
Connecting a Logical Framework to a
First-Order Logic Prover ?

Andreas Abel, Thierry Coquand, and Ulf Norell

Department of Computing Science, Chalmers University of Technology
{abel,coquand,ulfn }@cs.chalmers.se

Abstract. We present one way of combining a logical framework and first-order
logic. The logical framework is used as an interface to a first-order theorem
prover. Its main purpose is to keep track of the structure of the proof and to deal
with the high level steps, for instance, induction. The steps that involve purely
propositional or simple first-order reasoning are left to a first-order resolution
prover (the system Gandalf in our prototype). The correctness of this interaction
is based on a general meta-theoretic result. One feature is the simplicity of our
translation between the logical framework and first-order logic, which uses im-
plicit typing. Implementation and case studies are described.

Introduction

We work towards human-readable and machine-verifiableproof documentsfor mathe-
matics and computer science. As argued by de Bruijn [11], dependent type theory offers
an ideal formal system for representing reasoning steps, such as introducing parameters
or hypotheses, naming constants or lemmas, using a lemma or a hypothesis. Type the-
ory provides explicit notations for these proof steps, with good logical properties. Using
tools like Coq [5], Epigram [3], or Agda [9] these steps can be performed interactively.
But low level reasoning steps, such as simple propositional reasoning, or equality rea-
soning, substituting equals for equals, are tedious if performed in a purely interactive
way. Furthermore, propositional provers, and even first-order logic (FOL) provers are
now very efficient. It is thus natural to create interfaces between logical frameworks
and automatic propositional or first-order provers [7, 24, 18]. But, in order to arrive at
proof documents which are still readable, onlytrivial proof steps should be handled by
the automatic prover. Since different readers might have different notions oftrivial , the
automatic prover should not be a black box. With some effort by the human, the output
of the prover should be understandable.

In this paper, we are exploring connections between a logical frameworkMLFProp

based on type theory and resolution-based theorem provers. One problem in such an
interaction is that resolution proofs are hard to read and understand in general. Indeed,
resolution proof systems work with formulæ in clause normal form, where clauses are
(the universal closures of) disjunctions of literals, a literal being an atom or a negated

? Research supported by the coordination actionTYPES(510996) and thematic networkApplied
Semantics II(IST-2001-38957) of the European Union and the projectCoverof the Swedish
Foundation of Strategic Research (SSF).

atom. The system translates the negation of the statement to be proved to clause form,
using skolemisation and disjunctive normal form. It then generates new clauses using
resolution and paramodulation, trying to derive a contradiction. If successful, the system
does pruning on the (typically high number of) generated clauses and outputs only the
relevant ones.1

We lose the structure of the initial problem when doing skolemisation and clausifi-
cation. Typically, a problem such as

∀x.∃y.∀z.R(x, y) ⇒ R(x, z) (1)

is negated and translated into the two contradictory unit clauses

∀y. R(a, y), ∀y.¬R(a, f(y)), (2)

but the connection between the statement (1) and the refutation of (2) is not so intuitive.
We do not solve this problem here, but we point out that, if we restrict ourselves to

implicitely universally quantified propositional formulæ, in the following calledopen
formulæ, this problem does not arise. Furthermore, when we restrict to this fragment,
we can use the idea of implicit typing [4, 26]. In this way, the translation from frame-
work types to FOL formulæ is particularly simple. Technically, this is reflected by a
general meta-theorem which ensures that we can lift a first-order resolution proof to a
framework derivation. If we restrict the class of formulæ further to so-calledgeometri-
cal open formulæ [10, 6], then the translation to clausal form is transparent. Indeed, any
resolution proof for this fragment is intuitionistically valid and can be interpreted as it
is in type theory. This meta-theorem is also the theoretical justification for our interface
betweenMLFProp and a resolution-based proof system.

We have implemented a prototype version of a type system in Haskell, with a con-
nection to the resolution prover Gandalf [25]. By restricting ourselves to open formulæ
we sacrifice proof strength, but preliminary experiments show that the restriction is less
severe than it may seem at first since the steps involving quantification are well handled
at the framework level. Also, the proof traces produced by Gandalf are often readable
(and surprisingly clever in some cases).

We think that we can represent Leslie Lamport proof style [17] rather faithfully
in this system. The high level steps such as introduction of hypotheses, case analysis,
induction steps are handled at the framework level, and only the trivial steps are sent to
the FOL automatic prover.

One can think also of other plug-in extensions, e.g., rewriting systems and computer
algebra systems. We have experimented with a QuickCheck [8] plug-in, that allows
random testing of some propositions. In general, each plug-in extension of our logical
framework should be justified in the same way as the one we present in this paper: we
prove a conservativity result which ensures that the use of this plug-in can be, if desired,
replaced by a direct proof in the framework. This way of combining various systems
works in practice, as suggested by preliminary experiments, and it is theoretically well-
founded.

1 If the search is not successful, it is quite hard to get any relevant information from the clauses
that are generated. We have not yet analyzed the problem of getting useful feedback in this
case.

2

This paper is organized as follows. We first describe the logical frameworkMLFProp.
We then present the translation from some LF types to FOL formulæ. The main techni-
cal result is then a theorem that shows that any resolution and paramodulation step, with
one restriction, can be lifted to the framework level. Finally, we present some examples
and extensions, and a discussion of related work.

1 The Logical Framework MLFProp

This section presents an extension of Martin-Löf’s logical framework [20] by proposi-
tions and local definitions.

Expressions (terms and types).We assume countable sets of variablesVar and con-
stantsConst. Furthermore, we have a finite number of built-in constants to construct
the primitives of our type language. A priori, we do not distinguish between terms and
types. The syntactic entities ofMLFProp are given by the following grammar.

Var 3 x, y, z variables
Const 3 c, f, p constants
BuiltIn 3 ĉ ::= Fun | El | Set | () | Prf | Prop built-in constants
Exp 3 r, s, P,Q ::= ĉ | c | x | λxr | r s | let x :T =r in s expressions
Ty 3 T,U ::= Set | El s | Prop | Prf P | Fun T (λxU) types
Cxt 3 Γ ::= � | Γ, x :T typing contexts
Sig 3 Σ ::= � | Σ, c :T | Σ, c :T =r signatures

We identify terms and types up toα-conversion and adopt the convention that in con-
textsΓ , all variables must be distinct; hence, the context extensionΓ, x :T presupposes
(x :U) 6∈ Γ for anyU . Similarly, a constantc may not be declared in a signature twice.
We abbreviate a sequence of context entriesx1 : T, . . . , xn : T of the same type by
x1, . . . , xm :T . Multiple applicationr s1 . . . sn is expressed asr s. (Capture-avoiding)
substitution ofr for x in s is written ass[r/x], or s[r] if x is clear from the context of
discourse.

For dependent function typesFun T (λxU) we introduce the notation(x : T) →
U . Curried functions spaces(x1 : T1) → . . . (xk : Tk) → U are shortened to(x1 :
T1, . . . , xk :Tk) → U , which explains the notation(Γ) → U . Non-dependent functions
(: T) → U are writtenT → U . The inhabitants ofSet are type codes;El maps type
codes to types. E. g.,(a : Set) → El a → El a is the type of the polymorphic identity
λaλxx. Similarly Prop contains formal propositionsP andPrf P proofs ofP .

Types of the shape(Γ) → Prf P are calledproof types. A contextΓ := x1 :
T1, . . . , xn : Tn is a set contextif and only if all Ti are of the form(∆) → El S. In
particular, ifP : Prop, then the proof type(Γ) → Prf P corresponds to a universal
first-order formula∀x1 . . .∀xnP with quantifier-free kernelP .

3

Judgements.The type theoryMLFProp is presented via five judgements, which are all
relative to a (user-defined) signatureΣ.

Γ `Σ Γ is a well-formed context
Γ `Σ T T is a well-formed type
Γ `Σ r : T r has typeT
Γ `Σ T = T ′ T andT ′ are equal types
Γ `Σ r = r′ : T r andr′ are equal terms of typeT

All five judgements are defined simultaneously. Since the signature remains fixed in
all judgements we will omit it. The typing rules are available in the extended version
of this paper [2]. Judgmental type and term equality are generated from expansion of
signature definitions as well as fromβ-, η-, andlet-equality, the latter of which is given
by (let x :T = r in s) = s[r/x]. The rules for equality are similar to the ones ofMLFΣ

[1], and type-checking of normal terms with local definitions is decidable.

Natural deduction.We assume a signatureΣnd (see the extended version of this pa-
per [2]) which assumes the infix logical connectivesop ::= ∧,∨,⇒, plus the defined
ones,¬ and⇔. Furthermore, it contains a setPredSym of basic predicate symbolsp
of type(Γ) → Prop whereΓ is a (possibly empty) set context. Currently we only as-
sume truth>, absurdity⊥, and typed equalityId, but user defined signatures can extend
PredSym by their own symbols. For each logical constructs, there are appropriate proof
rules, e. g., a constantimpI : (P,Q :Prop) → (Prf P → Prf Q) → Prf (P ⇒ Q).

First-order logic assumes that every set is non-empty, and our use of a first-order
prover is only sound under this assumption. Hence, we add a special constantε : (D :
Set) → El D to Σnd which enforces this fact. Notice that this implies that all set
contexts are inhabited2.

Classical reasoning can be performed in the signatureΣclass, which we define as the
extension ofΣnd by EM : (P :Prop) → Prf (P ∨ ¬P), the law of the excluded middle.

TheFOL rule. This article investigates conditions under which the addition of the fol-
lowing rule is conservative overMLFProp + Σnd andMLFProp + Σclass, respectively.

FOL
Γ ` T

Γ ` () : T
Γ `FOL T

The side conditionΓ `FOL T expresses thatT is a proof type and that the first-order
prover can deduce the truth of the corresponding first-order formula from the assump-
tions inΓ . It ensures that only tautologies have proofs inMLFProp, but it is not consid-
ered part of the type checking. Meta-theoretical properties ofMLFProp like decidability
of equality and type-checking hold independently of this side condition.

Conservativity fails if we have to compare proof objects during type-checking.
This is because the ruleFOL produces a single proof object for all (true) proposi-
tions, whereas upon removal ofFOL the hole has to be filled with specific proof ob-
ject. Hence two equal objects which each depend on a proof generated byFOL could

2 Semantically, it may be fruitful to think of terms of typeSet as inhabited Partial Equivalence
Relations, while terms of typeProp are PERs with at most one inhabitant.

4

become inequal after replacingFOL. To avoid this, it is sufficient to restrict function
spaces(x :T) → U : if T is a proof type, then alsoU .

In the remainder of the paper, we use LF as a synonym forMLFProp.

2 Translation from MLFProp to FOL

We shall define apartial translation from some LF types to FOL propositions. We
translate only types of the form

(x1 :T1, . . . , xk :Tk) → Prf (P (x1, . . . , xk)),

and these are translated toopenformulæ[P (x1, . . . , xk)] of first-order logic. All the
variablesx1, . . . , xk are considered universally quantified. For instance,

(x :El N) → Prf (Id N x x ∧ Id N x (add 0 x))

will be translated tox = x ∧ x = add 0 x. If we have a theory of lattices, that is, we
have added

D : Set
sup : El D → El D → El D
≤ : El D → El D → Prop

to the current signature, then(x, y : El D) → Prf (sup x y ≤ x ⇔ y ≤ x) would be
translated tosup x y ≤ y ⇔ y ≤ x.

The translation is done at a syntactical level, without using types. We will demon-
strate that we can lift a resolution proof of a translated formula to a LF derivation in the
signatureΣclass (or in Σnd, in some cases).

2.1 Formal Description of the Translation

We translatenormalexpressions, which means that all definitions have been unfolded
and all redexes reduced. Three classes of normalMLFProp-expressions are introduced:
(formal) first-order termsand (formal)first-order formulæ, which are quantifier free
formulæ over atoms possibly containing free term variables, andtranslatable formulæ,
which are first-order formulæ prefixed by quantification over set elements.

t, u ::= x | f t first-order terms
A,B ::= p t | IdS t1 t2 atoms
W ::= A | W op W ′ first-order formulæ
φ ::= (∆) → Prf W translatable formulæ (∆ set context)

Proper termsare those which are not just variables. For the conservativity result the
following fact about proper terms will be important: In a well-typed proper term, the
types of its variables are uniquely determined. For this reason, a formal first-order term
t may neither contain a binder (λ or let) nor a variable which is applied to something,
for instance,xu.

5

An example of a first-order formula isWex := IdD x (f y) ⇒ (Less x (f y) ⇒ ⊥),
which is well-typed in the extensionD : Set, f : El D → El D, Less : El D →
El D → Prop of signatureΣnd.

On the FOL side, we consider a language with equality (=), one binary function
symbolapp and one constant for each constant introduced in the logical framework.
Having an explicit “app” allows partial application of function symbols.

Let ∆ = x1 :T1, . . . , xn :Tn be a set context. A type of the form

φ := (∆) → Prf W

is translated into a universal formula[φ] = ∀x1 . . .∀xn[W]. The translation[W] of
first-order formulæ and the translation〈t〉 of first-order terms depends on∆ and is
defined recursively as follows:

[W1 op W2] := [W1] op [W2] logical connectives
[IdS t1 t2] := 〈t1〉 = 〈t2〉 equality
[p t1 . . . tn] := p(〈t1〉, . . . , 〈tn〉) predicates, including>,⊥
〈xi〉 := xi variables in∆
〈x〉 := cx variables not in∆
〈c〉 := c 0-ary functions
〈f t1 . . . tn〉 := f(〈t1〉, . . . , 〈tn〉) n-ary functions

where we writef(t1, . . . , tn) for app(. . . app(app(f, t1), t2), . . . , tn). Note that the
translation is purely syntactical, and does not use type information. It is even homo-
morphic with two exceptions: (a) the typed equality ofMLFProp is translated into the
untyped equality of FOL, and (b) variables bound outsideφ have to be translated as
constants.

For instance, the formula(y : El D) → Wex is translated as∀y. cx = f(y) ⇒
(Less(cx, f(y)) ⇒ ⊥). Examples of types that cannot be translated are

(x :Prop) → Prf x, Prf (F (λxx)), (y : El D → El D) → Prf (P (y x)).

We shall also use the class ofgeometrical formulæ, given by the following grammar:

G ::= H | H → G | G ∧G geometrical formula
H ::= A | H ∧H | H ∨H positive formula

The above exampleWex is geometrical. As we will show, (classical) first-order proofs
of geometrical formulæ can be mapped to intuitionistic proofs in the logical framework
with Σnd.

2.2 Resolution Calculus

It will be convenient to use the following non-standard presentation of the resolution
calculus [22]. AclauseC is an open first-order formula of the form

A1 ∧ · · · ∧An ⇒ B1 ∨ · · · ∨Bm

6

where we can haven = 0 or m = 0 andAi andBj are atomic formulæ. Following
Gentzen [12], we write such a clause on the form

A1, . . . , An ⇒ B1, . . . , Bm,

that is,X ⇒ Y , whereX andY are finite sets of atomic formulæ. An emptyX is
interpreted as truth, an emptyY as absurdity.

Resolution is forward reasoning. Figure 1 lists the rules for extending the current
set of derived clauses: if all clauses mentioned in the premise of a rule are present, this
rule can fire and the clause of the conclusion is added to the clause set.

AX
A ⇒ A

SUB
X ′ ⊇ X X ⇒ Y Y ⊆ Y ′

X ′ ⇒ Y ′

RES
X1 ⇒ Z1, Y1 X2, Z2 ⇒ Y2

(X1, X2 ⇒ Y1, Y2)σ
σ = mgu(Z1, Z2)

REFL · ⇒ x = x
PARA

X1 ⇒ t = u, Y1 X2[t
′] ⇒ Y2[t

′]

(X1, X2[u] ⇒ Y1, Y2[u])σ
σ = mgu(t, t′)

Fig. 1.Resolution calculus.

In our formulation, all rules are intuitionistically valid3, and can be justified in
MLFProp +Σnd. It can be shown, classically, that these rules arecompletein the follow-
ing sense: if a clause is a semantical consequence of other clauses then it is possible to
derive it using the resolution calculus. Hence, any proof in FOL can be performed with
resolution4.

It can be pointed out that theSUB rule is only necessary at the very end—any reso-
lution proof can be normalized to a proof that only usesSUB in the final step.

Let therestrictedparamodulation rule denote the version ofPARA where botht and
t′ are proper terms (not variables).

2.3 Proof of Correctness

In this section, we show that every FOL proof of a translated formula[φ] can be lifted
to a proof inMLFProp + Σclass, provided the resolution proof confines to restricted
paramodulation. This is not trivial because FOL is untyped andMLFProp is typed, and
our translation forgets the types. The crucial insight is that every resolution step pre-
serves well-typedness.

3 In the standard formulation, theAX rule would read¬A ∨A—the excluded middle.
4 To deal with existential quantification we also need skolemisation.

7

Fix a signatureΣ. A first-order termt is well-typediff there exists a context∆,
giving types to the variablesx1, . . . , xn of t, such that in the given signature,∆ ` t : T
for some typeT . For example, in the signature

D : Set f : El D → El D
F : El D → Prop g : (x :El D) → Prf (F x)

the proper first-order termsf x, F y, andg z are well-typed, butF x y is not. Notice
that if aproperFOL term is well-typed, then there is only one way to assign types to its
variables.

Lemma 1. If two proper first-order termst1, t2 over disjoint variables are well-typed
and unifiable, then the most general unifiermgu(t1, t2) is well-typed.

For instance,add x 0 andadd (S y) z are unifiable and well-typed and the most
general unifier{x7→S y, z 7→0} is well-typed. The lemma is proven in the extended
version of this paper [2].

Using this lemma, we can lift any FOL resolution step to an LF resolution step.
The same holds for anyrestrictedparamodulation step, which justifies the translation
of Id S t u as〈t〉 = 〈u〉 in FOL, Indeed, in the paramodulation step betweenX1 ⇒
t = u, Y1 andX2[t′] ⇒ Y2[t′] we unify t andt′ and for Lemma 1 to be applicable both
t andt′ have to be proper terms. Similar arguments have been put forth by Beeson [4]
and Wick and McCune [26].

A clausal type is a formula which translates to a clause.

Lemma 2. If two FOL clausal types(Γ1) → Prf (W1) and (Γ2) → Prf (W2) are
derivable, andC is a resolution of[W1] and [W2] then there exists a contextΓ and a
derivable(Γ) → Prf W such thatC = [W]. The same holds ifC is derived from[W1]
and[W2] by restricted paramodulation. Furthermore in both cases,Γ is a set context if
bothΓ1 andΓ2 are set contexts.

In the next theorems,φ, φ1, . . . , φk are translatable formulæ of the form(Γ) →
Prf W whereΓ is a set context.

The following theorem is a consequence of Lemma 2, since an open formula is
(classically) equivalent to a conjunction of clauses.

Theorem 3. If we can derive[φ] from[φ1], . . . , [φk] by resolution and restricted paramod-
ulation thenφ is derivable fromφ1, . . . , φk in any extension of the signatureΣclass.

A resolution proof, as we have presented it, is intuitionistically valid. The only step
which may not be intuitionistically valid is when we express the equivalence between
an open formula and a conjunction of clauses. For instance the open formula¬P ∨ Q
is not intuitionistically equivalent to the clauseP ⇒ Q in general. This problem does
not occur if we start with geometrical formulæ [6].

Theorem 4. If we can derive[φ] from[φ1], . . . , [φk] by resolution and restricted paramod-
ulation andφ, φ1, . . . , φk are geometric formulæ, thenφ is derivable fromφ1, . . . , φk

in any extension of the signatureΣnd.

8

It is important for the theorem that all set contexts are inhabited: ifD : Set and
P : Prop (with x not free inP), then both

φ1 = (x :El D) → Prf P and φ2 = Prf P

are translated to the same FOL proposition[φ1] = [φ2] = P but we can deriveφ2 from
φ1 in Σnd, D : Set, P : Prop only becauseEl D is inhabited.

As noticed above, if we allow paramodulation from a variable, we could derive
clauses that are not well-typed. For instance, in the signature

N1 : Set, 0 : El N1, h : (x : El N1) → Prf (Id N1 x 0), A : Set, a : El A

the type ofh becomesx = 0 in FOL and from this we could derive, by paramodulation
from the variablex, a = 0 which is not well-typed. This problem is also discussed in
[4, 26] and the solution is simply to forbid the FOL prover to use paramodulation from
a variable5.

We can now state the conservativity theorem.

Theorem 5. If a type is inhabited in the systemMLFProp + FOL + Σclass then it is
inhabited inMLFProp + Σclass.

Proof. By induction on the typing derivation, using Thm. 3 forFOL derivations.

2.4 Simple Examples

Figure 2 shows an extension ofΣnd by natural numbers, induction and an addition
function defined by recursion on the second argument. Now consider the goal(x :
El N) → Id N (add 0 x) x. Using the induction schema and the propositional proof
rules, we can give the proof term

indN (λx. Id N (add 0 x)x) () (λa. impI (λih ()))

in the logical framework, which contains these two FOL goals:

`FOL Id N (add 0 0) 0
a :El N, ih : Id N (add 0 a) a `FOL Id N (add 0 (S a)) (S a)

Both goals can be handled by the FOL prover. The first goal becomesadd 0 0 = 0
and is proved fromadd x 0 = x, the translation of axiomadd0. The second goal
becomesadd 0 (S a) = S a. This is a first-order consequence of the translated induction
hypothesisadd 0 a = a andadd x (S y) = S (add x y), the translation of axiomaddS.

This example, though very simple, is a good illustration of the interaction between
LF and FOL: the framework is used to handle the induction step and in the second goal,
the introduction of the parametera and the induction hypothesis.

5 This is possible in Otter. In Gandalf, this could be checked from the trace. Paramodulation
from a variable is highly non-deterministic. For efficiency reasons, it was not present in some
version of Gandalf, but it was added later for completeness. In the examples we have tried, this
restriction is not a problem.

9

N : Set natural numbers

0 : El N zero
S : El N → El N successor

indN : (P :El N → Prop) → P 0
→ ((x :El N) → P x ⇒ P (S x))
→ (n :El N) → P n induction

add : El N → El N → El N addition

add0 : (x :El N) → Id N (add x 0) x axiom 1 ofadd
addS : (x, y :El N) → Id N (add x (S y)) (S (add x y)) axiom 2 ofadd

Fig. 2.A Signature of Natural Numbers and Addition.

Here is another simple example which illustrates that we can call the FOL prover
even in a context involving non first-order operations. This example comes from a cor-
rectness proof of Warshall’s algorithm. LetD : Set.

F : El D → (El D → El D → Prop) → El D → El D → Prop
F aR x y = R xy ∨ (R xa ∧R ay)

swap : (a, b, x, y : El D) → Prf (F a (F bR) x y ⇔ F b (F aR)x y)

The operationF is a higher-order operation. However, in the contextR : El D →
El D → Prop, the goalswap can be handled by the FOL prover. The normal form
of F a (F bR) x y ⇔ F b (F aR)x y, where all defined constants (here onlyF) have
been unfolded, is a translatable formula.

3 Implementation

To try out the ideas described in this paper we have implemented a prototype type
checker in Haskell. In addition to the logical framework, the type checker supports
implicit arguments and the extensions described in Section 6: sigma types, datatypes
and definitions by pattern matching.

3.1 Implicit Arguments

A problem with LF as presented here is its rather heavy notation. For instance, to state
that function composition is associative one would give the signature in Figure 3. This
is very close to being completely illegible due to the fact that we have to be explicit
about the type arguments to the composition function. To solve the problem, we have
implemented a mechanism for implicit arguments which allows the omission of argu-
ments that can be inferred automatically. Using this mechanism the associativity exam-
ple can be written as follows:

10

comp : (A, B, C : Set) → (El B → El C) → (El A → El B) → (El A → El C)
comp A B C f g = λx. f (g x)

assoc : (A, B, C, D : Set) →
(f : El C → El D, g : El B → El C, h : El A → El B) →
Prf (Id (El A → El D) (comp A C D f (comp A B C g h))

(comp A B D (comp B C D f g) h))

Fig. 3.Associativity without Implicit Arguments.

(◦)(A,B, C : Set) : (El B → El C) → (El A → El B) → (El A → El C)
f ◦ g = λx. f (g x)

assoc (A,B,C, D : Set) :
(f : El C → El D, g : El B → El C, h : El A → El B) →
Prf (f ◦ (g ◦ h) == (f ◦ g) ◦ h)

In general, we writex (∆) : T to say thatx has type(∆) → T with (∆) implicit.
The scope of the variables in∆ extends to the definition ofx (if there is one). For
every use ofx we require that the instantiation of(∆) can be inferred using pattern
unification [19]. Note that when we have implicit arguments we can replaceId with an
infix operator(==) (D : Set) : El D → El D → Prop

We conjecture that the conservativity result can be extended to allow the omission of
implicit arguments when translating to first-order logic if they can be inferred from the
resulting first-order term. In this case we preserve the property that for a well-typed FOL
term there exists a unique typing, which is an important lemma in the conservativity
theorem. The kind of implicit arguments we work with can most often be inferred in this
way. It is doubtful, however, that it would work for other kinds of implicit arguments
such as implicit dictionaries used for overloading.

Omitting the implicit arguments, the formulaf ◦ (g ◦h) = (f ◦ g) ◦h in the context
A,B,C, D : Set, f : El C → El D, g : El B → El C, h : El A → El B is translated to

f ◦ (g ◦ h) = (f ◦ g) ◦ h

With this translation, the first-order proofs are human readable and, in many cases,
correspond closely to a pen and paper proof.

3.2 The Plug-in Mechanism

The type checker is equipped with a general plug-in interface that makes it easy to ex-
periment with connections to external tools. A plug-in should implement two functions:

11

a type checking functionwhich can be called on particular goals in the program, and a
finalization functionwhich is called after type checking.

To control where the type checking function of a plug-in is invoked we introduce a
new form of expressions:

Exp ::= . . . | name−plugin(s1, . . . , sn) invoking a plug-in

wherename is the name of a plug-in. It is possible to pass arguments (s1, . . . , sn) to
the plug-in. These arguments can be arbitrary expressions which are ignored by the
type checker. Hence it is possible to pass ill-typed terms as arguments to a plug-in; it
is the responsibility of the plug-in to interpret the arguments. Most plug-ins, of course,
expect well-typed arguments and in this case, the plug-in has to invoke the type checker
explicitly on its arguments.

3.3 The FOL Plug-in

The connection between LF and FOL has been implemented as a plug-in using the
mechanism described above. With this implementation we replace the built-in constant
() by a call to the plug-in. The idea is that the plug-in should be responsible for checking
the side conditionΓ `FOL P in theFOL rule.

An important observation is that decidability of type checking and equality do not
depend on the validity of the propositions being checked by the FOL plug-in—nothing
will break if the type checker is led to believe that there is ans : Prf⊥. This allows us
to delay all first-order reasoning until after type checking. The rationale for doing this
is that type checking is cheap and first-order proving is expensive.

Another observation is that it is not feasible to pass the entire context to the prover.
Typically, the context contains lots of things that are not needed for the proof, but would
rather overwhelm the prover. To solve this problem, we require that any axioms or
lemmas needed to prove a particular goal are passed as arguments to the plug-in. This
might seem a severe requirement, but bear in mind that the plug-in is intended for simple
goals where you already have an idea of the proof.

More formally, the typing rule for calls to the FOL plug-in is

Γ ` φ Γ ` s1 : φ1 . . . Γ ` sn : φn

Γ ` fol−plugin(s1, . . . , sn) : φ
φ1, . . . , φn `FOL φ.

When faced with a call to a plug-in the type checker calls the type checking function
of the plug-in. In this case, the type checking function of the FOL plug-in will verify
that the goal is a translatable formula and that the arguments are well-typed proofs of
translatable formulæ. If this is the case it will report success to the type checker and
store away the side condition in its internal state. After type checking the finalization
function of the FOL plug-in is called. For each constraintφ1, . . . , φn `FOL φ, this
function verifies that[φ] is derivable from[φ1], . . . , [φn] in the resolution calculus by
translating the formulæ to clause normal form and feeding them to an external first-
order prover (Gandalf, at the moment). If the prover does not manage to find a proof
within the given time limit, the plug-in reports an error.

12

4 Examples

The code in this section has been type checked successfully by our prototype type
checker. In fact, the typeset version is automatically generated from the actual code.
The type checker can infer which types areSets and which areProps, so we omitEl
andPrf in the types.

Natural numbers can be added to the framework by three new constantsNat , zero, succ
plus an axiom for mathematical induction.

Nat ∈ Set
zero ∈ Nat
succ ∈ Nat → Nat
indNat (P ∈ Nat → Prop) ∈ P zero → ((n ∈ Nat) → P n → P (succ n)) →

(m ∈ Nat) → P m

Now we fix a setA and consider relations overA. We want to prove that the
transitive closure of a symmetric relation is symmetric as well. We define the no-
tion of symmetry and introduce a symbol for relation composition. We could define
R ◦R′ = λxλz∃z. x R y ∧ y R′ z, but here we only assume that a symmetric relation
composed with itself is also symmetric.

A ∈ Set
sym ∈ (A → A → Prop) → Prop
sym R ≡ (x , y ∈ A) → R x y =⇒ R y x

(◦) ∈ (A → A → Prop) → (A → A → Prop) → (A → A → Prop)
axSymO ∈ (R ∈ A → A → Prop) → sym R → sym (R ◦ R)

We define a monotone chain of approximationsR(n) (in the source:R ˆn) of the
transitive closure, such that two elements will be related in the transitive closure if they
are related in some approximation. The main lemma states that all approximations are
symmetric, ifR is symmetric.

(ˆ) ∈ (A → A → Prop) → Nat → (A → A → Prop)
axTc ∈ (R ∈ A → A → Prop) → (x , y ∈ A) → (n ∈ Nat) →

((R ˆ succ n) x y ⇔ (R ˆ n) x y ∨ ((R ˆ n) ◦ (R ˆ n)) x y)
∧ ((R ˆ zero) x y ⇔ R x y)

main ∈ (R ∈ A → A → Prop) → sym R → (n ∈ Nat) → sym (R ˆ n)
main R h ≡ indNat

fol−plugin (h, axTc R)
(λn ih → fol−plugin (h, axSymO (R ˆ n) ih, axTc R, ih))

13

Induction is performed at the framework level, base and step case are filled by Gan-
dalf. Pretty printed, Gandalf produces the following proof of the step case:

(1) ∀xy. (R(n) ◦R(n)) x y =⇒ (R(n) ◦R(n)) y x
(2) ∀mxy. R(succ m) x y =⇒ (R(m) ◦R(m))x y ∨R(m) x y
(3) ∀mxy. (R(m) ◦R(m)) x y =⇒ R(succ m) x y
(4) ∀mxy. R(m) x y =⇒ R(succ m) x y
(5) ∀xy. R(n) x y =⇒ R(n) y x
(6) R(succ n) a b
(7) R(succ n) b a =⇒ ⊥
(8) (R(n) ◦R(n)) a b ∨R(n) a b (2), (6)
(9) (R(n) ◦R(n)) b a ∨R(n) a b (1), (8)

(10) R(n) a b (3), (7), (9)
(11) R(n) b a (5), (10)
(12) ⊥ (4), (7), (11)

The transitive closure is now defined asTC R xy = ∃n. R(n)xy. To formalize this,
we add existential quantification and its proof rules. The final theorem demostrates how
existential quantification can be handled in the framework.

Exists (A ∈ Set) ∈ (A → Prop) → Prop
existsI (A ∈ Set)(P ∈ A → Prop) ∈ (x ∈ A) → P x → Exists P
existsE (A ∈ Set)(P ∈ A → Prop)(C ∈ Prop) ∈

Exists P → ((x ∈ A) → P x → C) → C

TC ∈ (A → A → Prop) → A → A → Prop
TC R x y ≡ Exists (λn → (R ˆ n) x y)

thm ∈ (R ∈ A → A → Prop) → sym R → sym (TC R)
thm R h x y ≡ impI (λ p →

existsE p (λn q → existsI n fol−plugin(q , main R h n)))

See the extended version [2] for an example involving algebra and induction.

5 Related Work

Smith and Tammet [24] also combine Martin-Löf type theory and first-order logic,
which was the original motivation for creating the system Gandalf. The main differ-
ence to their work is that we use implicit typing and restrict to quantifier-free formulæ.
An advantage is that we have a simple translation, and hence get a quite direct con-
nection to resolution theorem provers. Hence, we can hope, and this has been tested
positively in several examples, that the proof traces we get from the prover are readable
as such and therefore can been used as a proof certificate or as feedback for the user. For
instance, the user can formulate new lemmas suggested by this proof trace. We think

14

that this aspect of readability is more important than creating an explicit proof term in
type theory (which would actually be less readable). It should be stressed that our con-
servativity result contains, since it is constructive, an algorithm that can transform the
resolution proof to a proof in type theory, if this is needed.

Huang et. al. [13] present the design ofΩ-MKRP6, a tool for the working mathe-
matician based on higher-order classical logic, with a facility of proof planning, access
to a mathematical database of theorems and proof tactics (called methods), and a con-
nection to first-order automated provers. Their article is a well-written motivation for
the integration of human and machine reasoning, where they envision a similar divi-
sion of labor as we have implemented. We have, however, not addressed the problem of
mathematical knowledge management and proof tactics.

Wick and McCune [26] list three options for connecting type systems and FOL:
include type literals, put type functions around terms, or use implicit typing. We redis-
covered the technique of implicit typing and found out later that it is present already
in the work of Beeson [4]. Our work shows that this can also be used with dependent
types, which is not obvious a priori. Our formulation of the correctness properties, as a
conservativity statement, requires some care (with the role of the sortProp), and is an
original contribution.

Bezem, Hendriks, and de Nivelle [7] describe how to transform a resolution proof
to a proof term foranyfirst-order formula. However, the resulting proof terms are hard
to read for a human because of the use of skolemisation and reduction to clausal forms.
Furthermore, they restrict to a fixed first-order domain.

Hurd’s work on a Gandalf-tactic for HOL [14] is along the same lines. He translates
untyped first-order HOL goals to clause form, sends them to Gandalf and constructs an
LCF proof from the Gandalf output. In later work [15, 16] he handles types by having
two translations: the untyped translation, and a translation with explicit types. The typed
translation is only used when the untyped translation results in an ill-typed proof.

JProver [23] is a connection-based intuitionistic theorem prover which produces
proof objects. It has been integrated into NuPrl and Coq. The translation from type
theory to first-order logic involves some heuristics when to include or discard type
information. Unfortunately, the description [23] does not contain formal systems or
correctness arguments, but focuses on the connection technology.

Jia Meng and Paulson [18] have carried out substantial experiments on how to in-
tegrate the resolution theorem prover Vampire into the interactive proof tool Isabelle.
Their translation from higher-order logic (HOL) to first-order logic keeps type infor-
mation, since HOL supports overloading via axiomatic type classes and discarding type
information for overloaded symbols would lead to unsound reasoning. They claim to
cut down the search space via type information, but this is also connected to overload-
ing. The aim of their work is different to ours: while they use first-order provers to do
as much automatic proofs and proof search as possible, we employ automation only to
liberate the user from seemingly trivial proof steps.

In Coq, NuPrl, and Isabelle, the user constructs a proof via tactics. We provide type
theory as a proof language in which the user writes down a proof skeleton, consisting of
lemmas, scoped hypotheses, invokation of induction, and major proof steps. The first-

6 Markgraf Karl Refutation Procedure.

15

order prover is invoked to solve (easy) subgoals. This way, we hope to obtain human-
readable proof documents (see our examples).

6 Conclusion and Future Work

We have described the implementation of a logical framework with proof-irrelevant
propositions and its connection to the first-order prover Gandalf. Soundness and con-
servativity of the connection have been established by general theorems.

It is natural to extend LF by sigma types, in order to represent, for instance, mathe-
matical structures. The extension of the translation to FOL is straightforward, we simply
add a new binary function symbols for representing pairs. A more substantial extension
is the addition of data type and functions defined by case [21]. In this extension, it is
possible to represent each connective as a parameterized data type. Each introduction
rule is represented by a constructor, and the elimination rules are represented by func-
tions defined by cases. This gives a computational justification of each of the axioms of
the signatureΣnat. The extension of the translation to FOL is also straightforward: each
defined equations for functions becomes a FOL equality. One needs also to express that
each constructor is one-to-one and that terms with distinct constructors are distinct.

We plan to the extend the conservativity theorem to implicit arguments as presented
in Section 3.1. We also think that we can extend our class of translatable formulæ, for
instance, to include some cases of existential quantification.

One could think of adding more plug-ins, with the same principle that they are
justified by a general meta-theorem. For instance, one could add a plug-in to a model
checker, or a plug-in to a system with a decision procedure for Presburger arithmetic.

Acknowledgments.We thank the members of the Cover project, especially Koen Claessen
for discussions on implicit typing and the clausification tool Santa for a uniform con-
nection to FOL provers, and Grégoire Hamon for programming the clausifier of the
FOL plug-in in a previous version.

References

1. Andreas Abel and Thierry Coquand. Untyped algorithmic equality for Martin-Löf’s logi-
cal framework with surjective pairs. In Paweł Urzyczyn, editor,TLCA’05, volume 3461 of
LNCS, pages 23–38. Springer, April 2005.

2. Andreas Abel, Thierry Coquand, and Ulf Norell. Connecting a logical framework to a
first-order logic prover (extended version). Technical report, Department of Computing
Science, Chalmers University of Technology, Gothenburg, Sweden, 2005. Available under
http://www.cs.chalmers.se/˜ulfn/papers/fol.html.

3. Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent types matter.
Manuscript, available online, April 2005.

4. Michael Beeson. Otter-λ home page, 2005. URL: http://mh215a.cs.sjsu.edu/.
5. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

16

6. Marc Bezem and Thierry Coquand. Newman’s lemma – a case study in proof automation
and geometric logic.Bulletin of the EATCS, 79:86–100, 2003. Logic in Computer Science
Column.

7. Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof construction in
type theory using resolution.JAR, 29(3–4):253–275, 2002. Special IssueMechanizing and
Automating Mathematics: In honour of N.G. de Bruijn.

8. Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs.ACM SIGPLAN Notices, 35(9):268–279, 2000.

9. Catarina Coquand and Thierry Coquand. Structured type theory. InWorkshop on Logical
Frameworks and Meta-languages (LFM’99), Paris, France, September 1999.

10. Michel Coste, Henri Lombardi, and Marie-Françoise Roy. Dynamical methods in algebra:
Effective Nullstellens̈atze.APAL, 111(3):203–256, 2001.

11. Niklas G. de Bruijn. A survey of the project Automath. In J. P. Seldin and J. R. Hindley,
editors,To H. B. Curry: Essays in combinatory logic, lambda calculus and formalism, pages
579–606, London-New York, 1980. Academic Press.

12. Gerhard Gentzen. Untersuchungenüber das logische Schließen.Mathematische Zeitschrift,
39:176–210, 405–431, 1935.

13. Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Nesmith, Jörn
Richts, and J̈org H. Siekmann. Omega-MKRP: A proof development environment. In Alan
Bundy, editor,CADE’94, volume 814 ofLNCS, pages 788–792. Springer, 1994.

14. Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles Dowek, André Hirschowitz,
Christine Paulin, and Laurent Théry, editors,TPHOLS’99, volume 1690 ofLNCS, pages
311–321. Springer, September 1999.

15. Joe Hurd. An LCF-style interface between HOL and first-order logic. In Andrei Voronkov,
editor,CADE’02, volume 2392 ofLNAI, pages 134–138. Springer, 2002.

16. Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In Myla Archer,
Ben Di Vito, and Ćesar Mũnoz, editors,STRATA’03, number CP-2003-212448 in NASA
Technical Reports, pages 56–68, September 2003.

17. Leslie Lamport. How to write a proof. InGlobal Analysis in Modern Mathematics, pages
311–321. Publish or Perish, Houston, Texas, U.S.A., February 1993. Also appeared as SRC
Research Report 94.

18. Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive proof using
resolution. In David A. Basin and Michaël Rusinowitch, editors,IJCAR’04, volume 3097 of
LNCS, pages 372–384. Springer, 2004.

19. Dale Miller. Unification under a mixed prefix.J. Symb. Comput., 14(4):321–358, 1992.
20. Bengt Nordstr̈om, Kent Petersson, and Jan Smith. Martin-Löf’s type theory. InHandbook

of Logic in Computer Science, volume 5. OUP, October 2000.
21. Bengt Nordstr̈om, Kent Petersson, and Jan M. Smith.Programming in Martin L̈of ’s Type

Theory: An Introduction. Clarendon Press, Oxford, 1990.
22. John Alan Robinson. A machine-oriented logic based on the resolution principle.JACM,

12(1):23–41, January 1965.
23. Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Aleksey Nogin. JProver: Integrating

connection-based theorem proving into interactive proof assistants. In R. Gore, A. Leitsch,
and T. Nipkow, editors,IJCAR’01, volume 2083 ofLNAI, pages 421–426. Springer, 2001.

24. Jan M. Smith and Tanel Tammet. Optimized encodings of fragments of type theory in first-
order logic. In Stefano Berardi and Mario Coppo, editors,TYPES’95, volume 1158 ofLNCS,
pages 265–287. Springer, 1995.

25. Tanel Tammet. Gandalf.JAR, 18(2):199–204, 1997.
26. Cynthia A. Wick and William McCune. Automated reasoning about elementary point-set

topology.JAR, 5(2):239–255, 1989.

17

