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Abstract

Normalization for the simply-typed λ-calculus is proven in Twelf, an implementation of the Edinburgh
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1 Introduction

Twelf is an implementation of the Edinburgh Logical Framework which supports rea-

soning in full higher-order abstract syntax (HOAS); therefore it is an ideal candidate

for reasoning comfortably about properties of prototypical programming languages

with binding. Previous work has focused on properties like subject reduction, con-

fluence, compiler correctness. Even cut elimination for various sequent calculi has

been proven successfully. But until recently, there were no formalized proofs of nor-

malization 2 in Twelf. The reason might be that normalization is typically proven

by Tait’s method, which cannot be applied directly in Twelf. This work explains

why Tait’s method is at least not directly applicable and provides a syntactical

proof for the simply-typed lambda-calculus.

1 Research supported by the Graduiertenkolleg Logik in der Informatik of the Deutsche Forschungsgemein-
schaft, the thematic networks TYPES (IST-1999-29001) and Applied Semantics II (IST-2001-38957) of the
European Union and the project CoVer of the Swedish Foundation of Strategic Research.
2 There have been normalization proofs in logical frameworks with inductive definitions, for instance,
Altenkirch’s proof of strong normalization for System F in LEGO [2]. Since HOAS is not available in a
framework like LEGO, he represents terms using de Bruijn indices.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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K ::= type kind of types

| {X :A}K dependent function kind

A ::= F M1 . . . Mn base type

| {X :A}A dependent function type

| A→ A non-dependent function type

M ::= C term constant

| X term variable

| [X :A]M term abstraction

| M M term application

Fig. 1. Syntactic classes of LF.

2 Twelf

The Edinburgh Logical Framework (LF 3 ) [6,7] is a dependently-typed lambda-

calculus with type families and βη-equality, but neither polymorphism, inductive

data types nor recursion. Expressions are divided into three syntactic classes: kinds,

types and terms, generated by the grammar in Fig. 1. Herein, the meta variable

X ranges over a countably infinite set of variable identifiers, while F resp. C range

over type-family resp. term constants provided in a signature Σ. Note that neither

a type nor a kind can depend on a type; consequently, abstraction is missing on the

type level [11, p. 1124].

The framework comes with judgements for typing, M : A, kinding, A : K, and

wellformedness of kinds, K kind , plus βη-equality on for terms, types, and kinds

[7]. An object theory can be described in the framework by providing a suitable

signature Σ which adds kinded type family constants F : K and typed term constants

C : A.

Twelf [12] is an implementation of LF whose most fundamental task is to check

typing (and kinding) of a user given signature Σ, usually provided as a set of ASCII

files. Symbols reserved for the framework are the following.

: . ( ) [ ] { } -> type

All others can be used to denote entities in the object theories. In the remainder of

this section, we show how to represent the simply-typed λ-calculus with weak head

reduction, as specified in Fig. 2, in Twelf.

2.1 Representation of Syntactic Objects

Untyped lambda terms t can be represented by one type family constant tm and

two term constants:

tm : type.

lam : (tm -> tm) -> tm.

app : tm -> tm -> tm.

3 This is not to be confused with Martin-Löf’s framework for dependent type theory, which is also abbre-
viated by LF.
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Syntax.

r, s, t, u ::= x | λx.t | r s untyped terms

A,B,C ::= ∗ | A→ B simple types

Γ ::= ⋄ | Γ, x :A contexts (all variables distinct)

Type assignment Γ ⊢ t : A. (x :A) ∈ Γ

Γ ⊢ x : A
of var

Γ, x :A ⊢ t : B

Γ ⊢ λx.t : A→ B
of lam

Γ ⊢ r : A→ B Γ ⊢ s : A

Γ ⊢ r s : B
of app

Weak head reduction t −→w t′.

(λx.t) s −→w [s/x]t
beta

r −→w r′

r s −→w r′ s
appl

Fig. 2. Simply-typed λ-calculus and weak head reduction.

The lack of a construct for variables is due to the use of HOAS: object variables are

represented by variables of the framework, e. g., in the code for the twice function:

twice = lam [f:tm] lam [x:tm] app f (app f x).

A more detailed explanation of higher-order encodings has been given by Schür-

mann [17, p. 20ff]. Simple types A can be generated from a nullary constant * for

some base type and a binary constant =>, used infix, for function type formation.

ty : type.

* : ty.

=> : ty -> ty -> ty. %infix right 10 =>.

2.2 Representation of Judgements and Relations

Type assignment for untyped terms, Γ ⊢ t : A, can be represented by two constants

as well: one for function introduction and one for function elimination. Note that in

Twelf syntax, the types of new constants may contain free variables (capital letters),

which are regarded as universally quantified on the outside.

of : tm -> ty -> type. %infix none 1 of.

of_lam : ({x:tm} x of A -> (T x) of B)

-> (lam [x:tm] T x) of (A => B).

of_app : R of (A => B) -> S of A -> (app R S) of B.

Again, there is no separate rule for the typing of variables, instead it is part of the

rule for abstraction. The premise of rule of_lam is to be read as:

Consider a temporary extension of the signature by a fresh constant x:tm and

assume x of A. Then (T x) of B holds.
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This adds a dynamical typing rule x of A for each new variable x instead of inserting

a typing hypothesis x : A into the typing context Γ. Hence, we do not explicitely

encode Γ, but let the framework handle the typing hypotheses. The shape of such

dynamical rules can be declared in Twelf by a %worlds statement. In the case of

typing, this would be the following:

%block of_var : some {A:ty} block {x:tm}{p:x of A}.

%worlds (of_var) (of _ _).

This states that in of-derivations, only assumptions blocks that are of the form

x:tm,p:x of A for some A:ty enter the global Twelf context. Worlds declarations

are required for coverage checking (see below).

Similar to the typing relation, we can represent weak head reduction t −→w t′,

which eliminates the head (resp. key) redex in term t but does not step under a

binding.

-->w : tm -> tm -> type. %infix none 1 -->w.

beta : app (lam T) S -->w T S.

appl : R -->w R’ -> app R S -->w app R’ S.

One advantage of HOAS is that substitution does not have to be defined, but can be

inherited from the framework. Since in rule beta, term T : tm -> tm is λ-function,

substitution [u/y]t is simply expressed as application T U.

Lemma 2.1 If t −→w t′ then [u/y]t −→w [u/y]t′.

Proof. By induction on the derivation of t −→w t′.

• Case (λx.t) s −→w [s/x]t. W.l.o.g. x 6= y and x not free in u. Then,

[u/y]((λx.t) s) = (λx.[u/y]t) [u/y]s

−→w [[u/y]s/x][u/y]t = [u/y][s/x]t.

• Case r s −→w r′ s with r −→w r′. By ind. hyp., [u/y]r −→w [u/y]r′. Hence,

[u/y](r s) = ([u/y]r) ([u/y]s)

−→w ([u/y]r′) ([u/y]s) = [u/y](r′ s)

2

Fig. 3. Weak head reduction is closed under substitution.

2.3 Representation of Theorems and Proofs

Fig. 3 shows the first lemma of our object theory. How do we represent it? Twelf’s

internal logic is constructive, therefore the lemma must be interpreted construc-

tively: Given a derivation P of t −→w t′ and a term u, we can construct a deriva-

tion P ′ of [u/y]t −→w [u/y]t′. In type theories with inductive types and recursion,

like Agda, Coq [8] and LEGO [14], the lemma would be represented as a recursive
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function of the dependent type

Πt : tm .Πt′ : tm .ΠP :t −→w t′.Πu : tm .Πy :var . [u/y]t −→w [u/y]t′.

In Twelf, however, with no recursive functions at hand, the lemma is represented

as a relation between input and output derivations, and, thus, via the propositions-

as-types paradigm, as just another type family.

subst_red : {U:tm} ({y:tm} T y -->w T’ y)

-> T U -->w T’ U -> type.

%mode subst_red +U +P -P’.

The %mode statement marks the first two arguments of type family subst_red as

inputs (+) and the third as output (−). Thus, the lemma is a functional relation,

and its proof is a logic program with two clauses, one for each case in the proof.

subst_red_beta: subst_red U ([y] beta) beta.

subst_red_appl: subst_red U ([y] appl (P y)) (appl P’)

<- subst_red U P P’.

%terminates P (subst_red _ P _).

The base case of the induction is given by the constant subst_red_beta, and the

step case, which appeals to the induction hypothesis, by subst_red_appl. The types

of these constants are the actual program and correspond to PROLOG clauses. Note

that in the second type a reversed arrow “<-”, which resembles PROLOG’s “:-”,

has been used to encourage an operational reading:

Substitution in a derivation which can be split into last rule appl and remainder

P — P may mention y — results in a derivation P’ extended by an application of

rule appl. Herein, P’ is constructed from P recursively.

Since it is a logic program, we can even “execute” the lemma. Execution in Twelf is

search: Given a type with free variables, find an inhabitant of the type and solutions

for the free variables. For example:

P : {y} app (app (lam [x] x) y) y -->w app y y

= [y] appl beta.

%define P’ = X

%solve K : subst_red (lam [z] z) P X.

This defines a 2-rule derivation P which witnesses that (λx.x) y y −→w y y. The

%solve statement asks Twelf for a derivation P’ which arises from P by substituting

λz.z for y, according to the lemma. The answer is:

P’ : app (app (lam [x] x) (lam [z] z)) (lam [z] z)

-->w app (lam [z] z) (lam [z] z)

= appl beta.

K : subst_red (lam [z] z) P (appl beta)

= subst_red_appl subst_red_beta.

Since the value of P’ equals P, the shape of the derivation has not changed, only

its result: the type of P’. The value of K gives an execution trace of logic program

subst_red: First, clause subst_red_appl has fired, then clause subst_red_beta
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has concluded the search.

2.4 External Properties: Termination and Coverage

A logic program in Twelf corresponds to a partial function from inputs to outputs

as specified by the mode declaration. Since only total functions correspond to

valid inductive proofs we must ensure that the defined function terminates on all

inputs and covers all possible cases. Both properties cannot be shown within the

framework, e. g., we cannot give a proof that subst_red is terminating. Instead,

totality of a function needs external reasoning and can be ensured by built-in tactics.

Rohwedder and Pfenning [15] and Pientka [13] contributed a termination checker

which is invoked by the %terminates pragma. In the case of subst_red, the second

argument P decreases structurally in each recursive call. Case coverage is ensured

by an algorithm by Pfenning and Schürmann [18]. Both termination and coverage

checking are necessarily incomplete. But all proofs developed in the remainder of

this article pass the totality check.

3 A Formalized Proof of Weak Normalization

In this section, we present a combinatorial proof of weak normalization for the

simply-typed lambda-calculus. It is similar to the textbook proof in Girard, Lafont

and Taylor [4, Ch. 4], but we avoid reasoning with numbers altogether. In fact, we

follow closely the very syntactical presentation of Joachimski and Matthes [9], which

has also been implemented in Isabelle/Isar by Nipkow and Berghofer [3]. The main

obstacle to a direct formalization in Twelf is the use of a vector notation for terms

by Joachimski and Matthes, which allows them to reason on a high level in some

cases. In this section, we will see a “de-vectorized” version of their proof which can

be outlined as follows:

(i) Define an inductive relation t ⇑ A.

(ii) Prove that for every term t : A the relation t ⇑ A holds.

(iii) Show that every term in the relation is weakly normalizing.

3.1 Inductive Characterization of Weak Normalization

Inductive characterizations of normalization go back to Goguen [5] and van Raams-

donk and Severi [20] and seem to have been independently discovered by Valentini

[19]. However all these definitions use vectors of arguments for λ-terms. To make

such a definition Twelf-digestible, we have found a vector-free formulation. We in-

troduce a relation Γ ⊢ t ⇑ A which stipulates that t is weakly normalizing of type

A, and an auxiliary relation Γ ⊢ t ⇓x A which additionally claims that t = x s for

6



Abel

some sequence of normalizing terms s, i.e., t is neutral resp. head-redex free.

(x :A) ∈ Γ

Γ ⊢ x ⇓x A
wne var

Γ ⊢ r ⇓x A→ B Γ ⊢ s ⇑ A

Γ ⊢ r s ⇓x B
wne app

Γ ⊢ r ⇓x A

Γ ⊢ r ⇑ A
wn ne

Γ, x :A ⊢ t ⇑ B

Γ ⊢ λx.t ⇑ A→ B
wn lam

r −→w r′ Γ ⊢ r′ ⇑ A

Γ ⊢ r ⇑ A
wn exp

The Twelf representation is similar to the typing relation: Again, Γ and the hy-

pothesis rule are indirectly represented in rule wn_lam and the worlds declaration.

var : tm -> type.

wne : tm -> ty -> var X -> type.

wn : tm -> ty -> type.

wne_app : wne R (A => B) V -> wn S A -> wne (app R S) B V.

wn_ne : wne R A V -> wn R A.

wn_lam : ({x:tm} {v:var x} wne x A v -> wn (T x) B)

-> wn (lam T) (A => B).

wn_exp : R -->w R’ -> wn R’ A -> wn R A.

%block wne_var : some{A:ty}block {x:tm}{v:var x}{d:wne x A v}.

%worlds (wne_var) (wne _ _ _) (wn _ _).

The judgement var X states that X is a variable of type tm, since there are rules to

introduce var. This formalization of term variable was suggested to me by Chung-

Chieh Shan and enables coverage checking.

3.2 Closure under Application and Substitution

To show that each typed term t : A is in the relation t ⇑ A, we will proceed by

induction on the typing derivation. Difficult is the case for an application of the form

(λx.r) s. It can only be shown to be in the relation by rule wn_exp, which requires

us to prove that [s/x]r is in the relation. If x is head variable of r, substitution

might create new redexes. In this case, however, we can argue that the type of r is

a smaller type than the one of s. These preliminary thoughts lead to the following

lemma.

Lemma 3.1 (Application and Substitution) Let D :: Γ ⊢ s ⇑ A.

(i) If E :: Γ ⊢ r ⇑ A→ C then Γ ⊢ r s ⇑ C.

(ii) If E :: Γ, x :A ⊢ t ⇑ C, then Γ ⊢ [s/x]t ⇑ C.

(iii) If E :: Γ, x :A ⊢ t ⇓x C, then Γ ⊢ [s/x]t ⇑ C and C is a part of A.

(iv) If E :: Γ, x :A ⊢ t ⇓y C with x 6= y, then Γ ⊢ [s/x]t ⇓y C.

In Twelf, the lemma is represented by four type families. The invariant that

C is a subexpression of A will be expressed via a %reduces statement later, which
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makes is necessary to make type C an explicit argument to type family subst_x.

app_wn : {A:ty} wn S A

-> wn R (A => C) -> wn (app R S) C -> type.

subst_wn : {A:ty} wn S A -> ({x:tm} {v:var x}

wne x A v -> wn (T x) C) -> wn (T S) C -> type.

subst_x : {A:ty} wn S A -> {C:ty} ({x:tm} {v:var x}

wne x A v -> wne (T x) C v) -> wn (T S) C -> type.

subst_y : {A:ty} wn S A -> ({x:tm} {v:var x}

wne x A v -> wne (T x) C Y) -> wne (T S) C Y -> type.

%mode app_wn +A +D +E -F.

%mode subst_wn +A +D +E -F.

%mode subst_x +A +D +C +E -F.

%mode subst_y +A +D +E -F.

Proof of Lemma 3.1 Simultaneously by main induction on type A and side in-

duction on the derivation E . (By this we mean lexicographic induction on (A, E).)

(i) Show Γ ⊢ r s ⇑ C. If the last rule of E was wn_ne, hence, r is neutral, then r s

is also neutral by rule wne_app, thus, it is in the relation. If the last rule was

wn_exp, we can apply the side ind. hyp. The interesting case is r = λx.t and

Γ, x :A ⊢ t ⇑ C

Γ ⊢ λx.t ⇑ A→ C
wn lam.

Here, we proceed by side ind. hyp. ii. Here is the corresponding Twelf code (we

repeat the type of app_wn).

app_wn : {A:ty} wn S A

-> wn R (A => C) -> wn (app R S) C -> type.

app_wn_ne : app_wn A D (wn_ne E) (wn_ne (wne_app E D)).

app_wn_exp : app_wn A D (wn_exp P E) (wn_exp (appl P) F)

<- app_wn A D E F.

app_wn_lam : app_wn A D (wn_lam E) (wn_exp beta F)

<- subst_wn A D E F.

(ii) Show Γ ⊢ [s/x]t ⇑ C for Γ, x : A ⊢ t ⇑ C. If t is not neutral, we conclude

by ind. hyp. and possibly Lemma 2.1. Otherwise, we distinguish on the head

variable of t: is it x, then we proceed by side ind. hyp. iii, otherwise by side

ind. hyp. iv.

subst_wn : {A:ty} wn S A -> ({x:tm} {v:var x} wne x A v

-> wn (T x) C) -> wn (T S) C -> type.

subst_wn_lam: subst_wn A D ([x][vx][dx]

wn_lam ([y][vy][dy] E y vy dy x vx dx)) (wn_lam F)
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<- {y}{vy}{dy} subst_wn A D (E y vy dy) (F y vy dy).

subst_wn_exp: subst_wn A (D : wn S A) ([x][v][dx]

wn_exp (P x) (E x v dx)) (wn_exp P’ E’)

<- subst_wn A D E E’

<- subst_red S P P’.

subst_wn_x : subst_wn A D ([x][v][dx]

(wn_ne (E x v dx) : wn (T x) C)) F

<- subst_x A D C E F.

subst_wn_y : subst_wn A D ([x][v][dx]

wn_ne (E x v dx)) (wn_ne F)

<- subst_y A D E F.

(iii) Show Γ ⊢ [s/x]t ⇑ C for Γ′ ⊢ t ⇓x C with Γ′ := Γ, x : A. In case t = x, the

type C is trivially a part of A = C and we conclude by assumption Γ ⊢ s ⇑ C.

Otherwise, t = r u and the last rule in E was

Γ′ ⊢ r ⇓x B → C Γ′ ⊢ u ⇑ B

Γ′ ⊢ r u ⇓x C
wne app.

By side ind. hyp. iii we know that B → C is a part of A and Γ ⊢ r′ ⇑ B → C

where r′ := [s/x]r. Similarly Γ ⊢ u′ ⇑ B for u′ := [s/x]u by side ind. hyp. ii.

Since B is a strict part of A, we can apply the main ind. hyp. i and obtain

Γ ⊢ r′ u′ ⇑ C.

subst_x : {A:ty} wn S A -> {C} ({x:tm} {v:var x} wne x A v

-> wne (T x) C v) -> wn (T S) C -> type.

subst_x_x : subst_x A D A ([x][v][dx]dx) D.

subst_x_app : subst_x A D C ([x][v][dx]

wne_app (E x v dx)

(F x v dx : wn (S x) B)) EF

<- subst_x A D (B => C) E E’

<- subst_wn A D F F’

<- app_wn B F’ E’ EF.

%reduces C <= A (subst_x A D C E F).

The %reduces declaration states that the type expression C is a subexpres-

sion of A. Twelf checks that this invariant is preserved in all possibilities of

introducing subst_x A D C E F. In case subst_x_x it holds because C is in-

stantiated to A. In case subst_x_app it follows from the ind. hyp. which states

that already B => C is a subexpression of A.

(iv) Show Γ ⊢ [s/x]t ⇓y C for Γ, x : A ⊢ t ⇓y C. There a two cases. t = y, which

holds immediately, and t = r u, which follows from side ind. hyp.s ii and iv.

In our Twelf representation, we cannot distinguish variable y from any other

term, so we widen the first case to cover all t such that x is not free in t. This
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is expressed by letting E not refer to x or dx.

subst_y : {A:ty} wn S A -> ({x:tm} {v:var x} wne x A v

-> wne (T x) C Y) -> wne (T S) C Y -> type.

subst_y_y : subst_y A D ([x][v][dx] E) E.

subst_y_app : subst_y A D ([x][v][dx]

wne_app (E x v dx) (F x v dx)) (wne_app E’ F’)

<- subst_y A D E E’

<- subst_wn A D F F’.

2

To justify the appeals to the ind. hyp.s we invoke the Twelf termination checker

with the following termination order.

%terminates {(Ax Ay As Aa) (Ex Ey Es Ea)}

(subst_x Ax _ _ Ex _)

(subst_y Ay _ Ey _)

(subst_wn As _ Es _)

(app_wn Aa _ Ea _).

It expresses that the four type families are mutually recursive and terminate w. r. t.

the lexicographic order on pairs (A, E) of types A and typing derivations E . This

corresponds on a main induction on A and a side induction on E . To verify termina-

tion, Twelf makes use of the %reduces declaration. Using the world block wne_var,

the code also coverage-checks, hence, the lemma is completely machine-verified.

Lemma 3.2 If D :: Γ ⊢ t : A then Γ ⊢ t ⇑ A.

Proof. By induction on D, using the application lemma. Can be directly formalized

in Twelf [1]. 2

3.3 Soundness of Inductive Characterization

To complete our proof of weak normalization, we need to show that for each term

t in the relation t ⇑ A or t ⇓x A there exists a normal form v such that t −→∗

v. After formulating full β-reduction −→ with the usual closure properties, the

proof is a simple induction on the derivation E :: t ⇑ A resp. E :: t ⇓x A. The

formalization of multi-step β-reduction −→∗ and fundamental properties like closure

under substitution is completely standard and available online [1]. Similar proofs

can be found in Schürmann’s thesis [17, Ch. 3].

Typed β-normal forms can be defined inductively by two judgements Γ ⊢ t ↑ A,

t of type A is normal, and Γ ⊢ t ↓ A, t of type A is normal and neutral, the last

adjective meaning that t = x s for some s.

(x :A) ∈ Γ

Γ ⊢ x ↓ A
ne var

Γ ⊢ r ↓ A→ B Γ ⊢ s ↑ A

Γ ⊢ r s ↓ B
ne app

Γ ⊢ r ↓ A

Γ ⊢ r ↑ A
nf ne

Γ, x :A ⊢ t ↑ B

Γ ⊢ λxt ↑ A→ B
nf lam
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Lemma 3.3 (Soundness)

(i) If D :: Γ ⊢ t ⇓x A then Γ ⊢ t′ ↓ A for some t′ ∗←− t.

(ii) If D :: Γ ⊢ t ⇑ A then Γ ⊢ t′ ↑ A for some t′ ∗←− t.

Proof. Simultaneously by induction on D. The Twelf formalization is unproblem-

atic. 2

Theorem 3.4 (Weak normalization) If Γ ⊢ t : A then Γ ⊢ t′ ↑ A for some

t′ ∗←− t.

The theorem is the just the composition of lemmata 3.2 and 3.3.

Remark 3.5 η-long β-normal forms can be enforced by requiring A to be a base

type in rule nf ne. The expansion of a β-normal term t to an η-long form can be

defined by induction on Γ ⊢ t ↑ A. Thus, our judgement t ⇑ A captures trivially

also the weakly βη-normalizable terms.

4 On Proof-Theoretical Limitations of Twelf

Having successfully completed the proof of weak normalization we are interested

whether it could be extended to strong normalization and stronger object theo-

ries, like Gödel’s T. In this section, we touch these questions, but our answers are

speculative and preliminary.

Joachimski and Matthes [9] extend their proof to Gödel’s T, using the infini-

tary ω-rule to state when a recursive function over natural numbers is weakly nor-

malizing. Their proof is not directly transferable since only finitary rules can be

represented in Twelf.

For the same reason, Tait’s proof cannot be formalized directly in Twelf. Its key

part is the definition
∀s. s ⇑ A ⇒ r s ⇑ B

r ⇑ A→ B

with an infinitary premise. Its literal translation into Twelf

wn_arr : ({S:tm} wn S A -> wn (app R S) B) -> wn R (A => B)

means something else, namely “if for a fresh term S for which we assume wn S A

it holds that wn (app R S) B, then wn R (A => B)”. Translating this back into

mathematical language, we obtain the rule

x ⇑ A ⇒ r x ⇑ B

r ⇑ A→ B
for a fresh variable x.

Since variables x are weakly normalizing anyway, we can simplify the premise further

to r x ⇑ B, obtaining clearly something we did not want in the first place.

Recently, Sarnat and Schürmann [16] have proven weak normalization for the

simply-typed λ-calculus in Twelf using logical relations. They first give a inductive

characterization of weakly normalizing terms similar to ours. Instead of directly

proving that it is closed under application (our Lemma 3.1) they follow a Tait-

style logical relation argument. To make it work, they define minimal first-order
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logic (MFOL) and prove cut elimination. The logical relation is then represented

within MFOL, but they can show an escape lemma: each term which is provably in

the logical relation is actually weakly normalizing. The proof complexity has been

shifted to cut elimination; it is established by a lexicographic induction just as our

application/substitution lemma.

Sarnat and Schürmann have formalized the first logical relations proof in Twelf,

an impressive achievement, since it was unknown for a long time how to do this.

Yet, we have given a much simpler proof of the same result. It is unclear whether

their approach scales to stronger systems, e. g., Gödel’s T. At least, the termination

checker of Twelf must be extended to lift the proof-theoretic strength of Twelf

beyond primitive recursive arithmetic.

5 Strong Normalization

Due to the interpretation of quantification in Twelf, infinitary rules cannot be rep-

resented, which also obstructs the definition of the predicate strongly normalizing

sn by the inductive rule

∀t′. t −→ t′ ⇒ sn t′

sn t
,

expressing that the set of strongly normalizing terms is the accessible part of the

reduction relation.

However, the inductive characterization of weakly normalizing terms can be

modified to account for strongly normalizing terms. A term (λxt) s is weakly nor-

malizing iff [s/x]t is—this holds for strong normalization if we additionally require

that s is strongly normalizing. Thus, in each weak head expansion step, the term

s must be strongly normalizing. We inductively define such a expansion relation

−→sn together with the set of strongly normalizing terms.

(x :A) ∈ Γ

Γ ⊢ x ⇓x A
sne var

Γ ⊢ r ⇓x A→ B Γ ⊢ s ⇑ A

Γ ⊢ r s ⇓x B
sne app

Γ ⊢ r ⇓x A

Γ ⊢ r ⇑ A
sn ne

Γ, x :A ⊢ t ⇑ B

Γ ⊢ λx.t ⇑ A→ B
sn lam

Γ ⊢ r −→sn r′ Γ ⊢ r′ ⇑ A

Γ ⊢ r ⇑ A
sn exp

Γ ⊢ s ⇑ A

Γ ⊢ (λxt) s −→sn [s/x]t
sr beta

Γ ⊢ r −→sn r′

Γ ⊢ r s −→sn r′ s
sr app

The soundness of the inductive characterization must be established on paper,

but an application/substitution lemma can now be proved in Twelf analogously

to Lemma 3.1, from which it follows that each well-typed term is strongly normal-

izing.
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6 Conclusions

We have presented a formalization of Joachimski and Matthes’ version of an ele-

mentary proof of weak normalization of the simply-typed λ-calculus in Twelf. We

further have outlined a partial formalization of strong normalization proof and dis-

cussed feasibility of Tait-style proofs in Twelf.

Related work: Hereditary substitutions.

Watkins et al. [21] have formulated a concurrent logical framework where all

terms are in normal form. Consequently, substitution and application must per-

form some evaluation. Watkin’s substitution and application algorithms, called

hereditary substitutions, match our Lemma 3.1 precisely. Recently, Lee, Crary,

and Harper [10] have formalized a full intermediate language for SML based on

hereditary substitutions.
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