Programming Language Technology
Putting Formal Languages to Work

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Finite Automata Theory and Formal Languages
TMV027/DIT321, LP4 2017
11 May 2017

Andreas Abel (GU) Programming Language Technology DIT321 2017 1/21

This Lecture: a Taste of PLT

Lecture material: http://www.cse.chalmers.se/~abela/

A taste of an application of formal languages and automata

Programming Language Technology

Parsing, type-checking, interpretation, compilation
DAT151 / DIT231
Next edition: 2017/2018 LP2 (November-Jan)

Andreas Abel (GU) Programming Language Technology DIT321 2017 2/21

http://www.cse.chalmers.se/~abela/

Task: Implement Calculator With Variables

X where x =1

x where x = y where y=42
==> 42

X where x
==> Calc: undefined variable x

X

Andreas Abel (GU) Programming Language Technology DIT321 2017 3/21

Calculator Master Plan

Read string from stdin.
Parse input.

Calculate result.

Print result to stdout.

Start over.

Andreas Abel (GU) Programming Language Technology DIT321 2017 4/21

-
Parsing

@ latin / old french pars = part(s) (of speech)
@ A parser for a formal language

@ takes input stream of characters

@ checks if input forms word of language

© outputs typically one of:

Yes/no (accepting parser).

Parse tree.

Abstract syntax tree.

Result of interpreting input (e.g. for our calculator).

@ You already encountered accepting parsers: automata, CYK.

Andreas Abel (GU) Programming Language Technology DIT321 2017 5/21

Natural Language Parsing

@ Recognizing a sentence in two phases:
Marce, veni!

o Lexical analysis (2): recognize lexical structure: words, punctuation.
Marce, veni!

@ The lexical analysis returns a token stream.
Name (Marce) Comma Word(veni) Bang

e Grammatical analysis (2): recognize grammatical structure.

SimpleCommand

/ \

Vocative (Marcus) Infinitive (venire)

Andreas Abel (GU) Programming Language Technology DIT321 2017 6 /21

Formal Language Parsing

@ Formal word:
wher+1l * 2where wher= (42)
@ Lexical analysis:

wher+1 * 2where wher= (42)
Ident (wher) Plus Number (1) Times Number(2) Where
Ident (wher) Equals LParen Number (42) RParen

o Grammatical analysis:

Local (wher,Num(42) ,Plus (Var (wher) ,Times (Num(1) ,Num(2))))

Andreas Abel (GU) Programming Language Technology DIT321 2017 7/21

.
Calculator Grammar

o Naive Grammar

= Ident | Number | (Expr)
| Expr * Expr | Expr + Expr
| Expr where Ident = Expr

Expr ::

@ This grammar is ambiguous:
1+2*3 could be parsed as product 1+2 * 3 or sum 1 + 2%3,

@ Disambiguated grammar:

Atom = Ident | Number | (Expr)
Product ::= Atom | Product * Atom

Sum = Product | Sum + Product

Expr = Sum | Sum where Ident = Expr

Andreas Abel (GU) Programming Language Technology DIT321 2017 8/21

.
From Grammars to Parser Generators

@ Most programming languages adhere to a context-free grammar
(CFG) suitable for efficient LR-parsing
@ Division of labor:
@ Lexer: transforms character string into token stream.

@ Discards whitespace and comments.
@ Recognizes numbers, string literals etc. via finite automata.

@ Parser: processes token stream according to grammar.
@ Automation:

© Lexers are generated from regular expressions.
@ Parsers are generated from CFGs.

Andreas Abel (GU) Programming Language Technology DIT321 2017 9/21

Lexical Analyzers

(]

Lexer is short for lexical analyzer.

Big finite automaton with output: In accepting states, a token
(depending on the state) is output.

Typical form: A= (A1 + Ax + -+ - + Ap)*
Each automaton A; has a specific output, e.g.:

e A; recognizes whitespace, produces no output.
e A; recognizes numbers, outputs the number.

e Aj recognizes (, outputs token LParen.
o

Longest match takes priority, then first match. E.g.:

e whereas: ldentifier RE has longer match than keyword where
e where: Matches both identifier and keyword

Andreas Abel (GU) Programming Language Technology DIT321 2017 10 / 21

Alex: a Lexer Generator for Haskell

@ .x file maps regular expressions to output actions.

n n n n n n n n

no action

-> Where }
-> Ident s }
-> Number (read s) }
-> Plus }
-> Times }
-> LParen }
-> RParen }
-> Equals }

@ Abbreviations (macros) for REs:

$white+ ;

"where" {\
@ident {\
@number { \
" {\
" {\
" {\
" {\
n=n {\
$digit = 0-9
$digitl = 1-9
$lower = a-z

Andreas Abel (GU)

Onumber
Q@ident

$lower +

Programming Language Technology

DIT321 2017

0 | $digitl ($digit *)

11 /21

Example Tokens (Haskell code)

data Token

Ident String
Number Integer
Plus

Times

LParen

RParen

Equals

Where

Andreas Abel (GU)

- E.g. x
-- E.g. 123
-— +

-—

- (

--)

-- where

Programming Language Technology DIT321 2017 12 /21

LR Parsers

LR = Left-to-right Rightmost-derivation.
Efficient O(n) bottom-up parsing using stack. (CYK: O(n?))
Actions:

@ Shift: put input token onto stack.
@ Reduce: replace topmost stack symbols by a non-terminal, according to
a grammar rule.

e o

@ Decision whether to shift or to reduce is taken by a finite automaton
running over the stack contents.

@ States of this FA are the parser states.

Andreas Abel (GU) Programming Language Technology DIT321 2017 13 /21

Stack Input

1+2%3
1 +2%3
A +2%3
P +2%3
S +2%3
S+2 *3
S+A *3
S+P *3
S+P*3
S+PxA
S+P
S
E

Andreas Abel (GU)

Run of a LR-Parser

Action

shift

reduce Atom = Number
reduce Product = Atom
reduce Sum = Product
shift(2)

reduce Atom = Number
reduce Product = Atom
shift(2)

reduce Atom = Number

Product * Atom
Sum + Product
Sum

reduce Product
reduce Sum
reduce Expr
accept

Programming Language Technology DIT321 2017

14 /21

Happy: A Parser Generator for Haskell

@ https://www.haskell.org/happy/
o .y-file contains token definitions and grammar with actions

Sum : Product {813
| Sum ’+’ Product { plus $1 $3 }

Product : Atom { %11}
| Product ’*’ Atom { times $1 $3 }

Atom : num { number $1 }
| > Expr ’)’ {$27%
@ Haskell code inside the { braces }7.
@ $n refers to value of nth item in rule.
@ This parser directly computes the value of the parsed expression.

Andreas Abel (GU) Programming Language Technology DIT321 2017 15 /21

https://www.haskell.org/happy/

Happy: Token definitions

@ Connect tokens accepted by Happy parser to the ones produced by
the Alex lexer.

%tokentype { Token }

/%token

40 { Plus 1}

X { Times }

(2 { LParen }

DK { RParen }

1= { Equals }

’where’ { Where }

num { Number $$ } -- $$ holds the value of the tol
id { Ident $$ }

Andreas Abel (GU) Programming Language Technology DIT321 2017 16 / 21

|
BNFC: A BNF Compiler

@ Usually, a parser should output the abstract syntax tree (AST).

o Calculating its value can be done in a second pass (interpretation).

o BNFC http://bnfc.digitalgrammars.com/ gives additional
convenience.

o .cf file contains BNF-grammar with rule names.

@ BNFC produces input for several lexer/parser generators from the
same grammar.

@ The generated parsers produce ASTs.

@ BNFC also produces pretty-printers and visitors for these ASTs.

@ Supported languages include: C, C++, Haskell, Java.

Andreas Abel (GU) Programming Language Technology DIT321 2017 17 /21

http://bnfc.digitalgrammars.com/

Conclusions

Suggested exercises:

Implement the calculator in your favorite programming language using
its lexer and parser generators.

@ Extend the calculator by subtraction, division, etc.
@ Extend the lexer towards single-line and block comments.
@ Implement the calculator using BNFC.

Andreas Abel (GU) Programming Language Technology DIT321 2017 18 / 21

Supplementary slides

Implementing Parsers

@ We can write a parser directly, e.g. in Haskell.
parseNumber :: String -> Either Error (Integer, String)
@ Parses a number and returns the remaining input.
Right (345, "")
Right (1, " + 2")
Right (1, "hello")
Left ExpectedNumber

parseNumber "345"

parseNumber "1 + 2"
parseNumber "lhello"
parseNumber "hello"

@ Should skip whitespace.

parseNumber " 345 " = Right (345, " ")

Andreas Abel (GU) Programming Language Technology DIT321 2017 19 /21

Supplementary slides

Composing Parsers

@ Parsers can be combined (google: parser combinators)

type Parser a = String -> Either Error (a, String)
orP :: Parser a -> Parser a -> Parser a
thenP :: Parser a -> Parser b -> Parser (a, b)

@ Can we represent grammar as parser directly!?

parseAtom = parseNumber ‘orP‘
(parseLParen ‘thenP‘ parseExpr ‘thenP‘ parseRParen)

@ Parser combinators became popular with higher-order programming
languages (Haskell, ML)

@ However, there are some caveats ...

Andreas Abel (GU) Programming Language Technology DIT321 2017 20 /21

Supplementary slides

Problems of Parser Combinators

@ Naive translation of grammar fails

parseExpr = parseProduct ‘orP°¢
(parseExpr ‘thenP‘ parsePlus ‘thenP‘ parseProduct)

parseExpr "hello" loops.

@ Need to write grammar in a form suitable for recursive-decent aka LL
(Left-to-right Left-most-derivation) parsing.

@ Backtracking for alternative orP can be expensive.
Parser might become exponential time.

@ Let's put our formal language theory to work for efficient parsing!

Andreas Abel (GU) Programming Language Technology DIT321 2017 21 /21

	Supplementary slides

