“A Predicative Strong Normalisation Proof for a
A-Calculus with Interleaving Inductive Types”
Errata and New Ideas

Andreas Abel
Oct 2001, Mar 2003, Apr 2004, Jun 2012, Nov/Dec 2017

The article A Predicative Strong Normalisation Proof for a A-Calculus with
Interleaving Inductive Types by Thorsten Altenkirch and me appeared in 2000
in Coquand et al., Types for Proofs and Programs (TYPES’99), pp. 21-40,
LNCS 1956, Springer-Verlag. I found some errors which I list below. The page
number is the one of the published version. To get the relative page number,
subtract 20.

p. 28 Definition of weak head reduction. The correct definition is:

t>gu t >whd U

t D>whd U E[t] >wha Elu]

p. 28 Lemma 1. Proposition 3
t >whd v E[tl} € SN
E[t] € SN

is wrong. Counterexample: Let 2 be a diverging term, ¢t = (Az.y) Q and
t’ = y. The correct proposition is

t>what' t,E[t'] €SN
E[t] € SN

Proof by induction on ¢, E[z] € SN, analysing the reducts of E[t]. Since
t has a head redex and cannot be in constructor form, each reduction of
E[t] has to take place in E[z] or ¢t. The interesting case is ¢ t>1 u with
u # t'. Then by proposition 1 there exists an u’ such that u >wng u’ and
t' >*u/. The last fact implies that E[u’] € SN. Hence, we can invoke the
induction hypothesis on u >yhg v’ and obtain Efu] € SN. O

p. 36 A typo in rule (non-rec) at bottom of page: The superscript to U; in the
conclusion must be vX.p (instead of puX.p).

Partiality in the composition of well-typed terms

(Erratum added 2017-11-11.)

On p. 26 we define terms of type o via Tm? = {¢ | A.T' F ¢ : o}. This
makes application of well-typed terms a partial operation, since, for instance,
the term Az.zunit € Tm'™! cannot be applied to 2 € Tm': The first term
requires x to be of function type, but the second states it is of type 1.

As a consequence, we need to be careful whenever we talk about the appli-
cation of well-typed terms. This affects many places. Let us write tug ... uy, |
to mean that this application is defined.

p- 27 Definition of the function space on term sets.
P=Q:={teSN°7" |Vue P. tueQ}

Here, we would have to say ‘Vu € P. tu | = tu € Q”.

p. 30 The urelement relation for case (Arr) should be
wlUfTTt = Tt efo]. tt LAul]
p. 30 Case (Prod): Correct definition is:
[o1 % 2] (P) = {pairt1ts | pairtits L AVj € {1,2}. t; € [o;](P)}*

p- 14 Proposition 7 should be:

tefo—7] u € [o] tul
tu € 7]

(sem-app)

Vu € [o]. tlr :=u] | = tlx :=u] € [7]

(sem-lam)
Ae.t € o — 7]

Paying extra attention to partiality of application (and substitution) seems
rather tedious. A simple solution is to do the semantics entirely on raw terms.
I.e., we simply speak of Tm instead of Tm? and SN instead of SN? and SAT
instead of SAT? etc. This is a proven method in strong normalization proofs
and we do not really lose any of our results.

Alternatively, we could define a Kripke model of well-typed terms, in the
spirit of:

l[o=7lp={t|Ttt:o—=7[VA u€[o]p A tu€[r]pa}

But this would a slightly more invasive choice.

The definition of strength for closed types

(Erratum added 2017-12-08.)

Page 6 defines the functorial strength aka map function for an open type
p € Ty(X). This definition validates the following substitution principle: Given
o€ Ty(Y), and f; : ; — 7/ for i = 1..|Y], then

(p(@)) () = p(or(F), - 01x|(F))-

However, it is not true that p() = Az”.z for closed types p. In fact, the
strength for a closed type is a recursive identity function that only behaves like
Az.x on closed terms.

Thus, the following remark should be deleted from page 6:

We allow a partial instantiation of p which can be defined by instan-
tiating all other places with the identity function Az.x.

Further, the proof of Proposition 10.2, case (cons) on page 15 is slightly
wrong, as Henning Basold pointed out to me. The problem is that footnote 6
defines p(It f) “as an abbreviation of p(Ax™.x, It f)”.

Footnote 6 should be deleted. Instead, p(It f) should be understood as
p(7, It f) which more precisely is p(7(), It f), and thanks to the substitution
principle equal to (X.p(7, X))(It f).

Addendum

Here is some new ideas on details of the paper.

On the type Fin

An inductive type of the form pX.pY. F(X,Y) is isomorphic to pX. FI(X, X).

Hence, the type of unlabelled finitely branching (and finite-depth) trees
Fin=puX.uY.14+ X x Y

is isomorphic to the type of unlabelled binary trees pX. 14X x X . (Implementing
arbitrary trees by binary trees is folklore in computer science.)

On empty and unit type

In the presentation of the calculus the empty type 0 with its eliminator caseg
are explicitely added. In the presence of inductive types, both constants are
also definable:

0 = puX.X

caseg = WX ¥\a%z): 00

It holds that
casep(ct) = It(Az.x)(ct) = (Aa.z)(It(Az.2)t) = caseg t.

In the extended calculus which includes coinductive types the singleton set
is definable as well:

1 = vX.X

unit = Cov 0702002) (\yOy) - 1
We have

dunit = d(Co(Az.z)(A\y.y)) = Co(Azx.x)((Az.x)(Ay.y)) = unit.

On the Interpretation of Coinductive Types

In Section 6.2 we have defined the interpretation of coinductive types elimination-
based as the greatest fixed-point of the destructor-rule. If we define it intro-
duction-based instead, we do not even require the urelement relation U for a
predicative definition. The changes are the following:

We first add a new definition.
Let p € Ty(X, X) a strictly-positive type, n := |X| and Py,..., P,

saturated sets. A term set S is called self-supported w.r.t. p and P
if S € SAT and ds € [[p](P, S) for all terms s € S.

Introducing the notation dS = {ds | s € S} we could also have required
dS C [p](P,S). Disregarding the destructor d which comes from the “iso”-
formulation of coinductive types we could say that a self-supported set w.r.t. p
and P is a post-fixed point of the operator [p] (P, _).

The name self-supported comes from the notion of support of Pierce [Pie02,
p-290] which coincides with our urelement relation 4. Using Prop. 1 we can split
the post-fixed point condition on S into the two conditions dS C [p] (P, SN”**)
and U, (dS) C S, using the generalization U(S) := J,cgU(s). In Pierce’s
terms, the first condition expresses that the support of dS is defined and the
second condition expresses that the support of dS' is contained in S. Hence we
speak, again ignoring the “iso”-issue, of a self-supporting set.

The introduction rule for greatest fixed-point (co-elim, p. 3) states that each
post-fixed point is contained in the greatest fixed point. We turn that into a
introduction rule for coinductive types:

S self-supported w.r.t. p and P te S
te[vX.p](P)

(coind)

Meta-erratum, June 2012: This makes the definition of [-] impred-
icative, since we are existentially quantifying over a saturated set S
here. In the light of this, the rest of the note seems rather pointless.

Lemma 21 If S is self-supported then S C [vX.p](P).

Proof. Immediately by (coind).]

The rule (destr’) is now admissible:
Lemma 22 Ift € [vX.p](P) then dt € [p](P, [vX.p](P)).

Proof. By inversion of the assumption we have that t € S for some self-
supported set S. By definition of self-support, dt € [p](P,S). By the previous
lemma and monotonicity of [p] we conclude d¢ € [[p] (P, [vX.p](P)). O

The remainder of Section 6 stays unaffected by these changes. But to improve
clarity, we should say we prove that a set is self-supported instead of that it is
closed under (destr’). This applies to the formulation of the proofs of Prop. 12,
Lemma 3 and Prop. 15, but technically, the proofs remain unchanged.

Summarizing, we now handle coinductive types in a predicative meta-theory
without coinduction, which simplifies the setting a bit. It shows that the urele-
ment relation U is only required to give a predicative interpretation of inductive
types, not for coinductive types. Note that here a trick similar to using a self-
supportive set would not work. We could define inductive types elimination-
based, but this would result in the impredicative rule

VS € SAT, f € [o](P,S)=S. It fte S
t € [uXo](P) '

How does one check whether ¢ € [vX.p](P)? How does one construct a self-
supported set S in this case? Pierce gives a semi-algorithm in his book on page
292: Start with the singleton Sy = {¢} and then enrich it by its support S, 11 =
Sp UUL 1 (Sy) until it is self-supported. When it becomes inconsistent on the

way, i.e., Sp, C [p](P, SN¥**) does not hold, then ¢ is not in the interpretation
of the coinductive type, otherwise, it is. Of course, over infinite domains, this
may never terminate. E.g., we could not check whether the stream of all natural

numbers is in the semantics.

References

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

