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Abstract. Weak normalization for the simply-typed λ-calculus is proven
in Twelf, an implementation of the Edinburgh Logical Framework. Since
due to proof-theoretical restrictions Twelf Tait’s computability method
does not seem to be directly usable, a combinatorical proof is adapted
and formalized instead.

1 Introduction

Twelf is an implementation of the Edinburgh Logical Framework which supports
reasoning in full higher-order abstract syntax; therefore it is an ideal candidate
for reasoning comfortably about properties of prototypical programming lan-
guages with binding. Previous work has focused on properties like subject reduc-
tion, confluence, compiler correctness. Even cut elimination for various sequent
calculi has been proven successfully, but until recently, there were no formalized
proofs of normalization in Twelf. The reason might be that normalization is typ-
ically proven by Tait’s method, which cannot be applied directly in Twelf. This
work explains why Tait’s method is at least not directly applicable and provides
a combinatorical proof for the simply-typed lambda-calculus.

2 Twelf

The Edinburgh Logical Framework (LF1) [HHP93,HP00] is a dependently-typed
lambda-calculus with type families and βη-equality, but no polymorphism, in-
ductive data types or recursion. Expressions are divided into three syntactic

1 This is not to be confused with Martin-Löf’s framework for dependent type theory,
which is also abbreviated by LF.



classes: kinds, types and terms, generated by the following grammar.

K ::= type kind of types
| {X :A}K dependent function kind

A ::= F M1 . . . Mn base type
| {X :A}A dependent function type
| A → A non-dependent function type

M ::= C term constant
| X term variable
| [X :A]M term abstraction
| M M term application

Herein, the meta variable X ranges over a countably infinte set of variable iden-
tifiers, while F resp. C range over type-family resp. term constants provided
in a signature Σ. Note that neither a type nor a kind can depend on a type;
consequently, abstraction is missing on the type level [Pfe01, p. 1124].

The framework comes with judgements for typing M : A, kinding A : K and
wellformedness of kinds K kind plus βη-equality on for terms, types and kinds
[HP00]. An object theory can be described in the framework by providing a
suitable signature Σ which adds kinded type family constants F : K and typed
term constants C : A.

Syntax.
r, s, t, u ::= x | λx.t | r s untyped terms
A, B, C ::= ∗ | A → B simple types
Γ ::= � | Γ, x :A contexts

Type assignment Γ ` t : A. (x :A) ∈ Γ

Γ ` x : A
of var

Γ, x :A ` t : B

Γ ` λx.t : A → B
of lam

Γ ` r : A → B Γ ` s : A

Γ ` r s : B
of app

Weak head reduction t −→w t′.

(λx.t) s −→w [s/x]t
beta

r −→w r′

r s −→w r′ s
appl

Fig. 1. Simply-typed λ-calculus and weak head reduction.

Twelf [PS99] is an implementation of LF whose most fundamental task is to
check typing (and kinding) of a user given signature Σ, usually provided as a
set of ASCII files. Symbols reserved for the framework are the following.

: . ( ) [ ] { } -> type

All others can be used to denote entities in the object theories.
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In the remainder of this section we show how to represent the simply-typed
λ-calculus with weak head reduction, as specified in Figure 1 in Twelf. Untyped
lambda terms t can be represented by one type family constant tm and two term
constants:

tm : type.
lam : (tm -> tm) -> tm.
app : tm -> tm -> tm.

The lack of a construct for variables is due to the use of higher-order abstract
syntax: object variables are represented by variables of the framework, e. g., in
the code for the twice function:

twice = lam [f:tm] lam [x:tm] app f (app f x).

A more detailed explanation of higher-order encodings has been given by Schürmann
[Sch00, p. 20ff]. Simple types A can be generated from a nullary constant * for
some base type and a binary constant =>, used infix, for function type formation.

ty : type.
* : ty.
=> : ty -> ty -> ty.

Type assignment for untyped terms, Γ ` t : A, can also be represented by two
constants, one for function introduction and one for function elimination. Note
that in Twelf syntax, the types of new constants may contain free variables
(captial letters), which are regarded as universally quantified on the outside.

of : tm -> ty -> type.
of_lam : ({x:tm} x of A -> (T x) of B)

-> (lam [x:tm] T x) of (A => B).
of_app : R of (A => B) -> S of A -> (app R S) of B.

Again, there is no separate rule for the typing of variables, instead it is part of
the rule for abstraction. The premise of rule of_lam is to be read as:

Consider a temporary extension of the signature by a fresh constant x:tm
and assume x of A. Then (T x) of B holds.

This adds a dynamical typing rule x of A for each new variable x instead of
inserting a typing hypothesis x :A into the typing context Γ . Hence, we do not
explicitely encode Γ , but let the framework handle the typing hypotheses.

Similar to the typing relation we can represent weak head reduction t −→w t′,
which eliminates the head (resp. key) redex in term t but does not step under a
binding.

-->w : tm -> tm -> type.
beta : app (lam T) S -->w T S.
appl : R -->w R’ -> app R S -->w app R’ S.
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Lemma 1 (Weak head reduction is closed under substitution).
If t −→w t′ then [u/y]t −→w [u/y]t′.

How do we represent theorems like Lemma 1? Twelf’s internal logic is construc-
tive, therefore the lemma must be interpreted constructively: Given a derivation
P of t −→w t′ and a term u, we can construct a derivation P ′ of [u/y]t −→w

[u/y]t′. The lemma itself is a relation between derivations, and, thus, via the
propositions-as-types paradigm, just another type family.

subst_red : {U:tm} ({y:tm} T y -->w T’ y)
-> T U -->w T’ U -> type.

Note that in HOAS, substitution [u/y]t is simply expressed as application T U
for context T : tm -> tm.

Proof of Lemma 1. By induction on the derivation of t −→w t′.

– Case (λx.t) s −→w [s/x]t. W.l.o.g. x 6= y and x not free in u. Then,

[u/y]((λx.t) s) = (λx.[u/y]t) [u/y]s
−→w [[u/y]s/x][u/y]t = [u/y][s/x]t.

– Case r s −→w r′ s with r −→w r′. By induction hypothesis, [u/y]r −→w

[u/y]r′. Hence,
[u/y](r s) = ([u/y]r) ([u/y]s)

−→w ([u/y]r′) ([u/y]s) = [u/y](r′ s)

ut
The Twelf representation of this proof is a logic program which computes a
derivation P ′ :: [u/y]t −→w [u/y]t′ from term u and derivation P :: t −→w t′.
The %mode statement marks the first two arguments of type familiy subst_red
as inputs (+) and the third as output (-). The base case of the induction is
given by the constants subst_red_beta and the step case, which appeals to the
induction hypothesis, by subst_red_appl. The types of these constants can be
viewed as clauses similiar to the ones in PROLOG. Note that most of the tedious
computations of the paper proof are hidden in the argument types of subst_red
which can be infered by Twelf.

%mode subst_red +U +P -P’.
subst_red_beta: subst_red U ([y] beta) beta.
subst_red_appl: subst_red U ([y] appl (P y)) (appl P’)

<- subst_red U P P’.
%terminates P (subst_red _ P _).

A logic program in Twelf corresponds to a partial function from inputs to outputs
as specified by the mode declaration. Since only total functions correspond to
valid inductive proofs we must ensures that the defined function terminates
on all inputs and covers all possible cases. Brigitte Pientka [Pie01] contributed
a termination checker which is invoked by the %terminates pragma. In our
case, the second argument P decreases structurally in each recursive call. Case
coverage is ensured by an algorithm by Pfenning and Schürmann [SP03] whose
implementation is not yet stable. In the following, we will deliberately ignore the
issue of coverage.
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3 A Formalized Proof of Weak Normalization

In this section, we present a combinatorical proof of weak normalization for the
simply-typed lambda-calculus. It is similiar to the textbook proof in Girard,
Lafont and Taylor [GLT89, Ch. 4], but avoiding reasoning with numbers alto-
gether. In fact, we follow closely the very syntactical presentation of Joachimski
and Matthes [JM03], which has also been implemented in Isabelle/Isar by Nip-
kow and Berghofer [Ber03]. The main obstacle to a direct formalization in Twelf
is the use of a vector notation for terms by Joachimski and Matthes, which al-
lows them to reason on a high level in some cases. In this section, we will see a
“devectorized” version of their proof which can be outlined as follows:

1. Define an inductive relation t ⇓ A.
2. Prove that for every term t : A the relation t ⇓ A holds.
3. Show that every term in the relation is weakly normalizing.

3.1 Inductive Characterization of Weak Normalization

Inductive characterizations of normalization go back to Goguen [Gog95] and van
Raamsdonk and Severi [vRS95,vRSSX99]. We introduce a relation Γ ` t ⇓ A
which stipulates the t is weakly normalizing of type A, and an auxiliary relation
Γ ` t ↓x A which additionally claims that t = x s for some sequence of terms s,
i.e., t is neutral and head-redex free.

(x :A) ∈ Γ

Γ ` x ↓x A

Γ ` r ↓x A → B Γ ` s ⇓ A

Γ ` r s ↓x B
wne app

Γ ` r ↓x A

Γ ` r ⇓ A
wn ne

Γ, x :A ` t ⇓ B

Γ ` λx.t ⇓ A → B
wn lam

r −→w r′ Γ ` r′ ⇓ A

Γ ` r ⇓ A
wn exp

The Twelf representation is similar to the typing relation: Again, Γ and the
hypothesis rule are indirectly represented in rule of_lam.

wne : tm -> ty -> tm -> type.
wn : tm -> ty -> type.

wne_app : wne R (A => B) X -> wn S A -> wne (app R S) B X.
wn_ne : {X:tm} wne R A X -> wn R A.
wn_lam : ({x:tm} wne x A x -> wn (T x) B)

-> wn (lam T) (A => B).
wn_exp : R -->w R’ -> wn R’ A -> wn R A.

3.2 Closure under Application and Substitution

To show that each typed term t : A is in the relation t ⇓ A, we will proceed
by induction on the typing derivation. Difficult is the case for an application
(λx.r) s: it can only be shown to be in the relation by rule wn_exp, which requires
us to prove that [s/x]r is in the relation. If x is head variable of r, substitution
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might create new redexes. In this case, however, we can argue that the type of
r is a smaller type than the one of s. These prelimiary thoughts lead to the
following lemma.

Lemma 2 (Application and Substitution). Let D :: Γ ` s ⇓ A.

1. If E :: Γ ` r ⇓ A → C then Γ ` r s ⇓ C.
2. If E :: Γ, x :A ` t ⇓ C, then Γ ` [s/x]t ⇓ C.
3. If E :: Γ, x :A ` t ↓x C, then Γ ` [s/x]t ⇓ C and C is a part of A.
4. If E :: Γ, x :A ` t ↓y C with x 6= y, then Γ ` [s/x]t ↓y C.

In Twelf, the lemma is represented by four type families. The invariant that C
is a subexpression of A will be expressed via a %reduces statement later, which
makes is necessary to make type C an explicit argument to type family subst_x.

app_wn : {A:ty} wn S A ->
wn R (A => C) -> wn (app R S) C -> type.

subst_wn: {A:ty} wn S A ->
({x:tm} wne x A x -> wn (T x) C ) -> wn (T S) C -> type.

subst_x : {A:ty} wn S A -> {C:ty}
({x:tm} wne x A x -> wne (T x) C x) -> wn (T S) C -> type.

subst_y : {A:ty} wn S A ->
({x:tm} wne x A x -> wne (T x) C Y) -> wne (T S) C Y -> type.

%mode app_wn +A +D +E -F.
%mode subst_wn +A +D +E -F.
%mode subst_x +A +D +C +E -F.
%mode subst_y +A +D +E -F.

Proof of Lemma 2. Simultaneously by main induction on type A and side in-
duction on the derivation E .

1. Show Γ ` r s ⇓ C. If the last rule of E was wn_ne, hence r is neutral, then
r s is also neutral by rule wne_app hence it is in the relation. If the last rule
was wn_exp, we can apply the side ind. hyp.. The interesting case is r = λx.t
and

Γ, x :A ` t ⇓ C

Γ ` λx.t ⇓ A → C
wn lam.

Here, we proceed by side ind. hyp. 2.

app_wn_ne : app_wn A D (wn_ne X E) (wn_ne X (wne_app E D)).
app_wn_exp : app_wn A D (wn_exp P E) (wn_exp (appl P) F)

<- app_wn A D E F.
app_wn_lam : app_wn A D (wn_lam E) (wn_exp beta F)

<- subst_wn A D E F.
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2. Show Γ ` [s/x]t ⇓ C for Γ, x : A ` t ⇓ C. If t is not neutral, we conclude
by ind. hyp. and possibly Lemma 1. Otherwise, we distinguish on the head
variable of t: is it x, then we proceed by side ind. hyp. 3, otherwise by side
ind. hyp. 4.

subst_wn_lam: subst_wn A D
([x][dx] wn_lam ([y][dy] E y dy x dx)) (wn_lam F)

<- {y}{dy} subst_wn A D (E y dy) (F y dy).

subst_wn_exp: subst_wn A (D : wn S A)
([x][dx] wn_exp (P x) (E x dx)) (wn_exp P’ E’)

<- subst_wn A D E E’
<- subst_red S P P’.

subst_wn_x : subst_wn A D
([x][dx] (wn_ne x (E x dx) : wn (T x) C)) F

<- subst_x A D C E F.

subst_wn_y : subst_wn A D
([x][dx] wn_ne Y (E x dx)) (wn_ne Y F)

<- subst_y A D E F.

3. Show Γ ` [s/x]t ⇓ C for Γ ′ ` t ↓x C with Γ ′ := Γ, x : A. In case t = x,
the type C is trivially a part of A = C and we conclude by assumption
Γ ` s ⇓ C. Otherwise, t = r u and the last rule in E was

Γ ′ ` r ↓x B → C Γ ′ ` u ⇓ B

Γ ′ ` r u ↓x C
wne app.

By side ind. hyp. 3 we know that B → C is a part of A and Γ ` r′ ⇓ B → C
where r′ := [s/x]r. Similarily Γ ` u′ ⇓ B for u′ := [s/x]u by side ind. hyp. 2.
Since B is a strict part of A, we can apply to the main ind. hyp. 1 and obtain
Γ ` r′ u′ ⇓ C.

subst_x_x : subst_x A D A ([x][dx]dx) D.
subst_x_app : subst_x A D C ([x][dx] wne_app

(E x dx)
(F x dx : wn (U x) B)) EF

<- subst_x A D (B => C) E E’
<- subst_wn A D F F’
<- app_wn B F’ E’ EF.

%reduces C <= A (subst_x A D C E F).

The %reduces declaration states that the type expression C is a subexpres-
sion of A. Twelf checks that this invariant is preserved in all possibilities of
introducing subst_x A D C E F. In case subst_x_x it holds because C is
instantiated to A. In case subst_x_app it follows from the ind. hyp. which
states that already B => C is a subexpression of A.
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4. Show Γ ` [s/x]t ↓y C for Γ, x :A ` t ↓y C. Easy, using side ind. hyp. 2 and
4. ut

subst_y_y : subst_y A D ([x][dx] E) E.
subst_y_app : subst_y A D ([x][dx] wne_app (E x dx) (F x dx))

(wne_app E’ F’)
<- subst_y A D E E’
<- subst_wn A D F F’.

To justify the appeals to the ind. hyp.s we invoke the Twelf termination
checker with the following termination order.

%terminates {(Ax Ay As Aa) (Ex Ey Es Ea)}
(subst_x Ax _ _ Ex _)
(subst_y Ay _ Ey _)
(subst_wn As _ Es _)
(app_wn Aa _ Ea _).

It expresses that the four type families are mutually recursive and terminate
w. r. t. the lexicographic order on pairs (A, E) of types A and typing derivations
E . This corresponds on a main induction on A and a side induction on E . To
verify termination, Twelf makes use of the %reduces declaration.

3.3 Soundness of Inductive Characterization

To complete our proof of weak normalization we need to show that for each term
t in the relation t ⇓ A or t ↓x A, there exists a normal form v such that t −→∗ v.
After formulating full reduction −→ with the usual closure properties, the proof
is a simple induction on the derivation E :: t ⇓ A resp. E :: t ↓x A. For lack of
space we exclude the details, an implementation of the proof is available online
[Abe04].

4 On Proof-Theoretical Limitations of Twelf

Having successfully completed the proof of weak normalization we are interested
whether it could be extended to strong normalization and stronger object the-
ories, like Gödel’s T. In this section, we touch these questions, but our answers
are speculative and preliminary.

Joachimski and Matthes [JM03] extend their proof to Gödel’s T using the in-
finitary ω-rule state when a recursive function is weakly normalizing. Their proof
is not directly transferable since only finitary rules Twelf can be represented in
Twelf.

For the same reason, Tait’s proof cannot be formalized in Twelf. Its key part
is the definition

∀s. s ⇓ A ⇒ r s ⇓ B

r ⇓ A → B

with an infinitary premise. Its literal translation into Twelf
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wn_arr : ({S:tm} wn S A -> wn (app R S) B) -> wn R (A => B)

means something else, namely “if for a fresh term S for which we assume wn S A
it holds that wn (app R S) B, then wn R (A => B)”. Translating this back into
mathematical language, we obtain the rule

x ⇓ A ⇒ r x ⇓ B

r ⇓ A → B
for a fresh variable x.

Since variables x are weakly normalizing anyway, we can simplify the premise
further to r x ⇓ B, obtaining clearly something we did not want in the first place.

Due to the interpretation of quantification in Twelf, infinitary rules cannot be
represented, which obstructs the definition of the predicate strongly normalizing
sn by the inductive rule

∀t′. t −→ t′ ⇒ sn t′

sn t
,

expressing that the set of strongly normalizing terms is the accessible part of
the reduction relation.

Concludingly one might say that normalization of Gödel’s T and proofs of
strong normalization are at least difficult to express in Twelf. To see whether it
is possible at all, a detailed proof-theoretic analysis of Twelf would be required.

5 Conclusion and Related Work

We have presented a formalization of Joachimski and Matthes’ version of an ele-
mentary proof of weak normalization of the simply-typed λ-calculus in Twelf. We
further have outlined some problems with direct proofs of strong normalization
and Tait style proofs.

In the 1990s Andrej Filinski has investigated feasibility of logical relation
proofs in the Edinburgh LF, but his findings remained unpublished. According
to Frank Pfenning, a possible way is to first define a logic in LF, and then
within this logic investigate normalization of λ-calculi. This path is taken in
the Isabelle system whose framework is similar to LF but only simply-typed
instead of dependently typed. On top of core Isabelle higher-order logic (HOL)
is implemented which serves as the meta language in which, in turn, object
theories are considered. Rich tactics for HOL make up for the loss of framework
mechanism due to the extra indirection level. In Twelf, one could follow this path
as well with the drawback that the built-in facilities like termination checker and
automated prover [Sch00] would be rendered inapplicable.

Independently of the author, Kevin Watkins and Karl Crary have formalized
a normalization algorithm and proof in Twelf, namely for Watkins’ concurrent
logical framework. It is said to follow the principle of our Lemma 2, namely
showing that canonical forms (=normal forms) are closed under eliminations.

Acknowledgements. The author likes to thank Ralph Matthes, Frank Pfenning,
Brigitte Pientka, Carsten Schürmann and Ketwin Watkins for discussions on the
topic in the years 2000–2004.
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