
The smallest networks on which the Ford-Fulkersonmaximum ow procedure may fail to terminateUri Zwick �July 11, 1993AbstractIt is widely known that the Ford-Fulkerson procedure for �nding the maximumow in a networkneed not terminate if some of the capacities of the network are irrational. Ford and Fulkersongave as an example a network with 10 vertices and 48 edges on which their procedure mayfail to halt. We construct much smaller and simpler networks on which the same may happen.Our smallest network has only 6 vertices and 8 edges. We show that it is the smallest examplepossible.1 IntroductionThe maximal ow problem is one of the most fundamental combinatorial optimization problems.The Ford-Fulkerson augmenting paths procedure is perhaps the most basic method devised forsolving it and many more advanced algorithms are based on it.Ford and Fulkerson themselves point out that their procedure need not terminate if the networkit is applied on has some irrational capacities. In their book [FF62], they describe a network with10 vertices and 48 edges on which this may happen. Their network is quite complicated and mosttextbooks (see, e.g., [CLR90],[Eve79],[Gib85],[Law76],[PS82],[Tar83]) that describe their proceduredo not present it. A variant of their example appears in [Roc84], it has 14 vertices and 28 edges.We are not aware of any simpler example that had appeared in the literature.In this note we describe three much smaller and simpler networks, on which the Ford-Fulkersonprocedure may fail to terminate. The �rst two networks contain only 6 vertices and 9 edges each.The third network is yet smaller containing only 6 vertices and 8 edges. All three networks areacyclic. The �rst two are planar and contain only one edge with an irrational capacity. The thirdnetwork is layered and it contains only two edges with irrational capacities. We show that thethird network is the smallest example of its kind; the Ford-Fulkerson procedure does terminate onevery network with at most 5 vertices or at most 7 edges. The networks constructed can be easilypresented in an undergraduate course that covers network ow.In the sequel we assume familiarity with the basic network ow concepts and with the Ford-Fulkerson procedure as described in any one of the textbooks cited earlier.�Department of Computer Science, Tel Aviv University, Tel Aviv, Israel. E-mail: zwick@math.tau.ac.il1



e2e3e1s t e2e3e1p1 : e3e1p3 :e2e3p2 :Figure 1: The network N12 The simplest examplesThe basis of the example given by Ford and Fulkerson [FF62], as well as of the simpli�ed examplesgiven in this section, is the sequence fang that satis�es the recurrence an+2 = an � an+1, togetherwith the initial conditions a0 = 1 and a1 = r. It is easy to check that an = rn, where r = p5�12 '0:62.Ford and Fulkerson observed that on certain network topologies, sequences of augmenting pathscan be used to simulate a computation of the sequence fang. To demonstrate this point, supposethat e1; e2 and e3 are three edges in a network and that their residual capacities are currentlyan; an+1 and 0 respectively. If we can �nd an augmenting path in this network that contains e1and e2 in their forward direction and e3 in its backward direction, with e2 being the critical edge,i.e., the edge on the path with the smallest residual capacity, then a ow augmentation along thispath will increase the ow along e1 and e2 by an+1 and will decrease the ow along e3 by an+1.The resulting residual capacities of e1; e2 and e3 would therefore be an � an+1 = an+2, 0 and an+1respectively. (Note that as e3 appears in the augmenting path used in its backward direction, itis the residual capacity of the reverse of e3, and not that of e3 itself, which is considered whenlooking for the critical edge along the path.) A similar form of arithmetic can be done on ows.We choose to perform the arithmetic on the residual capacities as this simpli�es the setting of theinitial conditions.Our �rst network N1 is given in Fig. 1. It has three special edges e1; e2 and e3 whose capacitiesrespectively are a0 = 1; a1 = r and 1. The capacity of all the other edges in the network is M ,where M � 4 is some large integer. The maximum ow in the network N is clearly 2M + 1.The important property of the network N1 is that it contains the three paths shown on the rightof Fig. 1. The �rst path contains e1 and e2 in their forward direction and e3 in its backwarddirection, as in the example above. The second path contains e2 in its backward direction and e3in its forward direction; it will be used to transfer ow from e2 to e3. The third path contains e1in its backward direction and e3 in its forward direction and it will be used to transfer ow frome1 to e3.Starting from the all zero ow in N1, we use the augmenting path composed of the edge from s tothe tail of e3, of e3 in its forward direction and of the edge from the head of e3 to t. A ow of 1 issent along this path and e3 becomes saturated. The residual ows of e1; e2 and e3 are now a0; a12
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Figure 2: The network N2and 0, respectively.Suppose that residual capacities of the three special edges e1; e2 and e3 are currently an; an+1and 0, respectively, for some n � 0, and that the residual capacities of all the other edges is atleast, say, 1. Note that this is satis�ed, with n = 0, after the augmentation that saturated e3.Clearly, the critical edge in any augmenting path in N1 that includes at least one of the specialedges in its forward direction is one of these included special edges.We now apply, in sequence, the augmenting paths p1; p2; p1; p3. The residual capacities of e1; e2and e3 as a result of the these augmentations are as follows:(an; an+1; 0) p1! (an+2; 0; an+1) p2! (an+2; an+1; 0) p1! (0; an+3; an+2) p3! (an+2; an+3; 0):To verify this note that the critical edge along p1 is e2 and its residual capacity is an+1. Thecritical edge along p2 is then e3 and its residual capacity is again an+1. Next e1 is the residualcapacity along p1 and its residual capacity is an+2 and �nally, e3 is the residual capacity alongp3 and its residual capacity is again an+2. The ow in N1 is therefore increased as a result ofthese four augmentations by 2an + 2an+1. The residual capacities of e1; e2 and e3 after these fouraugmentations are again of the form in which these augmentations can be applied.This yields an in�nite sequence of ow augmentations. The obtained sequence of ows does notconverge to the maximum ow of N1, whose value is 2M + 1, but rather to a smaller ow whosevalue is only 1 + 2P1n=2 an = 3. As the total ow in the network at any stage is at most 3, theresidual capacity of each non-special edge in N1 is at least 1, as required. This completes thedescription of the �rst example.The second example is obtained by using the network N2 shown in Fig. 2. Again, there are threespecial edges e1; e2 and e3 whose capacities are 1; r and 1 respectively. The residual capacities ofall the other edges are again M , where M � 4 is a large integer. The maximum ow in N2 isclearly 2M .The augmenting paths shown on the right of Fig. 2 are completely analogous to the augmentingpaths of Fig. 1 in the sense that they include the same special edges and in the same directions.The order of the special edges along the paths may di�er but this is of no consequence. Thesequence of augmentations used for N1 can be used without change for N2. We do not repeat thedetails.Both N1 and N2 have 6 vertices and 9 edges, they are planar, acyclic and only one edge in eachone of them has an irrational capacity. 3



s te1e2e3e4 e2e3e4e1e3e4e1e2e4e1e2e3p1 : p2 :p3 : p4 :Figure 3: The network N33 The smallest exampleConsider the network N3 shown in Fig. 3. There are four special edges this time e1; e2; e3 ande4 with capacities 1; r; r2 and 1, respectively, where r = 1+p1�4�2 ' 0:682378 and � ' 0:216757is the unique real root of the equation 1 � 5x + 2x2 � x3 = 0. The residual capacities of all theother edges is again M , where M � 3 is a some integer. The maximum ow in N3 is of size2 + r + r2 ' 3:147899.We begin by using an augmenting path that uses e4 but none of the other special edges. Thissaturates e4 and the residual capacities of the four special edges are now (1; r; r2; 0).We henceforth use the four augmenting paths shown on the right of Fig. 3. Note that for eachspecial edge there is a unique path that contains it in its backward direction.Suppose that the residual capacities of e1; e2; e3 and e4 are currently (x; y; z; 0) and that x > y >z > x � y > y � z. We apply in sequence the augmenting paths p1; p2; p3 and p4 given in Fig. 3.The resulting residual capacities are( x ; y ; z ; 0 )p1! ( x� y ; 0 ; z ; y )p2! ( x� y ; z ; 0 ; y � z )p3! ( 0 ; z � (x� y) ; x� y ; y � z )p4! ( y � z ; z � (x� y) ; (x� y)� (y � z) ; 0 )The new capacities (x0; y0; z0) of e1; e2 and e3 after these four augmentations satisfy0@ x0y0z01A = 0@ 0 1 �1�1 1 11 �2 11A0@ xyz 1A :It is easy to check that 1� 5x+ 2x2� x3 is the characteristic polynomial of the matrix appearingin the equation above. Thus � ' 0:216757 is an eigenvalue of this matrix. It is also easy to checkthat (1; r; r2) is an eigenvector that corresponds to �.Starting with e1; e2; e3 and e4 having residual capacities (1; r; r2; 0) we can therefore get an in-�nite sequence of augmenting paths. The residual capacities of e1; e2; e3 and e4 after using thesubsequence p1; p2; p3; p4 repeatedly n times would be �n � (1; r; r2; 0). The n-th application of thissubsequence increases the ow in N3 by �n�1(2 + r). The obtained ows converge therefore to aow whose value is 1 + 2+r1�� = 2 + r + r2 which is therefore the maximum ow.4



4 Termination on smaller networksIt can be checked that the Ford-Fulkerson procedure does terminate on every network with atmost �ve vertices, no matter what the (�nite) capacities of the edges are. This then immediatelyimplies the same for networks with at most seven edges. It is assumed here, as standard, that theFord-Fulkerson procedure uses only augmenting paths that are simple, i.e., paths that do not passthrough a vertex more than once. The proof of this fact is not di�cult but a bit technical. It isbased on the fact that every augmenting path in such a network includes at most two edges that donot touch the source and the sink. To keep this note concise, we do not include the exact details.The example presented in the previous section is therefore the smallest example possible.References[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. The MITPress, 1990.[Eve79] S. Even. Graph algorithms. Computer Science Press, 1979.[FF62] L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton University Press, 1962.[Gib85] A. Gibbons. Algorithmic graph theory. Cambridge University Press, 1985.[Law76] E.L. Lawler. Combinatorial optimization: networks and matroids. Holt, Rinehart andWinston, 1976.[PS82] C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and com-plexity. Prentice-Hall, 1982.[Roc84] R.T. Rockafellar. Network ows and monotropic optimization. Wiley, 1984.[Tar83] R.E. Tarjan. Data structures and network algorithms. SIAM, 1983.
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