Programming and Program Verification
with Dependent Types
in Agda

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Seminar des Lehrstuhls 8, Theoretische Informatik
Friedrich-Alexander-Universitat Erlangen
8 May 2012

Andreas Abel (LMU) Agda Erlangen 2012 1/17

Introduction Types

Type Systems

Basic types Int, Word from machine (CPU)

Data types (record, objects, variants) describe structures

Higher types (function, polymorphism, monads) describe
computations
Strong typing: check at compile-time

@ Enable code optimizations
@ Catch errors early

© Document code and libraries
@ Allow (partial) verification

Andreas Abel (LMU) Agda Erlangen 2012

2/17

Types for verification

Types for physical units (F#)
Polymorphic types: A more general type has less inhabitants
Security types: Control access to resources

Resource types: Control complexity (time/space)

Dependent types

o Express arbitrary (logical) properties of a function in its type
e Pre- and postconditions

Vision: dependent types as universal type system

Lightweight incorporation of security, resource, .. .types

Andreas Abel (LMU) Agda Erlangen 2012 3/17

Dapaniei: T
Dependent types

@ Dependent function type [I1:
(x : A - Bx
Codomain B can depent on argument value x.
@ Dependent record type ¥:
record Seq (A : Set) : Set where
field
length : N
elements : Vec A length
The type of a field can depend on the value of a previous field.
o Full dependent types:
Sum : N — Set
Sum 0 =N
Sum (n + 1) = N — Sum n

Shape of type can depend on value.

Andreas Abel (LMU) Agda Erlangen 2012

417

Introduction Curry-Howard

Curry-Howard-Correspondence

@ Constructive propositional logic corresponds to simply-typed

lambda-calculus
Logic

Programming

Proposition
Proof
Implication
Conjunction
Disjunction
Truth
Absurdity

=
A
V
T

i

Type

Program

Function type
Cartesian product
Disjoint sum
Biggest type (unit)
Least type (empty)

@ One language for types and specifications

@ One language for programming and proving

Andreas Abel (LMU)

Agda

-+ x]

Erlangen 2012

5/17

Introduction Curry-Howard

Curry-Howard for Predicate Logic

o Constructive predicate logic corresponds to dependently-typed
lambda-calculus (Martin-L" of Type Theory)

Logic Programming

Proposition Type

Proof Program

Universal . Vx: 7. Px | Depend. functiont. (x:A)— Bx
Existential . 3dx : 7. Px | Depend. pair t. (x: A) x Bx
Predicates Pt Indexed type At

Type T Type A

Term t Program t

@ Unification of concepts = lean language.

@ Program extraction: discard proofs

Andreas Abel (LMU) Agda Erlangen 2012 6 /17

Some Dependently Typed Languages

@ NuPrl: Extensional Type Theory (ETT)
Cornell, US (Bob Constable, ...) 1980s—

Coq: Impredicative Intensional Type Theory (ITT)
INRIA, France (Huet, Coquand, ...) 1980s—

Epigram: Predicative ITT
McKinna, McBride 2000s—

Agda: Predicative ITT
Chalmers, Sweden 1990s—: Alf, Alfa, Agda, AgdalLight
Agda 2 (Norell, ...) 2006—

Andreas Abel (LMU) Agda Erlangen 2012 7 /17

Agda 2

Haskell-like syntax +

o mixfix identifiers
o Parametrized modules

People
o Implemented by Ulf Norell
o Library by Nils Anders Danielsson (Nisse)
e Maintained by UIf, Nisse, and me
e Contributions by 20 more...

Compiles to

o Haskell (M. Takeyama)
o C (via Epic) (Gustafsson)
o JavaScript (A. Jeffrey)

o Agda is implemented in Haskell
cabal install Agda

Andreas Abel (LMU) Agda Erlangen 2012 8 /17

Agda tour (interactive)

@ Numbers
@ Vectors
o Logic

@ Sorted lists

Andreas Abel (LMU) Agda Erlangen 2012 9 /17

Theory of Agda

Theory of Agda

Type checking = proof checking

Termination

Automation

o Higher-order unification
e Program synthesis = proof search
o Overloading via instance search (type classes)

Program extraction

o Identify computationally irrelevant terms (proofs)
o Eliminate uniquely determined terms (singletons)
e Exploit rich type information for optimizations

Andreas Abel (LMU) Agda Erlangen 2012

10 / 17

Theory of Agda Termination

Termination
@ Looping programs prove anything
loop : L
loop = loop
@ Agda accepts only terminating programs
@ Current termination checker searches for lexicographic structural
descent
@ Plan: certify termination by sized types
o Type-based termination (Pareto 1996, Giménez 1998, ...)
e My PhD thesis: non-dependent language + sized types
e MiniAgda: study sized types and pattern matching
o Coinduction: non-terminating, but productive programs

o Induction: consume input in each iteration
e Coinduction: produce output in each iteration

Andreas Abel (LMU) Agda Erlangen 2012 11 /17

Theory of Agda Termination

Consistency

Logical consistency proved by model
Term model: Model types by sets of terminating programs

Proves also decidability of type checking
No model for all of Agda published

Dependently-typed lambda-calculus
Inductive types

Indexed types

Recursive functions and pattern matching
Universes

o Current status: extrapolation from models that consider a subset of
features

Plan: simpler model through sized types

Andreas Abel (LMU) Agda Erlangen 2012 12 /17

Theory of Agda Higher-Order Unification

Unification

Type-checking decidable, but infeasible

Excessive amount of (repetitive) type arguments

o_:{ABC: Set} -~ B—~C — (A —B) - A—C
gof=Xx— g (fx)

o {A} B} {C}gf=Xx—g (D

Reconstruction: Omit arguments, solve by unification

Higher-order unification = solve equations over lambda-terms
Undeciable (Hilbert's 10th problem) = constraints

e Agda: Sound and complete constraint simplification
e Only finds unique solutions
e Coq: more solving by first-order unification, but also wrong solutions

Andreas Abel (LMU) Agda Erlangen 2012 13 /17

Theory of Agda Higher-Order Unification

Higher-Order Unification

@ Some constraints have no unique solutions

X true = true
Xxx =x+1

Postpone constraints, try to gather more information

Unification for records:
Abel, Pientka, TLCA 2011

@ Beware of type checking modulo constraints:
If constraints are unsolvable, term might be ill-typed/looping

Satisfying theoretical account lacking!

Andreas Abel (LMU) Agda Erlangen 2012 14 /17

Theory of Agda Higher-Order Unification

Computational irrelevance

@ Declare some programs as proofs by typing
f: .x:A) — Bx
f and B do not computationally depend on x
o Ais “squash A".

@ lrrelevant arguments can be erased during program extraction.

Andreas Abel (LMU) Agda Erlangen 2012

15 / 17

Theory of Agda Higher-Order Unification

Conclusion

Agda: Unified proof/programming language via Curry-Howard
Lean syntax, but complicated theory

Vision: universal type system

Subsume the next 700 type systems

Need: more automation for boilerplate!

Tactics!

Andreas Abel (LMU) Agda Erlangen 2012 16 / 17

Theory of Agda Higher-Order Unification

Get involved!

Try Agda!

Formalize your papers with Agda!

Write libraries!

Write documentation (Agda wiki)!

Fix bugs code.google.com/agda/issues]| !

Contribute features!

Contribute theory!

Andreas Abel (LMU) Agda Erlangen 2012 17 /17

	Introduction
	Types
	Dependent Types
	Curry-Howard

	Agda
	Theory of Agda
	Termination
	Higher-Order Unification

