
Grammatical Framework Tutorial

Aarne Ranta, Thomas Hallgren, Krasimir Angelov

ICFP 2012, Copenhagen, 15 September 2012

Plan

Programming in GF (Aarne Ranta)

• multilingual grammars

• the resource grammar library

• hands-on example: port a query system to some other languages

Coffee break

GF Applications for the Web etc (Thomas Hallgren)

GF Internals and Future Trends (Krasimir Angelov)

Why at ICFP

GF is yet another functional programming language (Ranta, JFP 2004)

GF = Logical Framework + concrete syntax (LF, ALF, Coq, Agda,...)

GF brings linguistics to the reach of functional programmers

The GF compiler is a large Haskell program (30 kLOC)

GF = Grammatical Framework

GF is a grammar formalism: a notation for writing grammars

GF is a functional programming language with types and modules

GF programs are called grammars

A grammar is a declarative program that defines parsing, generation,

and translation

Why yet another language

Reasons similar to those for having YACC/Happy in addition to C/Haskell:

• concise declarative definition of grammars

• reasoning about grammars

• guaranteed properties (reversibility, complexity)

More reasons

Reasons specific to GF:

• special features motivated by the application

– dependent types

– regular expression pattern matching

– module system with functors

• many programmers without previous FP exposure

Installing GF

One click: http://www.grammaticalframework.org/download

Zero click: http://cloud.grammaticalframework.org/gfse/

Open source (GPL/LGPL/BSD)

http://www.grammaticalframework.org/download
http://cloud.grammaticalframework.org/gfse/

Tutorial, applications, reference manual

Run-time internals

Third GF Summer School 18–30 August 2013

Fraueninsel, Chiemsee, Bavaria, Germany

Multilingual Grammars

Multilingual grammars in compilers

Source and target language related by abstract syntax

iconst_2

iload_0

2 * x + 1 <-----> plus (times 2 x) 1 <------> imul

iconst_1

iadd

A GF grammar for expressions

abstract Expr = {
cat Exp ;
fun plus : Exp -> Exp -> Exp ;
fun times : Exp -> Exp -> Exp ;
fun one, two : Exp ;
}

concrete ExprJava of Expr = { concrete ExprJVM of Expr= {
lincat Exp = Str ; lincat Expr = Str ;
lin plus x y = x ++ "+" ++ y ; lin plus x y = x ++ y ++ "iadd" ;
lin times x y = x ++ "*" ++ y ; lin times x y = x ++ y ++ "imul" ;
lin one = "1" ; lin one = "iconst_1" ;
lin two = "2" ; lin two = "iconst_2" ;
} }

Multilingual grammars in natural language

Natural language structures

Predication: John + loves Mary

Complementation: love + Mary

Noun phrases: John

Verb phrases: love Mary

2-place verbs: love

Abstract syntax of sentence formation

abstract Zero = {

cat

S ; NP ; VP ; V2 ;

fun

Pred : NP -> VP -> S ;

Compl : V2 -> NP -> VP ;

John, Mary : NP ;

Love : V2 ;

}

Concrete syntax, English

concrete ZeroEng of Zero = {

lincat

S, NP, VP, V2 = Str ;

lin

Pred np vp = np ++ vp ;

Compl v2 np = v2 ++ np ;

John = "John" ;

Mary = "Mary" ;

Love = "loves" ;

}

Multilingual grammar

The same system of trees can be given

• different words

• different word orders

• different linearization types

Concrete syntax, French

concrete ZeroFre of Zero = {

lincat

S, NP, VP, V2 = Str ;

lin

Pred np vp = np ++ vp ;

Compl v2 np = v2 ++ np ;

John = "Jean" ;

Mary = "Marie" ;

Love = "aime" ;

}

Just use different words

Translation and multilingual generation in GF

Import many grammars with the same abstract syntax

> i ZeroEng.gf ZeroFre.gf

Languages: ZeroEng ZeroFre

Translation: pipe linearization to parsing

> p -lang=ZeroEng "John loves Mary" | l -lang=ZeroFre

Jean aime Marie

Multilingual random generation: linearize into all languages

> gr | l

Pred Mary (Compl Love Mary)

Mary loves Mary

Marie aime Marie

Concrete syntax, Latin

concrete ZeroLat of Zero = {

lincat

S, VP, V2 = Str ;

NP = Case => Str ;

lin

Pred np vp = np ! Nom ++ vp ;

Compl v2 np = np ! Acc ++ v2 ;

John = table {Nom => "Ioannes" ; Acc => "Ioannem"} ;

Mary = table {Nom => "Maria" ; Acc => "Mariam"} ;

Love = "amat" ;

param

Case = Nom | Acc ;

}

Different word order (SOV), different linearization type, parameters.

Parameters in linearization

Latin has cases: nominative for subject, accusative for object.

• Ioannes Mariam amat ”John-Nom loves Mary-Acc”

• Maria Ioannem amat ”Mary-Nom loves John-Acc”

Parameter type for case (just 2 of Latin’s 6 cases):

param Case = Nom | Acc

Table types and tables

The linearization type of NP is a table type: from Case to Str,

lincat NP = Case => Str

The linearization of John is an inflection table,

lin John = table {Nom => "Ioannes" ; Acc => "Ioannem"}

When using an NP, select (!) the appropriate case from the table,

Pred np vp = np ! Nom ++ vp

Compl v2 np = np ! Acc ++ v2

Concrete syntax, Dutch

concrete ZeroDut of Zero = {

lincat

S, NP, VP = Str ;

V2 = {v : Str ; p : Str} ;

lin

Pred np vp = np ++ vp ;

Compl v2 np = v2.v ++ np ++ v2.p ; -- Jan heeft Marie lief

John = "Jan" ;

Mary = "Marie" ;

Love = {v = "heeft" ; p = "lief"} ;

}

The verb heeft lief is a discontinuous constituent.

Record types and records

The linearization type of V2 is a record type

lincat V2 = {v : Str ; p : Str}

The linearization of Love is a record

lin Love = {v = "heeft" ; p = "lief"}

The values of fields are picked by projection (.)

lin Compl v2 np = v2.v ++ np ++ v2.p

Concrete syntax, Hebrew

The verb agrees to the gender of the subject.

Abstract trees and parse trees

From abstract trees to parse trees

Link every word with its smallest spanning subtree

Replace every constructor function with its value category

Generating word alignment

In L1 and L2: link every word with its smallest spanning subtree

Delete the intervening tree, combining links directly from L1 to L2

Notice: in general, this gives phrase alignment

Notice: links can be crossing, phrases can be discontinuous

Word alignment via trees

A more involved word alignment

The GF Resource Grammar Library

Morphology and basic syntax

Common API for different languages

Currently (September 2012) 25 languages: Afrikaans, Bulgarian, Cata-
lan, Danish, Dutch, English, Finnish, French, German, Hindi, Italian,
Japanese, Latvian, Nepali, Norwegian, Persian, Polish, Punjabi, Roma-
nian, Russian, Sindhi, Spanish, Swedish, Thai, Urdu.

Under construction for more languages: Amharic, Arabic, Chinese,
Estonian, Greek (Ancient), Hebrew, Latin, Maltese, Mongol, Swahili,
Turkish.

40+ contributors, 3-6 person months per language.

Programming in GF: Morphol-
ogy and smart paradigms

Inflectional morphology

Goal: a complete system of inflection paradigms

Paradigm: a function from ”basic form” to full inflection table

GF morphology is inspired by

• Zen (Huet 2005): typeful functional programming

• XFST (Beesley and Karttunen 2003): regular expressions

Example: English verb inflection

Start by defining parameter types and parts of speech.

param

VForm = VInf | VPres | VPast | VPastPart | VPresPart ;

oper

Verb : Type = {s : VForm => Str} ;

Judgement form oper: auxiliary operation.

Start: worst-case function

To save writing and to abstract over the Verbtype

oper

mkVerb : (_,_,_,_,_ : Str) -> Verb = \go,goes,went,gone,going -> {

s = table {

VInf => go ;

VPres => goes ;

VPast => went ;

VPastPart => gone ;

VPresPart => going

}

} ;

Defining paradigms

A paradigm is an operation of type

Str -> Verb

which takes a string and returns an inflection table.

E.g. regular verbs:

regVerb : Str -> Verb = \walk ->

mkVerb walk (walk + "s") (walk + "ed") (walk + "ed") (walk + "ing") ;

This will work for walk, interest, play.

It will not work for sing, kiss, use, cry, fly, stop.

More paradigms

For verbs ending with s, x, z, ch

s_regVerb : Str -> Verb = \kiss ->

mkVerb kiss (kiss + "es") (kiss + "ed") (kiss + "ed") (kiss + "ing") ;

For verbs ending with e

e_regVerb : Str -> Verb = \use ->

let us = init use

in mkVerb use (use + "s") (us + "ed") (us + "ed") (us + "ing") ;

Notice:

• the local definition let c = d in ...
• the operation init from Prelude, dropping the last character

More paradigms still

For verbs ending with y

y_regVerb : Str -> Verb = \cry ->

let cr = init cry

in

mkVerb cry (cr + "ies") (cr + "ied") (cr + "ied") (cry + "ing") ;

For verbs ending with ie

ie_regVerb : Str -> Verb = \die ->

let dy = Predef.tk 2 die + "y"

in

mkVerb die (die + "s") (die + "d") (die + "d") (dy + "ing") ;

What paradigm to choose

If the infinitive ends with s, x, z, ch, choose s regRerb: munch, munches

If the infinitive ends with y, choose y regRerb: cry, cries, cried

• except if a vowel comes before: play, plays, played

If the infinitive ends with e, choose e regVerb: use, used, using

• except if an i precedes: die, dying

• or if an e precedes: free, freeing

A smart paradigm

Let GF choose the paradigm by pattern matching on strings

smartVerb : Str -> Verb = \v -> case v of {

_ + ("s"|"z"|"x"|"ch") => s_regVerb v ;

_ + "ie" => ie_regVerb v ;

_ + "ee" => ee_regVerb v ;

_ + "e" => e_regVerb v ;

_ + ("a"|"e"|"o"|"u") + "y" => regVerb v ;

_ + "y" => y_regVerb v ;

_ => regVerb v

} ;

Pattern matching on strings

Format: case string of { pattern => value }

Patterns:

• matches any string

• a string in quotes matches itself: "ie"

• + splits into substrings: + "y"

• | matches alternatives: "a"|"e"|"o"

Common practice: last pattern a catch-all

Testing the smart paradigm in GF

> cc -all smartVerb "munch"

munch munches munched munched munching

> cc -all smartVerb "die"

die dies died died dying

> cc -all smartVerb "agree"

agree agrees agreed agreed agreeing

> cc -all smartVerb "deploy"

deploy deploys deployed deployed deploying

> cc -all smartVerb "classify"

classify classifies classified classified classifying

The smart paradigm is not perfect

Irregular verbs are obviously not covered

> cc -all smartVerb "sing"

sing sings singed singed singing

Neither are regular verbs with consonant duplication

> cc -all smartVerb "stop"

stop stops stoped stoped stoping

The final consonant duplication paradigm

Use the Prelude function last

dupRegVerb : Str -> Verb = \stop ->

let stopp = stop + last stop

in

mkVerb stop (stop + "s") (stopp + "ed") (stopp + "ed") (stopp + "ing") ;

String pattern: relevant consonant preceded by a vowel

_ + ("a"|"e"|"i"|"o"|"u") + ("b"|"d"|"g"|"m"|"n"|"p"|"r"|"s"|"t")

=> dupRegVerb v ;

Testing consonant duplication

Now it works

> cc -all smartVerb "stop"

stop stops stopped stopped stopping

But what about

> cc -all smartVerb "coat"

coat coats coatted coatted coatting

Solution: a prior case for diphthongs before the last char (? matches
one char)

_ + ("ea"|"ee"|"ie"|"oa"|"oo"|"ou") + ? => regVerb v ;

There is no waterproof solution

Duplication depends on stress, which is not marked in English:

• omit [o’mit]: omitted, omitting

• vomit [’vomit]: vomited, vomiting

This means that we occasionally have to give more forms than one.

We knew this already for irregular verbs. And we cannot write patterns

for each of them either, because e.g. lie can be both lie, lied, lied or

lie, lay, lain.

A paradigm for irregular verbs

Arguments: three forms instead of one.

Pattern matching done in regular verbs can be reused.

irregVerb : (_,_,_ : Str) -> Verb = \sing,sang,sung ->

let v = smartVerb sing

in

mkVerb sing (v.s ! VPres) sang sung (v.s ! VPresPart) ;

Putting it all together

We have three functions:

smartVerb : Str -> Verb

irregVerb : Str -> Str -> Str -> Verb

mkVerb : Str -> Str -> Str -> Str -> Str -> Verb

As all types are different, we can use overloading and give them all

the same name.

An overloaded paradigm

For documentation: variable names showing examples of arguments.

mkV = overload {

mkV : (cry : Str) -> Verb = smartVerb ;

mkV : (sing,sang,sung : Str) -> Verb = irregVerb ;

mkV : (go,goes,went,gone,going : Str) -> Verb = mkVerb ;

} ;

Bootstrapping a lexicon

Alt 1. From a morphological POS-tagged word list: trivial

V play played played

V sleep slept slept

Alt 2. From a plain word list, POS-tagged: start assuming regularity,

generate, correct, and add forms by iteration

V play ===> V play played played ===>

V sleep V sleep sleeped sleeped V sleep slept slept

Example: Finnish nouns need 1.42 forms in average (to generate 26

forms).

Nonconcatenative morphology

Semitic languages, e.g. Arabic: kataba has forms kaAtib, yaktubu, ...

Traditional analysis:

• word = root + pattern

• root = three consonants (radicals)

• pattern = function from root to string (notation: string with vari-

ables F,C,L for the radicals)

Example: yaktubu = ktb + yaFCuLu

Words are datastructures rather than strings!

Datastructures for Arabic

Roots and patterns are records of strings.

Root : Type = {F,C,L : Str} ;

Pattern : Type = {F,FC,CL,L : Str} ;

Applying a pattern is intertwining the records.

appPattern : Root -> Pattern -> Str = \r,p ->

p.F + r.F + p.FC + r.C + p.CL + r.L + p.L ;

Example of Arabic verb inflection

How we did the printing (recreational GF hacking)

We defined a HTML printing operation

oper verbTable : Verb -> Str

and used it in a special category Table built by

fun Tab : V -> Table ;

lin Tab v = verbTable v ;

We then used

> l Tab ktb_V | ps -env=quotes -to_arabic | ps -to_html | wf -file=ara.html

> ! tr "\"" " " <ara.html >ar.html

Grammars as software libraries

Complexity of grammar writing

Typical GF tasks:

• natural language interfaces

• localization of programs

We need

• domain expertise: technical and idiomatic expression

• linguistic expertise: how to inflect words and build phrases

Example: an email program

Task: generate phrases saying you have n message(s)

Domain expertise: choose correct words (in Swedish, not budskap but

meddelande)

Linguistic expertise: avoid you have one messages

Correct number in Arabic

(From ”Implementation of the Arabic Numerals and their Syntax in GF” by Ali El Dada, ACL workshop

on Arabic, Prague 2007)

Division of labour

Application grammars

• abstract syntax: semantic model of domain

• authors: domain experts

Resource grammars

• abstract syntax: grammatical categories and rules

• authors: linguists

Resource grammar API

Smart paradigms for morphology

mkN : (talo : Str) -> N

Abstract syntax functions for syntax

mkCl : NP -> V2 -> NP -> Cl -- John loves Mary

mkNP : Numeral -> CN -> NP -- five houses

Using the library in English

mkCl youSg_NP have_V2 (mkNP n2_Numeral (mkN "message"))

===> you have two messages

mkCl youSg_NP have_V2 (mkNP n1_Numeral (mkN "message"))

===> you have one message

Localization

Adapt the email program to Italian, Swedish, Finnish...

mkCl youSg_NP have_V2 (mkNP n2_Numeral (mkN "messaggio"))

===> hai due messaggi

mkCl youSg_NP have_V2 (mkNP n2_Numeral (mkN "meddelande"))

===> du har två meddelanden

mkCl youSg_NP have_V2 (mkNP n2_Numeral (mkN "viesti"))

===> sinulla on kaksi viestiä

The new languages are more complex than English - but only internally,

not on the API level!

Meaning-preserving translation

Translation must preserve meaning.

It need not preserve syntactic structure.

Sometimes this is even impossible:

• John likes Mary in Italian is Maria piace a Giovanni

The abstract syntax in the semantic grammar is a logical predicate:

fun Like : Person -> Person -> Fact

lin Like x y = x ++ "likes" ++ y -- English

lin Like x y = y ++ "piace" ++ "a" ++ x -- Italian

Translation and resource grammar

To get all grammatical details right, we use resource grammar and not

strings

lincat Person = NP ; Fact = Cl ;

lin Like x y = mkCl x like_V2 y -- Engligh

lin Like x y = mkCl y piacere_V2 x -- Italian

From syntactic point of view, we perform transfer, i.e. structure

change.

GF has compile-time transfer, and uses interlingua (semantic abstrac

syntax) at run time.

Domain semantics

”Semantics of English”, or any other natural language, has never been

built.

It is more feasible to have semantics of fragments - of small, well-

understood parts of natural language.

Such languages are called domain languages, and their semantics,

domain semantics.

Domain semantics = ontology in the Semantic Web terminology.

Examples of domain semantics

Expressed in various formal languages

• mathematics, in predicate logic

• software functionality, in UML/OCL

• dialogue system actions, in SISR

• museum object descriptions, in OWL

GF abstract syntax, type theory, can be used for any of these!

Example: abstract syntax for a ”Facebook” commu-
nity

What messages can be expressed on the community page?

abstract Face = {

cat

Message ; Person ; Object ; Number ;

fun

Have : Person -> Number -> Object -> Message ; -- p has n o’s

Like : Person -> Object -> Message ; -- p likes o

You : Person ;

Friend, Invitation : Object ;

}

Relevant part of Resource Grammar API for ”Face”

These functions (some of which are structural words) are used.

Function example
mkCl : NP -> V2 -> NP -> Cl John loves Mary
mkNP : Numeral -> CN -> NP five cars
mkNP : Det -> CN -> NP that car
mkNP : Pron -> NP we
mkCN : N -> CN car
this Det : Det this
youSg Pron : Pron you (singular)
have V2 : V2 have

Concrete syntax for English

How are messages expressed by using the library?

concrete FaceEng of Face = open SyntaxEng, ParadigmsEng in {
lincat

Message = Cl ;
Person = NP ;
Object = CN ;
Number = Numeral ;

lin
Have p n o = mkCl p have_V2 (mkNP n o) ;
Like p o = mkCl p like_V2 (mkNP this_Det o) ;
You = mkNP youSg_Pron ;
Friend = mkCN friend_N ;
Invitation = mkCN invitation_N ;

oper
like_V2 = mkV2 "like" ;
invitation_N = mkN "invitation" ;
friend_N = mkN "friend" ;

}

Concrete syntax for Finnish

Exactly the same rules of combination, only different words:

concrete FaceFin of Face = open SyntaxFin, ParadigmsFin in {
lincat

Message = Cl ;
Person = NP ;
Object = CN ;
Number = Numeral ;

lin
Have p n o = mkCl p have_V2 (mkNP n o) ;
Like p o = mkCl p like_V2 (mkNP this_Det o) ;
You = mkNP youSg_Pron ;
Friend = mkCN friend_N ;
Invitation = mkCN invitation_N ;

oper
like_V2 = mkV2 "pitää" elative ;
invitation_N = mkN "kutsu" ;
friend_N = mkN "ystävä" ;

}

Parametrized modules

Can we avoid repetition of the lincat and lin code? Yes!

New module type: functor, a.k.a. incomplete or parametrized mod-

ule

incomplete concrete FaceI of Face = open Syntax, LexFace in ...

A functor may open interfaces.

An interface has oper declarations with just a type, no definition.

Here, Syntax and LexFace are interfaces.

The domain lexicon interface

Syntax is the Resource Grammar interface, and gives

• combination rules

• structural words

Content words are not given in Syntax, but in a domain lexicon

interface LexFace = open Syntax in {

oper

like_V2 : V2 ;

invitation_N : N ;

friend_N : N ;

}

Concrete syntax functor ”FaceI”

incomplete concrete FaceI of Face = open Syntax, LexFace in {

lincat
Message = Cl ;
Person = NP ;
Object = CN ;
Number = Numeral ;

lin
Have p n o = mkCl p have_V2 (mkNP n o) ;
Like p o = mkCl p like_V2 (mkNP this_Det o) ;
You = mkNP youSg_Pron ;
Friend = mkCN friend_N ;
Invitation = mkCN invitation_N ;

}

An English instance of the domain lexicon

Define the domain words in English

instance LexFaceEng of LexFace = open SyntaxEng, ParadigmsEng in {

oper

like_V2 = mkV2 "like" ;

invitation_N = mkN "invitation" ;

friend_N = mkN "friend" ;

}

Put everything together: functor instantiation

Instantiate the functor FaceI by giving instances to its interfaces

concrete FaceEng of Face = FaceI with

(Syntax = SyntaxEng),

(LexFace = LexFaceEng) ;

Porting the grammar to Finnish

1. Domain lexicon: use Finnish paradigms and words

instance LexFaceFin of LexFace = open SyntaxFin, ParadigmsFin in {

oper

like_V2 = mkV2 (mkV "pitää") elative ;

invitation_N = mkN "kutsu" ;

friend_N = mkN "ystävä" ;

}

2. Functor instantiation: mechanically change Eng to Fin

concrete FaceFin of Face = FaceI with

(Syntax = SyntaxFin),

(LexFace = LexFaceFin) ;

Porting the grammar to Italian

1. Domain lexicon: use Italian paradigms and words, e.g.

like_V2 = mkV2 (mkV (piacere_64 "piacere")) dative ;

2. Functor instantiation: restricted inheritance, excluding Like

concrete FaceIta of Face = FaceI - [Like] with

(Syntax = SyntaxIta),

(LexFace = LexFaceIta) ** open SyntaxIta in {

lin Like p o =

mkCl (mkNP this_Det o) like_V2 p ;

}

Hands-on example

A Query Language

• Is some even number prime?

Yes.

• Which numbers greater than 100 and smaller than 150 are prime?

101, 103, 107, 109, 113, 127, 131, 137, 139, 149.

Cf. Wolfram Alpha.

Code to start with: http://www.grammaticalframework.org/gf-tutorial-

icfp-2012/exx/

http://www.grammaticalframework.org/gf-tutorial-icfp-2012/exx/
http://www.grammaticalframework.org/gf-tutorial-icfp-2012/exx/

Abstract syntax, general part

abstract Query = {
flags startcat = Query ;
cat

Query ;
Kind ;
Property ;
Term ;

fun
QWhich : Kind -> Property -> Query ; -- which numbers are prime
QWhether : Term -> Property -> Query ; -- is some number prime
TAll : Kind -> Term ; -- all numbers
TSome : Kind -> Term ; -- some number
PAnd : Property -> Property -> Property ; -- even and prime
POr : Property -> Property -> Property ; -- even or odd
KProperty : Property -> Kind -> Kind ; -- even number

}

Abstract syntax, specific part

abstract MathQuery = Query ** {
fun

KNumber : Kind ;
TInteger : Int -> Term ;
PEven, POdd, PPrime : Property ;
PDivisible : Term -> Property ;
PSmaller, PGreater : Term -> Property ;

}

Answering: denotational semantics

(QWhich kind prop)∗ = {x|x ∈ kind∗,prop∗(x)}

(QWhether term prop)∗ = term∗(prop∗)

(TAll kind)∗ = λp.(∀x)(x ∈ kind∗ ⊃ p(x))

(TSome kind)∗ = λp.(∃x)(x ∈ kind∗&p(x))

(TAnd p q)∗ = λx.p∗(x)&q∗(x)

(TOr p q)∗ = λx.p∗(x) ∨ q∗(x)

(TNot p)∗ = λx. ∼ p∗(x)

(KProperty prop kind)∗ = {x|x ∈ kind∗,prop∗(x)}

(TInteger i)∗ = λp.p∗(i)

Answering as Haskell code generation

concrete QueryHs of Query = {
lincat

Query, Kind, Property, Term, Element = Str ;
lin

QWhich kind prop = "[x | x <-" ++ kind ++ "," ++ prop ++ "x" ++ "]" ;
QWhether term prop = term ++ prop ;
TAll kind = parenth ("\\p -> and [p x | x <-" ++ kind ++ "]") ;
TSome kind = parenth ("\\p -> or [p x | x <-" ++ kind ++ "]") ;
PAnd p q = parenth ("\\x ->" ++ p ++ "x &&" ++ q ++ "x") ;
POr p q = parenth ("\\x ->" ++ p ++ "x ||" ++ q ++ "x") ;
PNot p = parenth ("\\x -> not" ++ parenth (p ++ "x")) ;
KProperty prop kind = "[x | x <-" ++ kind ++ "," ++ prop ++ "x" ++ "]" ;

oper
parenth : Str -> Str = \s -> "(" ++ s ++ ")" ;

}

Example answer

> p -lang=Eng "which even numbers are prime" | l -lang=Hs

[x | x <- [x | x <- [0 .. 1000] , even x] ,

(\x -> x > 1 && all (\y -> mod x y /=0) [2..div x 2]) x]

Top-level program

File query

#!/bin/bash

ghc -e "$(echo "p -lang=Eng \"$1\" | pt -number=1 \

| l -lang=Hs" | gf -run MathQueryEng.gf MathQueryHs.gf)"

Usage:

bash$ query "is 127 prime"

True

Concrete syntax of natural language

Using the Resource Grammar Library.

Two ways:

1. Separately for each language, copy and modify from an earlier

language.

2. By a functor for the general part, separately for the specific part.

