
Typed Applicative Structures and
Normalization by Evaluation for System Fω

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Abstract. We present a normalization-by-evaluation (NbE) algorithm for Sys-
tem Fω with βη-equality, the simplest impredicative type theory with computa-
tion on the type level. Values are kept abstract and requirements on values are kept
to a minimum, allowing many different implementations of the algorithm. The al-
gorithm is verified through a general model construction using typed applicative
structures, called type and object structures. Both soundness and completeness of
NbE are conceived as an instance of a single fundamental theorem.

1 Introduction and Related Work

The Curry-Howard isomorphism, which identifies proofs with programs and proposi-
tions with types, is the basis of several type-theoretic theorem provers, such as Coq
[INR07], Agda [Nor07], Epigram [CAM07] and LEGO [Pol94a]. In these systems,
checking the validity of proofs or typings relies on deciding equality of types. Types
are recognized as equal if they have the same normal form, this is why normalization
plays a key role in the study of the theories underlying these theorem provers, such as
the Calculus of Constructions (CC) which underlies Coq and LEGO, and Martin-Löf
Type Theory which is the basis of Agda and Epigram. The hardwired type equality of
these systems, often referred to as definitional equality, is necessarily intensional, since
fully extensional equality is undecidable. The minimal equality is induced by just the
computational laws (β-laws), yet, the stronger the hardwired equality, the less man-
ual equality proofs, and the more succinct proofs can get. Thus, it is desirable to add
bits of extensionality as long as decidability is preserved. For the CC, different direc-
tions have been explored, such as rewriting [Bla05,CWC07] and decision procedures
[BJS07]. Our goal is to integrate η-laws. which provide some extensionality for func-
tions, into definitional equality of CC.

Normalization by evaluation (NbE) [BS91,Dan99] is a systematic method to per-
form βη-normalization. In a first step, the object t of type T is evaluated. The resulting
value d is then reified to an η-long β-normal form v. The reification process is directed
by the shape of type T . NbE has proven a valid tool to structure extensional normaliza-
tion, especially in the notoriously difficult case of sum types [ADHS01,BCF04,Bar08].
We are convinced it is the perfect tool to account for the meta-theory of η, thus, we are
researching the type systems of the lambda cube with βη-equality given by judgements.

The lambda cube organizes type systems in three dimensions: dependency, impred-
icativity, and higher-order. In previous work [ACD07], we have adapted NbE to a

dependent type theory with one predicative universe and judgmental βη-equality. What
is the challenge when stepping up to impredicativity? Predicative type theories allow
to define the semantics of types from below via induction-recursion [Dyb00], and the
reification function can be defined by induction on types. This fails in the presence
of impredicativity, where one first has to lay out a lattice of semantic type candidates
and then define impredicative quantification using an intersection over all candidates
[GLT89]. Hence, the semantic type structure is not inductive, and reification cannot
be defined by induction on types.1 There are at least two ways out of this dilemma:
Altenkirch, Hofmann, and Streicher [AHS96] construct a total normalization function
type-wise while building a model for System F. In previous work [Abe08], I have con-
ceived reification as a deterministic relation between value d and normal form v and
their type T , and showed through a model construction that it corresponds to a total
function.

In this work, we are moving one step closer to NbE for the CC: we are consid-
ering the simplest type system which features impredicativity and computation on the
type level: the higher-order polymorphic lambda-calculus Fω . It adds to the problem
of impredicativity the difficulty that types are no longer fixed syntactic expressions
as in System F, but they need to be normalized as well. One solution would be to
keep types always in long normal form, e. g., by the use of hereditary substitutions
[WCPW03,AR08]. This is possible since the types are simply-kinded, so normalization
can be defined by induction on kinds. However, this approach would not scale, e.g.,
to CC, where “serious” computation is happening on the type level. Furthermore, we
would like to use the same normalization procedure both on object and type level.

In our solution, reification of objects is directed by type values A. Syntactic types
T are interpreted by a pair (A,A) of a type value A and a semantic type A which
is a set of objects that are reifiable at type A. Furthermore, type value A reifies to a
normal form V which is βη-equal to T . These considerations lead us to the concept
of a type structure which captures the similarities between syntactic types, type values,
and semantic types. Consequently, syntactic objects and their values both form an object
structure over a type structure, the syntactical type structure in case of syntactic objects
and the structure of type values in case of (object) values.

We reorganize a typical normalization proof for System Fω by model construction
[Gir72] into our framework of type and object structures. Central to such a normaliza-
tion proof is the fundamental theorem of typing which states that LtM ∈ [[T]] for any
object t of type T . Herein, LtM interprets object t in some applicative structure, for in-
stance in the structure of syntactical objects. The semantic type [[T]] is a collection of
values, typically a set of normalizing objects, where the function type [[T1 → T2]] is de-
fined à la Tait [Tai67], i. e., as all values f such that f applied to d inhabits [[T2]] for all
d in [[T1]]. The essence of the fundamental theorem is that the (hereditarily) normalizing
terms model the typing rules where these terms are a (non-proper) subset of the typable

1 The reflection function ↑, which is defined mutually inductive with reification, yields at uni-
versal quantification (↑∀XAt)(B) = ↑A[B/X](tB). Clearly A[B/X] can be bigger as ∀XA.
For similar reasons, the set of η-long normal forms cannot be defined by induction on the type
in System F; it lacks the subformula property for normal forms.

terms.2 In our abstract setting, the fundamental theorem proves that a part of an object
structure with the above function type definition is an object substructure, casting the
fundamental theorem into an algebraic setting.

Or notions of type and object structures are very general, in essence typed versions
of Barendregt’s syntactical applicative structures [Bar84, Def. 5.3.1]. The fundamental
theorems we prove are also very general since we do not fix an interpretation of types;
we only require that semantic types inhabit a candidate space. By choosing different
candidate spaces we can harvest different results from the same fundamental theorem,
e. g., soundness of NbE, completeness of NbE, or weak normalization of β- or βη-
reduction [Abe08].

syntax value semantics structures
kind κ ∈ Ki Kripke family KΞ ⊆ T κΞ of sets of types Ki, bT
type T ∈ Ty?Ξ A ∈ T ?Ξ Kripke family A∆ ⊆ DΞ `A

∆ of sets of objects Ty, T , bD
T ∈ Tyκ→κ

′

Ξ F ∈ T κ→κ
′

Ξ operator F ∈ bDΞ `F :κ→κ′

object t ∈ ObjΞ `TΓ d ∈ DΞ `A
∆ — Obj, D

Table 1. Systematics of kind, type, and object structures.

1.1 Overview

Table 1 systematizes the main structures introduced in this article. Kind structures are
inhabited by kinds, the types of types of System Fω . The free kind structure Ki is in-
habited by the syntactic kinds κ which coincide with their values, since no computation
takes place on the kind level. A kind κ can be interpreted as a family K of types which
are drawn from a type structure T ; with Tait’s interpretation of the function arrow be-
tween kinds, the set T̂ of subsets of T forms another kind structure. Instances of type
structures are Ty, which contains the syntactical types T , or T , which contains type
values A of some sort, or D̂ which contains semantics types A, sets of objects, hence,
subsets of an object structure D. At higher kinds κ → κ′, Ty is inhabited by proper
type constructors, T by their values F , and D̂ by operators F on sets of objects. On the
level of objects, we have syntactical objects t in structure Obj and values d in structure
D.

All structures are sorted, so types always have a kind, and objects always have a
type, syntactical objects a syntactical type, and values a type value. The reason is that
we prove the fundamental theorems just once, and instantiate them, amongst other uses,
to show soundness of NbE, which is formulated in terms of sorted, i. e., judgmental,
equality.

1.2 Preliminaries

Contexts Ξ,Θ, Γ,∆,Φ, Ψ are functions from variables to some codomain. We write �
for the totally undefined function and Φ, x :a for the function Φ′ with domain dom(Φ)]

2 As a consequence, the hereditarily normalizing typable terms coincide with the typable terms.

{x} such that Φ′(x) = a and Φ′(y) = Φ(y) for y 6= x. We say Ψ ′ extends Ψ , written
Ψ ′ ≤ Ψ , if Ψ ′(x) = Ψ(x) for all x ∈ dom(Ψ).

Families TΞ indexed by a context Ξ are always understood to be Kripke, i. e., Ξ ′ ≤
Ξ implies TΞ ⊆ TΞ′ . The notion Kripke family is also used for maps MΞ . There it
implies that M does not depend on the context parameter, i. e., MΞ(a) = MΞ′(a) for
a ∈ dom(MΞ) and Ξ ′ ≤ Ξ . (Note that dom(MΞ) ⊆ dom(MΞ′) since M is Kripke.)

We identify a pair of functions (f, g) with the function h(x) = (f(x), g(x)), espe-
cially in the case of contexts (∆,Γ) or environments (σ, ρ). We will sometimes drop
the parentheses and write just the comma. We write (a ∈ A)→ B(a) for the dependent
function space {f ∈ A →

⋃
a∈A B(a) | f(a) ∈ B(a) for all a ∈ A}.

2 Syntax

In this section, we present the syntax and inference rules for System Fω . The system
consists of three levels: On the lowest level there live the objects, meaning polymorphic,
purely functional programs. On the middle level live the types of objects, and the type
constructors, which are classified by kinds that themselves inhabit the highest level.

Kinds κ ∈ Ki are given by the grammar κ ::= ? | κ → κ′. Kind ? classifies type
constructors which are actually types, and kind κ → κ′ classifies the type constructors
which map type constructors of kind κ to type constructors of kind κ′. In the following,
we will refer to all type constructors as types.

Assume a countably infinite set of type variables TyVar whose members are denoted
by X , Y , Z. Kinding contexts Ξ,Θ ∈ KiCxt are partial maps from the type variables
into Ki. The set TyCst = {→,∀κ | κ ∈ Ki} contains the type constants C. Their kinds
are given by the signature Σ ∈ TyCst→ Ki defined by

Σ(→) = ?→ ?→ ?
Σ(∀κ) = (κ→ ?)→ ? for all κ ∈ Ki.

Types are given by the grammar T,U, V ::= C | X | λX :κ. T | T U , where X ∈
TyVar, and form a “simply-kinded” lambda calculus. As usual, we write T → U for
→T U . Objects are given by the grammar t, u, v ::= x | λx :T. t | t u | ΛX :κ. t | t U
and form a polymorphic lambda-calculus with type abstraction and type application.
Herein, object variables x are drawn from a countably infinite set ObjVar which is
disjoint from TyVar. We write b[a/x] for capture-avoiding substitution of a for variable
x in syntactic expression b, and FV for the function returning the set of all free type and
object variables of a syntactic expression.

Kinding, typing, and equality for System Fω is given by five judgements whose
inference rules are displayed in Figure 1.

Ξ ` T : κ
Ξ ` T = T ′ : κ
Ξ;Γ ` t : T
Ξ;Γ ` t = t′ : T

Herein, the auxiliary judgement Ξ ` Γ , read “Γ is a well-formed typing context in Ξ”,
is defined as Ξ ` Γ (x) : ? for all x ∈ dom(Γ).

Kinding Ξ ` T : κ. “In context Ξ , type T has kind κ.”

Ξ ` C : Σ(C) Ξ ` X : Ξ(X)

Ξ,X :κ ` T : κ′

Ξ ` λX :κ. T : κ→ κ′
Ξ ` T : κ→ κ′ Ξ ` U : κ

Ξ ` T U : κ′

Type equality Ξ ` T = T ′ : κ. “In context Ξ , types T and T ′ are βη-equal of kind κ.”

Ξ,X :κ ` T : κ′ Ξ ` U : κ

Ξ ` (λX :κ. T)U = T [U/X] : κ′
Ξ ` T : κ→ κ′

Ξ ` λX :κ. T X = T : κ→ κ′
X 6∈ dom(Ξ)

symmetry transitivity
Ξ ` C = C : Σ(C) Ξ ` X = X : Ξ(X)

Ξ,X :κ ` T = T ′ : κ′

Ξ ` λX :κ. T = λX :κ. T ′ : κ→ κ′
Ξ ` T = T ′ : κ→ κ′ Ξ ` U = U ′ : κ

Ξ ` T U = T ′ U ′ : κ′

Typing Ξ;Γ ` t : T . “In contexts Ξ,Γ , object t has type T .”

Ξ ` Γ
Ξ;Γ ` x : Γ (x)

Ξ;Γ, x :U ` t : T

Ξ;Γ ` λx :U. t : U → T

Ξ;Γ ` t : U → T Ξ;Γ ` u : U

Ξ;Γ ` t u : T

Ξ ` T : κ→ ? Ξ,X :κ;Γ ` t : T X

Ξ;Γ ` ΛX :κ. t : ∀κT X 6∈ dom(Ξ)
Ξ;Γ ` t : ∀κT Ξ ` U : κ

Ξ;Γ ` t U : T U

Ξ;Γ ` t : T Ξ ` T = T ′ : ?

Ξ;Γ ` t : T ′

Object equality Ξ;Γ ` t = t′ : T . “In contexts Ξ,Γ , objects t and t′ are βη-equal of type T .”

Ξ;Γ, x :U ` t : T Ξ;Γ ` u : U

Ξ;Γ ` (λx :U. t)u = t[u/x] : T

Ξ;Γ ` t : U → T

Ξ;Γ ` λx :U. t x = t : U → T
x 6∈ dom(Γ)

Ξ,X :κ;Γ ` t : T Ξ ` U : κ

Ξ;Γ ` (ΛX :κ. t)U = t[U/X] : T [U/X]

Ξ;Γ ` t : ∀κT
Ξ;Γ ` ΛX :κ. tX = t : ∀κT X 6∈ dom(Ξ)

symmetry transitivity

Ξ ` Γ
Ξ;Γ ` x = x : Γ (x)

Ξ ` U = U ′ : ? Ξ;Γ, x :U ` t = t′ : T

Ξ;Γ ` λx :U. t = λx :U ′. t′ : U → T

Ξ;Γ ` t = t′ : U → T Ξ;Γ ` u = u′ : U

Ξ;Γ ` t u = t′ u′ : T

Ξ ` T : κ→ ? Ξ,X :κ;Γ ` t = t′ : T X

Ξ;Γ ` ΛX :κ. t = ΛX :κ. t′ : ∀κT X 6∈ dom(Ξ)
Ξ;Γ ` t = t′ : ∀κT Ξ ` U = U ′ : κ

Ξ;Γ ` t U = t′ U ′ : T U

Ξ;Γ ` t = t′ : T Ξ ` T = T ′ : ?

Ξ;Γ ` t = t′ : T ′

Fig. 1. Fω: kinding, type equality, typing, object equality.

3 Abstract Normalization by Evaluation

In the following, we present normalization by evaluation (NbE) for System Fω for an
abstract domain D of values and type values. This leaves the freedom to implement val-
ues in different ways, e. g., β-normal forms, weak head normal forms (as in Pollack’s
constructive engine [Pol94b]), closures (as in Coquand’s type checker [Coq96]), tagged
functions (Epigram 2 [CAM07]) or virtual machine instructions (compiled reduction in
Coq [GL02]). All implementations of values that satisfy the interface given in the fol-
lowing can be used with our NbE algorithm, and in this article we provide a framework
to prove all these implementations correct.

In this section, we will understand functions in terms of a programming language,
i. e., partial and possibly non-terminating. We unify the syntax of kinds, types, and
objects into a grammar of expressions Exp. Let Var = TyVar ∪ ObjVar.

Expressions Exp 3M,N ::= ? | C | X | x | λx :M.N | ΛX :M.N |M N
Values D 3 d, e, f, A,B, F,G (abstract)

Environments Env are finite maps from variables to values. Look-up of variable x in
environment ρ is written ρ(x), update of environment ρ with new value v for variable x
is written ρ[x 7→ v], and the empty environment is written �. The call fresh(ρ) returns a
variable x which is not in dom(ρ).

Application and evaluation (see Fig. 2) make values into a syntactical applicative
structure [Bar84, 5.3.1], provided the equations below are satisfied. Such structures
will appear later, in a sorted setting, as type and object structures (defs. 3 and 19). Note
that establishing the laws of evaluation can be arbitrarily hard, e. g., if L M involves an
optimizing compiler.

Values are converted back to expressions through reification. However, this pro-
cess can only be implemented for term-like value domains, in particular, we require
an embedding of variables into D, and an analysis neView of values that arise as iter-
ated application of a variable (a so-called neutral value) or as iterated application of
a constant (a constructed value). Some constructed values are types or kinds, they are
analyzed by tyView, which can actually be defined from neView.

Values d of type V in context ∆, which assigns type values to variables, are rei-
fied by a call to↘⇑(∆, d, V). It is mutually defined with↘⇑(∆,n) which returns the
normal form M and type V of neutral value n. Later in this article, reification will be
presented as two relations ∆ ` d ↘ M ⇓⇑ V such that ∆ ` d ↘ M ⇑ V iff
↘⇑(∆, d, V) = M and ∆ ` d↘M ⇓ V iff↘⇓(∆, d) = (M,V).

NbE is now obtained as reification after evaluation. For closed expressions M of
type or kind N we define

nbe(M,N) =↘⇑(�, LMM�, tyViewLNM�).

A concrete instance of NbE is obtained by defining a recursive data type D with the
constructors:

Constr : TyCst→ D∗ → D
Ne : Var → D∗ → D
Abs : (D→ D)→ D

Applicative structure D of values.

Application · : D→ D→ D

Evaluation L M : Exp→ Env→ D
LxMρ = ρ(x)
Lλx :M.NMρ · d = LNMρ[x 7→d]
LXMρ = ρ(X)
LΛX :M.NMρ ·G = LNMρ[X 7→G]

LM NMρ = LMMρ · LNMρ

D is term-like.

Embedding var : Var → D

View as neutral NeView 3 n ::= C | X | x | e d
neView : D→ NeView
neViewLCMρ = C
neView(varX) = X
neView(var x) = x
neView(e · d) = e d if neView e is defined

View as type TyView 3 V ::= ? | A→ B | ∀κF
tyView : D→ TyView
tyView L?Mρ = ?
tyView LM → NMρ = tyView LMMρ → tyView LNMρ
tyView L∀κMMρ = ∀κ tyView LMMρ

Reification.

↘⇑ : Env→ D→ TyView→ Exp
↘⇑(∆, f,A→ B) = let x = fresh(∆)

(U,) = ↘⇓(∆, neViewA)

inλx :U. ↘⇑(∆[x 7→ A], f · var x, tyViewB)

↘⇑(∆, d, ∀κF) = letX = fresh(∆) inΛX :κ. ↘⇑(∆[X 7→ κ], d · varX, tyView(F · varX))

↘⇑(∆, e, ?) = let (M,) =↘⇓(∆, neView e) inM

↘⇓ : Env→ NeView→ Exp× TyView
↘⇓(∆,C) = (C,Σ(C))

↘⇓(∆,X) = (X, tyView(∆(X)))

↘⇓(∆,x) = (x, tyView(∆(x)))

↘⇓(∆, e d) = let (M,V) =↘⇓(∆, e) in caseV of
A→ B 7→ (M (↘⇑(∆, d, tyViewA)), tyViewB)

∀κF 7→ (M (↘⇑(∆, d, κ)), tyView(F · d))

Normalization by evaluation.

nbe(M,N) =↘⇑(�, LMM�, tyViewLNM�)

Fig. 2. Specification of an NbE algorithm.

Application, evaluation, and variable embedding are given by the following equations.

(ConstrC Gs) · G = ConstrC (Gs, G)
(Nex ds) · d = Nex (ds, d)
(Abs f) · d = f d

Lλx :M.NMρ = Abs f where f d = LNMρ[x 7→d]
LΛX :M.NMρ = Abs f where f G = LNMρ[X 7→G]

LCMρ = ConstrC ()

varX = NeX ()
var x = Nex ()

This instance of NbE is now easily completed using the equations of the specification,
and can be implemented directly in Haskell.

In this article we show that any instance of the NbE-specification terminates with
the correct result for well-formed expressions of Fω , i. e., we show the following two
properties:

1. Soundness: if `M : N , then ` nbe(M,N) = M : N .
2. Completeness: if `M : N and `M ′ : N , then nbe(M,N) = nbe(M ′, N) (same

expression up to α).

In contrast to the untyped presentation in this section, which saves us from some rep-
etition, we will distinguish the three levels of Fω consequently in the remainder of the
article.

4 Kind Structures

Definition 1 (Kind structure). A kind structure is a set K with a distinguished element
? ∈ K and a binary operation→ ∈ K→ K→ K.

The free kind structure is Ki. A kind structure can also consist of semantic kinds which
are sets of types drawn from a type structure T . In the following, we present this ab-
stractly.

Definition 2 (Kind candidate space). Let (Kκ,vκ) be a Ki-indexed family of posets
with a (polymorphic) binary operation→ ∈ Kκ → Kκ′ → Kκ→κ′ . A kind candidate
space C consists of two families Cκ,Cκ ∈ Kκ indexed by κ ∈ Ki, written κ, κ if no
ambiguity arises, such that

K-BASE ? v ?,
K-FUN-I κ→ κ′ v κ→ κ′,
K-FUN-E κ→ κ′ v κ→ κ′.

For K ∈ Kκ we write κ
C K and say κ realizes K w. r. t. C iff κ v K v κ. For a
family Kκ ∈ Kκ we write
C K if κ
C K

κ for all κ.

Lemma 1 (Realizability kind structure). In the context of the above definition: If→ is
antitone in its first argument and monotone in its second argument, then C := {(κ,K) |
κ
C K} constitutes a kind structure with distinguished element (?, ?) and operation
(κ,K)→ (κ′,K ′) = (κ→ κ′,K → K ′).

Proof. We have ?
 ?, and κ
 K and κ′
 K ′ imply κ→ κ′
 K → K ′. ut

5 Type Structures

In this section, we define type structures as an abstraction over syntactic types, type
values, and semantic types. Type structures form a category which has finite products.
Let TyκΞ = {T | Ξ ` T : κ}.

Definition 3 (Type structure). An (Fω) type structure is a tuple (T ,Cst,App, [[]])
where T is a Kripke family T κΞ of sets with the following Kripke families of maps:

CstΞ ∈ (C ∈ TyCst)→ T Σ(C)
Ξ

Appκ→κ
′

Ξ ∈ T κ→κ′Ξ → T κΞ → T κ
′

Ξ

Usually, we will just write F · G for Appκ→κ
′

Ξ (F,G). Let ρ ∈ T ΞΘ iff ρ(X) ∈ T Ξ(X)
Θ

for all X ∈ dom(Ξ). The interpretation function has the following properties:

[[]] ∈ TyκΞ → T ΞΘ → T κΘ
[[C]]ρ = CstΘ(C)
[[X]]ρ = ρ(X)
[[λX :κ. T]]ρ ·G = [[T]]ρ[X 7→G]

[[T U]]ρ = [[T]]ρ · [[U]]ρ
[[T [U/X]]]ρ = [[T]]ρ[X 7→[[U]]ρ]

(∗)

If the condition (∗) is fulfilled, we speak of a combinatory type structure, since (∗) is
a characterizing property of combinatory algebras. The condition (∗) is only necessary
since we chose to use eager substitution in the inference rules of Fω , it can be dropped
when switching to explicit substitutions [ACD08].

We use “interpretation” and “evaluation” synonymously. Note that while the equa-
tions determine the interpretation of constants, variables, and application, there is some
freedom in the interpretation of functions [[λX :κ. T]]ρ. It could be lambda-terms (tak-
ing T = Ty), set-theoretical functions (see Def. 28), functional values in an interpreter,
machine code etc.

Since CstΞ is independent of Ξ , we have CstΞ = Cxt�, we usually suppress the
index Ξ in CstΞ . We may even drop Cst altogether, i. e., we just write→ ∈ T ?→?→?Ξ

instead of Cst(→) ∈ T ?→?→?Ξ .
To avoid ambiguities when different type structures are in scope, we may write→T ,

∀κT , ·T and T [[]] to emphasize that we mean the type structure operations of T .
Simple examples of type structures are Ty and Ty modulo β, βη, or judgmental

equality. In these instances, the interpretation function is parallel substitution.

Our notion of type structure essentially coincides with Barendregt’s syntactical ap-
plicative structure [Bar84, 5.3.1], except that we are working in a kinded setting and
Barendregt in untyped lambda-calculus.

Definition 4 (Type structure morphism). Given two type structures S and T , a type
structure morphism M : S → T is a Kripke family of maps Mκ

Ξ ∈ SκΞ → T κΞ that
commute with the operations of S, i. e.,

Mκ
Ξ(CS) = CT (C :κ) ∈ Σ

Mκ′

Ξ (F ·S G) = Mκ→κ′
Ξ (F) ·T Mκ

Ξ(G) F ∈ Sκ→κ′Ξ , G ∈ SκΞ
Mκ
Θ(S[[T]]ρ) = T [[T]]MΞ

Θ ◦ρ
T ∈ TyκΞ , ρ ∈ SΞΘ

where (MΞ
Θ ◦ ρ)(X) := M

Ξ(X)
Θ (ρ(X)).

Definition 5 (Environment pairing). Given two type structures S, T and environ-
ments ρ ∈ SΞΘ and ρ′ ∈ T ΞΘ , we define

(ρ, ρ′) ∈ (X ∈ dom(Ξ))→ SΞ(X)
Θ × T Ξ(X)

Θ

pointwise by (ρ, ρ′)(X) = (ρ(X), ρ′(X)).

For the environment update operation then holds (ρ, ρ′)[X 7→ (G,G′)] = (ρ[X 7→
G], ρ′[X 7→ G′]).

Def. and Lem. 1 (Product type structure) Given two type structures S, T , the point-
wise product

(S × T)κΞ = SκΞ × T κΞ

forms a new type structure with

CS×T := (CS , CT) for all C ∈ TyCst
(F, F ′) · (G,G′) := (F ·G,F ′ ·G′)
[[F]]ρ,ρ′ := ([[F]]ρ, [[F]]ρ′).

Proof. One easily validates the laws

[[X]]ρ,ρ′ = (ρ, ρ′)(X)
[[λX :κ. T]]ρ,ρ′ · (G,G′) = [[T]](ρ,ρ′)[X 7→(G,G′)]

[[T U]]ρ,ρ′ = [[T]]ρ,ρ′ · [[U]]ρ,ρ′

using the definition of application and evaluation. ut

The two projections π1 : S × T → S and π2 : S × T → T are trivially type structure
morphisms, and × is a product in the category of type structures and their morphisms.

5.1 Type Substructures and the Fundamental Theorem for Kinding

Definition 6 (Type substructure). Given a type structure T , the Kripke family SκΞ ⊆
T κΞ is a type substructure of T if

CT ∈ SκΞ for all (C :κ) ∈ Σ
·T ∈ Sκ→κ′Ξ → SκΞ → Sκ

′

Ξ

T [[]] ∈ TyκΞ → SΞΘ → SκΘ

Basically, a type substructure is a subfamily which is still a type structure with the
original operations. One could also say that S is a type substructure of T iff the
identity on S is a type structure morphism from S to T . However, then the notion of
type structure morphism must be set up more liberally, not requiring S to be a type
structure a priori. In the following we simply write S ⊆ T to mean SκΞ ⊆ T κΞ for all
κ,Ξ .

Lemma 2 (Projection type substructure). If S ⊆ T1 × T2 is a type substructure, so
are π1(S) ⊆ T1 and π2(S) ⊆ T2.

Definition 7 (Function space). We write K ∈ T̂ κ if K is a Kripke family of subsets
KΞ ⊆ T κΞ . Given K ∈ T̂ κ and K ′ ∈ T̂ κ′ we define the Kripke function space

(K →bT K ′)Ξ = {F ∈ T κ→κ′Ξ | F ·G ∈ K ′Ξ′ for all Ξ ′ ≤ Ξ and G ∈ KΞ′}

The set {(κ,K) | K ⊆ T κ Kripke } forms the powerset kind structure with operation
(κ,K) → (κ′,K ′) = (κ → κ′,K →bT K ′) and an arbitrarily chosen distinguished
element (?,K0) with K0 ⊆ T ?.

If no ambiguities arise, we write→ for→bT .

Definition 8 (Induced type structure). Let T be a type structure and S ⊆ T be
Kripke. If

CT ∈ SκΞ for all (C :κ) ∈ Σ
Sκ→κ′Ξ = (Sκ →bT Sκ′)Ξ

then S is called induced or an induced type substructure of T (see Thm. 2).

Such an S is called induced since it is already determined by the choice of the denota-
tion of the base kind S?.

Theorem 2 (Fundamental theorem of kinding). Let T be a type structure. If S ⊆ T
is induced, then S is a type substructure of T .

Proof. We mainly need to show that evaluation is well-defined. This is shown by in-
duction on the kinding derivation, as usual.

Let ρ ∈ SΞΘ . We show LT Mρ ∈ SκΘ by induction on Ξ ` T : κ. The cases for
variables and constants are trivial.

Case
Ξ,X :κ ` T : κ′

Ξ ` λX :κ. T : κ→ κ′

Since S is induced, it is sufficient to show LλX : κ. T Mρ · G ∈ Sκ
′

Θ′ for arbitrary
Θ′ ≤ Θ and G ∈ SκΘ′ . This follows from the induction hypothesis LT Mρ′ ∈ Sκ

′

Θ′

with ρ′ = ρ[X 7→ G] ∈ SΞ,X:κ
Θ′ .

Case
Ξ ` T : κ→ κ′ Ξ ` U : κ

Ξ ` T U : κ′

Since Sκ→κ′ ⊆ Sκ →bT Sκ′ , the goal follows by the induction hypotheses and
LT UMρ = LT Mρ · LUMρ.

ut

5.2 NbE for Types and Its Soundness

We are ready to define the reification relation for type values and show that NbE, i. e.,
the composition of evaluation of a syntactic type T and reification to a normal form V ,
is sound, i. e., T and V are judgmentally equal. As a byproduct, we show totality of
NbE on well-kinded types. The structure T of type values is left abstract, a concrete
definition will be given in Sect. ??. However, not every T permits reification of its
inhabitants. It needs to include the variables which need to be distinguishable from
each other and other type values. Neutral types, i. e., of the shape X · G, need to be
analyzable into head X and spine G. We call a suitable T term-like; on such a T we
can define contextual reification [ACD08,Abe08].

Definition 9 (Type structure with variables). A type structure T has variables if there
exists a Kripke family of maps VarΞ ∈ (X ∈ dom(Ξ))→ T Ξ(X)

Ξ such that VarΞ(X) ∈
T κ′Ξ′ iff Ξ ′(X) = κ′. Usually, we simply write X for VarΞ(X).

1. Types X ·G are called neutral.
2. Types C ·G are called constructed.

If clear from the context of discourse, we drop the index Ξ to Var. To disambiguate, we
sometimes write VarT to refer to the variable embedding of type structure T . Usually,
we write T [[T]] instead of T [[T]]VarT

for the interpretation in the identity environment.

Definition 10 (Term-like type structure). A type structure T is term-like if it has vari-
ables and there exists a Kripke family of partial maps

ViewκΞ ∈ T κΞ ⇀ {(C,G) ∈ TyCst× T κ
Ξ | Σ(C) = κ→ κ}

+ {(X,G) ∈ TyVar × T κ
Ξ | Ξ(X) = κ→ κ}

such that:

– View(F) = (C,G) iff F = Cst(C) ·G.
– View(F) = (X,G) iff F = Var(X) ·G.

Lemma 3 (Injectivity in term-like type structures). In a term-like type structure T ,
Cst and Var are families of injective maps and neutral and constructed application is
injective, i. e., H ·G = H ′ ·G′ implies H = H ′ and G = G′ for neutral or constructed
H,H ′.

Proof. Assume, for instance H = X ·G, H ′ = X ′ ·G′ neutral. We have (X;G, G) =
View(H · G) = View(H ′ · G′) = (X ′;G′, G′), thus X = X ′, G = G′, and G = G′.
Immediately, H = H ′ follows. ut

Trivially, Ty is a term-like type structure with VarTy(X) = X . The product of term-
like type structures S and T is again term-like with VarS×T = (VarS ,VarT). Ty/=β

is term-like due to confluence of β-reduction. Ty modulo judgmental equality is not
trivially term-like, since first injectivity of the type constructors needs to be proven.

Definition 11 (Reifiable type structure). A type structure T with variables is reifiable,
if there are relations

Ξ ` F ↘ V ⇑ κ in Ξ , F reifies to V at kind κ,
Ξ ` H ↘ U ⇓ κ in Ξ , H reifies to U , inferring kind κ,

(where F,H ∈ T κΞ with H neutral or constructed, and V,U ∈ TyκΞ) which obey the
following rules:

Ξ ` C ↘ C ⇓ Σ(C) Ξ ` X ↘ X ⇓ Ξ(X)

Ξ ` H ↘ U ⇓ κ→ κ′ Ξ ` G↘ V ⇑ κ
=================================

Ξ ` H ·G↘ U V ⇓ κ′

Ξ ` H ↘ U ⇓ ?
=============
Ξ ` H ↘ U ⇑ ?

Ξ,X :κ ` F ·X ↘ V ⇑ κ′
======================
Ξ ` F ↘ λX :κ. V ⇑ κ→ κ′

Further, these reification relations must be deterministic in the following sense: For all
Ξ, κ, F (inputs) and neutral or constructed H (input) there is at most one V (output)
such that Ξ ` F ↘ V ⇑ κ and at most one U and κ′ (outputs) such that Ξ ` H ↘
U ⇓ κ′.

Seen as logic programs with inputs and outputs as indicated above, these relations de-
note partial functions, where↘⇑ is defined by cases on the kind κ and and↘⇓ by cases
on the neutral value H .

Lemma 4 (Reification returns long normal form). If Ξ ` F ↘ V ⇑ κ, then V is
η-long β-normal.

Lemma 5 (Term-like type structure is reifiable). Any term-like type structure T is
reifiable.

Proof. In the presence of View, the two relations can simply be defined inductively by
the above rules. ut

Why did we then bother to introduce the concept of a reifiable type structure, instead
of just speaking of term-like type structures and define reification inductively? It is
because we will show in Sec. 6.3 that the quotient of a reifiable type structure modulo
some suitable equality remains reifiable.

We continue by constructing a model of the kinding rules which proves soundness of
NbE for types. Kinds κ are interpreted as sets GκΞ of pairs (F, T) glued together [CD97]
by reification, i. e., the type value F reifies to syntactic type T up to βη-equality. Func-
tion kinds are interpreted via Tait’s function space (see Def. 7), thus, the fundamental
theorem of kinding yields that G is indeed a type structure.

Definition 12 (Glueing candidate). Fix a reifiable type structure T . We define the fam-
ilies Gl,Gl ⊆ T × Ty by

Gl
κ

Ξ = {(F, T) ∈ T κΞ × TyκΞ | Ξ ` F ↘ V ⇑ κ and Ξ ` T = V : κ},
GlκΞ = {(H,T) ∈ T κΞ × TyκΞ | Ξ ` H ↘ U ⇓ κ and Ξ ` T = U : κ}.

A family S with Glκ ⊆ Sκ ⊆ Gl
κ

is called a glueing candidate.

Lemma 6. Any glueing candidate S contains the constants.

Proof. Since Ξ ` C ↘ C ⇓ Σ(C) we have CstS(C) = (C,C) ∈ Gl
Σ(C)
Ξ ⊆ SΣ(C)

Ξ .
ut

Lemma 7 (Glueing candidate space). Glκ, Gl
κ

form a kind candidate space accord-
ing to Def. 2.

Proof. Let us write κ, κ for Glκ,Gl
κ

. We show K-FUN-I. Assume (F, T) ∈ (κ→ κ′)Ξ
and show (F, T) ∈ κ→ κ′Ξ . We have (X,X) ∈ κΞ,X:κ, hence, (F · X,T X) ∈
κ′Ξ,X:κ. That is, Ξ,X : κ ` F · X ↘ V ⇑ κ′ and Ξ,X : κ ` T X = V : κ′. It
follows Ξ ` F ↘ λX :κ. V ⇑ κ → κ′ and Ξ ` λX :κ. T X = λX :κ. V : κ′. Since
X 6∈ dom(Ξ) we have Ξ ` T = λX :κ. V : κ′. Thus, (F, T) ∈ κ→ κ′Ξ . ut

The last proof makes apparent why we work with kinded type structures; if elements of
the Kripke function space had not been well-kinded, we would not have the information
T ∈ Tyκ→κ

′

Ξ which is necessary to conclude Ξ ` λX :κ. T X = T : κ′.

Def. and Lem. 3 (Glueing type structure) Given a type structure T , we define G ⊆
T × Ty by

G?Ξ := ?Ξ ,

Gκ→κ
′

Ξ := (Gκ →T̂ ×Ty
Gκ

′
)Ξ .

G is a glueing candidate, i. e., Glκ ⊆ Gκ ⊆ Gl
κ

for all κ.

Proof. By induction on κ. By definition, ?
Gl G?, and κ
Gl Gκ and κ′
Gl Gκ
′

imply

κ→ κ′ ⊆ κ→ κ′ ⊆ Gκ → Gκ
′
⊆ κ→ κ′ ⊆ κ→ κ′.

ut

Corollary 1. G is induced.

Proof. CG ∈ G
Σ(C)
Ξ since any glueing candidate contains the constants, and Gκ→κ

′
=

Gκ → Gκ
′

by definition. ut

Since G is induced, by the fundamental theorem of kinding it is a type substructure
of T × Ty.

Theorem 4 (Soundness of NbE for types). Let T be a reifiable type structure. If Ξ `
T : κ then there is a V ∈ TyκΞ such thatΞ ` T [[T]]VarT

↘ V ⇑ κ andΞ ` T = V : κ.

Proof. Since (X,X) ∈ Gl
Ξ(X)
Ξ ⊆ G

Ξ(X)
Ξ for all X ∈ dom(Ξ), for the identity valua-

tion VarT ×Ty(X) = (X,X) we have VarG = VarT ×Ty ∈ GΞΞ .
By the fundamental theorem, G[[T]]VarG

= (T [[T]]VarT
, T) ∈ GκΞ . Since GκΞ ⊆ Gl

κ

Ξ ,
we have that Ξ ` T [[T]]VarT

↘ V ⇑ κ with Ξ ` T = V : κ. ut

The V returned by reification is the long normal form of T .

6 Type Groupoids

Completeness of NbE means that it models judgmental type equality, i. e., if Ξ ` T =
T ′ : κ then Ξ ` [[T]]↘ V ⇑ κ and Ξ ` [[T ′]]↘ V ⇑ κ. Completeness will be shown
by a fundamental theorem of type equality. Judgmental equality is usually modelled
by partial equivalence relations (PERs), which can be seen as groupoids. Hence, we
introduce the notion of a groupoidal type structure, or type groupoid. The advantage
over PERs is that we can directly reuse the fundamental theorem of kinding, instantiated
to a groupoidal type structure 2T of pairs of types, instead of having to prove this
theorem again for kinds modelled as PERs.

Definition 13 (From Wikipedia, 2008-10-30:). A groupoid is a set G with a function
−1 : G → G and a partial function ∗ : G×G → G that have the following properties:

1. Associativity: For all a, b, c ∈ G, if a ∗ b and b ∗ c are defined, then (a ∗ b) ∗ c and
a ∗ (b ∗ c) are defined and equal. Conversely, if either of these last two expressions
is defined, then so is the other (and again they are equal).

2. Inverse: For all a ∈ G, a−1 ∗ a and a ∗ a−1 are defined.
3. Identity: For all a, b ∈ G, if a ∗ b is defined, then a ∗ b ∗ b−1 = a, and a−1 ∗ a ∗
b = b. (The previous axioms already show that these expressions are defined and
unambiguous.)

Example 1 (PER as groupoid). A partial equivalence relationR over set S is a groupoid
with (s, t)−1 = (t, s) and (r, s) ∗ (s, t) = (r, t).

Example 2 (Discrete groupoid). Any set S gives rise to a trivial groupoid with s−1 = s
and ∗ is defined exactly on the diagonal of S × S, and there s ∗ s = s.

Lemma 8. (b−1)−1 = b.

Proof. (Uli Schoepp) First, note that b−1 = b−1 ∗ b ∗ b−1. Hence (b−1)−1 = (b−1)−1 ∗
b−1 ∗ (b−1)−1 = (b−1)−1 ∗ b−1 ∗ b ∗ b−1 ∗ (b−1)−1 = b ∗ b−1 ∗ (b−1)−1 = b. ut

Lemma 9. If a ∗ b is defined then (a ∗ b)−1 = b−1 ∗ a−1.

Proof. First a = a ∗ b ∗ b−1. Since (a ∗ b)−1 ∗ (a ∗ b) is defined, (a ∗ b)−1 = (a ∗ b)−1 ∗
a ∗ a−1 = (a ∗ b)−1 ∗ a ∗ b ∗ b−1 ∗ a−1 = b−1 ∗ a−1. ut

Definition 14 (Subgroupoid). Given a groupoid G, a set H ⊆ G is a subgroupoid if it
is closed under inversion and composition, i.e., if

1. a ∈ H implies a−1 ∈ H, and
2. a, b ∈ H implies a ∗ b ∈ H if a ∗ b is defined.

6.1 Type Groupoids and the Fundamental Theorem of Type Equality

Definition 15 (Type groupoid). A type structure is groupoidal if each T κΞ is a groupoid,
constants are preserved under inversion, and inversion and composition distribute over
application, i. e.,

C−1 = C
for all C ∈ TyCst,

(F ·G)−1 = F−1 ·G−1,
(F ·G) ∗ (F ′ ·G′) = (F ∗ F ′) · (G ∗G′).

Example 3. Each type structure is groupoidal for the trivial choice of inversion (iden-
tity) and composition (idempotent, defined on the diagonal).

Def. and Lem. 5 (Square type groupoid) Given a type structure T we define the square
type groupoid 2T as the product type structure T × T equipped with

(F,G)−1 = (G,F),
(F,G) ∗ (G,H) = (F,H).

Proof. The laws of a type groupoid are satisfied, e.g., for the last law we have

((F1, F2) ∗ (F2, F3)) · ((G1, G2) ∗ (G2, G3))
= (F1, F3) · (G1, G3)
= (F1 ·G1, F3 ·G3)
= (F1 ·G1, F2 ·G2) ∗ (F2 ·G2, F3 ·G3)
= ((F1, F2) · (G1, G2)) ∗ ((F2, F3) · (G2, G3))

ut

Lemma 10 (Function space is groupoid). If K ∈ T̂ κ and K ′ ∈ T̂ κ′ are groupoids,
so is K →bT K ′ ∈ T̂ κ→κ′ .
Proof. Analogous to the proof of Lemma 21. ut

Definition 16 (Induced type groupoid). Let T be a type structure and E ⊆ 2T . We
say E is induced if E is an induced type structure and E?Ξ is groupoidal for all Ξ .

Since type equality refers to kinding, we will have to refer to the fundamental theo-
rem of kinding in the proof of the fundamental theorem of type equality.

Lemma 11 (Fundamental theorem of kinding for type groupoids). Let T be a type
structure and E ⊆ 2T be induced. Then,

1. E is a type subgroupoid of 2T , and
2. if Ξ ` T : κ and (ρ, ρ′) ∈ EΞΘ then (T [[T]]ρ, T [[T]]ρ′) ∈ EκΘ.

Proof. 1. By induction on κ and Lemma 10 we show that Eκ is groupoidal.
2. This is just an instance of Theorem 2, since E [[T]](ρ,ρ′) = (T [[T]]ρ, T [[T]]ρ′). ut

Definition 17 (Model/respect type equality). Let T be a type structure. We say that
E ⊆ 2T models type equality if Ξ ` T = T ′ : κ and (ρ, ρ′) ∈ EΞΘ imply (T [[T]]ρ, T [[T ′]]ρ′) ∈
EκΘ. A type structure T ′ respects type equality if Ξ ` T = T ′ : κ implies T ′[[T]]ρ =
T ′[[T ′]]ρ for all ρ ∈ T ′ΞΘ .

Lemma 12 (Type structure modulo). Let T and E ⊆ 2T be type structures such that
E models type equality. Then T /E is a type structure respecting type equality.

Proof. Application and evaluation are well-defined in T /E since E is a type structure.
T /E respects type equality since E models type equality. ut

Theorem 6 (Fundamental theorem of type equality). Let T be a combinatory type
structure and E ⊆ 2T an induced type structure. Then E models type equality.

Proof. By induction on Ξ ` T = T ′ : κ. We give a few representative cases. Assume
(ρ, ρ′) ∈ EΞΘ .

Case
Ξ ` T : κ→ κ′

Ξ ` λX :κ. T X = T : κ→ κ′
X 6∈ dom(Ξ)

Since E is induced, it is sufficient to assume arbitrary Θ′ ≤ Θ and (G,G′) ∈ EκΘ′
and show ([[λX :κ. T X]]ρ, [[T]]ρ′) · (G,G′) ∈ Eκ

′

Θ′ . Because X 6∈ dom(Ξ) we have
(ρG, ρ′) ∈ EΞΘ′ for ρG := ρ[X 7→ G]. By induction hypothesis and Lemma 11,
([[T]]ρG , [[T]]ρ′) ∈ Eκ→κ

′

Θ , hence, ([[T]]ρG ·G, [[T]]ρ′ ·G′) ∈ Eκ
′

Θ′ . We are done, since
[[λX :κ. T X]]ρ ·G = [[T X]]ρG = [[T]]ρG ·G.

Case
Ξ,X :κ ` T : κ′ Ξ ` U : κ
Ξ ` (λX :κ. T)U = T [U/X] : κ′

Here we use the law [[T [U/X]]]ρ = [[T]]ρ[X 7→[[U]]ρ]
of combinatory type structures.

Case
Ξ ` T1 = T2 : κ Ξ ` T2 = T3 : κ

Ξ ` T1 = T3 : κ
Let Fi = [[Ti]]ρ for i = 1, 2, 3. By induction hypothesis, (F1, F2), (F2, F3) ∈ EκΘ.
Since EκΘ is a subgroupoid of 2T κΘ and (F1, F2) ∗ (F2, F3) is defined, we have
(F1, F3) ∈ EκΘ. ut

6.2 Completeness of NbE for Types

In the following we show that the relation “reify to the same η-long form” gives rise to
an equivalence relation on types which models type equality. This implies that NbE is
complete.

Def. and Lem. 7 (Kind candidate space for completeness) Let T be reifiable.

Per
κ

Ξ = {(F, F ′) ∈ 2T κΞ | Ξ ` F ↘ V ⇑ κ and Ξ ` F ′ ↘ V ⇑ κ for some V ∈ TyκΞ}
PerκΞ = {(F, F ′) ∈ 2T κΞ | Ξ ` F ↘ V ⇓ κ and Ξ ` F ′ ↘ V ⇓ κ for some V ∈ TyκΞ}

Perκ and Per
κ

are Kripke families of subgroupoids, and form a kind candidate space.

Proof. Composition (F1, F2)∗(F2, F3) is well-defined since reification is deterministic.
ut

Def. and Lem. 8 (Type groupoid for completeness) Let T be a type structure. We de-
fine Pκ ⊆ 2T κ by recursion on κ:

P? := Per?,

Pκ→κ
′
:= Pκ →c2T Pκ

′
.

P is an induced type groupoid.

Theorem 9 (Completeness of NbE for types). Let T be a reifiable type structure. If
Ξ ` T = T ′ : κ then Ξ ` [[T]]Var ↘ V ⇑ κ and Ξ ` [[T ′]]Var ↘ V ⇑ κ for some V .

Proof. Since (Var,Var) ∈ PΞΞ , by the fundamental theorem of type equality we have
([[T]]Var , [[T

′]]Var) ∈ PκΞ ⊆ Per
κ

Ξ which entails the goal. ut

6.3 Type structure modulo reification

In the following we show that a type structure T modulo the equality P induced by
Per is still reifiable, i. e., reification is compatible with P-equality. Since P is a kind
candidate of space Per, it is clear that for (F, F ′) ∈ PκΞ , the types F and F ′ reify to
the same expression under the ⇑-relation. What remains to show that his holds also for
the ⇓-relation, provided F and F ′ are neutral or constructed. Thus, we need to show
that (F, F ′) ∈ Per

κ

Ξ implies (F, F ′) ∈ PerκΞ for such F, F ′. The proof rests on the
following strengthening lemma.

Lemma 13 (Strengthening of reification). Let T be a reifiable structure, F ∈ T κΞ ,
and ⇓⇑ ∈ {⇓,⇑}. If Ξ ′ ` F ↘ T ⇓⇑ κ for some Ξ ′ ≤ Ξ , then Ξ ` F ↘ T ⇓⇑ κ.

Proof. By induction on T ∈ TyκΞ , first proving the statement for ⇓, then for ⇑. In the
case of a variable X ∈ T κΞ , we know Ξ(X) = κ, hence, Ξ ` X ↘ X ⇓ κ. In case
Ξ ′ ` F ↘ λX : κ1. V ⇑ κ1 → κ2 we may assume w. l. o. g. that X 6∈ dom(Ξ ′).
Hence, Ξ ′, X :κ1 ≤ Ξ,X :κ1 and by induction hypothesis on V ∈ Tyκ2

Ξ,X:κ1
we have

Ξ,X :κ1 ` F ·X ↘ V ⇑ κ2, thus, Ξ ` F ↘ λX :κ1. V ⇑ κ1 → κ2. ut

Using strengthening, we can show that ⇑ for neutral and constructed types, which
returns the η-long form, embeds into ⇓, modulo η-equality.

Lemma 14 (Reification of neutral and constructed types). Let T be a reifiable type
structure. Let H ∈ T κΞ be neutral or constructed. If Ξ ` H ↘ V ⇑ κ then Ξ ` H ↘
U ⇓ κ and Ξ ` U = V : κ.

Proof. By induction on κ. Trivial for κ = ?. In case κ = κ1 → κ2, we have

Ξ,X :κ1 ` H ·X ↘ V ⇑ κ2
========================
Ξ ` H ↘ λX :κ1. V ⇑ κ1 → κ2

Analyzing the induction hypothesis Ξ,X : κ1 ` H · X ↘ U ′ ⇓ κ2, we get Ξ,X :
κ1 ` H ↘ U ⇓ κ1 → κ2 and Ξ,X : κ1 ` U X = V : κ2. Since H ∈ T κΞ , we get
by Lemma 13, Ξ ` H ↘ U ⇓ κ1 → κ2, hence, Ξ ` U : κ1 → κ2. This entails
Ξ ` U = λX :κ1. V : κ1 → κ2. ut

Corollary 2. If (H,T) ∈ Per
κ

Ξ and H is neutral or constructed, then (H,T) ∈ PerκΞ .

Theorem 10 (Type structure modulo reification). Let T be a reifiable type structure
and P defined as above. Then T /P is reifiable and respects type equality.

Proof. Since P models type equality, we only need to show that both reification rela-
tions are well-defined on T /P. First, if Ξ ` F ↘ V ⇑ κ and Ξ ` F ′ ↘ V ′ ⇑ κ
and (F, F ′) ∈ PκΞ ⊆ Per

κ

Ξ then V = V ′ since reification is deterministic. Secondly, if
Ξ ` H ↘ U ⇓ κ and Ξ ` H ′ ↘ U ′ ⇓ κ for neutral or constructed (H,H ′) ∈ PκΞ ,
then by Cor. 2 (H,H ′) ∈ PerκΞ , hence, U = U ′. ut

Observe however, that T is term-like whereas T /P is not.

7 Object Structures

In this section, we introduce object structures which model both the syntactic object
structure Obj indexed by syntactic types in Ty and structures of values D indexed by
type values from a structure T . The following development, leading up the fundamental
theorem of typing and the soundness of NbE for objects, parallels the preceding one
on the type level. However, while we could define the glueing type structure Gκ by
induction on kind κ, we cannot define a similar glueing objects structure gl by induction
on types, due to impredicativity. Hence, we will define gl as a structure of candidates
for semantic types.

Definition 18 (Typing context). Given a type structure T , a TΞ -context ∆ ∈ T cxt
Ξ

is a partial map from the term variables into T ?Ξ . If Γ ∈ Tycxt
Ξ and ρ ∈ T ΞΘ then

[[Γ]]ρ ∈ T cxt
Θ is defined by [[Γ]]ρ(x) = [[Γ (x)]]ρ.

Let ObjΞ `TΓ = {t | Ξ;Γ ` t : T}.

Definition 19 (Object structure). Let T be a type structure. An object structure over
T is a family DΞ `A (A ∈ T ?Ξ) of Kripke sets indexed by TΞ -contexts ∆ such that
Ξ ′ ≤ Ξ implies DΞ `A

∆ = DΞ′ `A
∆ . It respects type equality, i. e., Ξ ` T = T ′ : ?

implies DΘ `[[T]]ρ = DΘ `[[T ′]]ρ for any ρ ∈ T ΞΘ , and there are operations:

appΞ `A→B∆ ∈ DΞ `A→B
∆ → DΞ `A

∆ → DΞ `B
∆ ,

TyAppΞ `∀
κF

∆ ∈ DΞ `∀κF
∆ → (G ∈ T κΞ)→ DΞ `F ·G

∆ .

We write · for both of these operations. For ∆,Ψ ∈ T cxt
Θ , let η ∈ DΘ `Ψ

∆ iff η(x) ∈
D
Θ `Ψ(x)
∆ for all x ∈ dom(Ψ). We stipulate a family of evaluation functions

L Mρ ∈ ObjΞ `TΓ → D
Θ `[[Γ]]ρ
∆ → D

Θ `[[T]]ρ
∆

indexed by ρ ∈ T ΞΘ which satisfy the following equations:

LxMρη = η(x)
Lr sMρη = LrMρη · LsMρη
Lt UMρη = LtMρη · [[U]]ρ

Lt[u/x]Mση = LtMση[x 7→LuMση] (∗)

Lλx :U. tMρη · d = LtMρη[x7→d] if d ∈ DΘ `[[U]]ρ
∆

LΛX :κ. tMρη ·G = LtMρ[X 7→G]
η if G ∈ T κΘ

Lt[U/X]Mση = LtMσ[X 7→[[U]]σ]
η (∗)

Again, (∗) have to hold only in combinatory object structures.
With parallel substitution, Obj (modulo β, βη, or judgmental equality) forms an

object structure over Ty (modulo the same equality).

Definition 20 (Object substructure). Let S, T be type structures with S ⊆ T and let
D be an object structure over T . Let EΞ `A ⊆ DΞ `A be a Kripke family of subsets
indexed by ∆ ∈ Scxt

Ξ for all A ∈ S?Ξ . Then E is an object substructure of D over S if
application and evaluation are well defined on E.

appΞ `A→B∆ ∈ EΞ `A→B∆ → EΞ `A∆ → EΞ `B∆

TyAppΞ `∀
κF

∆ ∈ EΞ `∀κF∆ → (G ∈ SκΞ)→ EΞ `F ·G∆

L Mρ ∈ ObjΞ `TΓ → E
Θ `S[[Γ]]ρ
∆ → E

Θ `S[[T]]ρ
∆

for all ∆ ∈ Scxt
Θ and ρ ∈ SΞΘ .

Definition 21 (Reindexed object structure). Let M : S → T be a type structure
morphism and D an object structure over T . The type structure EΞ `A := DΞ `M(A)

over S with
f ·E d := f ·D d
d ·E G := d ·D (M(G))
EL Mρ := DL MM◦ρ

is called D reindexed by M .

Definition 22 (Object structure morphism). Let M : S → T be a type structure
morphism and D an object structure over S and E one over T . An object structure
morphism m : D → E is a Kripke family of maps

mΞ `A
∆ ∈ DΞ `A

∆ → E
Ξ `M?

Ξ(A)
M?
Ξ◦∆

which commute with application and evaluation, i. e.,

m(f ·D d) = m(f) ·E m(d)
for all f ∈ DΞ `A→B

∆ , d ∈ DΞ `A
∆

m(d ·D G) = m(d) ·E M(G)
for all d ∈ DΞ `∀κF

∆ , G ∈ T κΞ
m(DLtMρη) = ELtMM◦ρm◦η

for all T ∈ Ty?Ξ , t ∈ ObjΞ `TΓ , ρ ∈ SΞΘ , η ∈ D
Θ `S[[Γ]]ρ
∆ .

Definition 23 (Product object structure). Given object structuresD1 over T1 and D2

over T1 we define the product object structureD1×D2 over T1×T2 by (D1 ×D2)
Ξ `(A1,A2)
(∆1,∆2)

:=

D1
Ξ `A1
∆1

×D2
Ξ `A2
∆2

with

(f1, f2) ·D1×D2 (d1, d2) := (f1 ·D1 d1, f2 ·D2 d2)
(d1, d2) ·D1×D2 (G1, G2) := (d1 ·D1 G1, d2 ·D2 G2)
(D1 ×D2)LtM

(ρ1,ρ2)
η1,η2 := (D1LtMρ1η1 , D2LtMρ2η2).

7.1 Realizability Type Structure and the Fundamental Theorem of Typing
Fix some term-like type structure T and an object structure D over T . Let A ∈ D̂A

Ξ if
A∆ ⊆ DΞ `A

∆ and A is Kripke. D̂A
Ξ forms a complete lattice for all Ξ,A.

Lemma 15. If Ξ ′ ≤ Ξ then D̂A
Ξ = D̂A

Ξ′ .

Proof. DΞ `A
∆ = DΞ′ `A

∆ . ut

Definition 24 (Function space and type abstraction on D̂).

→ bD ∈ D̂A
Ξ → D̂B

Ξ → D̂A→B
Ξ

(A → B)∆ := {f ∈ DΞ `A→B
∆ | for all d,∆′ ≤ ∆, d ∈ A∆′ implies f · d ∈ B∆′}

(.)∀
κF ∈ (G ∈ T κΞ)→ D̂F ·G

Ξ → D̂∀
κF
Ξ

(G.A)∀
κF
∆ := {d ∈ DΞ `∀κF

∆ | d ·G ∈ A∆}
Constructors of higher kind are interpreted as operators on Kripke sets.

Definition 25 (Kripke operators of higher kind). We define D̂F :κ
Ξ by

D̂A:?
Ξ := D̂A

Ξ ,

D̂F :κ→κ′
Ξ := (G ∈ T κΞ)→ D̂G:κ

Ξ → D̂F ·G:κ′

Ξ .

Definition 26 (Type candidate space). A type candidate space C forD over T consists
of two Kripke sets CΞ `A, CΞ `A ∈ D̂A

Ξ , (written A,A if no ambiguities arise) for each
type A ∈ T ?Ξ such that the following conditions hold.

K-NE H ⊆ H ∈ D̂H
Ξ if H neutral

K-FUN-E A→ B ⊆ A→ bD B ∈ D̂A→B
Ξ

K-FUN-I A→ bD B ⊆ A→ B ∈ D̂A→B
Ξ

K-ALL-E ∀κF ⊆ G.F ·G ∈ D̂∀
κF
Ξ if G ∈ T κΞ

K-ALL-I X.F ·X ⊆ ∀κF ∈ D̂∀
κF
Ξ if X 6∈ dom(Ξ)

Definition 27 (Realizable semantic types). If F ∈ T κΞ and F ∈ D̂F :κ
Ξ then F
κC F

(pronounced F realizes F) is defined by induction on κ as follows:

A
?C A :⇐⇒ A ⊆ A ⊆ A
F
κ→κ

′

C F :⇐⇒ F ·G
κ
′

C F(G,G) for all G
κC G

We define the Kripke families T D̂ and C ⊆ T D̂ by

T D̂
κ

Ξ = {(F,F) ∈ T κΞ × D̂F :κ
Ξ }

CκΞ = {(F,F) ∈ T κΞ × D̂F :κ
Ξ | F
κC F}.

For the remainder of this section, we fix a type candidate space C. Type variables are
embedded into the semantic type structure as X ∈ D̂X:Ξ(X)

Ξ . To define X , we have to
actually define H for all neutral H .

Def. and Lem. 11 (Neutral realizable semantic types) Given a type candidate space,
for a neutral H ∈ TκΞ we define H,H ∈ D̂H:κ

Ξ by induction on κ. For base kind ?, it is
already defined, for higher kinds we set

H(G,G) := H G,
H(G,G) := H G.

Clearly, H
κ H and H
κ H .

Definition 28 (Interpretation into D̂). For T ∈ TyκΞ and (σ, ρ) ∈ T D̂
Ξ

Θ we define
D̂[[T]]σ,ρ ∈ D̂

T [[T]]σ :κ
Θ as follows:

D̂[[X]]σ,ρ := ρ(X)
D̂[[λX :κ. T]]σ,ρ := ((G,G) ∈ T D̂

κ

Θ) 7→ D̂[[T]](σ,ρ)[X 7→(G,G)]
D̂[[T U]]σ,ρ := D̂[[T]]σ,ρ(T [[U]]σ, D̂[[U]]σ,ρ)
D̂[[C]]σ,ρ := C bD

where → bD ∈ D̂→:?→?→?
Ξ

→ bD(A,A)(B,B) := A → B

∀κbD ∈ D̂
∀κ:(κ→?)→?
Ξ

∀κbD(F,F) :=
⋂
G
κG G.F(G,G)

Lemma 16 (Well-definedness of interpretation into D̂). If T ∈ TyκΞ and (σ, ρ) ∈
T D̂

Ξ

Θ then D̂[[T]]σ,ρ ∈ D̂
T [[T]]σ :κ
Θ .

Proof.

D̂[[C]]σ,ρ ∈ D̂T [[C]]σ:Σ(C)
Θ

= D̂
CT :Σ(C)
Θ

D̂[[C]]σ,ρ = C bD
D̂[[X]]σ,ρ ∈ D̂T [[X]]σ:κ

Θ

= D̂
σ(X):κ
Θ

D̂[[X]]σ,ρ = ρ(X)

D̂[[λX :κ. T]]σ,ρ ∈ D̂
T [[λX:κ. T]]σ
Θ

= ((G,G) ∈ T D̂
κ

Θ)→ D̂
T [[λX:κ. T]]σ·G
Θ

= ((G,G) ∈ T D̂
κ

Θ)→ D̂
T [[T]]σ[X 7→G]

Θ

D̂[[λX :κ. T]]σ,ρ = ((G,G) ∈ T D̂
κ

Θ) 7→ D̂[[T]](σ,ρ)[X 7→(G,G)]

D̂[[T U]]σ,ρ ∈ D̂T [[T U]]σ
Θ

= D̂
T [[T]]σ·T [[U]]σ
Θ

D̂[[T U]]σ,ρ = D̂[[T]]σ,ρ(T [[U]]σ, D̂[[U]]σ,ρ)

where, in the last line,

D̂[[T]]σ,ρ ∈ D̂
T [[T]]σ:κ→κ′
Θ

= ((G,G) ∈ T D̂
κ

Ξ)→ D̂
T [[T]]σ·G:κ′

Θ .

ut

Since the kind function space is the full set-theoretic one, D̂ is combinatory and respects
type equality.

Lemma 17 (D̂ is combinatory). Let U ∈ TyκΞ , T ∈ Tyκ
′

Ξ,X:κ and (σ, ρ), (σ′, ρ′) ∈
T D̂

Ξ

Θ .

1. D̂[[U]]σ,ρ = D̂[[U]]σ′,ρ′ if ρ(X) = ρ′(X) for all X ∈ FV(U).
2. D̂[[T [U/X]]]σ,ρ = D̂[[T]](σ,ρ)[X 7→T bD[[U]]σ,ρ]

.

Proof. The first proposition is needed to establish the second.

1. By induction on U .
2. By induction on T , using 1.

Case κ′ = κ1 → κ2 and T = λY :κ1. T
′. Using the induction hypothesis and 1,

we have for all (G,G) ∈ T D̂
κ1

Θ , since Y 6∈ FV(U),

D̂[[T ′[U/X]]](σ,ρ)[Y 7→(G,G)]
= D̂[[T ′]](σ,ρ)[Y 7→(G,G)][X 7→T bD[[U]](σ,ρ)[Y 7→(G,G)]]

= D̂[[T ′]](σ,ρ)[Y 7→(G,G)][X 7→T bD[[U]]σ,ρ]

= D̂[[T ′]](σ,ρ)[X 7→T bD[[U]]σ,ρ][Y 7→(G,G)]

hence, D̂[[λY :κ1. T
′[U/X]]]σ,ρ = D̂[[λY :κ1. T

′]](σ,ρ)[X 7→T bD[[U]]σ,ρ]
. ut

Lemma 18 (D̂ respects type equality). If Ξ ` T = T ′ : κ and (σ, ρ) ∈ T D̂
Ξ

Θ then
D̂[[T]]σ,ρ = D̂[[T ′]]σ,ρ.

Proof. By induction on Ξ ` T = T ′ : κ, using Lemma 17. ut

Lemma 19 (Realizability of type constructors). →
?→?→? → and ∀κ
(κ→?)→?

∀κ.

Proof. Assume A ∈ D̂A
Ξ and B ∈ D̂B

Ξ with A
? A and B
? B. We show A →
B
? A → B.

A→ B ⊆ A→ B ⊆ A → B ⊆ A→ B ⊆ A→ B.

Assume F ∈ D̂F :κ→?
Ξ with F
κ→? F . We show ∀κF
? ∀κ(F,F). Let X 6∈

dom(Ξ). Then X ∈ D̂X:κ
Ξ,X:κ and X
κ X .

∀κF ⊆
⋂
G∈T κΞ

G.F ·G
⊆

⋂
G
κG G.F ·G ⊆

⋂
G
κG G.F(G,G)

= ∀κ(F,F) ⊆ X.F(X,X) ⊆ X.F ·X
⊆ ∀κF

ut

Theorem 12 (Realizability). T D̂ is a type structure with application (F,F)·(G,G) =
(F ·G,F(G,G)) and evaluation T D̂[[T]]σ,ρ = (T [[T]]σ, D̂[[T]]σ,ρ). C is a type substruc-

ture of T D̂.

Proof. By Def. 27 and Lemma 19, C is induced, hence, by Theorem 2, it is a type
structure. ut

Corollary 3. If T ∈ Ty?Ξ and σ
Ξ ρ then T [[T]]σ ⊆ T [[T]]σ .

Proof. By the theorem, T [[T]]σ
? D̂[[T]]σ,ρ. ut

Theorem 13 (Fundamental theorem of typing). Let D be an object structure over
T and C, C ∈ D̂ a type candidate space. Let S ⊆ C be a type substructure of the
associated realizability type structure C. Then the familyEΞ `(A,A)

(∆,Φ) := A∆ is an object
substructure of D reindexed by π1 : S → T .

Proof. Note that EΞ `(A,A)
(∆,Φ) ⊆ DΞ `A

∆ .

1. E respects type equality. For Ξ ` T = T ′ : ? and (σ, ρ) ∈ SΞΘ we have

E
Ξ `S[[T]]σ,ρ
∆,Φ = (D̂[[T]]σ,ρ)∆ = (D̂[[T ′]]σ,ρ)∆ = E

Ξ `S[[T ′]]σ,ρ
∆,Φ since D̂ respects

type equality.
2. Object application is well-defined. Let (A,A), (B,B) ∈ S?Ξ and f ∈ EΞ `(A,A)→(B,B)

∆,Φ =

(A → bD B)∆ and d ∈ E
Ξ `(A,A)
∆,Φ = A∆. By definition of → bD, f · d ∈ B∆ =

E
Ξ `(B,B)
∆,Φ .

3. Type application is well-defined. Let (F,F) ∈ Sκ→?Ξ , (G,G) ∈ SκΞ , and d ∈
E
Ξ `∀κ(F,F)
∆,Φ = (∀κF)∆ = (

⋂
G
κG G.F(G,G))∆ =

⋂
G
κG(G.F(G,G))∆.

Since G
 G, d ∈ (G.F(G,G))∆, hence, d ·E (G,G) = d ·D G ∈ F(G,G) =
E
Ξ `(F,F)·(G,G)
∆,Φ .

4. Evaluation is well-defined. We show ELtMσ,ρη ∈ E
Θ `S[[T]]σ,ρ
∆,Φ for (∆,Φ) ∈ Scxt

Θ ,

(σ, ρ) ∈ SΞΘ , and η ∈ EΘ `S[[Γ]]σ,ρ
∆,Φ by induction on Ξ;Γ ` t : T . By definition of

E, it is sufficient to show DLtMση ∈ (D̂[[T]]σ,ρ)∆ for η ∈ (D̂[[Γ]]σ,ρ)∆.
Case

Ξ ` Γ
Ξ;Γ ` x : Γ (x)

We have DLxMση = η(x) ∈ (D̂[[Γ (x)]]σ,ρ)∆.
Case

Ξ ` T : κ→ ? Ξ,X :κ;Γ ` t : T X
Ξ;Γ ` ΛX :κ. t : ∀κT

X 6∈ dom(Ξ)

To show DLΛX : κ. tMση ∈ (D̂[[∀κT]]σ,ρ)∆, assume arbitrary (G,G) ∈ SκΘ, let
σ′ := σ[X 7→ G] and ρ′ := ρ[X 7→ G], and show DLΛX :κ. tMση ·E (G,G) ∈
(D̂[[T]]σ,ρ(G,G))∆. Let d := DLΛX :κ. tMση ·E (G,G) = DLtMσ

′

η and note that
S[[X]]σ′,ρ′ = (G,G). Since (σ′, ρ′) ∈ SΞ,X:κ

Θ , by induction hypothesis d ∈
(D̂[[T X]]σ′,ρ′)∆ = (D̂[[T]]σ,ρ(G,G))∆, because X 6∈ FV (T) and Lemma 17.

Case
Ξ;Γ ` t : ∀κT Ξ ` U : κ

Ξ;Γ ` t U : T U

Let (F,F) := S[[T]]σ,ρ and (G,G) := S[[U]]σ,ρ. By induction hypothesis d :=
DLtMση ∈ (D̂[[∀κT]]σ,ρ)∆ = (∀κbD(F,F))∆. Since G
 G, d ·E (G,G) = d ·D
G ∈ F(G,G)∆ = (D̂[[T U]]σ,ρ)∆.

Case
Ξ;Γ ` t : T Ξ ` T = T ′ : ?

Ξ;Γ ` t : T ′

Clear, since D̂ respects type equality. ut

7.2 Soundness of NbE for Objects

Definition 29 (Term-like object structure). An object structureD over T is term-like
if:

1. There exists a Kripke family of maps varΞ `∆ ∈ (x ∈ dom(∆)) → D
Ξ `∆(x)
∆

indexed by ∆ ∈ T cxt
Ξ .

In the presence of var, we can define the neutral objects inductively as follows:
– varΞ `∆(x) ∈ DΞ `∆(x)

∆ is neutral.
– If e ∈ DΞ `A→B

∆ is neutral and d ∈ DΞ `A
∆ then e · d ∈ DΞ `B

∆ is neutral.
– If e ∈ DΞ `∀κF

∆ is neutral and G ∈ T κΞ , then e ·G ∈ DΞ `F ·G
∆ is neutral.

2. There exists a Kripke family of computable maps

viewΞ `B∆ ∈ DΞ `B
∆

→ ObjVar
+

⋃
A∈T ?Ξ

DΞ `A→B
∆ ×DΞ `A

∆

+
⋃
F∈Tκ→?Ξ

DΞ `∀κF
∆ × {G ∈ TκΞ | F ·G = B}

+ {⊥}

such that:
– If view(f) = x then f = var(x).
– If view(f) = (e, d) then f = e · d and e is neutral.
– If view(f) = (e,G) then f = e ·G and e is neutral.
– If view(f) = ⊥ then f is not neutral.

If D is a term-like structure over T , we may write DLtMρ for DLtMρvarD . If T is also
term-like we may further abbreviate DLtMVarT to DLtM.

Lemma 20 (Injectivity in a term-like object structure). In a term-like object struc-
ture, var and neutral application are injective.

Definition 30 (Object reification). Given a term-like type structure T and a term-like
object structure D over T , we define the relations

Ξ;∆ ` d↘ v ⇑ A d reifies to v at type A,
Ξ;∆ ` e↘ u ⇓ A e reifies to u, inferring type A,

(where d, e ∈ DΞ `A
∆ and v, u are syntactical objects) inductively by the following

rules:

Ξ;∆ ` x↘ x ⇓ ∆(x)
Ξ;∆ ` e↘ u ⇓ A→ B Ξ;∆ ` d↘ v ⇑ A

Ξ;∆ ` e d↘ u v ⇓ B

Ξ;∆ ` e↘ u ⇓ ∀κF Ξ ` G↘ V ⇑ κ
Ξ;∆ ` eG↘ uV ⇓ F ·G

Ξ,X :κ;∆ ` f ·X ↘ v ⇑ F ·X
Ξ;∆ ` f ↘ ΛX :κ. v ⇑ ∀κF

Ξ;∆,x :A ` f · x↘ v ⇑ B Ξ ` A↘ U ⇑ ?
Ξ;∆ ` f ↘ λx :U. v ⇑ A→ B

Ξ;∆ ` e↘ u ⇓ H
Ξ;∆ ` e↘ u ⇑ H

H neutral

As for types, object reification is deterministic.
Note that we cannot say now in which ObjΞ `TΓ the objects u and v live. The con-

jecture is those Γ, T with Ξ ` ∆ ↘ Γ and Ξ ` A ↘ T ⇑ ?. However, this does
not follow directly from the definition, it is a consequence of Thm. 15. (Not even if we
suppose (∆,Γ) ∈ Scxt

Ξ and (A, T) ∈ S?Ξ , because of the ∀-elimination rule.)

Def. and Lem. 14 (Glueing type candidate space) Let S ⊆ T × Ty a glueing candi-
date,
Gl S. For (A, T) ∈ S?Ξ we define the Kripke families glΞ `(A,T), gl

Ξ `(A,T) ∈

D̂ × Obj
(A,T)

Ξ by

gl
Ξ `(A,T)

(∆,Γ) := {(d, t) | Ξ;∆ ` d↘ v ⇑ A and Ξ;Γ ` t = v : T for some v},
glΞ `(A,T)

(∆,Γ)
:= {(e, t) | Ξ;∆ ` e↘ u ⇓ A and Ξ;Γ ` t = u : T for some u}.

gl is a type candidate space.

Proof. We show glΞ `A,T → gl
Ξ `B,U ⊆ gl

Ξ `A→B,T→U
.

(f, v) ∈ (glΞ `A,T → gl
Ξ `B,U

)∆,Γ assumption

∆′ = ∆,x :A and Γ ′ = Γ, x :T
∆′ ` x↘ x ⇓ A and Γ ′ ` x = x : T by def.

(x, x) ∈ glΞ `A,T
∆′,Γ ′

by def.

(f · x, v x) ∈ gl
Ξ `B,U
∆′,Γ ′ from assumption

∆′ ` f · x↘ w ⇑ B and
Γ ′ ` v x = w : U for some w
∆′ ` A↘ T ′ ⇑ ? and
Γ ′ ` T = T ′ : ? since (A, T) ∈ S?Ξ
∆ ` f ↘ λx :T ′. w ⇑ A→ B and
Γ ` v = λx :T ′. w : T → U since x 6∈ dom(Γ)

(f, v) ∈ gl
Ξ `(A,T)→(B,U)

∆,Γ by def.ut

Theorem 15 (Soundness of NbE for objects). Let D be a term-like object structure
over a term-like type structure T . If Ξ;Γ ` t : T then there is a long normal form v
such that Ξ; T [[Γ]]Var ` DLtMVar

var ↘ v ⇑ T [[T]]Var and Ξ;Γ ` t = v : T .

Proof. Consider the type candidate space gl, gl ∈ D̂ × Obj for the glueing type struc-
ture G. Recall that

glκΞ = {((F, T),F) ∈ GκΞ × D̂ × Obj
(F,T):κ

Ξ | (F, T)
κgl F}.

By the fundamental theorem of typing, EΞ `((A,T),A)
((∆,Γ),Φ) := A(∆,Γ) is an object substruc-

ture of D ×Obj reindexed by π1 : gl→ G. Since (X,X) ∈ G
Ξ(X)
Ξ and (X,X)
Ξ(X)

gl

glΞ `(X,X) we have a variable embedding Vargl(X) = ((X,X), glΞ `(X,X)) ∈ gl
Ξ(X)
Ξ

into type structure gl. Also, since Ξ;∆ ` x ↘ x ⇓ ∆(x) and Ξ;Γ ` x = x : Γ (x)
we have (x, x) ∈ glΞ `(∆(x),Γ (x))

(∆,Γ)
. The setting of ∆ such that G[[Γ]] = (∆,Γ) im-

plies (x, x) ∈ glΞ `G[[Γ (x)]]

G[[Γ]]
⊆ (D̂ × Obj[[Γ (x)]])G[[Γ]] = E

Ξ `gl[[Γ (x)]]
gl[[Γ]] . Hence, setting

var
Ξ `gl[[Γ]]Vargl

E (x) = (x, x) we have var
Ξ `[[Γ]]
E ∈ EΞ `gl[[Γ]]

gl[[Γ]] .

It follows that ELtM = ELtMVargl
varE ∈ E

Ξ `gl[[T]]
gl[[Γ]] = (D̂ × Obj[[T]])G[[Γ]] ⊆ gl

Ξ `G[[T]]
.

With d := DLtM we have (d, t) = (D × Obj)LtM = ELtM, thus, Ξ;∆ ` d↘ v ⇑ T [[T]]
and Ξ;Γ ` t = v : T for some v. ut

8 Object Groupoids

Definition 31 (Object groupoid). An object structure D over a type structure T is an
object groupoid if each DΞ `A

∆ is a groupoid and

1. app(f, d)−1 = app(f−1, d−1),
2. TyApp(f,G)−1 = TyApp(f−1, G), and
3. if f ∗ f ′ and d ∗ d′ are defined, then app(f, d) ∗ app(f ′, d′) = app(f ∗ f ′, d ∗ d′)

and TyApp(f,G) ∗ TyApp(f ′, G) = TyApp(f ∗ f ′, G).

Definition 32 (Groupoidal at higher kinds). LetD be a object groupoid over T . Then
A ∈ D̂A:? is (?-)groupoidal if A∆ is a subgroupoid for each ∆. F ∈ D̂F :κ→κ′ is
(κ→ κ′-)groupoidal if F(G,G) is (κ′-)groupoidal for all G ∈ T κΞ and (κ-)groupoidal
G ∈ D̂G:κ

Ξ . Let
D̃F :κ
Ξ := {F ∈ D̂F :κ

Ξ | F is κ-groupoidal },
T D̃

κ

Ξ := {(F,F) ∈ T κΞ × T D̃
F :κ

Ξ }.

Lemma 21 (Function space is groupoidal). If A ∈ D̂Ξ `A and B ∈ D̂Ξ `B are
groupoidal, so is A → bD B ∈ D̂Ξ `A→B .

Proof. First, we show that (A → B)∆ is closed under inversion. Assume f ∈ (A →
B)∆. To show f−1 ∈ (A → B)∆, assume arbitrary ∆′ ≤ ∆ and d ∈ A∆′ and show
f−1 · d ∈ B∆′ . Since d−1 ∈ A∆′ we have f · d−1 ∈ B∆′ , hence, B∆′ 3 (f · d−1)−1 =
f−1 · d.

Then, we show that (A → B)∆ is closed under composition. Assume f, f ′ ∈ (A →
B)∆ and f ∗ f ′ defined. Further, assume ∆′ ≤ ∆ and d ∈ A∆′ arbitrary and show
(f ∗ f ′) · d ∈ B∆′ . Note that d = d ∗ d−1 ∗ d, hence, it suffices to show (f · d) ∗ (f ′ ·
(d−1 ∗ d)) ∈ B∆′ . Yet this holds, since f · d ∈ B∆′ and f ′ · (d−1 ∗ d) ∈ B∆′ (because
d−1 ∗ d ∈ A∆′).

Lemma 22 (Type abstraction is groupoidal). If A ∈ D̂Ξ `F ·G is groupoidal, so is
G.A ∈ D̂Ξ `∀κF .

Proof. Assume f, f ′ ∈ (G.A)∆ and f ∗f ′ defined. Since f ·G ∈ A∆, also (f ·G)−1 =
f−1 ·G ∈ A∆. Further, (f ·G)∗ (f ′ ·G) = (f ∗f ′) ·G ∈ A∆, hence f ∗f ′ ∈ (G.A)∆.

Corollary 4 (Impredicative quantification is groupoidal). ∀κ ∈ D̂Ξ `∀κ:(κ→?)→? is
(κ→ ?)→ ?-groupoidal.

Theorem 16 (Fund. thm. of kinding for type groupoids). LetD be an object groupoid
over T . Then T D̃ is a type substructure of T D̂.

Proof. By Lemma 21 and Cor. 4, →T bD∈ T D̃?→?→?
Ξ and ∀κ

T bD ∈ T D̃(κ→?)→?)
Ξ . By

definition of groupoidal, (F,F) ·T bD (G,G) = (F · G,F(G,G)) ∈ T D̃
κ′

Ξ for all

(F,F) ∈ T D̃
κ→κ′

Ξ and (G,G) ∈ T D̃
κ

Ξ , thus, application is well-defined.
It remains to show that interpretation is well-defined. Let Ξ ` T : κ and (σ, ρ) ∈

T D̃
Ξ

Θ . One easily shows T D̂[[T]]ρ ∈ T D̃
κ

Θ by induction on Ξ ` T : κ.

Definition 33 (Square object groupoid). Let D be an object structure over T . Then
2D

Ξ `A
∆ = DΞ `A

∆ ×DΞ `A
∆ with

(d, d′)−1 = (d′, d)
(d1, d2) ∗ (d2, d3) = (d1, d3)

is a type groupoid over T .

8.1 Fundamental theorem of object equality

Theorem 17 (Fundamental theorem of object equality). Assume a type structure T
that respects type equality and a combinatory object structure D over T . Let C, C ∈ 2̃D
be a type candidate space and C its associated realizability type structure. If Ξ;Γ `
t = t′ : T and (σ, ρ) ∈ CΞΘ and (η, η′) ∈ 2̃D[[Γ]]σ,ρ then (DLtMση , DLt′Mση′) ∈ 2̃D[[T]]σ,ρ.

Proof. By induction on Ξ;Γ ` t = t′ : T . We show a few representative cases.

Case
Ξ,X :κ;Γ ` t : T Ξ ` U : κ
Ξ;Γ ` (ΛX :κ. t)U = t[U/X] : T

Let (G,G) := T 2̃D[[U]]σ,ρ ∈ CκΘ and (σ′, ρ′) := (σ, ρ)[X 7→ (G,G)] ∈ CΞ,X:κ
Θ . By

induction hypothesis, (d, d′) := (LtMσ
′

η , LtMσ
′

η′) ∈ 2̃D[[T]]σ′,ρ′ . This entails the goal,

since 2̃D[[T [U/X]]]σ,ρ = 2̃D[[T]]σ′,ρ′ and (L(ΛX :κ. t)UMση , Lt[U/X]Mση′) = (d, d′)
by the combinatory laws.

Case
Ξ;Γ ` t : ∀κT

Ξ;Γ ` ΛX :κ. tX = t : ∀κT
X 6∈ FV(t)

Let F := 2̃D[[T]]σ,ρ, d := LtMση and d′ := LtMση′ . Let further d̂ := LΛX :κ. tXMση . We
have to show (d̂, d′) ∈ ∀κF . Assume arbitrary (G,G) ∈ CκΘ. It is sufficient to show
(d̂, d′) ·G ∈ F(G,G). Note that d̂ ·G = LtXMσ[X 7→G]

η = LtMσ[X 7→G]
η ·G = d ·G,

since X 6∈ FV(t) and D is combinatory. The desired (d ·G, d′ ·G) ∈ F(G,G) now
follows from the induction hypothesis (d, d′) ∈ ∀κF .

Case
Ξ;Γ ` t = t′ : ∀κT Ξ ` U = U ′ : κ

Ξ;Γ ` t U = t′ U ′ : T U

Let d := LtMση and d′ := Lt′Mση′ . Let further (G,G) := (T 2̃D[[U]]σ,ρ) = (T 2̃D[[U ′]]σ,ρ),

since T (hence also T 2̃D) respects type equality. First, observe that

Lt UMση = d ·G
Lt′ U ′Mση = d′ ·G
2̃D[[T U]]σ,ρ = 2̃D[[T]]σ,ρ(G,G)

By induction hypothesis,

(d, d′) ∈ 2̃D[[∀κT]]σ,ρ =
⋂

(G,G)∈CκΘ

G.(2̃D[[T]]σ,ρ(G,G)).

By the fundamental theorem of kinding, (G,G) ∈ CκΘ, hence (d, d′)·G = (d·G, d′ ·
G) ∈ 2̃D[[T]]σ,ρ(G,G), as expected.

Case
Ξ;Γ ` t = t′ : T Ξ ` T = T ′ : ?

Ξ;Γ ` t = t′ : T ′

Trivial, since 2̃D respects type equality.

8.2 Completeness of Nbe for objects

Definition 34 (Type candidate space for completeness). Let D be a term-like object

structure over term-like T . We define the Kripke families perΞ `A, perΞ `A ∈ 2̃D
A:?

Ξ

by

perΞ `A∆ := {(d, d′) ∈ 2D
Ξ `A
∆ | Ξ;∆ ` d↘ v ⇑ A and

Ξ;∆ ` d′ ↘ v ⇑ A for some v}
perΞ `A

∆
:= {(e, e′) ∈ 2D

Ξ `A
∆ | Ξ;∆ ` e↘ u ⇓ A and

Ξ;∆ ` e′ ↘ u ⇓ A for some u}

Note that composition (d1, d2) ∗ (d2, d3) = (d1, d3) is well-defined in perΞ `A
∆

and
perΞ `A∆ since reification is deterministic.

Lemma 23. per, per form a type candidate space for 2D.

Theorem 18 (Completeness of NbE for objects). Let D0 be a term-like object struc-
ture over reifyable T0. If Ξ;Γ ` t = t′ : T then there is a long normal form v such that
Ξ;∆ ` LtM ↘ v ⇑ A and Ξ;∆ ` Lt′M ↘ v ⇑ A where ∆ := T [[Γ]] and A := T [[T]].

Proof. The term structure T := T0/P is reifyable and respects type equality. Let D
be defined as D0 reindexed by the representation function T → T0. Consider the type
structure

perκΞ = {(F,F) ∈ T κΞ × 2̃D
F :κ

Ξ | F
κper F}.

The variable embedding for per is given by VarΞ = (X 7→ (X, perΞ `X)) ∈ perΞΞ .

E
Ξ `(A,A)
(∆,Φ) := A∆

is an object subgroupoid of 2D reindexed by π1 : per → T . Its variable embedding is
given by

varΞ `∆E = (varΞ `π1◦∆
D , varΞ `π1◦∆

D) = (x 7→ (x, x))
∈ perΞ `∆

∆
⊆ EΞ `(∆,Φ)

(∆,Φ) .

By the fundamental theorem of object equality we obtain (DLtM, DLt′M) ∈ 2̃D[[T]] ⊆
perΞ `A∆ , thus, ∆ ` LtM ↘ v ⇑ A and ∆ ` Lt′M ↘ v ⇑ A for some v.

9 Conclusion

We have developed type and object structures, which are sorted applicative structures
on type and object level, in order to facilitate generic model constructions for Sys-
tem Fω—which are an alternative to categorical semantics [See87] and Bruce-Meyer-
Mitchell models [BM84]. Using special instances of kind candidate spaces we have
shown soundness and completeness of an abstract normalization by evaluation algo-
rithm for types. We have gone on to show soundness and completeness of NbE for
objects.

We seek to extend NbE to the Calculus of Constructions, using ideas from this work.
Due to dependency, type and object levels cannot be defined in sequence, but must be
defined simultaneously; this seems to be the main remaining technical difficulty.

Acknowledgments. This work is dedicated to Otto Forster who taught me basic alge-
braic vocabulary in his excellent lectures on linear algebra in 1994/95 at the Ludwig-
Maximilians-University Munich, and to Thierry Coquand who introduced me to ab-
stract semantics of type theory via lambda and PER models.

References

[Abe08] Andreas Abel. Weak βη-normalization and normalization by evaluation for Sys-
tem F. In LPAR’08, volume 5330 of LNAI, pages 497–511. Springer, 2008.

[ACD07] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for
Martin-Löf Type Theory with typed equality judgements. In LICS’07, pages 3–12.
IEEE CS Press, 2007.

[ACD08] Andreas Abel, Thierry Coquand, and Peter Dybjer. Verifying a semantic βη-
conversion test for Martin-Löf type theory. In MPC’08, volume 5133 of LNCS,
pages 29–56. Springer, 2008.

[ADHS01] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott. Normal-
ization by evaluation for typed lambda calculus with coproducts. In LICS’01, pages
303–310. IEEE CS Press, 2001.

[AHS96] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free nor-
malisation for a polymorphic system. In LICS’96, pages 98–106. IEEE CS Press,
1996.

[AR08] Andreas Abel and Dulma Rodriguez. Syntactic metatheory of higher-order subtyp-
ing. In CSL’08, volume 5213 of LNCS, pages 446–460. Springer, 2008.

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Holland,
Amsterdam, 1984.

[Bar08] Freiric Barral. Decidability for non-standard conversions in lambda-calculus. PhD
thesis, Ludwig-Maximilians-University Munich, 2008.

[BCF04] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. Extensional normalisa-
tion and type-directed partial evaluation for typed lambda calculus with sums. In
POPL’04, pages 64–76. ACM, 2004.

[BJS07] Frédéric Blanqui, Jean-Pierre Jouannaud, and Pierre-Yves Strub. Building decision
procedures in the Calculus of Inductive Constructions. In CSL’07, volume 4646 of
LNCS, pages 328–342. Springer, 2007.

[Bla05] Frédéric Blanqui. Definitions by rewriting in the calculus of constructions. Mathe-
matical Structures in Computer Science, 15(1):37–92, 2005.

[BM84] Kim B. Bruce and Albert R. Meyer. The semantics of second order polymorphic
lambda calculus. In Semantics of Data Types, volume 173 of LNCS, pages 131–144.
Springer, 1984.

[BS91] Ulrich Berger and Helmut Schwichtenberg. An inverse to the evaluation functional
for typed λ-calculus. In LICS’91, pages 203–211. IEEE CS Press, 1991.

[CAM07] James Chapman, Thorsten Altenkirch, and Conor McBride. Epigram reloaded: a
standalone typechecker for ETT. In TFP’05, volume 6 of Trends in Functional Pro-
gramming, pages 79–94. Intellect, 2007.

[CD97] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and normal-
ization proofs. MSCS, 7(1):75–94, 1997.

[Coq96] Thierry Coquand. An algorithm for type-checking dependent types. In MPC’95,
volume 26 of SCP, pages 167–177. Elsevier, 1996.

[CWC07] Jacek Chrzaszcz and Daria Walukiewicz-Chrzaszcz. Towards rewriting in Coq. In
Rewriting, Computation and Proof, Essays Dedicated to Jean-Pierre Jouannaud on
the Occasion of His 60th Birthday, volume 4600 of LNCS, pages 113–131. Springer,
2007.

[Dan99] Olivier Danvy. Type-directed partial evaluation. In Partial Evaluation Summer
School ’98, volume 1706 of LNCS, pages 367–411. Springer, 1999.

[Dyb00] Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions
in type theory. JSL, 65(2):525–549, 2000.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. Thèse de Doctorat d’État, Université de Paris VII,
1972.

[GL02] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduc-
tion. In ICFP’02, volume 37 of SIGPLAN Notices, pages 235–246. ACM, 2002.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in TCS. CUP, 1989.

[INR07] INRIA. The Coq Proof Assistant, Version 8.1. INRIA, 2007. http://coq.inria.fr/.
[Nor07] Ulf Norell. Towards a practical programming language based on dependent type

theory. PhD thesis, Chalmers, Göteborg, Sweden, 2007.
[Pol94a] Randy Pollack. The Theory of LEGO. PhD thesis, University of Edinburgh, 1994.
[Pol94b] Robert Pollack. Closure under alpha-conversion. In TYPES’93, volume 806 of LNCS,

pages 313–332. Springer, 1994.
[See87] R. A. G. Seely. Categorical semantics for higher order polymorphic lambda calculus.

JSL, 52(4):969–989, 1987.
[Tai67] William W. Tait. Intensional interpretations of functionals of finite type I. JSL,

32(2):198–212, 1967.
[WCPW03] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concur-

rent logical framework I: Judgements and properties. Technical report, School of
Computer Science, Carnegie Mellon University, Pittsburgh, 2003.

