
Programming and Program Verification
with Dependent Types

in Agda

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Seminar des Lehrstuhls 8, Theoretische Informatik
Friedrich-Alexander-Universität Erlangen

8 May 2012

Andreas Abel (LMU) Agda Erlangen 2012 1 / 17



Introduction Types

Type Systems

Basic types Int, Word from machine (CPU)

Data types (record, objects, variants) describe structures

Higher types (function, polymorphism, monads) describe
computations

Strong typing: check at compile-time
1 Enable code optimizations
2 Catch errors early
3 Document code and libraries
4 Allow (partial) verification

Andreas Abel (LMU) Agda Erlangen 2012 2 / 17



Introduction Dependent Types

Types for verification

Types for physical units (F#)

Polymorphic types: A more general type has less inhabitants

Security types: Control access to resources

Resource types: Control complexity (time/space)

Dependent types

Express arbitrary (logical) properties of a function in its type
Pre- and postconditions

Vision: dependent types as universal type system

Lightweight incorporation of security, resource, . . . types

Andreas Abel (LMU) Agda Erlangen 2012 3 / 17



Introduction Dependent Types

Dependent types

Dependent function type Π:

(x : A) → B x

Codomain B can depent on argument value x .
Dependent record type Σ:

record Seq (A : Set) : Set where

field

length : N
elements : Vec A length

The type of a field can depend on the value of a previous field.
Full dependent types:

Sum : N → Set

Sum 0 = N
Sum (n + 1) = N → Sum n

Shape of type can depend on value.
Andreas Abel (LMU) Agda Erlangen 2012 4 / 17



Introduction Curry-Howard

Curry-Howard-Correspondence

Constructive propositional logic corresponds to simply-typed
lambda-calculus

Logic Programming

Proposition Type
Proof Program
Implication ⇒ Function type →
Conjunction ∧ Cartesian product ×
Disjunction ∨ Disjoint sum +
Truth > Biggest type (unit) >
Absurdity ⊥ Least type (empty) ⊥

One language for types and specifications

One language for programming and proving

Andreas Abel (LMU) Agda Erlangen 2012 5 / 17



Introduction Curry-Howard

Curry-Howard for Predicate Logic

Constructive predicate logic corresponds to dependently-typed
lambda-calculus (Martin-L”of Type Theory)

Logic Programming

Proposition Type
Proof Program
Universal q. ∀x : τ. P x Depend. function t. (x : A)→ B x
Existential q. ∃x : τ. P x Depend. pair t. (x : A)× B x
Predicates P t Indexed type A t
Type τ Type A
Term t Program t

Unification of concepts ⇒ lean language.

Program extraction: discard proofs

Andreas Abel (LMU) Agda Erlangen 2012 6 / 17



Agda

Some Dependently Typed Languages

NuPrl: Extensional Type Theory (ETT)
Cornell, US (Bob Constable, ...) 1980s–

Coq: Impredicative Intensional Type Theory (ITT)
INRIA, France (Huet, Coquand, ...) 1980s–

Epigram: Predicative ITT
McKinna, McBride 2000s–

Agda: Predicative ITT
Chalmers, Sweden 1990s–: Alf, Alfa, Agda, AgdaLight
Agda 2 (Norell, ...) 2006–

Andreas Abel (LMU) Agda Erlangen 2012 7 / 17



Agda

Agda 2

Haskell-like syntax +

mixfix identifiers
Parametrized modules

People

Implemented by Ulf Norell
Library by Nils Anders Danielsson (Nisse)
Maintained by Ulf, Nisse, and me
Contributions by 20 more...

Compiles to

Haskell (M. Takeyama)
C (via Epic) (Gustafsson)
JavaScript (A. Jeffrey)

Agda is implemented in Haskell

cabal install Agda

Andreas Abel (LMU) Agda Erlangen 2012 8 / 17



Agda

Agda tour (interactive)

Numbers

Vectors

Logic

Sorted lists

Andreas Abel (LMU) Agda Erlangen 2012 9 / 17



Theory of Agda

Theory of Agda

Type checking = proof checking

Termination

Automation

Higher-order unification
Program synthesis = proof search
Overloading via instance search (type classes)

Program extraction

Identify computationally irrelevant terms (proofs)
Eliminate uniquely determined terms (singletons)
Exploit rich type information for optimizations

Andreas Abel (LMU) Agda Erlangen 2012 10 / 17



Theory of Agda Termination

Termination

Looping programs prove anything

loop : ⊥
loop = loop

Agda accepts only terminating programs

Current termination checker searches for lexicographic structural
descent

Plan: certify termination by sized types

Type-based termination (Pareto 1996, Giménez 1998, ...)
My PhD thesis: non-dependent language + sized types
MiniAgda: study sized types and pattern matching

Coinduction: non-terminating, but productive programs

Induction: consume input in each iteration
Coinduction: produce output in each iteration

Andreas Abel (LMU) Agda Erlangen 2012 11 / 17



Theory of Agda Termination

Consistency

Logical consistency proved by model

Term model: Model types by sets of terminating programs

Proves also decidability of type checking

No model for all of Agda published

Dependently-typed lambda-calculus
Inductive types
Indexed types
Recursive functions and pattern matching
Universes

Current status: extrapolation from models that consider a subset of
features

Plan: simpler model through sized types

Andreas Abel (LMU) Agda Erlangen 2012 12 / 17



Theory of Agda Higher-Order Unification

Unification

Type-checking decidable, but infeasible

Excessive amount of (repetitive) type arguments

◦ : {A B C : Set} → (B → C) → (A → B) → A → C

g ◦ f = λ x → g (f x)

◦ {A} {B} {C} g f = λ x → g (f x)

Reconstruction: Omit arguments, solve by unification

Higher-order unification = solve equations over lambda-terms

Undeciable (Hilbert’s 10th problem) ⇒ constraints

Agda: Sound and complete constraint simplification
Only finds unique solutions
Coq: more solving by first-order unification, but also wrong solutions

Andreas Abel (LMU) Agda Erlangen 2012 13 / 17



Theory of Agda Higher-Order Unification

Higher-Order Unification

Some constraints have no unique solutions

X true = true

X x x = x + 1

Postpone constraints, try to gather more information

Unification for records:
Abel, Pientka, TLCA 2011

Beware of type checking modulo constraints:
If constraints are unsolvable, term might be ill-typed/looping

Satisfying theoretical account lacking!

Andreas Abel (LMU) Agda Erlangen 2012 14 / 17



Theory of Agda Higher-Order Unification

Computational irrelevance

Declare some programs as proofs by typing

f : .(x : A) → B x

f and B do not computationally depend on x

.A is “squash A”.

Irrelevant arguments can be erased during program extraction.

Andreas Abel (LMU) Agda Erlangen 2012 15 / 17



Theory of Agda Higher-Order Unification

Conclusion

Agda: Unified proof/programming language via Curry-Howard

Lean syntax, but complicated theory

Vision: universal type system

Subsume the next 700 type systems

Need: more automation for boilerplate!

Tactics!

Andreas Abel (LMU) Agda Erlangen 2012 16 / 17



Theory of Agda Higher-Order Unification

Get involved!

Try Agda!

Formalize your papers with Agda!

Write libraries!

Write documentation (Agda wiki)!

Fix bugs code.google.com/agda/issues|!

Contribute features!

Contribute theory!

Andreas Abel (LMU) Agda Erlangen 2012 17 / 17


	Introduction
	Types
	Dependent Types
	Curry-Howard

	Agda
	Theory of Agda
	Termination
	Higher-Order Unification


