more solving by first-order unification, but also wrong solutions
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Theory of Agda Higher-Order Unification

Higher-Order Unification

Some constraints have no unique solutions

X true = true

X x x = x + 1

Postpone constraints, try to gather more information

Unification for records:
Abel, Pientka, TLCA 2011

Beware of type checking modulo constraints:
If constraints are unsolvable, term might be ill-typed/looping

Satisfying theoretical account lacking!
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Theory of Agda Higher-Order Unification

Computational irrelevance

Declare some programs as proofs by typing

f : .(x : A) → B x

f and B do not computationally depend on x

.A is “squash A”.

Irrelevant arguments can be erased during program extraction.
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Theory of Agda Higher-Order Unification

Conclusion

Agda: Unified proof/programming language via Curry-Howard

Lean syntax, but complicated theory

Vision: universal type system

Subsume the next 700 type systems

Need: more automation for boilerplate!

Tactics!
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Theory of Agda Higher-Order Unification

Get involved!

Try Agda!

Formalize your papers with Agda!

Write libraries!

Write documentation (Agda wiki)!

Fix bugs code.google.com/agda/issues|!

Contribute features!

Contribute theory!
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