
Computational Grammar
An Interlingual Perspective

Bulgarian

Chinese

English

Finnish

French

German

Hindi

Italian

Japanese

Spanish

Swedish

Thai

Interlingua Chinese

Swedish

Spanish

Japanese

Italian

Hindi

German

French

Finnish

English

Thai

Bulgarian

Aarne Ranta

March 22, 2024

2

Contents

1 Introduction 9
1.1 Why grammar . 9
1.2 A first example . 14
1.3 The interlingual perspective 19

2 Grammatical analysis: words 27
2.1 Units of analysis . 28
2.2 Tokens . 29
2.3 Parts of speech: an overview 31
2.4 Morphological features and inflection 35
2.5 Morphological lexicon . 39

3 Grammatical analysis: dependencies 43
3.1 Syntactic relations in Universal Dependencies 44
3.2 The main clause and its parts 47

3.2.1 The root . 48
3.2.2 The subject . 50
3.2.3 Complements and adjuncts 51
3.2.4 Auxiliary verbs . 52
3.2.5 Punctuation . 53

3.3 Dependents of nominals . 54
3.3.1 Determiners . 54
3.3.2 Modifiers . 54

3.4 Subordinate clauses and embedded verb phrases 57
3.4.1 Clausal complements 57
3.4.2 Clausal subjects . 59
3.4.3 Clausal modifiers . 59

3.5 Coordination structures . 60

3

4 CONTENTS

3.6 Remaining relations . 61

4 Grammatical analysis: phrase structure 63
4.1 Categories . 64
4.2 The DBNF rule format . 64
4.3 English phrase structure in DBNF 69

4.3.1 Utterances . 70
4.3.2 Sentences . 70
4.3.3 Verb phrases . 72
4.3.4 Complements of the copula 74
4.3.5 Questions, relatives, and imperatives 75
4.3.6 Noun phrases, adjectives, and adverbials 77
4.3.7 Coordination . 79

4.4 Phrase structure in other languages 79
4.5 Parsing with DBNF . 80

5 The interlingual perspective: words 85
5.1 From phrase structure to abstract syntax 86
5.2 Parameters and linearization types 89
5.3 Linearization types for lexical categories 91
5.4 Smart paradigms . 98
5.5 Parts of speech revisited . 102
5.6 Interlingual lexicon and word senses 107

6 The interlingual perspective: syntax (IN PROGRESS) 109
6.1 General principles . 110
6.2 Phrasal categories and their construction functions 112

6.2.1 Utterances and texts 113
6.2.2 Sentences and clauses 114
6.2.3 Verb phrases with verb heads 117
6.2.4 Complements of the copula 121
6.2.5 Noun phrases, adjectives, and adverbials 123
6.2.6 Common nouns, adjectives, and adverbials 126
6.2.7 Adjectives, and adverbials 127
6.2.8 Questions, relatives, and imperatives 129
6.2.9 Coordination . 134
6.2.10 Numerals and symbols 134

6.3 From abstract syntax to dependencies 136

CONTENTS 5

6.4 The Core Resource Grammar and its extensions 136

7 A tour of languages (TO BE WRITTEN) 137
7.1 English . 137
7.2 German, Dutch, and Afrikaans 137
7.3 Scandinavian languages . 137
7.4 Romance languages and Latin 138
7.5 Slavic languages . 138
7.6 Finnish and Estonian . 138
7.7 Arabic and Maltese . 138
7.8 Bantu languages . 138
7.9 Chinese and Thai . 139

8 Grammar and semantics (TO BE WRITTEN) 141
8.1 Abstract syntax as semantic hub 141
8.2 Logical semantics . 141
8.3 Semantic grammars and constructions 141
8.4 Semantic analysis beyond utterances 141

9 Grammar-based systems (TO BE WRITTEN) 143
9.1 Accessing GF from other languages 143
9.2 Translation . 143
9.3 Multilingual generation . 143
9.4 Text analysis . 144
9.5 Interactive systems . 144

10 Algorithms for grammar-based language processing (TO BE
WRITTEN) 145
10.1 Morphological analysis and generation 146
10.2 Part of speech tagging . 146
10.3 Context-free parsing . 146
10.4 Dependency parsing . 146
10.5 Parallel context-free parsing 146
10.6 Statistical disambiguation . 146
10.7 Semantic disambiguation . 146
10.8 Hybrid systems . 146
10.9 Evaluation . 146

10.9.1 Machine translation evaluation 146

6 CONTENTS

10.9.2 Dependency parser evaluation 146

CONTENTS 7

Preface

This book is an introduction to the concepts of grammar and their implemen-
tation on a computer. It is a free-standing sequel to Grammatical Framework:
Programming with Multilingual Grammars (CSLI 2011, “the GF book”).
However, in the decade that has passed since finishing the GF book, GF
has expanded from special-purpose controlled languages to general-purpose
processing of natural language, which is not covered in the GF book. At the
same time, education on grammar has become less wide-spread in schools
and universities. To fill the gap, a text of book size that explains the con-
cepts from the beginning, is more accessible than scattered introductions in
research papers. Our ambition is that it could serve as a general introduction
to grammar to computationally or mathematically minded readers, even if
their goal is not to write grammars themselves.

Since GF details can be gathered from the GF book and from free on-
like documentation, the focus in this book is on how grammar is used for
describing natural language rather than on the details of the formalism. Af-
ter years of experience with dozens of languages, we exploit the interlingual
perspective of GF and developed it further, and also put it into compari-
son with other approaches. The most important of these is the Universal
Dependencies (UD) programme.

UD also shares with GF the idea of common descriptions for multiple
languages. UD has also shown how grammatical concepts fit into data-driven
language processing. We will make use of UD concepts parallel to GF as a
bridge to data-driven approaches. In a nutshell, we have found UD useful
when analysing language, whereas the additional expressivity of GF is useful
for language generation, translation, and semantics.

Gothenburg 15 March 2020 (first version); March 22, 2024(current version)

Aarne Ranta

8 CONTENTS

Reading guide

The first four chapters are a non-technical introduction to computational
grammars, not presupposing any GF at all. In particular, Chapter 3 can
be used as an introduction to UD and enable readers to contribute to UD
treebanks. It is at the time of writing the only textbook-like introduction to
Universal Dependencies.

The GF part starts in Chapter 5. The GF formalism is introduced in
a hands-on fashion, meant to be sufficient for reading all the code in the
book. A reader used to programming by example rather than by tutorials
or manuals should be able also to catch up the knowledge needed for her
own GF projects. But the GF book (or the on-line tutorial and reference
manual) are recommended for readers who want a solid understanding of
programming in GF.

Chapters 5 and 6 discuss the general principles of morphology, lexicon,
and syntax implementation in GF. Chapter 7 takes a closer look at differ-
ent languages, focusing on more or less well-known peculiarities of them.
Linguistically oriented readers who are not aiming to program themselves
should be able to read this chapter to get more insight into how seemingly
huge differences of languages can be understood within a shared interlingual
structure.

Chapters 8 and 9 are, just like Chapter 7, independent of the coding
details of morphology and syntax. They are aimed to put grammar into a
wider perspective and show some typical uses of it, all tested in real-world
applications after the publication of the GF book.

Chapter 10 completes the presentation by looking at the algorithms un-
derlying grammar-based language processing. Some of it is well-known ma-
terial from language theory books, but it is here intimately connected to the
previous material.

All of the chapters can naturally be read in sequence. But there are
subsets that can be relevant for readers with more particular interests:

• general interest in grammar and languages: Chapters 1–4, 7
• writing grammars for new languages: Chapters 1–7
• building grammar-based systems: Chapters 1–4, 8, 9

Chapter 1

Introduction

In this chapter, we will first discuss the scope of grammar, as well as some
arguments for and against using grammar in natural language processing.
We will discuss questions such as normative vs. descriptive and theoretical
vs. empirical. The main conclusion is that grammar is useful, but some
common ways of understanding it are not fruitful (Section 1.1).

Section 1.2 is a miniature of much of the rest of the book, walking through
a simple example and discussing its grammatical analysis on different levels:
tokens, morphology, syntax. Many of the basic concepts are introduced here,
but they will be repeated in later chapters.

Section 1.3 introduces the idea that different languages can share a gram-
matical structure. This idea is both intellectually fascinating and useful in
practice. Even though most of the examples in the book are from English,
we will continuously mention other languages to cover the issues that might
pose problems to the interlingual approach.

1.1 Why grammar

A grammar in the usual sense is a set of rules describing a language. One
common view of grammar is that it is normative: the rules state what one
may and may not say or write. A normative grammar of English might, for
instance, forbid the use of “split infinitives”:

Don’t say You must learn to not split infinitives,
say You must learn not to split infinitives.

9

10 CHAPTER 1. INTRODUCTION

Normative grammars are in contrast to descriptive grammars, which de-
scribe how language is actually used. A descriptive grammar rule might say,
for instance,

There are two ways to form the negation of an infinitive: to+not+verb
(the split infinitive), and not+to+verb (the full infinitive)

Recognizing both kinds of infinitives is necessary when one wants to analyse
actual language, where both split and full infinitives do occur. In the science
of linguistics, theoretical as well as computational, descriptive grammar is
the completely dominating approach to grammar.

Nonetheless, encoding the normative values of different constructions is
an important part of descriptive linguistics. Thus one might want to mark
split and full infinitives in special ways and say that certain kinds of style
avoid the one or the other. In Natural Language Processing (NLP), such
norms are of particular importance when generating language. For instance,
when translating from one language to another, one should maintain the
style of the original. An extreme example is if some word or construction is
considered “vulgar”: then the translation should definitely not use it when
rendering “standard” language. On the other hand, when a vulgar expression
appears in a novel or in a film, then the natural way to translate it is with a
corresponding vulgar expression.

In this book, we will focus on descriptive grammar, but keep in mind the
need of describing and enforcing language norms — as long as they are a
part of a complete language description.

Assuming that the goal is to write a descriptive grammar, the next ques-
tion is its completeness. The ambition in much of modern linguistics is
to write grammars that exactly match the language — that allow “all and
only” the “grammatically correct” expressions; “grammatically correct” is of
course not taken in a normative sense, but in the sense “acceptable by com-
petitive language users”. Hence a grammar is a theory that can be tested by
comparing it to observed language use by competitive speakers and writers.

The completeness property is formalized in the mathematical theory of
formal languages. In this theory,

• a language L is a set of sentences
• a sentence of L is an element of the set L
• a grammar G(L) is a system of rules that produces all and only the
sentences of L

1.1. WHY GRAMMAR 11

The simplest possible grammar is a list of all sentence. For example, traffic
lights can be seen as a language that has three sentences: red, yellow, and
green, plus perhaps three more red-yellow, yellow-green and blinking yellow.
However, in the general case, a language is an infinite set of sentences. For
example, the set of expressions for natural numbers: 0,1,2,3,...,78409,... is
infinite, as there is no largest number. Therefore, one cannot list all the
sentences, but the grammar must be a set of production rules, which gen-
erate more and more numbers. A simple “grammar” of number expressions
would have two rules:

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are numbers
• if X and Y are numbers, then XY is a number

According to this grammar, any sequence of digits is a number. However, this
rule would be overgenerating, as it would also generate sequences such as
012, which we don’t want to count as number expressions. A more accurate
grammar is the following:

• 0 is a number
• 1, 2, 3, 4, 5, 6, 7, 8, 9 are positive numbers
• positive numbers are numbers
• if P is a positive number and D is 0 or a positive number, then PD is
a positive number

Natural languages are infinite sets of sentences, in the sense that one can al-
ways add new words to a given sentence without loss of grammaticality. This
book will therefore show how to write rules that cover infinite sets of natural
language expressions. However, unlike linguists that follow the formal lan-
guage paradigm, we will not attempt to cover “all and only” the grammatical
sentences. The fundamental problem in that approach is that there is neither
any mathematical definition, nor even a native speaker agreement, stating
what exactly is a grammatically correct sentence in a natural language. The
limits of grammaticality are vague, or, more accurately, gradient: some
expressions are “more grammatical” than others.

A typical case is the length of a sentence: when more words are added,
a sentence may become more and more difficult to understand, and thereby
less and less easy to recognize as a valid sentence of the language. It has for
intance been pointed out that center embedding, although “in principle”
unlimited, never occurs at depth greater than 3:

The rat ate the malt.

The rat the cat killed ate the malt.

12 CHAPTER 1. INTRODUCTION

The rat the cat the dog chased killed ate the malt.

(Karlsson 2007) A possible reaction to this is to say, in the descriptive spirit,
that English has no unrestricted center embedding, but only down to level 3.
This would lead to a more complicated grammar than unrestricted embed-
ding, because we would need three specific rules instead of one general rule;
you can get an idea of this by writing a set of rules for number expressions
that limits their size to for example six digits. Another reaction is to keep the
general rule but — not unlike when describing language norms — encode the
fact that its repeated use becomes less and less acceptable. This could then
guide for instance a language generation system to select a better expression
for the additional fact that the cow tossed the dog:

The malt was eaten by the rat that was killed by the cat that was
chased by the dog that was tossed by the cow.

using right embedding, which permits more repetition than than medial
embedding.

As a general strategy, we will draw a distinction between grammars that
analyse and generate language:

• The analysis of language should be more permissive than “only gram-
matically correct sentences”.

• The generation of language can be more restrictive than “all gram-
matically correct sentences”.

This can be shown as a diagram:

The boundaries of the actual language are not sharp, whereas the analysis
and generation rules implemented on a computer are formal systems, whose
boundaries (at least in principle) are well defined.

1.1. WHY GRAMMAR 13

Analysis and generation are of course related to each other: they operate
with the same concepts, and everything that is generated should also be
analysable — as suggested by the inclusion of the innermost ellipse in the
outermost one in the above picture. One technical way to achieve this is to
start with a set of generation rules and perform analysis by relaxing these
rules, or smoothing them. Smoothing can be performed both by adding
new rules, by relaxing old rules, or by using grammar-external techniques
such as machine learning. In this book, we will look at all these strategies.

But why write grammars at all — why not use machine learning (ML) all
the way? The counter-question is: use for what? NLP tasks such as machine
translation (MT) in large scale are mostly done by ML systems in these days,
with Neural MT (NMT) as the dominating technology at the moment of
writing this. Some scholars go as far as to claim that ML has made grammar
obsolete (REF), or that the gradient nature of grammaticality shows that
grammar is hopeless (Manning and Schütze, Lappin REF). One of the goals
of this book is to meet this challenge and show how grammar can be useful
in MT and other NLP tasks, both by itself and in various combinations with
ML. Moreover, we will make a distinction between grammar as a descriptive
and conceptual framework on one hand, and rule-based NLP systems based
exclusively on grammar rules on the other. Even though such rule-based
systems might be brittle and insufficient for many NLP tasks, a system based
on machine learning can profit from using grammatical concepts instead of
just surface-based data such as characted strings.

Most importantly, grammar is a scientific discipline valuable on its on
right. Together with Euclidian geometry, it is perhaps the only branch of
Ancient Greek science that is still mostly valid today; the Indian Panini
tradition is likewise a vital part of science even today. Anyone who has
studied the grammar of a language such as Ancient Greek, Sanskrit, Latin,
Finnish, or Arabic — just to mention a few — is likely to be impressed by
the depth of analysis performed by earlier scholars and bringing regularity
to an extremely complex system, resulting in a beauty similar to mathemat-
ics. In fact, grammar at its best is mathematics with respect to rigour and
explicitness (Lambek 1977).

Ignoring the tradition of grammar and the insights that can be learned
from it is a suboptimal starting point for serious analysis of language. It is
like approaching botany without knowing about Linnaeus’s classification of
plants.

On the other hand, making grammars computational helps keep them

14 CHAPTER 1. INTRODUCTION

connected to the actual language. From the research point of view, a gram-
mar is a theory, or at least a hypothesis, that should be tested against
empirical data. Implementing a grammar on a computer makes it possible
to test it on a much wider scale than what was possible for the grammarians
of the past.

1.2 A first example

In this section, we will present a miniature explaining the concepts that will
be thoroughly covered in Chapter 2. We will work out a single example of
grammatical analysis, which, although a linguistic “toy example”, illustrates
a considerable amount of issues.

The example is the English sentence

The black cat sees us now.

The lowest level of analysis breaks this sentence down to tokens, which
are sequences of characters separated by spaces. In addition, we introduce a
space before the full stop from the end turn the first word to lower case. This
is an example of a simple process od tokenization; in general, tokenization
can be a much more complicated task than this. The result is a sequence of
six tokens, separated by spaces:

the black cat sees us now .

The next level of analysis is parts of speech tagging, which classifies the
tokens into parts of speech such as noun, verb, etc. We also leave out the
full stop for the moment, although we could assign it “punctuation” as part
of speech. The result looks as follows:

the black cat sees us now

DET ADJ NOUN VERB PRON ADV

We use here a standard set of part of speech tags from Universal Dependencies
(UD,REF). Thus,

• DET = determiner
• ADJ = adjective
• NOUN = noun

1.2. A FIRST EXAMPLE 15

• VERB = verb
• PRON = pronoun
• ADV = adverb

We will come back to the definitions of these concepts in Section 2.3.

Part of speech tagging can be completed with lemmatization, which
specifies the lemma of each word, often called the dictionary form or
basic form:

the black cat sees us now

DET ADJ NOUN VERB PRON ADV

the black cat see we now

In addition to this, it can include morphological analysis, spelling out
what inflection form each of the words appear in. For instance, sees is the
“third person singular present indicative” of see, and us is the “accusative”
of we. We will use morphological tags as abbreviations for these form
descriptions:

the black cat sees us now

DET ADJ NOUN VERB PRON ADV

the black cat see we now

_ Posit Sg P3 Acc _

The underscore means that the morphological tag is of no interest, because
the word has only one inflection form. We will return to the classification of
inflection forms in Section 2.4.

Our grammatical analysis has up to this point produced four levels of
description: tokens, parts of speech, lemmas, and inflection forms. There
are more levels to come, and it is convenient to change the format a bit, by
rotating it 90 degrees from horizontal to vertical:

1 the the DET _

2 black black ADJ Posit

3 cat cat NOUN Sg

4 sees see VERB P3

5 us we PRON Acc

6 now now ADV _

16 CHAPTER 1. INTRODUCTION

1 the the DET _ 3 det

2 black black ADJ Posit 3 amod

3 cat cat NOUN Sg 4 nsubj

4 sees see VERB P3 0 root

5 us we PRON Acc 4 obj

6 now now ADV _ 4 advmod

Figure 1.1: A sentence analysed in a (slightly simplified) CoNLL format.
The columns express pieces of information on each word — from left to
right: token counter, surface word, lemma, POS tag, morphological tag,
head, dependency label.

This format is a part of the grammatical description standard called CoNLL.1

Each line in the CoNLL format contains one token and all information about
that token. Its first element is a token counter, numbering the elements
from 1 upwards.

The counter in the CoNLL format is used for specifying relations between
the words, and thereby to perform syntactic analysis. In syntax, we want
to say, for instance, that the (token 1) determines cat (3), and that black is
an adjectival modifier of cat (3). Such relations are expressed in the next
columns of the CoNLL format, shown in Figure 1.1.

The tags shown in the last column are dependency labels, which specify
the relation of each word to its head, which is the word whose position (token
counter) is given in the second-last column. The tags used here belong, again,
to the UD standard, and have the following meanings:

• det: determiner (typically of a noun)
• amod: adjectival modifier
• nsubj: noun subject (as opposed to sentential subjects)
• root: the “main word”, with no head itself: its head is the “word 0”
• obj: object
• advmod: adverbial modifier

The CoNLL format is designed to be easy to process by a computer; the
full format has some more columns than Figure 1.1, and the columns are
separated by tab characters. CoNLL is also easy to convert to a more human-
readable graphical format, known as dependency trees:

1Conference on Computational Natural Language Learning, Buchholz and Marsi 2006,
https://www.aclweb.org/anthology/W06-2920.pdf

1.2. A FIRST EXAMPLE 17

the black cat sees us now
DET ADJ NOUN VERB PRON ADV

?

det� �
?
amod � �

?
nsubj � �

?
obj

?

advmod

?

root

In this format, each word has an ingoing arrow from its head, marked by the
dependency label. The POS tags are marked under the words. The lemma
and the inflection form are usually not shown in this format: it is meant as
a visualization, not as the ultimate data format.

Now, why is the depency tree called a “tree”? It is tree in the mathe-
matical (graph-theoretical) sense, with the root word as root node, and each
word branching to its dependents, that is, the words whose head it is. Here
is a more tree-like visualization showing this clearly:

1. the 2. black

3. cat

det amod

4. sees

nsubj

5. us

obj

6. now

advmod

In this format, unlike the previous, the order of tokens cannot be read from
the visualization, but has to be given explicitly.

For most of the third millennium, dependency trees have been the most
popular form of syntactic analysis in computational linguistics. They have
some properties that make them easy to process by machine learning, and
we will return to these in Section REF. A more traditional kind of tree in
linguistics is phrase structure tree, often called simply syntax tree or
parse tree:

18 CHAPTER 1. INTRODUCTION

S

NP VP

Det CN VP Adv

the

AP CN V2 NP

now

A N

sees

Pron

black cat us

Here the words are grouped into phrases, which are grammatical units con-
sisting of several words. Each subtree represents a phrase, and the nodes are
categories, used for classifying phrase. Our example tree has the follow-
ing phrasal categories (categories that can contain several subtrees and
words):

• S = sentence
• NP = noun phrase
• VP = verb phrase
• CN = common noun phrase

The rest are lexical categories, which classify single words and hence just
another term for parts of speech:

• Det = determiner
• A = adjective
• N = noun
• V = verb
• Pron = pronoun
• Adv = adverb

Phrasal categories appear in different places in the tree and contain phrases
of different sizes:

• NP covers both the black cat and us
• CN covers both black cat and cat

1.3. THE INTERLINGUAL PERSPECTIVE 19

• VP covers both sees us now and sees us
Phrases of the same category, such as the common nouns black cat and cat,
satisfy an important property,

• Substitution test: phrases belong to the same category if can be
replaced by each other in the same contexts without loss of grammati-
cality.

Let us try the substitution test by replacing the CN and VP parts with
shorter phrases:

the cat sees us now

is indeed a grammatical sentence just like the original. However, if we swap
the NPs the black cat and us, we get

us sees the black cat now

which is not grammatical (at least if us is regarded as the subject as in the
normal English word order). What is happening here?

The answer is that the substitution test still works if we apply it in a
generalized way, by using different inflection forms of the phrases:

we see the black cat now

The choice of forms must obey the rules of agreement of English, so that
we select proper forms for each lemma. The substitution test in fact means
that lemmas of the same category can be replaced with each other, but their
forms must be changed to the forms valid for the original place of occurrence.
What is more, the forms of some other words may have to change as well.
This is what happens to the verb see in our example when the subject NP
is changed.

Defining agreement properly is one of the most challenging (and inter-
esting) tasks for a computational grammarian. We will return to it in Sec-
tion 5.1. Until them, we can be satisfied with grammars that do not imple-
ment agreement: when we are analysing language rather than generating it,
we do not need to care about the absolute correctness of the input.

1.3 The interlingual perspective

Talking about lemmas as opposed to concrete word forms is a linguistic
abstraction. Like in all sciences, abstractions are needed in linguistics to

20 CHAPTER 1. INTRODUCTION

understand the object of study beyond the immediataly obvious — in this
case, how the substitution test works. Abstractions come hand in hand with
generalizations, which enable predictions. For instance, a verb may have
some form that has never been observed even in a corpus of internet size be-
fore, but a competent speaker can immediately understand that form because
it follows from the generalization that all verbs and inflected in a certain way.
Grammatical generalizations can be contrasted to a “purely empirical” ap-
proach to linguistics (or any other discipline), which only accepts data that
has been seen before. Such an approach was advocated in the Renaissance
time by scholars who claimed that only the expressions that could be found in
the writings of classical Roman authors could really count as Latin (REF). In
modern days, similar views can sometimes be seen connected to data-driven
approaches (REF).

Abstractions that apply across languages are a particularly powerful gen-
eralization, sometimes made under the title of universal grammar. In this
book, while we start modestly by looking at individual languages in separa-
tion (Chapter 2), we will take the step to interlingual abstractions from
Chapter 3 on. The interlingual perspective is a fruitful way to understand
relations between languages — both similarities and differences. This is less
bold than the claim sometimes associated with universal grammar, according
to which all languages have exactly the same grammar. For us, it is enough
to say that the same concepts and structures apply to different languages,
not that they apply exactly the same way to all languages.

Let us start with the words in our simple example. If we ask how the
English verb see translates to French, anyone who knows a bit of these two
languages would say voir. However, this answer is not accurate when it
comes to the different forms of the verb. Thus the form see itself translates
differently for I see (je vois), we see (nous voyons), the infinitive see (voir),
and so on. In fact, the English verb has only 5 different forms, whereas
the French verb has 51. Nevertheless, it makes perfect sense to say that see
translates to voir, when we talk on the abstraction level of lemmas.

Another abstraction level that we need to relate languages with each other
is syntactic structure. When we translate the English sentence to French,
we get

le chat noir nous voit maintenant

The correspondences between the words are shown in the following word
alignment diagram:

1.3. THE INTERLINGUAL PERSPECTIVE 21

the

black

cat

sees

us

now

le

chat

noir

nous

voit

maintenant

The diagram shows that the words for black and cat are swapped, as are
sees and us. However, on the level of syntactic structure, we can still see the
same dependency labels relating those words: noir is an adjectival modifier
of chat, just like black is of cat, and the same applies to the verb and the
object:

le chat noir nous voit maintenant
DET NOUN ADJ PRON VERB ADV

��
?
det

?

nsubj� �
?

amod � �
?
obj � �

?
advmod

?

root

This can be seen even more clearly if we use the tree-like dependency format
and drop the token numbers. Then we get two trees with exactly the same
form, except that the words are different:

the black

cat

det amod

sees

nsubj

us

obj

now

advmod

le noir

chat

det amod

voit

nsubj

nous

obj

maintenant

advmod

What makes UD universal is precisely that it uses the same grammatical
relations for different languages. Thus it is possible to impose the same
syntactic structure on different language where the words are different and
appear in different orders. This structure is a linguistic abstraction on the

22 CHAPTER 1. INTRODUCTION

level of syntax in a similar sense as lemmas are abstractions on the level of
words; notice that we have also abstracted from the inflection forms here.

The interlingual perspective, which this book is about, means that we
look for linguistic abstractions that capture the essential features of equiva-
lent expressions in different languages. This “essence” is the common thing
that translation tries to preserve. It is different from semantics in the usual
sense: correct translation should not only preserve semantic meaning but
also express the meaning “in the same way”. Lemmas and UD dependency
trees approximate the essence of expression by abstracting away of “irrele-
vant” language-dependent details. We will go one step further and introduce
abstract syntax trees (AST).

An AST is, in a sense, a synthesis of the information contained in de-
pendency trees and phrase structure trees. It groups together words into
phrases, just like phrase structure trees do, but represents the words by their
lemmas rather than their inflected forms. Each grouping (subtree) is labelled
by a construction function, from which one can compute the heads and
dependency labels of each word. What is more, each construction function
is equipped with a linearization rule, which tells how it is converted to a
sequence of words with correct inflection forms in correct format.

The AST for our example sentence is shown in Figure 1.2. The same
tree covers both the English and the French sentence, via linearization rules
for those languages. Each node shows the category (as in the phrase struc-
ture tree) and the construction function (a concept proper to AST). The
branches under each construction function are decorated by UD dependency
labels. However, only the construction functions are strictly speaking neces-
sary, since both the categories and the dependency labels can be determin-
istically computed from them. Construction functions are ways to combine
AST units to larger units. The functions in Figure 1.2 have the following
meanings:

• PredVP, predication, combines an NP and a VP into a sentence (S)
• DetCN, determination, combines a Det and a CN to an NP
• ModCN, modification, extends a CN with an AP
• PositA, positive form selection, forms an AP from an A
• UseN, using a noun, forms a CN from a single N
• AdvVP, adverbial modification, extends a VP with an Adv
• ComplV2, complementation, gives an NP complement (such as ob-
ject) to a V2 (two-place verb)

• UsePron, using a pronoun, forms an NP from a single Pron

1.3. THE INTERLINGUAL PERSPECTIVE 23

PredVP : S

DetCN AdvVP

the_Det ModCN

PositA UseN

black_A cat_N

ComplV2 now_Adv

see_V2 UsePron

we_Pron

PredVP : S

DetCN : NP

nsubj

AdvVP : VP

the_Det : Det

det

ModCN : CN

PositA : AP

amod

UseN : CN

black_A : A cat_N : N

ComplV2 : VP now_Adv : Adv

advmod

see_V2 : V2 UsePron : NP

obj

we_Pron : Pron

Figure 1.2: Abstract syntax tree in its original form (left) and redundantly
decorated with categories and dependency labels (right).

• the Det, black A, cat N, see V2, we Pron, now Adv are construc-
tion functions representing single lemmas

What about the linearization rules? Anticipating the proper introduction in
Chapter 4, let us just so the rule of adjectival modification, which in English
poses the AP before the CN, in French after it:

lin ModCN ap cn = ap ++ cn -- English

lin ModCN ap cn = cn ++ ap -- French

These rules do not yet express the agreement in number and (in French)
gender, but just the order of concatenation (marked ++).

The functions and categories shown in Figure 1.2, together with a number
of others, have been successfully used to analyse over 40 languages from
different language families in the GF Resource Grammar project. Their
computer implementation enables automatic structure-preserving translation
between the languages. The translation proceeds by parsing (analysing) the
source language input as an AST, and linearizing the AST into the target
language. The term interlingua is thus appropriate for the AST, connecting
it to the tradition of interlingual translation.

24 CHAPTER 1. INTRODUCTION

Bulgarian

Chinese

English

Finnish

French

German

Hindi

Italian

Japanese

Spanish

Swedish

Thai

Interlingua Chinese

Swedish

Spanish

Japanese

Italian

Hindi

German

French

Finnish

English

Thai

Bulgarian

Figure 1.3: A translation system with 12 languages using transfer (left) vs
interlingua (right).

An interlingual system can work for many languages simultaneously, as shown
in Figure 1.3. The practical advantage is that one does not need to build
translation functions for pairs of languages, but just between each language
and the interlingua. For the 12 languages of Figure 1.3, this means 24 = 2×12
functions, instead of 132 = 12× 11.

What should there be in the interlingua? Ideally,
• An interligua should express everything that is needed for faithful trans-

1.3. THE INTERLINGUAL PERSPECTIVE 25

le chat noir nous voit maintenant

le chat noir nous voir maintenant

DET NOUN ADJ PRON VERB ADV

MascSg Sg MascSg PlP1 PresSg2 _

il gatto nero noi vedere adesso

il gatto nero ci vede adesso

Figure 1.4: Word-by-word translation from French to Italian. Each lemma is
replaced by its translation equivalent, and the same inflection form is selected
for it.

lation.

This clearly includes syntactic relations, such as subject and object, to get
the agreement and word order right. But it also includes features that are
normally taken as belonging to semantics rather than syntax. Thus words
should be analysed not only to lemmas but to word senses. For instance,
English drug in the sense of medicine has in most languages a different trans-
lation from drug as narcotic substance, and the interlingua should specify
which of the senses is meant.

Word senses and many other semantic features can be expressed in an
AST. But if we just look at the problem of translation, a more shallow
grammatical analysis can be sufficient, at least in special cases where we don’t
attempt perfect translation or if the languages are similar to each other. The
former perspective is standardly taken in main-stream MT systems, which
are meant to be helpful but not replace professional translation. The latter
perspective is presented by Apertium (Forcada et al. 2011), which is a system
for translating between closely related languages in a word-by-word fashion.
The algorithm is briefly:

• for each word, find its POS tag, lemma, and morphological features
• look up the lemma and its POS tag in a dictionary
• render the lemma by using the same inflection forms as in the source

Our running example illustrates the procedure when translating from French
to Italian, in Figure 1.4. The result in Figure 1.4 is a perfectly correct
translation.

However, even closely related languages may have differences that cause
translation errors with this method:

• Words can have different genders, which means that the agreement

26 CHAPTER 1. INTRODUCTION

of other words fails: French feminine la méthode, Italian masculine il
metodo (“the method”).

• Word order can differ: French le chat veut nous voir, Italian il gatto
vuole vederci (“the cat wants to see us”, order “us see” in French,
“see+us” in Italian without a space)

• Number of words can differ: French je veux le voir, Italian voglio vederlo
(“I want to see him”, Italian drops the subject pronoun and glues the
object with the verb)

The Apertium system itself has ways to cope with some of these problems,
but the examples illustrate the fact that simple word-by-word tranlation is
not perfect even for closely related languages.

Chapter 2

Grammatical analysis: words

In this and the following two chapters, we take a a systematic and compre-
hensive look at grammatical analysis on different levels. We will first assume
that the analysis is performed manually, that is, by an intelligent human
rather than a computer. The ability of manually analyse language is essential
for both rule-based and (supervised) machine learning approaches:

• To enable machine learning, someone has to annotate the linguistic
data with information such as part of speech tags and syntactic rela-
tions.

• To write grammatical rule systems, the grammarian must understand
what the rules are expected to produce.

The chapters will conclude with simple techniques for automating the anal-
ysis by the use of morphological lexicon (this chapter) and grammar rules
(Chapter 4). Details about the algorithms that enable automation are given
in Chapter refalgorithms.

This chapter is divided into following sections:

• Section 2.1 discusses what size of units grammatical analysis should
cover; the traditional answer is “sentences”, but this is not a fully
satisfactory answer.

• Section 2.2 discusses how text is divided to words and, more generally,
to tokens.

• Section 2.3 introduces the different parts of speech (lexical categories)
and how words are classified into them.

• Section 2.4 introduces morphological features and inflection, as appli-
cable to different parts of speech.

• Section 2.5 gives guidelines for building a morphological lexicon, which

27

28 CHAPTER 2. GRAMMATICAL ANALYSIS: WORDS

can be used for recognizing all forms of all words in a language.
Throughout this chapter and the next, we will use the notation of Universal
Depencies (UD), which is designed to be applicable to all languages. The UD
names for parts of speech, morphological features, and syntactic relations
have become a widely used standard even outside the UD programme itself.
One advantage of them is that they are easy to understand for anyone familiar
with grammatical concepts — for instance, that adjectives are called ADJ and
not for instance JJ as in the other popular tagset of Penn treebank (REF).

2.1 Units of analysis

Before starting the analysis, we need to decide what exactly we are analysing:
• What are the units of language that we are analyse in grammar?

The usual answer is sentences, and the first step in analysis must therefore
be the division of a text into sentences. The baseline algorithm for this is to
split up the text by the following definition:

• A sentence starts with a capital letter and ends with a punctuation
mark, one of “.?!”.

While this might work for 90% of sentences of English, there are exceptions,
such as the full stop used in abbreviations:

Many countries, e.g. Denmark, have closed their borders to stem
the spread of the virus.

A human reader would not split this sentence between e.g. and Denmark,
but the simple-minded algorithm would.

A more linguistic definition of a sentence says that it should contain a
main verb. However, if this definition is adopted, a sentence is no longer an
adequate unit of grammatical analysis. For example, the title of this book
would be ruled out, since it contains no verb.

A more general linguistic unit is called utterance, which is intuitively
defined as any sequence of words that could be uttered in a dialogue, or used
independently in communication e.g. as a title. An utterance can thus be
a sentence, a noun phrase (like typically a title), an interrogative (like why
in a dialogue), an answer to a question — actually, almost any grammatical
phrase. It might not even be a phrase in a grammatical sense, but just
something that is used for communication. For instance, a road sign could
say

2.2. TOKENS 29

Oslo 291

to indicate the distance to Oslo, and this text has its own structure and
meaning, which are interesting to analyse.

Utterances are often “shorter than complete sentences”, e.g. by lacking
a verb. However, from the interlingual perspective we can also be interested
in units that are longer. The adequate unit of analysis is then a translation
unit, and the analysis must find out everything that is needed for translation.
Question-answer pairs in a dialogue are a case in point:

What language do you speak?
Swedish.

What is your nationality?
Swedish.

The word Swedish is in the first dialogue a noun phrase standing for a lan-
guage. In the second dialogue, it is an adjective. In most languages, these are
two different words, and faithful translation should hence treat the question-
answer pair as a unit.

In the rest of this chapter, we will mostly assume the “utterance” as the
unit of grammatical analysis. This is what is done in most NLP systems,
including MT systems and UD parsing. We will not try to define the notion of
utterance precisely, and even less to automate the splitting of text to distinct
utterances.

However, the full picture of analysis has to extend from utterances to
text, which consists of an arbitrary number of utterances, including dia-
logues by many participants. This is needed for instance in the translation
of pronouns between languages that have different gender systeams. Thus
English it has three translations in German: er (masculine), sie (feminine),
es (neuter). The choice depends on the referent of the pronoun, which can
be given elsewhere in the text, or even outside the text. We will return to
units larger than utterances in Section 8.4

2.2 Tokens

Assuming that we have identified the utterances, the next step is to split
them into tokens. For languages using an alphabet such as Latin, Greek, or
Cyrillic, the following procedure comes a long way:

30 CHAPTER 2. GRAMMATICAL ANALYSIS: WORDS

1. Introduce a space on both sides of every punctuation mark (one of .!?.:;
and some more).

2. Lower-case the first token, unless it is a proper name or similar (given
in a special list).

3. Tokens are now the sequences of non-space characters separated by one
or more spaces.

Here is an example:

The cat sees John, but he does not see the cat.

the cat sees John , but he does not see the cat .

An obviously difficult step is (2): exhaustive lists of proper names and other
capitalized words are not always available. The result can moreover be am-
biguous: United can be the participle united or also the name of a football
club. To find out which, a deeper grammatical analysis is needed, and the
tokenization may postpone the decision by leaving alternatives.

Another difficulty is punctuation marks that do not separate tokens, such
as in e.g. and 11:30.

Depending on language, the main difficulty may be tokens not separated
by spaces or punctuation marks. A ubiquitous example is clitics: small,
typically unstressed words, which are are often glued to other words. We
saw in Section 1.3 the Italian clitic ci (“us”), which is sometimes a separate
token, sometimes glued to another word:

ci vedi “you see us”

vuoi vederci “you want to see us”

In English, the genitive ending ’s might be treated as a clitic, but it is easy
to recognize by the apostrophe. The only problem comes on the POS tagging
level, when it must be distinguished from abbreviated is and has.

The abbreviated negation n’t is more tricky. In addition to tokenization,
it may undergo normalization into the word not. There are at least three
different situations:

• straightforward introduction of token boundary: hasn’t tokenized as
has n’t, perhaps further normalized to has not

• token boundary with change of a token: can’t tokenized as can n’t,
won’t as will n’t

• word order order change after normalization: hasn’t he normalized to
has not he, converted to more grammatical has he not

2.3. PARTS OF SPEECH: AN OVERVIEW 31

Other clitics in English are ’ll, ’m, ’re, ’d (ambiguous between would and
had), ’ve.

The UD guidelines for tokenization are separate for each language, and
the practice may also vary from one language to the other. The English
guidelines can be found in

https://universaldependencies.org/en/index.html

In this book, we will most of the time just assume that tokenization is
performed in some way that is consistent with the later phases of analysis.
However, the problem cannot be simply ignored in those languages whose
script does not indicate word boundaries, such as Chinese or Thai. As we
will see in REF, it can then be better to leave tokenization to a later phase of
analysis, for instance, to syntactic parsing that decides on word boundaries
on the basis of what is possible to parse.

2.3 Parts of speech: an overview

Assuming an utterance split into tokens, the next step is to assign a part of
speech tag to each token. This task has two steps, where the latter cannot
be fully separated from syntactic analysis:

• Morphological analysis tells us that a word W can be form F of
lemma L in category C. The typical outcome is many analyses.

• Part of speech disambiguation determines which morphological
analysis is the correct one.

An example of ambiguity is the English token bears, with the analyses

bears bear N Plur

bears bear V PresSgP3

The main disambiguation techniques are
• rule-based: exclude analyses that do not fit syntactically correct sen-
tences;

• statistical: select analyses that lead to the most probable sequences of
tagged words.

For example, if we have the following ambiguity,

bears are shy

N Plur V PresPlur A

V PresSgP3

https://universaldependencies.org/en/index.html

32 CHAPTER 2. GRAMMATICAL ANALYSIS: WORDS

we might have a rule-based analysis that recognizes the sentence where the
first word is a plural noun, but no rule where that fits when it is a verb.
A statistical analysis, on the other hand, would look at a corpus of previ-
ously POS-tagged data and notice that the combination N-V-A is much more
common than V-V-A.

The POS tagging phase can in principle be performed as a part of the
syntactic analysis proper, but it is often performed as a light-weight pre-
processing by using statistics or heuristic rules. We will here simply that a
human can do it accurately by using her knowledge of syntax and semantics,
and look at the possible ways to automate it Chapter 10.

The plan for this section is hence to go through the different parts of
speech and explain what words belong to them. We will start with the
Universal Tag Set used in UD treebanks and listed in

https://universaldependencies.org/u/pos/index.html

Table 2.3 is based on this list, with example words taken from English PUD
(Parallel UD) treebank. The table shows several examples that occur with
many POS tags, for instance, well.

The Universal Tag Set overlaps partly with other classifications of words
that appear in other computational approaches and grammar books. The
essential thing is not the tags themselves, but the grammar terms and how
they are defined: how do we select the correct classification of a word?

Linguistic tradition uses three different kinds of criteria for classifying
words (cf. Lyons 1967):

• Semantic: what kind of things does the word stand for?
• Syntactic: what syntactic combinations is the word used in?
• Morphological: what inflection forms and morphological features
does the word have?

Semantic criteria are common in popular grammar descriptions. There one
can read for instance that “nouns stand for objects, adjectives for quali-
ties, and verbs for actions”. But they are uncommon in computational
approaches, because their application is hard to decide by the computer.
However, they can still be relevant in computational semantics: the question
“what kind of things” is then answered by a logical type, which is a for-
malized classification of semantic objects. We will return to this notion in
Section 8.1.

The syntactic criterion is can be seen as a special case of the substitu-
tion test for phrases, introduces in Section 1.2: words belong to the same

https://universaldependencies.org/u/pos/index.html

2.3. PARTS OF SPEECH: AN OVERVIEW 33

tag grammar term examples

ADJ adjective big, other, particular
ADP adposition after, on, within
ADV adverb now, again, apparently, well
AUX auxiliary have, should, will
CCONJ coordinating conjunction or, and, but, either
DET determiner a, the, this
INTJ interjection yes, well, hmmm
NOUN noun car, quality, well
NUM numeral one, two, billion, 400, 30.00, 9:30
PART particle not, to, ’s
PRON pronoun I, it, my, who
PROPN proper noun Ahmed, September, San
PUNCT punctuation . , ! ? : ; () ” -
SCONJ subordinating conjunction that, because, after
SYM symbol $ % + / :)
VERB verb find, know, be, have
X other etc, eg

Table 2.1: Universal part of speech in UD standard 2, together with examples.

34 CHAPTER 2. GRAMMATICAL ANALYSIS: WORDS

lexical category if they can be substituted for each other without loss of
grammaticality.

Syntactic and morphological criteria are tightly connected, especially in
languages with rich morphology. As a general rule,

• The morphological features of each lexical category match with the
agreement rules in syntactic combinations.

A typical example is nouns and adjectives in languages like French and Ital-
ian:

• syntactically,
– adjectives are words that modify nouns
– adjectives agree to nouns in gender and number

• morphologically,
– nouns inflect for number and have an inherent gender
– adjectives inflect for both number and gender

The interplay of morphological inflection and syntactic agreement makes
grammar writing into a complex puzzle. At the same time, it creates much of
the beauty and coherence of computational grammar, and can be described
in compact and elegant ways if proper formal means are used.

Morphological inflections are largely language-specific: in English, for in-
stance, nouns have no gender, and adjectives are inflected for neither number
nor gender. In some languages, e.g. Chinese, morphological POS definitions
are hardly applicable at all, as there is no inflection. On the other hand, syn-
tactic combinations are largely universal: adjectives can in all languages be
used for modifying nouns. In the interlingual perspective, we can sometimes
best identify “adjectives” and “nouns” by looking for translation equivalents
of words that have clear morphological indicators in some other language.

Furthermore, some generalizations can be made about the assignment of
morphological features to parts of speech, of the form

• if a language has feature F, then words in category C tend to have F
For example,

• if a language has cases, then nouns are likely to be inflected for case.
This principle is not watertight, but it can be a good guideline when ap-
proaching a new language. Again, what makes it work is the interplay with
agreement in syntactic combinations: nouns are typically used as subjects
and objects of verbs, and these positions are marked by different cases.

Because of the importance of syntactic criteria in the classification of
words, we will postpone its detailed discussion till after introducing both
morphological features and syntactic relations.

2.4. MORPHOLOGICAL FEATURES AND INFLECTION 35

Yet another important distinction among words is between content words
and function words. Content words are easy to list: nouns, adjectives,
verbs, adverbs, interjections. Languages typically have thousands of each of
them, and they are moreover open classes, which means that new content
words are often added to the languages. Function words are divided into
many more categories, such as pronouns, determiners, conjunctions, prepo-
sitions, but these are closed classes with very few words in each, and new
words rarely added. But if we apply the morphological and syntactic criteria
rigorously, we will end up with a large number of classes, whose words behave
differently either in morphology or syntax or both.

2.4 Morphological features and inflection

The inflected forms of a word can be collected to an inflection table. The
table allows us to look up the forms for any given features, and also, maybe
less quickly, the features belonging to any given form. The most well-known
inflection table is probably the one for the Latin noun rosa (“rose”) or some
other similar noun:

singular plural
nominative rosa rosae
accusative rosam rosas
genitive rosae rosarum
dative rosae rosis
ablative rosa rosis
Here are some general conventions used in inflection tables:

• A table operates on a number of features, here on number (singular
or plural) and case (listed on the leftmost column).

• The word forms are written in italics, often with endings marked in
boldface; the rest of the form is the stem of the word.

• Some forms appear in several cells of the table: these are known as
syncretic forms.

• The table can be applied to other words by just changing the stem —
for instance, from ros to mens (mensa, “table”).

The last-mentioned feature, changing the stem, makes the table usable as a
function where the stem acts as variable. A function producing the inflection
table of a word is called a paradigm. Paradigms for nouns and adjectives are
traditionally called declensions; for verbs, they are called conjugations.

36 CHAPTER 2. GRAMMATICAL ANALYSIS: WORDS

The paradigm shown above is known as “the ”first declension” of Latin
nouns. Traditional grammars distinguish between five declensions in Latin,
but these do not exactly match all the different functions there are for in-
flecting Lating nouns. Thus for instance the “second declension” has three
variants (for nouns ending in us, er, or um). There is also a considerable num-
ber of nouns that do not fit the usual paradigms, and are therefore called
irregular.

Some computational approaches to paradigms introduce a separate paradigm
for every different set of endings that can be attached to a stem. Thus for
instance Swedish nouns, which traditional grammarians classify into five de-
clensions (no doubt inspired by Latin), are given as many as 345 (CHECK)
declensions in the first computational morphology of Hellberg (1976, REF).

While strinct stem+lemma based paradigms are mechanically applica-
ble and more accurate than the traditional five declensions, they can result
in unintuitive analyses. For instance, English noun paradigms would then
include

fly — flies

where the “stem” is fl. This description can be avoided by letting the
paradigms perform predictable variations in stems and endings. Thus the
English plural s can trigger the predictable variations shown in fly-flies and
baby-babies, but also in kiss-kisses and bush-bushes. We will call such inflec-
tion functions smart paradigms.

A prerequisite for paradigms to work is that

• all words in the same lexical category have the same morphological
features.

This is actually the essence of the morphological definition of parts of speech.
Thus for instance all Latin nouns inflect for number and case, and the first
declension (or some of the other four) can be applied to them. This is a
strong generalization, which makes senses even if it seems to be easy to find
counterexamples:

• Some nouns don’t have all the forms — they might for instance appear
only in the plural (these are known as plurale tantum nouns).

• Some nouns are also inflected for gender (e.g. imperator “emperor”
(masculine) imperatrix “empress” (feminine)).

• Some declensions (the second) also have a sixth case, the vocative.
• Some forms are the same for all words (the dative and ablative plural).

2.4. MORPHOLOGICAL FEATURES AND INFLECTION 37

Similar objections apply to most languages, e.g. to English with plurale
tantum nouns such as scissors, as well as feminine-masculine pairs such as
emperor-empress. It is up to the grammar writer to choose one of the possible
solutions:

• to split a class to several ones, each of them defined by what forms
there are in the inflection table (this makes sense for frequent classes
such as plurale tantum);

• to permit empty slots in an inflection table (this makes sense for single
words accidentally missing some forms);

• to redefine the table layout in a non-traditional way, so that for instance
dative/ablative distinction in Latin only applies to the singular.

The layout of the table specifies what inflection forms there are in the table,
not how they are built. We will use the term inflection type to denote
this layout. It is similar to the notion of datatype in programming lan-
guages — in fact, as we will see, it can be accurately defined as such a type
when the grammar is formalized, even in complicated cases such as missing
dative/ablative distinction in the Latin plural (Section˜\ref{parameters}).

The morphological criterion of parts of speech can thus be partly defined
as the inflection type. Another part is inherent features. These are mor-
phological properties that a word “just has”, instead of being inflected for
them. For nouns in Latin (as well as French, Italian, Swedish, etc), gender is
an inherent feature. The Latin noun rosa has the inherent gender feminine,
and there is no “masculine form” or “neuter form” of rosa. In contrast to
this, adjectives in Latin (as well as French, Italian, Swedish, etc) have gender
as an inflectional feature, in addition to the features belonging to nouns.
The “logic” of this comes from syntax: adjectives have to agree in gender to
the nouns that they modify. Since the noun cannot change its gender, it is
the adjective that has to comply.

The morphological definition of a lexical category (a.k.a. part of speech)
can now be given as a combination of two things:

• inflectional features, i.e. what features the words in this category are
inflected for;

• inherent features, i.e. what features the words have as fixed properties.

Inflection types and inherent features are built from the same set of features.
What features there are, and what are their possible values, depends on
language. Table 2.4 gives a list of the most common features and some of
their values, using the UD terms. The source is

38 CHAPTER 2. GRAMMATICAL ANALYSIS: WORDS

feature typical values

Number Singular, Plural, Dual (in e.g. Arabic)
Gender Masculine, Feminine, Neuter, Common (in e.g. Swedish and Dutch)
Person 1, 2, 3
Case Nominative, Accusative, Genitive, Ergative
Degree Positive, Cmp (comparative), Superlative
Tense Past, Present, Future
Mood Indicative, Imperative, Subjunctive
Aspect Perfect, Imperfect, Progressive
Voice Active, Passive
Example:

Mood=Ind|Number=Sing|Person=3|Tense=Pres
“third person singular present indicative”

Table 2.2: Some morphological features in in UD standard 2, together with
their typical values, and an example of a form description. The value names
are usually prefixes of full terms, here distinguished by the use of typewriter
font.

https://universaldependencies.org/u/feat/index.html

As shown in Table 2.4, form descriptions in the UD standard are lists
of feature=value pairs separated by vertical bars and sorted alphabetically.
We will not follow this convention everywhere in this book, because of its
verbosity, but we will use the standard feature and value names whenever
possible.

The traditional term for morphological features such as number and gen-
der is grammatical category. We will, however, avoid this term, since we
follow the modern linguistic use of the term “category” for classes of words
and phrases.

Depending on language, the morphological definition of parts of speech
can be more or less distinctive. In Chinese, it is practically useless. In
English, it takes us some way, distinguishing between

• nouns, with inflectional number (as well as case, if the ’s genitive is
counted)

• adjectives, with inflectional degree

https://universaldependencies.org/u/feat/index.html

2.5. MORPHOLOGICAL LEXICON 39

• verbs, with inflectional tense and (to some extent) number and person
• personal pronouns, with inflectional case (I, me, and the possessive my
if counted) and inherent number and person

However, it also leaves us with many classes with no inflection: adverbs,
conjunctions, prepositions, etc. To distinguish these classes from each other,
we need to apply syntactic or semantic criteria.

2.5 Morphological lexicon

The largest part of a computational grammar system is usually the lexicon,
which gives information about the words of the language. Natural languages
may have up to several hundred thousand lemmas, of which some 50,000 can
be in active use. The total number of word forms can be millions, as for
instance Latin verbs have hundreds of forms. Some word forms might never
appear in a given corpus of texts (even if the corpus is the whole internet),
but still “exist” in the sense of being predicted by the paradigms and easily
producible by competent speakers when requested.

From the computational grammar point of view, there are two important
requirement for the morphological lexicon:

• Efficiency: it should enable fast analysis and synthesis of word forms.
• Effort: it should be constructible and extensible by the minimum of
work.

The implementation techniques and examples presented in this book enable
analysis speed of millions of words per second on a modern laptop computer,
so efficiency in the sense of speed should not be an issue. However, the size
of the lexicon can be a bigger problem, which can also affect the speed if for
instance the computer’s memory is small. limited. The main efficiency issue
we shall consider here is hence the size of the lexicon.

The effort requirement covers both the manual construction and machine
learning of lexical resources. A good approach to both is to enable building
every lexical entry from the minimal amount of information. Traditional
dictionaries are often presented in this way. To define the word rosa in a
Latin dictionary, it is not necessary to to show the entire inflection table,
but just a part of speech tag (“n” for nouns), a reference to the paradigm
(“I” for the first declension), and, in the case of nouns, the inherent gender
(because some nouns of the first declension are masculine):

rosa n.f. I

40 CHAPTER 2. GRAMMATICAL ANALYSIS: WORDS

An alternative, often used in Latin dictionaries, is to give the nominative and
genitive singular forms:

rosa, -ae n.f.

This practice is based on the fact that these two forms almost always deter-
mine the declension and thereby all the other forms.

Most dictionaries follow the latter practice, where each class of words has
a conventional list of characteristic forms that determine all other forms.
Another example is English verbs: for regular verbs, it is enough to give the
infinitive

walk v.

The reader is assumed to be able to expand this to the list with regular
endings:

walk (infinitive), walks (3rd person singular present), walked
(past indicative and participle), walking (present participle)

Competent dictionary users may be assumed also to apply the regular verb
paradigm to cases where predictable stem and ending variations are needed.
Here are some examples, where the arrow marks the point from which the
reader is assumed to produce the full forms:

wash v. −→ wash, washes, washed, washing

use v. −→ use, uses, used, using

cry v. −→ cry, cries, cried, crying

stop v. −→ stop, stops, stopped, stopping

The last example, final consonant duplication, is not always predictable from
the infinitive, in which case the dictionary may give a second form:

omit, omitted v. −→ omit, omits, omitted, omitting

vomit, vomited v. −→ vomit, vomits, vomited, vomiting

The most obvious case of unpredictable inflection is so-called irregular verbs,
which are specified by three characteristic forms:

sing, sang, sung v. −→ sing, sings, sang, sung, singing

sit, sat, sat v. −→ sit, sits, sat, sat, sitting

2.5. MORPHOLOGICAL LEXICON 41

The only verbs in English where three characteristic forms are not enough
are

• have (with the 3rd person singular present has)
• be (with eight different forms)
• auxiliary verbs with special negations (such as can’t, cannot of can).

What is more, no verb other than be and the auxiliaries has more than five
different forms. These five forms are thus all that have to be stored in the
inflection tables of verbs. The morphological lexicon should not generate
compound “forms” such as has walked, or distinguish between walk as in-
finitive and the five present tenses (1st and 2nd person singular, all persons
plural). These distinctions are of course needed in syntax, to define subject-
verb agreement, but they do not belong to morphology, because they never
result in different word forms.

A lexicon giving the “full picture” of the words of a language should also
indicate

• Sense distinctions: many words have different senses, which may
have different translations in other languages.

• Valencies: a verb may be used as transitive as well as intransitive,
and in different combinations with complements, prepositions, and par-
ticles, and these uses may have different senses translations; the same
applies to some nouns and adjectives as well.

These aspects are of essential on higher levels of grammatical analysis, in
particular from the interlingual perspective; we shall return to this task in
Section 5.6. But the morphological lexicon has its own function, and it should
avoid all redundancy: it should

• Minimize the number of forms stored for each class of words.
• Minimize the number of forms that the author of the lexicon needs to
give.

• Minimize the number of entries, so that each combination of lemma,
POS, inflection table, and inherent features occurs only once.

These requirements help to keep the size of the lexicon to the minimum. At
the same time, they are consequences of the DRY principle, which applies to
all program design:

• DRY: Don’t Repeat Yourself.
Let us summarize the design principle with a concrete example from English.
The word lie is both a noun and a verb, and the verb has two paradigms —
the regular lie-lied and the irregular lie-lay-lain. This means we need three
entries in the morphological lexicon:

42 CHAPTER 2. GRAMMATICAL ANALYSIS: WORDS

lie n. −→ lie, lies

lie v. −→ lie, lies, lied, lied, lying

lie, lay, lain v. −→ lie, lies, lay, lain, lying

The verbs — the irregular one in particular — have several valencies and
combinations, such as lie down, lie ahead. A single valency pattern can have
different senses, such as “be in a lying position” vs. “be located somewhere”.
All of these will need to have different entries in an interlingual translation
lexicon. But that lexicon should not repeat the morphological information,
but inherit it from the morphological lexicon.

We will return to the actual implementation of morphological lexicon in
Section 5.2, where we use GF as a tool for both building the lexicon and
using it for analysis and synthesis. However, we can already come a long way
in NLP with a very simple format of lexicon: the full-form lexicon, which
lists are lemmas with their POS tag, inflection forms, and inherent features.
The forms are given in a fixed order, in which each position corresponds to
a specific form description. A full-form lexicon entry might look as follows:

rosa N F rosam rosae rosae rosa rosae rosas rosarum rosis

You might want to compare this with the inflection table given in the previous
section. Then you can notice that the last form represents both the dative
and ablative of plural: since these are always the same, storing them both in
the full-form lexicon would be redundant.

A typical file format for a full-form lexicon is one entry per line, forms
separated by spaces or tabs. More sophisticated formats such as XML or
JSON are of common as well and have some advantages such as standard
programming tools.

The generation of forms from a full-form lexicon is made by looking up
the lamma and POS tag, and picking the relevant position on the same line.
For example the genitive plural in the Latin example is the tenth word of the
line. Morphological analysis can be performed by collecting all word forms
of the lexicon in a search tree or a finite-state automaton.

Chapter 3

Grammatical analysis:
dependencies

In this chapter, we extend grammatical analysis from words to utterances.
We will continue with the assumption that the analysis is carried out manu-
ally, and focus on giving the intuition for how to do this.

• Section 3.1 lists the most important syntactic relations in Universal
Dependencies (UD).

• Section 3.2 takes a detailed look at the relations between the root of a
clause and its dependents.

• Section 3.3 takes a detailed look at the relations involving words in
nominal categories.

• Section 3.4 takes a detailed look at subordinate clauses.
• Section 3.5 takes a detailed look at coordination structures.
• Section 3.6 takes look at the UD analysis of various remaining cases,
which might not have any standard grammatical description. As the
aim of UD is to enable annotating every word in every utterance that
might appear in any place where language is used, it needs to define
some ways to deal with such cases.

The ambitious goal of this chapter is to enable the reader to analyse the
dependency relations in arbitrarily complex sentences and thereby to perform
tasks such as contributing to UD treebanks.

43

44 CHAPTER 3. GRAMMATICAL ANALYSIS: DEPENDENCIES

3.1 Syntactic relations in Universal Depen-

dencies

Syntactic relation between words are the building blocks of dependency trees.
The UD standard lists a set of relations in

https://universaldependencies.org/u/dep/index.html

Most of them are shown in shown in Table 3.1, just omitting some rare ones.
The relations and their explanations are copied from the UD list. The third
column shows the POS tags of the dependent-head pairs of words where the
relation is typically used; this data is collected from

en pud-ud-test.conllu, UD version 2.3

This is the Parallel UD treebank, which includes the same set of trees trans-
lated into several languages. This treebank will be repeatedly used in this
book, as it is interesting for the interlingual perspective.

Usually at least one of the words can belong to several groups of POS
tags:

• S, root words in sentences: VERB but also ADJ, NOUN, ADV, PROPN
• N, nominal classes: NOUN, PRON, PROPN, NUM
• C, (almost) any class

Some relations have subclasses, marked with a colon. The most important
subclasses used for English are included in Table 3.1.

The treebank has dependency trees for 1000 sentences, in which there
are a total of 21,183 words. The 20 most frequent syntactic relations are
listed in Table 3.1, both by the relations alone and their combinations with
dependent-head types.

Let us assume that we have an utterance tokenized, POS tagged, and
morphologically analysed. Using the (simplified) CoNLL notation, we have
then a list of word descriptions of the form

ID word lemma POS morpho

which we must complete by marking its head and the relation to the head:

ID word lemma POS morpho head relation

When we do this manually, a good way to proceed is top down:

https://universaldependencies.org/u/dep/index.html

3.1. SYNTACTIC RELATIONS IN UNIVERSAL DEPENDENCIES 45

relation explanation dependent-head example

acl clausal modifier of noun S-N the moon as we see it
acl:relcl relative clause modifier S-N the moon that we see
advcl adverbial clause modifier S-C I leave if she goes
advmod adverbial modifier ADV-C he sleeps now
amod adjectival modifier ADJ-N black cat
appos appositional modifier N-N Macron, the president
aux auxiliary AUX-S does he sing
case case marking ADP-N on the moon
cc coordinating conjunction CCONJ-C and dogs
ccomp clausal complement S-C I know that he runs
compound compound N-N data science
conj conjunct C-C cats and dogs
cop copula AUX-S he is old
csubj clausal subject S-S that is moves is clear
dep unspecified dependency C-C (if nothing else works)
det determiner DET-N the cat
expl expletive PRON-S there is hope
fixed fixed multiword expression ADP-C because of
flat flat multiword expression PROPN-PROPN Adam Smith
iobj indirect object N-VERB she gave us a hint
mark marker PART/SCONJ-S to go
nmod nominal modifier NOUN-NOUN man on the moon
nmod:poss possessive modifier N-NOUN my cat
nsubj nominal subject N-S John walks
nsubj:pass nominal subject of passive N-VERB John was seen
nummod numeric modifier NUM-N five cats
obj object N-VERB she sees us
obl oblique nominal N-S she comes with us
parataxis parataxis VERB-VERB I said: come here
punct punctuation PUNCT-S I see
root root S- John **walks
xcomp open clausal complement S-S I want to go

Table 3.1: Syntactic relations used in UD standard 2, together with their
typical uses. In the examples, the dependent is boldfaced and its head
underlined. We have left out eight rare relations, but they are all explained
in the text.

46 CHAPTER 3. GRAMMATICAL ANALYSIS: DEPENDENCIES

relation occurrences

case 2499
punct 2451
det 2046
nsubj 1393
amod 1336
obl 1237
nmod 1076
obj 876
advmod 852
compound 810
conj 634
cc 574
mark 556
aux 410
nmod:poss 365
cop 316
advcl 293
aux:pass 274
xcomp 271
nummod 254

relation occurrences

punct 2339
obl 1456
nsubj 1104
nmod:poss 966
obj 924
amod 909
advmod 872
conj 688
cc 585
nmod 393
flat:name 389
nsubj:cop 372
cop 365
aux 362
case 318
mark 313
nummod 311
advcl 283
det 245
acl:relcl 227

Table 3.2: Top-20 syntactic relations and their uses in English (left) and
Finnish (right) Parallel UD (PUD) treebanks, which are translations of each
other. The root relation appears once in every tree, hence 1000 times in
the treebank. The table shows clearly two differences between the languages:
Finnish uses case inflection instead of adposition, resulting in a low frequency
of case, and has no articles, resulting in a low frequency of det.

3.2. THE MAIN CLAUSE AND ITS PARTS 47

1. mark the root of the tree (yes, the root is the top of the tree in this
world!)

2. mark the immediate dependents of the root
3. mark the immediate dependents of these, and so on
4. until all words have been marked with exactly one head and relation

Let us now go through the relations in the order that they typically appear
in the top down procedure. The discussion is in a way a condensed version of
the UD annotation guidelines, which we have organized to support top-down
analysis. We will moreover mention some problems in places where, from
the interlingual perspective, the guidelines are not quite as universal as one
could hope.

We will show several examples of each relation. In these examples, we
will follow the convention to set the dependent word under discussion in
boldface, and with its head underlined. Sometimes we will also mark the
relation in square brackets after the example:

she has not walked [nsubj]

3.2 The main clause and its parts

A clause is a phrase with a verb and its arguments, which are

• the subject of the verb
• the complements of the verb, which include one or more of

– an object, also known as direct object, typically a noun phrase
without a preposition

– an indirect object, another noun phrase without a preposition
(not very common)

– oblique objects, noun phrases with prepositions

The valency of the verb determines which arguments it has. Thus for in-
stance the verb prefer in the sentence

John prefers wine to beer

has the arguments

• subject John
• direct object wine
• oblique object to beer

48 CHAPTER 3. GRAMMATICAL ANALYSIS: DEPENDENCIES

as shown in the full picture:

John prefers wine to beer
PROPN VERB NOUN ADP NOUN

� �
?
nsubj � �

?
obj ��

?
case

?

obl

?

root

In addition to the more or less compulsory arguments, a clause can have
adjuncts, which are optional modifiers. The valency neither requires nor
restricts the number of adjuncts, so that they can be added or removed
without affecting grammaticality:

John definitely prefers beer to wine today if he is thirsty

has the adjuncts
• definitely, a sentence adverbial
• today, an adverbial modifier
• if he is thirsty, a clausal modifier

Here is the full picture:

John definitely prefers beer to wine today if he is thirsty
PROPN ADV VERB NOUN ADP NOUN ADV SCONJ PRON AUX ADJ

?

nsubj� �
?

advmod � �
?

obj ��
?
case

?

obl

' $
?

advmod ' $
?

mark#
?

nsubj��
?
cop

' $
?

advcl

?

root

Clausal modifiers are themselves clauses, which can have clausal modi-
fiers, and so on. They are examples of subordinate clauses, which repeat
the same structure with a verb and its arguments and adjuncts.

The concepts used above come from traditional grammar. They are also
reflected in UD, which however makes some deviations from the tradition, as
we will see below.

3.2.1 The root

The root of a clause is typically the main VERB in agreement of the main
clause, ignoring auxiliary verbs (AUX):

John walks [root]

John does not walk [root]

John has walked [root]

3.2. THE MAIN CLAUSE AND ITS PARTS 49

If the verb is the copula (be), the root is its complement ADJ, NOUN, or
ADV:

John is old [root]

John is a doctor [root]

John is here [root]

If the utterance has no verb, the root can be of almost any category:

Probably the best beer in the world. [root] (NOUN)

Why ? [root] (ADV)

She will. [root] (AUX)

The choice of the root follows the general principle in UD:

Heads are content words.

This is why other words become heads if the main verb is a copula. The
same applies to auxiliary verbs such as do (when negating a verb) and will
(marking the future tense). From the interlingual perspective, the principle
makes sense, because function words are often not words in all languages:
they can be inflectional features or just omitted, like for instance the copula
in Russian or the future tense in French. In such cases, a function word as
a head would make it impossible to build a valid dependency tree. Notice,
however, the sentence she will (used e.g. as a confirmation) has an auxiliary
as its head, since there is no main verb.

The root appears always in themain clause, as opposed to subordinate
clauses. In subordinate clauses, the main verb (or similar) becomes the head
of other words, and the dependent of the head of the dominating clause. We
will return to subordinate clauses below.

For the reader familiar with symbolic logic, the root of a sentence is
similar to a predicate, of which some other words are arguments. Thus
we could translate Thus

John loves Mary −→ love(John,Mary)

In this tradition, it is natural that copulas are ignored, so that

John is old −→ old(John)

Auxiliaries and other modifiers may become operators outside the predicate,
such as tense and negation:

John has not slept −→ not(Past(sleep(John)))

50 CHAPTER 3. GRAMMATICAL ANALYSIS: DEPENDENCIES

3.2.2 The subject

The nominal subject (nsubj) is a word in a nominal category (N in
Table 3.1), that is, a NOUN, PRON, PROPN, or NUM, linked to the main
verb (or other content word head) of the clause (root in the case of the main
clause):

John walks [nsubj]

the black cat walks [nsubj]

she walks [nsubj]

Notice that if the subject is a complex noun phrase such as the black cat,
it is the head noun that is marked as nsubj. The dependents of nouns are
discussed below, under amod, det, and nmod.

If the main content word is other than verb, the subject is in UD linked
to it and not to the copula:

John is old [nsubj]

This decision in UD differs from traditional grammar, where the subject is
always the subject of a verb.

In English and some other languages, subjects of passive sentences are
marked with the extended label nsubj:pass:

the black cat was seen [nsubj:pass]

The purpose of this is to distinguish it from the “semantic subject” of the verb
(the one who saw the cat). Semantic subjects of passives can be expressed
as agents, but need not be expressed at all.

A clause can also have a formal subject, called expletive (expl) in
UD. The expletives in English are there and it, classified as PRON:

there is an elephant in the room [expl]

it is too cold in the room [expl]

The head of the expletive there is the verb be. For it, the head is the same
as if it were a normal nsubj.

But how do we distinguish the expletive it from a normal noun phrase?
One possible test is to see if it can be an answer to a question:

What is too cold in the room?

3.2. THE MAIN CLAUSE AND ITS PARTS 51

This is clearly not a quesion answered by it is too cold in the room.
In sentences with expletive there (see expl below), the subject is “the

thing that exists” and comes usually after the verb:

there is an elephant in the room [nsubj]

From the interlingual perspective, many languages may not have words
for formal subjects at all. In particular, existentials (there) are expressed by a
large number of different constructions. We will return to them in Chapter 5.

3.2.3 Complements and adjuncts

The direct object (obj), just like subject, is a word in a nominal category,
linked to the main verb:

she sees John [obj]

she sees the black cat [obj]

The object is typically in the accusative case, if the language has such a case,
but it can also be in some other case, such as dative in German:

Johann folgt diesen Männern [obj] (“John follows these men”)

The principle is:
• if the verb has just one non-prepositional completent, it is marked obj,
whatever its case is.

The indirect object (iobj) is an additional complement to a verb that
already has an object:

she gave me a hint [iobj]

where rose is the obj object. The indirect object is typically in the dative
case, if the language has one, but it can also be in some other case, even
another accusative; notice that English makes no distinction between these
cases.

Complements that have prepositions are marked as oblique (obl):

she gave a hint to me [obl]

There is no distinction in UD between complements and adjuncts. Hence
me is an oblique nominal attached to walks in

52 CHAPTER 3. GRAMMATICAL ANALYSIS: DEPENDENCIES

John walks with me [obl]

This is another place where UD departs from much of linguistic tradition,
where both non-prepositional and prepositional complements can be attached
to verbs in their valency patterns. The motivation is that it is sometimes
difficult to decide whether a prepositional phrase is a complement or an
adjunct. The price to pay is that it becomes more difficult to recognize
corresponding arguments across languages, because what is obj or iobj in
one language may come out as obl in another one.

Adverbial modifiers (advmod) are words of the ADV class linked to
main verbs, but also to other words:

she walks today [advmod] (VERB)

genetically modified [advmod] (ADJ)

Also interrogative adverbs (when, where, why) are classified as ADV and
linked to their heads as advmod:

why does she walk [advmod]

Negation words (not are also treated as advmod:

why does she not walk [advmod]

In this sentence, both why and not are adverbial modifiers of walk.
Notice that UD uses advmod only with words classified as ADV, and not

with other adverbial phrases. Thus prepositional phrases (in the city) have
the relation obl when linked to verbs, and nmod when linked to nouns (see
the nmod section below).

3.2.4 Auxiliary verbs

The copula be is classified as AUX and linked to is complement (noun,
adjective, adverb) with the cop relation:

she is here [cop]
she has been here [cop]

In UD, however, the verb be is sometimes treated as the main verb and
classified as VERB. This is the case with existentials with the expletive there
(expl, see below)

3.2. THE MAIN CLAUSE AND ITS PARTS 53

there is an elephant [root]

and with clausal complements (ccomp, see below)

the reason is that I am tired [root]

AUX verbs other than the copula are linked to their main verbs with the
aux relation:

he can sing [aux]

does he sing [aux]

English compound tenses can have several auxiliaries, each linked to the main
verb independently:

would he have sung [aux]

From the interlingual perspective, a verb in a given function that is AUX
in English migh not be AUX in other languages. For instance, the French
equivalents of can, pouvoir and savoir, get the POS tag VERB and function
as main verbs.

3.2.5 Punctuation

An utterance may or may not end with a punctuation mark (with the POS
tag PUNCT). If it does, the mark becomes a dependent of the root with
label punct:

Why does he walk in the park ? [punct]

(Notice the boldface ?.) A punctuation mark can also attach to a part of
the utterance:

he called me a ” bad loser ” [punct]

Both quotes are linked to the head of the phrase that they surround.

54 CHAPTER 3. GRAMMATICAL ANALYSIS: DEPENDENCIES

3.3 Dependents of nominals

3.3.1 Determiners

A noun can be determined (det) by a determiner (with POS tag DET).
Also interrogative determiners (which) are analysed in this way.

the cat [det]

which black cat [det]

3.3.2 Modifiers

A noun can be modified in several ways. Adjectival modification (amod)
is made by an adjective (ADV):

black cat [amod]

The adjective can appear after the noun even in English,

movie larger than life (amod)

nothing wrong [amod]

Notice that in the latter example, taken from official UD documentation,
the head nothing is not a noun in the standard sense. Other non-standard
examples of adjectival modification are

million dollar loan [amod]

where the modifier is a noun, adn

more questions [amod]

where the modifier is a determiner rather than an adjective. Such corner
cases are not always easy to decide.

One reason can be the tradition of English dictionaries to mark many
different kinds of words as “adjectives”, on the basis that they are words
prefixed to nouns: determiners and numerals are examples of this. The
thinking behind this may be the substution test: since one can say each of

difficult questions, more questions, five questions

3.3. DEPENDENTS OF NOMINALS 55

one could conclude that more and five are subtitutible for difficult and hence
adjectives. However, the proper application of the substitution test should
look at all contexts, not only one. The following test would fail, with un-
grammatical phrases marked with *:

very difficult questions, *very more questions, *very five questions

Nominal modifier (nmod) is typically a prepositional phrase (prepo-
sition + noun phrase) modifying a noun:

the house of the president [nmod]

a man on the moon [nmod]

A special case in English is possessive modifier, which can be a NOUN or
a PRON:

the president’s house [nmod:poss]

my house [nmod:poss]

This is analogous to what happens in languages with rich case systems, where
nominal modifiers often have no prepositions but cases such the Finnish local
cases:

kylä vuorella [nmod] (“a village on a mountain”)

Prepositions are a special case of adpositions, which can also be postpo-
sitions appearing after the noun. UD has the common POS tag ADP for
both. They are linked to their heads by the case relation:

on the moon [case]

Postpositions are common in Finnish:

maidon kanssa [case] (“with milk”)

The English possessive clitic ’s has in UD the POS tag PART (particle), but
is linked to its head as a case:

president ’s [case]

56 CHAPTER 3. GRAMMATICAL ANALYSIS: DEPENDENCIES

A nominal modifier can often be analysed alternatively as an oblique ob-
ject of the verb. This is known as the PP attachement problem (PP =
Prepositional Phrase). Here is the standard example:

John saw a man with a telescope
PROPN VERB DET NOUN ADP DET NOUN

� �
?
nsubj ��

?
det

?

obj #
?

case��
?
det

' $
?

nmod

?

root

John saw a man with a telescope
PROPN VERB DET NOUN ADP DET NOUN

� �
?
nsubj ��

?
det

?

obj #
?

case��
?
det

' $
?

obl

?

root

Numeric modifiers (nummod) are syntactically similar to determiners
but have their own relation in UD:

five houses [nummod]

40,000 dollars [nummod]

$ 40,000 [nummod]

Appositional modifiers (appos) are nominal modifiers that are (in
English) attached to noun phrases, often but not always proper names
(PROPN), and separated by punctuation:

Macron , the president [appos]

price : 30 dollars [appos]

They are in UD distinguished from flat multiword expressions (flat),
which are used for titles but also parts of names:

president Macron [flat]

Emmanuel Macron [flat]

president Emmanuel Macron [flat] (two separate modifiers)

Notice the opposite direction of the head-dependent relation in appos and
flat when assigning a title to a person.

Compound (compound) is a nominal modifier appearing in compound
nouns in languages where they are written separately, as in English. This
relation is also used for composite numeral expressions.

3.4. SUBORDINATE CLAUSES AND EMBEDDED VERB PHRASES 57

dependency tree [compound]

fifty thousand [compound]

3.4 Subordinate clauses and embedded verb

phrases

Subordinate clauses are clauses that appear as arguments or modifiers of
other phrases. Their internal structure is similar to main clauses, typically
with a main verb (or some other word if the verb is a copula) and its de-
pendents. The main word is not labelled as root, but as dependent of some
word in the dominating clause.

3.4.1 Clausal complements

A typical clausal complement (ccomp) is a that clause that is a complement
of a verb such as say or believe:

I believe that the Earth moves [ccomp]

The word that has the POS tag SCONJ (subordinating conjunction) and the
relation mark to the main verb of the subordinate clause:

I believe that the Earth moves [mark]

In English and some other languages, it is common to leave out the mark:

I believe the Earth moves [ccomp]

Clausal complements are the analysis given to indirect speech (“X said
that Y”), whereas direct speech (“X said: Y”) is treated as parataxis:

I said: the Earth moves [parataxis]

”The Earth moves”, I said [parataxis]

A tricky case of ccomp is clausal complements of copula+noun construc-
tions:

my opinion is that the Earth moves [ccomp]

the decision is to move [ccomp]

58 CHAPTER 3. GRAMMATICAL ANALYSIS: DEPENDENCIES

In these cases, UD has decided to treat the copula as the main verb, “to
preserve the integrity of clause boundaries and prevent one predicate to be
assigned two subjects”, admitting that “this is not an optimal solution”; see

https://universaldependencies.org/u/dep/ccomp.html

The mark (that, to), is related to the verb as mark, as shown by the full
picture

the decision is to move
PRON NOUN VERB PART VERB

� �
?
det � �

?
nsubj � �

?
mark

?

ccomp

?

root

my opinion is that the Earth moves
PRON NOUN VERB SCONJ DET NOUN VERB

��
?
nmod:poss� �

?
nsubj

' $
?

mark��
?
det � �

?
nsubj

' $
?

ccomp

?

root

Another potentially tricky question is to distinguish ccomp from xcomp,
open clausal complement. The difference is that the logical subject
of the verb (the one who is thought to perform the action) in xcomp is
determined by the dominating clause, as either its subject or object. In such
constructions, the verb is typically in the infinitive form:

I want to move [xcomp]

I want you to move [xcomp]

I saw the Earth move [xcomp]

The infinite mark to is again related to the subordinated verb as mark:

I want to move [mark]

An xcomp can also be a noun or an adjective:

I consider him honest [xcomp]

I consider him a fool [xcomp]

The logic is that one can think of a missing copula: these sentences are
treated in the same way as

https://universaldependencies.org/u/dep/ccomp.html

3.4. SUBORDINATE CLAUSES AND EMBEDDED VERB PHRASES 59

I consider him to be honest [xcomp]

I consider him to be a fool [xcomp]

The infinitive mark here is of course linked to the adjective or noun:

I consider him to be honest [mark]

3.4.2 Clausal subjects

Subordinate clauses can also be on the subject position, clausal subjects
(csubj):

what happens does not concern me [csubj]

to leave now makes sense [csubj]

A special case is, analogously to nsubj, passive subject position (csubj:pass):

what happens has been decided before [csubj:pass]

3.4.3 Clausal modifiers

Subordinate clauses in adverbial positions are called adverbial clausal
modifiers (advcl):

I drank because I was thirsty [advcl]

if you leave , I will resign [advcl]

The SCONJ (such as because, if, when, although) leading the adverbial clause
is a mark:

because I was thirsty [mark]

Clauses can also modify nouns, by the relation acl clausal modifier of
noun:

the situation as I see it [acl]

the situation caused by you [acl]

the reason to leave [acl]

An important special case is relative clause modifiers, acl:relcl:

60 CHAPTER 3. GRAMMATICAL ANALYSIS: DEPENDENCIES

the girl who walks [acl:relcl]

the girl that I know [acl:relcl]

the girl I know [acl:relcl]

The relative pronoun (sometimes omitted in English) has the POS tag PRON

and a morphological tag PronType=Rel. It is a normal dependent (such as
subject or object) of the head of the relative clause:

the girl who walks [nsubj]

the girl that I know [obj]

3.5 Coordination structures

Coordination means joining two or more phrases of the same category with
a conjunction, such as and, or. It can be performed with almost any types
of phrases: sentences, verbs, nouns, adjectives, adverbials, and so on. The
members of a conjunction are called conjuncts. The UD standard uses the
relation conj that treats the first conjunct as head and the other members
its dependents:

John walks and Mary runs [conj]

he is hungry and tired [conj]

I want to drink milk , coffee or beer [conj] (two dependents)

The conjunction word itself has POS tag CCONJ (coordinating conjunc-
tion) and is linked to the conjunct that it precedes with the cc relation
(likewise called coordinating conjunction):

hungry and tired [cc]

Conjunctions such as both-and and either-or have preconjunctions, which
are dependents of the first conjunct by the cc:preconj relation:

both hungry and tired [cc:preconj]

The commas that are typically used to separate conjuncts if there are more
than two of them have their usual POS tag PUNCT and the relation punct

(punctuation) whose head is the conjunct that the comma precedes:

3.6. REMAINING RELATIONS 61

milk , coffee or beer [punct]

The dependency analysis of coordinating structures is not entirely natu-
ral, and UD has chosen a convention different from many other approaches.
The reason is that the relation between conjunct is not really dependency,
but a more symmetric relation. We will return to this problem later when
we look at coordination from the phrase structure point of view.

3.6 Remaining relations

We have now discussed the most important grammatical relations. One can
get a long way by just using them — both in English and in other languages.
The remaining ones are:

• clf, classifier, is a word in Asian languages such as Chinese and Thai
used when combining nouns with numerals and determiners. Its head
in UD is not the noun but the determiner: wu zhi mao “five cats”
Chinese

• dep, unspecified dependency, used as fall-back when no other rela-
tion seems to apply, e.g. in plainly ungrammatical utterances

• discourse, discourse element, used for interjections and smileys:
Hey, come here!

• dislocated, dislocated element, an element before or after the sen-
tence structure, typically separanted by comma: He is not nice, John

• fixed, fixed multiword expressions, in particular function words
and adverbials: because of

• list, list, between related items where there is no conjunction: name
John, title doctor

• goeswith, goes with, for parts words that appear separated in a text
although they should normally be written together: with out doubt

• orphan, orphan, used e.g. to relate the object of an omitted verb to
the subject: John loves Mary and Bill Jane

• reparandum, overridden disfluency, used in self-correcting utter-
ances that would otherwise become ungrammatical: I have five — eh,
six cats

• vocative, vocative, addressing a hearer or hearers: Come here, John!
Some of these relations are clearly existing grammatical relations: classifier,
discourse element, dislocated, orphan, vocative. Some are there to enable
the analysis of even “ungrammatical” utterances: goes with, reparandum.

62 CHAPTER 3. GRAMMATICAL ANALYSIS: DEPENDENCIES

The dep relation is used to guarantee that every word gets a label, even if
the human annotator or the parsing algorithm does not know what the label
should be.

Chapter 4

Grammatical analysis: phrase
structure

In this chapter, we continue with syntactic analysis but now in terms of
phrases rather than dependencies. In fact, when explaining dependency anal-
ysis in UD, we often have to refer to phrases and not just words. For example,
a clausal complement (ccomp, Section 3.4) is meant to be the whole subor-
dinate clause and not just its main verb.

Like in the previous chapter, we will proceed by a top-down analysis from
sentences to their parts. We will loosely follow the phrase structure used in
the GF Resource Grammar Library (RGL),

http://www.grammaticalframework.org/lib/doc/synopsis/

The structures of RGL are designed to work for multiple languages, just like
UD. The phrase structure in this chapter is designed to be in close corre-
spondence with both RGL and UD, with some bias to UD when necessary.
In Chapter 6.4, we will complete the description to an exact match with the
RGL.

We could still work under the assumption that the analysis is carried out
manually, but will complete this with a rule format that supports a pars-
ing algorithm that can partly automate the analysis. This format is called
Dependency Backus Naur Form (DBNF), which extends the standard
Backus Naur Form (BNF) with dependencies. Our DBNF rules are in-
tended for analysis, without trying to define what is grammatical and what
is not: in fact, they are vastly overgenerating and would allow lots of un-
wanted analyses if applied mechanically. Nevertheless, they are more precise

63

http://www.grammaticalframework.org/lib/doc/synopsis/

64 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

than the completely informal guidelines used for dependency annotation in
the UD documentation and in the previous chapter.

The structure of this chapter is as follows:

• Section 4.1 gives a list of the main categories of words and phrases as
implemented in the GF Resource Grammar Library.

• Section 4.2 specifies the DBNF format of phrase structure rules with
dependences, as well as phrase structure trees.

• Section 4.3 goes through a set of DBNF rules for English.
• Section 4.4 discusses briefly the generalizability of the rules to other
languages.English.

• Section 4.5 shows how the grammar rules used in this chapter can be
used for automated analysis by using the program gfud.

4.1 Categories

Table 4.1 lists some categories from the GF Resource Grammar Library
(RGL). It is divided into two parts:

• lexical categories, which appear in the leaves of phrase structure
trees (in nodes that have no branches),

• phrasal categories, which appear higher up in trees and combine
phrases into larger structures.

The lexical categories are analogous to the universal part of speech tags used
in UD. The phrasal categories can be thought of as collecting groups of words,
each group consisting of a head and its dependents. Both lexical and phrasal
categories are universal in the sense that they are meant to apply to many
languages.

We will postpone the interlingual perspective to later chapters and con-
centrate on English in this chapter. However, it is useful to know that the
analysis we give is — just like the UD analysis of the previous chapter —
applicable to a wide variety of other languages as well, if we abstract away
from morphology, the number of words, and word order.

4.2 The DBNF rule format

We will use a traditional format for phrase structure rules, known as the
Backus-Naur Form (BNF). An example is

4.2. THE DBNF RULE FORMAT 65

category explanation example UD

A adjective warm ADJ
Adv adverb now ADV
Card cardinal number seven NUM
Conj conjunction and CCONJ
Det determiner the DET
Digits numeral in digits 1,000,002 NUM
IAdv interrogative adverb why ADV
IDet interrogative determiner which PRON
IP interrogative pronoun who PRON
N common noun house NOUN
PN proper name Paris PROPN
Predet predeterminer only DET
Prep preposition in ADP
Pron personal pronoun she PRON
Punct punctuation mark ! PUNCT
RP relative pronoun which PRON
Subj subjunction if SCONJ
V verb sleep VERB

category explanation example

AP adjectival phrase very warm
CN common noun phrase red house
Comp complement of copula, such as AP very warm
NP noun phrase (subject or object) the red house
Num numeral seven hundred
QS question where did she live
RS relative clause in which she lived
S declarative sentence she lived here
SC embedded sentence or question that it rains
Utt sentence, question, word... It is OK.
VP verb phrase is very warm
VPSlash verb phrase missing complement look at

Table 4.1: Some lexical and phrasal categories in GF Resource Grammar
Library (RGL), as usen in this chapter. The UD column in lexical categories
gives the closest corresponding Universal POS tags.

66 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

S ::= NP VP

NP ::= Pron

VP ::= Cop A

Pron ::= "she"

Cop ::= "is"

A ::= "old"

The category left of the symbol ::= is called the left-hand side (LHS),
and the part after is the right-hand side (RHS). The categories appear-
ing in these rules are called non-terminals, and quoted strings are called
terminals.

A phrase of the LHS category can be built by combining the
phrases of the categories and terminals on the RHS.

For example, the first rule says,

A sentence (S) can be formed from a noun phrase (NP) followed
by a verb phrase (VP).

With BNF rules, we can build parse trees, which encode each application
of a rule by a subtree where the uppermost node is the LHS category of
the rule that was applied. Hence, with the rules given above, we can form
the tree

S

NP VP

Pron Cop A

she is old

Another way to display the tree is as a bracketed string, which uses paren-
theses and category symbols to show the structure of the expression:

S (NP (Pron she) (VP (Cop is) (A old)))

4.2. THE DBNF RULE FORMAT 67

The strings corresponding to subtrees are called constituents. Constituents
can have their own constituents, so that for instance both is old and old are
constituents in this example.

Dependency BNF (DBNF) completes the BNF notation with depen-
dency labels and (optionally) weights of each rule. The notation is explained
in Figure 4.2.

DBNF offers a quick way to relate phrase structure with dependency
analysis. The labels mark which subtrees contain the words that get each of
the labels. The #pos rules give their POS tags. Using the DBNF rules

S ::= NP VP # nsubj head

VP ::= Cop A # cop head

#pos PRON Pron

#pos AUX Cop

#pos ADJ A

we get the following dependency tree for she is old :

she is old
PRON AUX ADJ

' $
?

nsubj��
?

cop

?

root

DBNF is a variant of context-free grammars, which have well-known
parsing algorithms. The rules that we will show in this chapter are from an
English grammar defined in

https://github.com/GrammaticalFramework/gf-ud/blob/master/

grammars/English.dbnf

The same Git repository contains a parser that can use the grammar to
produce both phrase structure and dependency trees. The last explanation
in Figure 4.2 means that the lexicon is open: the parser can accept input
that is tagged by POS tags. Hence for instance the following input would
parse:

I:<PRON> am happy:<ADJ>

https://github.com/GrammaticalFramework/gf-ud/blob/master/grammars/English.dbnf
https://github.com/GrammaticalFramework/gf-ud/blob/master/grammars/English.dbnf

68 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

The DBNF rule format:
• Syntax rule: cat ::= cats # labels # weight
Example: S ::= NP aux? VP # nsubj aux head # 0.02

• POS tag rule: #pos postag cats
Example: #pos VERB V V2

• Token rule: #token cat words
Example: #token Cop am is are was were

Explanations:
• Dependency labels are separated from the BNF rule by the # sym-
bol; the default is head.

• After another #, aweight between 0 and 1 can be given; the default
is 0.5.

• The number of labels must be the same as the number of nonter-
minals on the right hand side.

• Exactly one label must be head.
• If there is exactly one nonterminal, the label head is assumed by
default.

• Nonterminals with suffix ? are optional; the nonterminal corre-
sponding to head may not be optional.

• Lexical categories with POS tag P are listed in #pos P rules.
• Terminals of a category C can be listed in #token C rules.
• In addition to tokens in #token C, tokens of a category C include
ad hoc tokens given in the input in the form WORD:<P>, where C
is listed in #pos P. Their weight is 0.2.

Figure 4.1: The Dependency BNF (DBNC) notation.

4.3. ENGLISH PHRASE STRUCTURE IN DBNF 69

The grammar shown in this chapter is vastly overgenerating, because we don’t
try to model morphology and agreement. Overgeneration as such is fine when
the task is parsing and not generation. However, it can lead to much more
ambiguity than a strict grammar would allow. The system of weights can
be used to mitigate this: the parse trees are ordered by descending weight,
where the weight of a tree is the product of the weights of the rules applied
when building the tree. The default weight 0.5 implies that smaller trees
are preferred to larger ones. The lower weight of ad hoc tokens (given as
word:<POS>), 0.2, means that ad hoc tokens are overridden by explicitly
given tokens.

The weight mechanism is a quick and dirty way to disambiguate and does
not always yield the right results. Technically it means that DBNF supports
Probabilistic Contex-Free Grammars (PCFG), where context-freeness
means that the weight of each rule is independent of the other rules. The
probability of a tree is the probability of the rule forming the tree multiplied
by the probabilities of subtrees:

P (R t1 . . . tn) = P (R)× P (t1)× . . .× P (tn)

This is a simplifying assumption, since in reality combinations of rules should
have special weights. In particular, the choice of words, not just their cat-
egories, can affect what rules are probable for combining them. Thus the
sentence

John drinks beer

should be more probable than

beer drinks John

even though the two sentences are built with exactly the same rules and their
context-free probabilities are therefore equal.

4.3 English phrase structure in DBNF

We will go through similar structures and examples as in Chapter 3, but
now in terms of phrase structure analysis. The DBNF rules that we show
can automatically convert the phrase structure analysis to UD dependency
analysis.

70 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

4.3.1 Utterances

From the top-down perspective, the starting point of analysis is an utterance
(Utt). Utterances can be sentences, questions, imperatives, noun phrases,
adverbs, and so on, and they can optionally have punctuation.

Utt ::= Utt Punct # head punct

Utt (Utt Why) (Punct ?)

Utt ::= S

Utt (S John walks)

Utt ::= QS

Utt (QS why does she walk)

Utt ::= Imp

Utt (Imp wash your hands)

Utt ::= NP

Utt (NP probably the best beer in the world)

Utt ::= Adv

Utt (Adv certainly)

Notice that the bracketed tree notation here does not show the full analysis,
but just the division into immediate parts mentioned on the RHS of the BNF
rule that is exemplified. This is analogous to only showing one dependent-
head relation in the examples of Chapter 3.

4.3.2 Sentences

Following a common linguistic tradition, we will use the term sentence (S)
for clauses. (The full GF-RGL will, however, make a distinction, to which we
return later.) The most well-known rule constructs a sentence from a noun
phrase (NP) and a verb phrase (VP):

S ::= NP VP # nsubj head

S (NP the black cat) (VP sees us now)

Between the NP and the VP, there can be auxiliaries and a negation:

S ::= NP do neg VP # nsubj aux advmod head

S (NP the black cat) (do does) (neg not) (VP see us)

4.3. ENGLISH PHRASE STRUCTURE IN DBNF 71

S ::= NP have neg? VP # nsubj aux advmod head

S (NP the black cat) (have has) (neg not) (VP seen us)

S ::= NP aux neg? have? VP # nsubj aux advmod aux head

S (NP the black cat) (aux would) (neg not) (have have) (VP seen
us)

Notice the special non-terminals do, have, neg, and aux. They are defined
as lists of special tokens:

#token do do does did done

#token have have has had

#token neg not

#token aux will would shall should can must

We write their categories with small initials to distinguish them from the
RGL categories proper in Table 4.1. As we shall see later, they can and
should be treated in a more abstract way in the interlingual perspective.

Sentences can also be formed with a copula (cop) and its complement
(Comp).

S ::= NP cop neg? Comp # nsubj cop advmod head

S (NP John) (cop is) (neg not) (Comp happy)

S ::= NP have neg? cop Comp # nsubj aux advmod cop head

S (NP John) (have has) (neg not) (cop been) (Comp happy)

S ::= NP aux neg? have? cop Comp # nsubj aux advmod aux

cop head

S (NP John) (aux would) (neg not) (have have) (cop been) (Comp
happy)

The copula token is defined by

#token cop am are is was were being be

The NP, VP, and Comp categories will be explained below.
The above rules list different combinations of the verb and aux, do, have,

and neg. Also a sentence adverbial (AdV) can be added, typically before
the negation and the main verb:

S ::= NP have AdV neg? VP # nsubj aux advmod head

S (NP the black cat) (have has) (AdV definitely) (VP seen us)

72 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

We will need many such combinations in the clause-forming rules that follow,
but usually leave them implicit: full details can be found in English.dbnf.

Passive sentences are formed with a copula (and all its combinations with
negation and auxiliaries) from passive verb phrases:

S ::= NP cop VP pass # nsubj:pass aux:pass head

S (NP John) (cop is) (VP pass invited)

The liberal rule for VP pass is that it is just the same as VP: since we do
not specify the morphological forms of verbs, then for instancs invites and
invited have the same possible combinations. In English.dbnf, a bit more
restrictive definition is given to decrease overgeneration.

4.3.3 Verb phrases

A verb phrase (VP) consists of a verb (V) with its complements. The
arguments of a verb also include the subject, which is assigned on the
sentence level as shown above. A complement is a direct or indirect noun
phrase (NP) object or an oblique NP, that is, and NP with a preposition:

VP ::= V

VP (V walk)

VP ::= V NP # head obj

VP (V see) (NP the black cat)

VP ::= V NP NP # head iobj obj

VP (V give) (NP me) (NP a hint)

VP ::= VP NP obl # head obl

VP (VP (V give) (NP a hint)) (NP obl to me)

Notice that the last rule allows the addition of arbitrarily many oblique NPs
to a VP.

The category NP obl is an example of a help category that we introduce
in DBNF to force the same dependency relations as in UD. It is produced by
adding a preposition (Prep) to an NP:

NP obl ::= Prep NP # case head

NP obl (Prep with) (NP me)

We could have been able to parse the same sentences by writing directly

4.3. ENGLISH PHRASE STRUCTURE IN DBNF 73

VP ::= VP Prep NP # head case obl

However, the resulting structure would attach the preposition to the VP and
not to the NP. We mark help categories with underscores and suffixes; the
category symbol before the underscore is a genuine RGL category, and the
only category we will need in GF.

In addition to noun phrases, a complement can also be a sentence (S that),
a question (QS), an adjectival phrase (AP), or a verb prase:

VP ::= V S that # head ccomp

VP (V believe) (S that the Earth moves)

VP ::= V QS # head ccomp

VP (V wonder) (QS who sees us)

VP ::= V AP # head xcomp

VP (V become) (AP old)

VP ::= VP VP to # head xcomp

VP (V want) (VP to leave)

The help categories S that and VP to introduce a mark, optional for S that:

S_that ::= that? S # mark head

VP_to ::= neg? to VP # advmod mark head

The above VP rules are overgenerating as they do not take into accound verb
valencies: what arguments are possible for what verbs. They could be made
more precise by introducing some valency distinctions, for instance, V2 for
2-place verbs (taking one NP complement) and VS for sentence-complement
verbs:

VP ::= V2 NP # head obj

VP ::= VS S that # head ccomp

However, this would not block unwanted verb-complement combinations al-
together, because of the open lexicon principle of DBNF and the POS rule

#pos VERB V V2 VS...

This POS rule reflects the fact that UD makes no distinctions between verb
valencies. In the English.dbnf grammar that we use, some subcategories of
V present, to give priority to analyses where verbs are actually declared in
these subcategories. But this is just a soft distinction (i.e. a difference in
weight), because of the open lexicon principle.

74 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

4.3.4 Complements of the copula

Complements come from different categories. The examples below show their
use in sentences.

Comp ::= AP

S (NP we) (cop are) (Comp (AP happy))

Comp ::= NP

S (NP we) (cop are) (Comp (NP the champions))

Comp ::= NP obl

S (NP we) (cop are) (Comp (NP obl in trouble))

Comp ::= Adv

S (NP we) (cop are) (Comp (AP here))

Clausal complements are treated differently, to match the UD conventions
stated in Section 3.4:

S ::= NP be V SC # nsubj head ccomp

S (NP the fact) (be V is) (SC that the Earth moves)

Notice that be V is different from cop, as it appears as the main verb. The
category SC, of embedded clauses, can be formed in different ways:

SC ::= S that

S (NP the fact) (be V is) (SC (S that the Earth moves))

SC ::= QS

S (NP the question) (be V is) (SC (S what moves))

SC ::= VP to

S (NP the decision) (be V is) (SC (S to move))

SC can of course also appear in the subject position:

S ::= SC VP # csubj head

S (SC that the Earth moves) (VP puzzles me)

S ::= SC cop Comp # csubj cop head

S (SC that the Earth moves) (cop is not) (Comp difficult to un-
derstand)

4.3. ENGLISH PHRASE STRUCTURE IN DBNF 75

4.3.5 Questions, relatives, and imperatives

Questions (QS) are similar to sentences (S), except for some word order
differences and, most importantly, that they allow interrogative phrases
(IP) as subjects and objects:

QS ::= do NP VP # aux nsubj head

QS (do does) (NP John) (VP walk)

QS ::= cop NP Comp # cop nsubj head

QS (cop is) (NP John) (Comp happy)

QS ::= cop NP VP pass # aux:pass nsubj:pass head

QS (cop is) (NP John) (VP pass invited)

QS ::= IP VP # nsubj head

QS (IP who) (VP walks)

QS ::= IP cop Comp # nsubj cop head

QS (IP who) (cop is) (Comp there)

QS ::= IP do NP VPSlash # obj aux nsubj head

QS (IP whom) (do does) (NP the cat) (VPSlash see today)

QS ::= IP cop VP pass # nsubj:pass aux:pass head

QS (IP who) (cop is) (VP seen today)

A question can also be formed with an interrogative adverbial (IAdv):

QS ::= IAdv do NP VP # advmod aux nsubj head

QS (IAdv why) (do does) (NP John) (VP walk)

QS ::= IAdv cop NP Comp # advmod cop nsubj head

QS (IAdv why) (cop is) (NP John) (Comp happy)

QS ::= IAdv cop NP VP pass # advmod aux:pass nsubj:pass

head

QS (IAdv why) (cop is) (NP John) (VP pass invited)

The category VPSlash, verb phrase missing a complement, could be
identified with VP, as long as we don’t care about verb valencies. How-
ever, in the RGL it plays an important role, because the proper generation
of sentences including it need information that is not present in a VP —
most importantly, the case of the missing complement. Thus for instance in
German, we distinguish between

76 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

wen sieht er “whom does he see”, accusative

wem folgt er “whom does he follow”, dative

The category itself comes from a linguistic tradition where it is called VP/NP
(“VP slash NP”) and was originally introduced to enable phrase structure
grammars to model wh movement, that is, sentences where an object
“moves” from its “original” place to the front when it is a “wh phrase”
such as an interrogative or relative pronoun.

Relative clauses (RS) are indeed similar to questions with IP replaced
by RP (relative pronoun). In English, the RP can also be omitted when
it is the object:

RS ::= RP VP # nsubj head

RS (RP who) (VP walks)

RS ::= RP cop Comp # nsubj cop head

RS (RP who) (cop is) (Comp there)

RS ::= RP NP VPSlash # obj nsubj head

RS (RP whom) (NP the cat) (VPSlash sees today)

RS ::= NP VPSlash # nsubj head

RS (NP the cat) (VPSlash sees today)

RS ::= RP cop VP pass # nsubj:pass aux:pass head

RS (RP who) (cop is) (VP seen today)

Notice the differences in word order and the use of do, when compared to
questions. In these respects, relative clauses are in fact closer to indirect
questions, which are used as embedded clauses:

S (NP I) (VP (V wonder) (QS whom the cat sees))

The overgenerating English.dbnf grammar includes indirect questions in QS.
In the precise RGL grammar, they are also included in QS, but overgeneration
is prevented by techniques that are stronger than context-free rules.

Imperatives are yet another type of clauses with a verb, but without a
subject:

Imp ::= do? neg? VP # aux advmod head

Imp (do do) (neg n’t) (VP move)

Imp ::= do? neg? cop Comp # aux advmod cop head

Imp (do do) (neg n’t) (cop be) (Comp silly)

4.3. ENGLISH PHRASE STRUCTURE IN DBNF 77

4.3.6 Noun phrases, adjectives, and adverbials

The most common ways of building noun phrases are from proper names
(PN), pronouns (Pron), and common nouns (CN):

NP ::= PN

NP (PN San Remo)

NP ::= Pron

NP (PN we)

NP ::= Det? CN # det head

NP (Det the) (CN American imperialism)

The difference between NP and CN is that an NP can occur as subject or
object, wereas a CN typically requires a determiner (Det). However, a bare
CN can also work as an NP, for instance, if it is in plural form (tigers are
dangerous) or if it a mass term (French wine is good).

From the other NP-forming rules, let us list those that introduce new
grammatical relations:

NP ::= Predet NP # det:predet head

NP (Predet only) (NP this country)

NP ::= NP poss CN # nmod:poss head

NP (NP poss your) (CN country)

NP ::= Num NP # nummod head

NP (Num fifty thousand) (CN people)

NP ::= CN PN # head flat

NP (CN president) (PN Macron)

NP ::= NP SC # head acl

NP (NP the reason) (SC why we are here)

NP ::= NP comma? S sub # head punct acl

NP (NP our country) (S sub as we know it)

NP ::= NP comma? RS # head punct acl:relcl

NP (NP the country) (RS that we love)

NP ::= NP comma? VP pass # head punct acl

NP (NP the palace) (VP pass built for the president)

NP ::= Symb Num # head nummod

NP (Symb $) (Num 15 million)

78 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

Common nouns (CN) are ultimately built from single nouns (N) and
optionally modified by adjectival phrases (AP):

CN ::= N

CN (N cat)

CN ::= AP CN # amod head

CN (AP big) (CN black cat)

CN ::= CN comma? AP # head punct amod

CN (CN movie) (AP larger than life)

Common nouns can also be modified by relative clauses, but this case is
covered by relative modification of NPs. There is a semantic distinction
between these two, which the RGL makes, but since UD does not, we leave
it out for the moment.

Compound nouns can be built as just combinations of two nouns, and
proper names (PN) can be combined in the same way:

N ::= N N # compound head
N (N dependency) (N tree)

PN ::= PN PN # head flat
PN (PN San) (PN Remo)

If more than two nouns are combined this way, a large number of parse trees
may result (known as the Catalan number). English.dbnf mitigates this by
introducing special categories N one and PN one, which imposes a linearly
progressive order. But this may be unwanted, since one might want to give
different structures to compounds on semantic grounds.

Adjectival phrases (AP) are ultimately built from adjectives (A), pos-
sibly modified by adadjectives (AdA) and oblique post-modifiers, in par-
ticular for comparative adjectives:

AP ::= A

AP (A curious)

AP ::= AdA AP # advmod head

AP (AdA too) (AP curious)

AP ::= AP NP obl # head nmod

AP (AP larger) (NP obl than life)

4.4. PHRASE STRUCTURE IN OTHER LANGUAGES 79

4.3.7 Coordination

Coordination is possible for many phrasal categories — S, NP, Adv, VP, RS,
and so on. A possible general form of rules for a category X is

X ::= Conj pre? X list X conj # cc:preconj head conj

X list ::= X

X list ::= X list X comma # head conj

X conj ::= comma? Conj X # punct cc head

X comma ::= comma X # punct head

This looks a bit complicated with as many as three help categories, but it
gives the exact structure specified in UD annotation quidelines:

either yesterday , today , or tomorrow
CCONJ ADV PUNCT ADV PUNCT CCONJ ADV

� �
?

cc:preconj � �
?

punct

' $
?

conj ' $
?

punct� �
?

cc

' $
?

conj

?

root

4.4 Phrase structure in other languages

Context-free phrase structure parsing can work reasonably well in languages
that share two characteristics with English:

• rigid word order,
• simple morphology.

Hence it may also work with Scandinavian and East-Asian languages and
with modern Romance languages. Morphology, in particular, is not so crucial
when analysing language if it follows from agreement rules and does not carry
much information of its own. Finnish and Latin are examples of languages at
the opposite end: almost free word order, complex morphology that carries
a lot of information. For example, the subject and the object of a verb is
often recognizable only from the case of the noun phrase, as the order may
vary because of emphasis or topicalization.

The simplest way to see the applicability is to take the grammar En-
glish.dbnf and modify it for another language. Some rules may stay exactly
the same — for instance, since English has adjectival modifiers both before
and after nouns,

80 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

CN ::= AP CN # amod head

CN ::= CN AP # head amod

these rules work for French, Italian, and Spanish as well, even though in
those languages post-modifiers are much more common.

In some other cases, simply changing the word order, or adding more
alternatives, can work: adding

NP obl ::= NP Prep # head case

would allow postpositions in languages like Finnish. If more accuracy is
required, a special category Pre post can be introduced; however, Finnish
often allows the use of one and the same adposition as both pre- and post-
positions.

A more fundamental restriction of BNF rules is that they do not permit
discontinuous constituents. Verb phrases (VP) is a typical example in
languages that form questions by inversion of the subject and the verb.
For instance, in Swedish, the VP in a declarative sentence is “split into two
parts” when a question is formed:

S (NP du) (VP (V bor) (Adv här)) “you live here”

QS (V bor) (NP du) (Adv här) “do you live here”

Hence we cannot maintain the same phrase structure in these two languages.
Assigning the same structure to different languages is the leading principle

in UD as well as in GF. In GF, it can be followed while at the same time
maintaining the integrity of phrases. For instance the VP category can be
defined as a discontinuous constituent, which allows us to use VP uniformly
in the abstract syntax of many different languages.

4.5 Parsing with DBNF

A DBNF grammar can be used in the gfud program for parsing text and
visualizing the results. It reads and writes standard input-output (stdio),
which means that one can give it input and read its output in a Unix shell.
It needs the grammar file and the start category as arguments: Here is a
minimal example:

4.5. PARSING WITH DBNF 81

$ echo "John loves Mary" | gfud dbnf English.dbnf Utt

text = John loves Mary

analyses = 1

parsetree = (Utt (S (NP (PN John)) (VP (V2 loves) (NP (PN Mary)))))

1 John _ PROPN _ _ 2 nsubj _ _

2 loves _ VERB _ _ 0 root _ _

3 Mary _ PROPN _ _ 2 obj _ _

The result is valid CoNLL output, where comment lines are prefixed with #

and have standard meanings:
• The # analyses line tells how many parse trees were built; 1 means
that the sentence was unambiguous, 0 that it was not parsed at all.

• The # parsetree line shows the phrase structure tree as a bracketed
string.

As usual in Unix, the echo command can be used for parsing one example,
whereas cat can read files. The output can be sent to a file with the >
operator: Hence

cat examples.txt | gfud dbnf English.dbnf Utt >examples.conllu

creates a CoNLL file by parsing a text file. The text file is read line by line,
and each line is expected to be tokenized. As specified in Section 4.2, a token
given with a POS tag (word:<POS>) is parsed as a word of any category that
matches the pos tag.

If the parser feels slow, the usual reason is a high number or parses. This
can be observed from the # analyses line. It is possible to cut the number
of parses by the -cut flag and a maximal number:

$ gfud dbnf English.dbnf Utt -cut=12

Only 12 trees are constructed in this case, but they are still ranked according
to their weights, and the best one is shown. If more trees are wanted, the
-show flag can be used (with or without the -cut flag):

$ gfud dbnf English.dbnf Utt -show=2

The gfud program also has visualization tools, for both CoNLL and bracketed
trees:

82 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

$ cat examples.conllu | gfud conll2latex >examples.tex

writes a LaTeX file, which can be converted to pdf. This conversion is done
automatically by

$ cat examples.conllu | gfud conll2pdf

which creates a temporary latex file, processes it, and opens it with the open
command (available in MacOS with that name, but in other systems one
may need to create an alias to some other pdf reader). A similar service is
available for parse trees of the bracketed form:

$ cat examples.conllu | gfud parse2latex examples

$ cat examples.conllu | gfud parse2pdf

The first command writes the latex file example.tex. It needs a file name,
because it also writes a number of other files, one for each tree to be shown,
and these files are named using the same file name as a part. The pdf printing
command creates temporary files with a default name.

The parse trees are expected to be each on its own line, prefixed by #

parsetree =. These lines can be extracted from the CoNLL output of gfud.
One can also skip the dependency trees and just output the parse trees:

$ gfud dbnf English.dbnf Utt -onlyparsetrees

The processing of temporary files when visualizing parse trees requires the
GraphViz program called by the command dot. This makes it slow to visu-
alize a large number of trees. Dependency tree visualization generates native
LaTeX and is therefore much faster.

The DBNF parser implements a simple form of robustness by using
chunking. The chunking algorithm identifies a sequence of subtrees that
together cover all words of the input (in a left-to-right longest-match way).
These subtrees are connected together into a category called Chunks, where
the last chunk is treated as the head and the others are linked to it with
the dep label. Unknown words are categorized as Str, with POS tag X In
this way, the parser manages to give trees to all input, which is the expected
behaviour in the UD tradition. Figure 4.5 shows an example parse tree and
the corresponding UD tree:

A quick and handy way to use gfud is to pipe its commands to one
another:

4.5. PARSING WITH DBNF 83

Chunks

Comp Str CN

NP

Det CN

the AP CN

A

black

N

cat

foo N

loves

the black cat foo loves
DET ADJ NOUN X NOUN

' $
?

det� �
?

amod

' $
?

dep ��
?

dep

?

root

Figure 4.2: An analysis obtained by chunking. The token foo is classified as
unknown, and no complete tree can be built for the input.

$ cat examples.txt | gfud dbnf English.dbnf Utt | gfud conll2pdf

This command shows the visualized dependency trees directly.
The gfud program has many other functionalities, to which we will return

later. Most of them have to do with GF. But there is also a pure dependency
parsing related function for evaluation,

$ gfud eval (micro|macro) (LAS|UAS) <goldfile> <testablefile>

This can be used for evaluating the accuracy of a dependency parser, in a
way to be explained in Section 10.9. Here is an example of an experiment:

1. Extract POS-tagged sentences from the English PUD treebank and
parse the resulting sentences with English.dbnf, cutting at 100 parses,
showing 1 parse per sentence:

$ cat eng_pud.conllu | gfud extract-pos-words |

gfud dbnf English.dbnf -cut=100 -show=1

> my_eng_pud.conllu

(this takes 14 seconds on my laptop).

84 CHAPTER 4. GRAMMATICAL ANALYSIS: PHRASE STRUCTURE

2. Evaluate the result by comparison to the original, using macro-average
Labelled Attachment Score

$ gfud eval macro LAS eng_pud.conllu my_eng_pud.conllu

UDScore {udScore = 0.5030515854274822, udMatching = 1000,

udTotalLength = 21183,

udSamesLength = 10290, udPerfectMatch = 26}

Another treebank, the English EWT test treebank, gives 0.61 macro LAS.
Interestingly, doing the experiment with a Swedish treebank (the Talbanken
test treebank) using the same English grammar gives a higher score, 0.54.
This gives some hope that the phrase structure analysis given here is inter-
lingually adequate.

These scores are, however, not very high, since the state of the art in UD
parsing English and Swedish is over 0.9. The standard method of parsing is
based on machine learning from annotated treebanks; the main algorithms
will be explained in Chapter 10. Reaching the state of the art uses tens
of thousands of trees. To reach LAS over 0.60, a few hundred trees are
needed. Writing a DBNF grammar can be a quicker way to reach that
level and thereby to bootstrap a parser for a new language. However, going
much beyond that level may involve grammar writing work with diminishing
returns. A hybrid approach combining machine learning with grammar can
be a better way to go.

Chapter 5

The interlingual perspective:
words

In this chapter, we will start writing grammars in GF. This will extend the
expressivity of grammars in two ways:

• accurate generation of language via precise treatment of morphology
and agreement,

• interlingual generalizations via shared syntactic stuctures, abstract
syntax,

• compact grammar description where a single GF rule can replace hun-
dreds of BNF rules.

GF can be seen as a synthesis of the knowledge we have built up so far: mor-
phology, grammatical functions (as expressed by dependencies), and phrase
structure. The goal is to provide tools that enable the reader to approach
any language and implement its grammar in GF. As this is a substantial
task, we divide the introduction to two chapters. In this chapter, the focus
is on words, morphology, and word senses. In the next chapter, we widen it
to phrases and syntax.

• Section 5.1 provides the big picture of how GF relates to phrase struc-
ture and dependencies.

• Section 5.2 defines the notion of linearization types, which is a gen-
eralization of words and phrases from strings to inflection tables and
other complex objects.

• Section 5.3 discusses the design of linearization types for lexical cate-
gories from the point of view of efficiency and effort.

• Section 5.4 introduces the technique of smart paradigms, which min-

85

86 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

imizes the effort of lexicon building by the use of linguistic generaliza-
tions.

• Section 5.5 goes through the main parts of speech, now from the per-
spective of accurate generation and interlingual equivalences.

• Section 5.6 explains how an interlingual lexicon can be built on the
basis of word senses.

5.1 From phrase structure to abstract syntax

Abstract syntax is a generalization of phrase structure. It abstracts away
from

• the shape of tokens,
• the number of tokens,
• the order of constituents,
• morphological variation,
• the continuity of constituents.

In GF, abstract syntax is expressed in terms of constructor functions that
operate on categories. Categories are a generalization of non-terminals in
BNF, and we continue to use the category symbols of the previous chapter.
Construction functions, or, briefly, functions, can be conceived as names
given to BNF rules. Hence the BNF rule

S ::= NP VP

is represented as a function named Pred (for predication), which takes an
NP and a VP as its arguments and returns an S as its value. In GF notation,
we write

fun Pred : NP -> VP -> S

to introduce this function. The part on the right of the colon (:) is the type
of the function, where NP and VP are argument types and S is the value
type.

The concrete syntax gives linearization functions for each function
in the abstract syntax. For instance,

lin Pred np vp = np ++ vp

5.1. FROM PHRASE STRUCTURE TO ABSTRACT SYNTAX 87

says that trees formed by Pred are linearized so that the NP is concatenated
(symbol ++) to VP. The symbols np and vp are variables that stand for the
linearizations of the arguments of Pred. The choice of their names is just
conventional: one could equally well write

lin Pred x y = x ++ y

Table 5.1 gives a quick reading guide to GF notation, but it will also be
explained in more detail in the text.

To illustrate the power of abstract syntax and linearization, let us consider
another rule, where a verb (V) is given an NP complement:

fun Compl : V -> NP -> VP

The linearization rule could be

lin Compl v np = v ++ np

which together with the above linearization of Pred results in the Subject-
Verb-Object (SVO) order of constituents. But changing it to

lin Compl v np = np ++ v

results in Subject-Object-Verb (SOV), used e.g. in Latin, as well as
in German subordinate clauses. A third common order, Verb-Subject-
Object (VSO) is obtained by the following pair of linearization rules:

lin Pred np vp = vp.verb ++ np ++ vp.obj

lin Compl v np = {verb = v ; obj = np}

This shows VP as a discontinuous constituent, modelled as a record
with two fields, recognized by the labels verb and obj. The projection
operator (.) picks a value stored in a record corresponding to a field.

The use of records in addition to strings is one of the two extensions that
GF provides over BNF. The other extension is tables, which model inflection
tables, of the kind we saw in Chapter 2. Tables are used both for words
and for complex phrases — words are seen as special case of phrases. For
instance, an NP can inflect for case and have inherent agreement features.
The simplest case is an NP consisting of just one word:

88 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

Construct Notation Example

Abstract syntax module abstract abstract Lang =. . .
Concrete syntax module concrete concrete LangEng of Lang Lang =. . .
Resource module resource resource ResEng Lang =. . .
Module extension ** abstract Lang = Noun,Verb **. . .
Module opening open resource ResEng = open Prelude in. . .
Abstract syntax category cat cat NP

Abstract syntax function fun fun Pred : NP -> VP -> S

Linearization type lincat lincat N = {s : Number => Str}
Linearization rule lin lin Pred np vp = np.s!Nom ++ vp!np.a

Parameter type param param Case = Nom | Acc

Auxiliary operation oper oper addS : Str -> Str = \x -> x + ‘‘s’’

String concatenation ++ "loves" ++ "Mary"

Token concatenation + "Maria" +"m" ⇓ "Mariam"

Function type -> NP -> VP -> S

Function application f a b Pred np vp

Function abstraction \ -> \x,y -> x + y

Table type => Case => Str

Table table table {Nom =>"she" ; Acc =>"her"}
Selection from table ! she NP.s ! Acc ⇓ "her"

Table with one branch \\ => \\p,q => np ! q ! p

Record type {. . . :. . . } {s : Str ; g : Gender}
Record {. . . =. . . } {s = "doctor" ; g = Fem}
Projection from record . {s = "doctor"}.s ⇓ "doctor"

Record update ** doctor_N ** {g = Masc}

Case expression case case np.a of {Ag n _ => cn.s ! n}

Tuple type * Number * Case

Tuple <,> <Sg,Dat>

Comment -- -- comment till the end of line

Comment {- -} {- comment of any length -}

Table 5.1: Reading guide for GF notation. The first five rows are about
modules, the next six list the different kinds of rules. The rest are expres-
sions for types and objects. The notation e ⇓ v means that expression e is
computed to value v.

5.2. PARAMETERS AND LINEARIZATION TYPES 89

lin she_NP = {

s = table {Nom => "she" ; Acc => "her"} ;

agr = Ag Sg P3

}

A VP can be a table over agreement features, which in predication are passed
from the NP to the VP. The subject-verb agreement can then be expressed
in a linearization rule as follows:

lin Pred np vp = np.s ! Nom ++ vp ! np.agr

The selection operator (!) selects a value from a table, corresponding to a
feature. In this example, its first occurrence selects the nominative (Nom) of
the noun phrase. The second occurrence selects the form of the verb phrase
corresponding to the agreement feature stored in the record for the noun
phrase. In summary, the rule says that the NP is used in the nominative
case and the VP is used in agreement to the NP.

The relation of phrases to dependencies can be maintained in the same
way as in DBNF: by assigning a label to each argument of an abstract syntax
function:

Pred : NP -> VP -> S # nsubj head

Compl : V -> NP -> VP # head obj

In contrast to DBNF, these definitions are language-independent: labels are
distributed correctly via linarization even when word order varies, so that
correct dependency trees can be generated from abstract syntax trees. At
the same time, the abstraction creates some complications, to which we will
return in Section 6.3.

5.2 Parameters and linearization types

The additional power of GF compared to BNF comes from the use of records,
tables, and language-dependent feature types. Feature types are in GF called
parameter types and defined by rules that enumerate their values, sepa-
rated by a bar (|):

param Case = Nom | Acc

90 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

Every language can define its own type for case, or also leave it out if it is
not needed. Chinese, for instance, does not need case, whereas the Latin
case has six values and Finnish 15. Parameter types are used as parts of
linearization types, which define the inflectional and inherent features of
abstract categories (as introduced in Section 2.4). Thus we have in Section 5.1
assumed the following linearization types for English:

lincat S = Str

lincat NP = {s : Case => Str ; agr : Agr}

lincat VP = Agr => Str

The keyword lincat marks linearization type definitions in GF. The type
Str means string — actually, token list, since strings are assumed to be
divided into tokens. The double arrow => marks a table type, i.e. a the
type of tables for a given parameter type. A record type looks similar to a
record, except that the fields are marked by the colon (:) and contain types
instead of values. The notation follows the general practice that the colon is
used for assigning types, and the equality sign (=) to assigning values.

The main principles in GF are the following:
• the abstract syntax defines categories (cat) and functions (fun)
• the concrete syntax defines linearization types (lincat), lineariza-
tion functions (lin), and parameter types (param)

• the type of the linearization function of an abstract function f is formed
from the linearization types of the abstract types. More precisely: If

fun f : T1 → . . . → Tn → T

then

lin f : lincatT1 → . . . → lincatTn → lincatT

• the linearization t∗ of an abstract syntax tree t is obtained by com-
puting the linearization function of its outermost function with the
linearizations of the subtrees as arguments:

(f t1 . . . tn)
∗ = lin f t∗1 . . . t∗n

The last two principles mean that linearization is mathematically a homo-
morphism, and that it is a compositional operator: the linearization of a
tree is a function of the linearizations of its immediate subtrees.

5.3. LINEARIZATION TYPES FOR LEXICAL CATEGORIES 91

The mathematical properties of GF are important for its efficient imple-
mentation, but they also impose a restriction on how much exactly can be
done in linearization. A tree can be linearized in many different ways in
different languages, but not in all conceivable ways in which trees can be
converted to strings. This will sometimes impose a restriction on what the
grammar programmer can do. But it can also be interesting for the linguist
to get a formal definition of what interlingual structures are compositional,
as well as what translation equivalences are not compositional.

Another practical consequence of the discipline imposed by linearization
types in GF is that grammars are statically checked. The GF compiler
guarantees that all features are consistently used and that linearization never
fails at runtime. Static type checking is a general feature of programming
languages such as Java and Haskell, in contrast to Python or LISP. Static
checking is not common in grammar formalisms, let alone informal annota-
tion schemes such as UD. For the working grammarian, static checking is
helpful, because the compiler finds many bugs before the grammar is put to
use. But some programmers — for instance those used to Python — may
find it annoying, as it delays the point at which one can start testing the
grammar.

5.3 Linearization types for lexical categories

With the ultimate goal of building an interlingual grammar, let us start
bottom-up, from words, as we did earlier before proceeding to syntactic de-
pendencies and phrase structure. A good place to start is nouns, for which
we will use the category name N. We will include it as the first item in an
abstract syntax module called Example and shown in Figure 5.1. Beside
it, we show a concrete syntax module called ExampleEng, which defines
how trees built in Example are linearized in English.

Below the abstract and concrete syntax we have a resource module
called ResEng, which defines parameter types and auxiliary operations
(oper) that are usable in concrete syntax modules via a directive to open it.

It is good practice to include all param and oper definitions in resource

modules, so that they can be reused in different concrete syntaxes. Thus we
will start our discussion of morphology by working inside a resource module.

Another good practice is to introduce type synonyms, such as Noun

in ResEng, and use them instead of explicit tables and records. This is less

92 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

abstract Example = { concrete ExampleEng of Example =

open ResEng, Prelude in {

cat lincat

N ; N = Noun ;

fun lin

doctor_N : N ; doctor_N = regNoun "doctor" ;

} }

resource ResEng = {

param Number = Sg | Pl ;

oper

Noun : Type = {s : Number => Str} ;

mkNoun : (sg,pl : Str) -> Noun

= \man,men -> {s = table {Sg => man ; Pl => men}} ;

regNoun : Str -> Noun

= \dog -> mkNoun dog (dog + "s") ;

}

The GF compiler assumes that each module resides in a file called the
module name plus the suffix .gf. After starting the GF shell with the
command gf, the following commands are useful for testing the gram-
mars:

> i ExampleEng.gf -- to import a concrete syntax

> l doctor_N -- to linearize a tree

> p -cat=N "doctor" -- to parse a string

> i -retain ResEng.gf -- to import a resource

> cc regNoun "baby" -- to compute an expression

Figure 5.1: Abstract and concrete syntax modules, as well as a resource
module that is used in the concrete syntax module. The module Prelude

belongs to the standard library of GF and is often useful to open.

5.3. LINEARIZATION TYPES FOR LEXICAL CATEGORIES 93

verbose, as seen in the types of mkNoun and regNoun, where it also guarantees
that the same type is targeted in both of them. But it also makes it possible
to change the type of nouns without changing much of the code. For instance,
if a later version of the grammar needs to add gender information to English
nouns — for instance, to decide whether the reflexive pronoun is himself,
herself, or itself — the only change required is in the definitions of Noun and
mkNoun:

Noun : Type = {s : Number => Str ; g : Gender}

mkNoun : (sg,pl : Str) -> Noun

= \man,men -> {s = table {Sg => man ; Pl => men} ; g = Neutr} ;

Since these are the only places where the actual record-table structure of
nouns is shown, the rest of the code can remain intact. Of course, the gender
field will have to be changed for those nouns where the default Neutr is not
the correct choice. This can be done either by an operation that sets the
gender of a noun,

oper setGender : Gender -> Noun -> Noun

= \gen,noun -> noun ** {g = gen} ;

lin doctor_N = setGender Fem (regNoun "doctor") ;

or by explicitly overriding the default in the lexicon,

lin doctor_N = regNoun "doctor" ** {g = Fem} ;

In both cases, the record update operator ** is used to overwrite an earlier
value in a record. If the field is missing, this operator adds it to the record.

The mkNoun operation is the worst-case paradigm for nouns. It lists
all those forms that can be different for an object of type Noun. Worst-case
paradigms are natural companions of type synonym, making it possible to
change the underlying table and record types without affecting most of the
code. In programming terms, this means that we treat the linearization types
as abstract data types.

As we saw in Chapter 2, a good practice in a morphological lexicon is to
keep the size of the inflection table minimal. In GF, this means keeping the
linearization type size equal to the number of arguments of the worst-case
paradigm.

94 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

One thing that sometimes obscures the view of the number of inflection
forms required is their use in syntactic combinations. For example, even
though common nouns in English do not have accusative cases, noun phrases
(NP) in general do, because noun phrases also include personal pronouns
(Pron). The linearization type a category must always have room for the
“worst case”, and therefore noun phrases must inflect for the two cases:

lincat NP = {s : Case => Str ; a : Agr}

We will discuss the formation of complex phrases in next chapter, so let us
just look at a special case: a function that forms the singular definite noun
phrase from a noun, e.g. the doctor from doctor :

fun TheSg : N -> NP

lin TheSg n = {s = \\c => "the" ++ n.s ! Sg ; a = Ag Sg P3}

The accusative form of these noun phrases is hence identical to the nomina-
tive, and there is no need for the noun itself to make case distinctions.

The example with English noun case may sound trivial, but actually a
similar thing has been debated in the grammar of Finnish for a long time.
In Finnish, nouns have 14 inflectional cases, whereas pronouns have 15: the
same as nouns plus an accusative case. When a noun phrase is used in a con-
text where the accusative is needed (as a direct object of a verb), a pronoun
NP is rendered in the accusative, and a noun NP either as nominative or
genitive, depending on the syntactic context. Some morphological analysers
then give accusative as an alternative analysis every time they encounter a
nominative or genitive noun, but this is of course redundants. The stan-
dard UD treebanks use a POS tagger that use the Case=Acc feature only for
pronouns.

However, for English verbs, the practice in UD treebanks is different.
Thus the infinitive form of a verb can receive one of the features

Mood=Ind|Tense=Pres|VerbForm=Fin

VerbForm=Inf

depending on the syntactic context. The distinction probably comes from
the POS tagger, which takes some syntactic aspects into account; for the
morphological analyser as such, there is no reason to make the distinction.
Notice that infinitive verb forms could also have the tag

5.3. LINEARIZATION TYPES FOR LEXICAL CATEGORIES 95

Mood=Ind|Number=Sing|Person=1|Tense=Pres|VerbForm=Fin

but this is in UD used only for the verb form am.
In syntax, both agreement and tense have to be taken into account when

verb phrases (VP) are formed. Then the relevant parameter types are

Aspect = Simple | Perf

Tense = Pres | Past | Fut

Number = Sg | Pl

Person = P1 | P2 | P3

The product of these types leads to 36 “VP forms” (”$2 \times 3 \times
2 \times 3$), and then we have not yet included infinitive, imperative con-
ditional, and progressive forms. Verbs themselves, however, need only five
morphological forms:

VForm = Inf | PresSgP3 | PastInd | PastPart | PresPart

When a verb prase is formed, these can be captured by a compact pattern
matching:

oper verbForm :

Verb -> Aspect -> Tense -> Number -> Person -> Str

= \a,t,n,p -> case <a,t,n,p> of {

<Simple, Pres, Sg, P3> => v.s ! PresSgP3 ;

<Simple, Pres, _, _ > => v.s ! Inf ;

<Simple, Past, _, _ > => v.s ! PastInd ;

<Simple, Fut, _, _ > => "will" ++ v.s ! Inf ;

<Perf, Pres, Sg, P3> => "has" ++ v.s ! PastPart ;

<Perf, Pres, _, _ > => "have" ++ v.s ! PastPart ;

<Perf, Past, _, _ > => "had" ++ v.s ! PastPart ;

<Perf, Fut, _, _ > => "will have" ++ v.s ! PastPart

}

Notice the use of pattern matching over a tuple, with disjunctive (|) and
wildcard () patterns (see Figure 5.2 for more examples of pattern matching).

Another example we considered in Chapter 2 were Latin nouns. We
noticed in that at most 10 forms are different for any given noun, even though
the product of two numbers and six cases is 12. If we really want to optimize

96 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

the table in this way, we have two alternatives: hierarchic parameter types
and records.

Hierarchic parameter types work technically like algebraic datatypes
in programming, where the parameter constructors can take arguments from
other types. If we start with the baseline of two numbers and six cases for
Latin,

Number = Sg | Pl

Case = Nom | Acc | Gen | Dat | Abl | Voc

we end up with tables of the type

Number => Case => Str

for nouns, which contain 12 forms, where the plural dative and ablative are
always the same, and so are the plural vocative and nominative. To eliminate
this redundancy, we can use the following system of types:

Number = Sg | Pl

Case = Nom | Acc | Dat | Gen

NounForm = NF Number Case | NSgAbl | NSgVoc

The type NounForm now has exactly 10 = 2× 4 + 1 + 1 values. This may be
a bit of overkill, since it complicates the formulation of agreement rules later
in syntax. But it makes more sense in cases where more forms can be saved.

An instructive example is German adjectives, which inflect for number,
gender, and case. In addition, they inflect for degrees (three values) and
the “strong”, “weak”, and “mixed” declensions. The cross-product of these
features has 216 forms:

3degrees× 3strenghts× 2numbers× 3genders× 4cases

All these forms, plus some more for predicative uses, can be found e.g. in
the tables in the Wiktionary

https://de.wiktionary.org/wiki/Flexion:schlimm

Just like English verb phrases, these distinctions are relevant when forming
adjectival phrases (AP) in German. But in morphology, we can minimize the
number of forms by the following observations:

https://de.wiktionary.org/wiki/Flexion:schlimm

5.3. LINEARIZATION TYPES FOR LEXICAL CATEGORIES 97

• the forms in weak and mixed declensions can be found from the strong
forms

• gender matters only in the singular number (this is so in the Wik-
tionary, too)

• the accusative is the same as the nominative except for masculine sin-
gular

• the masculine and neuter dative are always the same
• and some more observarions, ending up with the conclusion that there
are only 6 different forms in each degree, exemplified by schlimm,
schlimme, schlimmem, schlimmen, schlimmer, schlimmes

An algebraic datatype could be used to capture the German adjective inflec-
tion precisely. But it would be very complex and uninituitive, in comparison
to a record, where the forms are named after the most typical carrier of a
certain ending:

AdjForms : Type = {

pred, mnom, macc, mdat, fnom, nnom : Str

}

This reduces the number of adjective forms that need to be given by the
grammarian and stored in the run-time system to 18. The “complete” set
of forms needed by the AP can be easily computed by a pattern matching
similar to the one showed for English VP above.

The most extreme saving in the size of inflection tables is achieved by
storing only a set of different stems, from which the actual inflection forms
are obtained by agglutination — pure concatenation of endings. Since
German adjectives are always have the same set of 6 endings, once the degree
form is given, they could be defined by the following minimal type, which
contains just four strings:

MinimalAdjForms : Type = {

pospred, posstem,

compstem, supstem : Str

}

(In the positive degree, the predicative form may end with an e, in which
case the stem is withour e.) To construct all the 18 inflection forms, all that
is needed is to glue proper endings to proper stems. If done in the syntax
part of the grammar (when AP is formed), the function Predef.BIND must
be used instead of the + operator:

98 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

mnom = a.posstem ++ Predef.BIND ++ "er"

an so on. The reason for this is technical: the GF compiler must know
all tokens at compile time, and the + operator would build new tokens at
runtime. This makes the use of this approach a bit cumbersome, and it is
in the RGL only done in Finnish, Maltese, and Turkish, where the inflection
tables would otherwise grow to the size of hundreds or thousands of forms.

5.4 Smart paradigms

The previous section was about designing the linearization types of words,
to optimize the storage needed for them in the compiled grammar. In this
section, we will look at how to minimize the grammarian’s effort when cre-
ating them, or, if the lexicon is extracted automatically, the amount of data
that is needed to derive the full inflection.

We have already shown a very simple case of this in Figure 5.1: the
operation regNoun, which builds the plural form from the singular by adding
an “s”. For those nouns that do not follow this pattern, two forms must be
given by using mkNoun. However, regNoun can be made smarter by pattern
matching on the singular form, as shown in Figure 5.2.

Similar paradigms as in Figure 5.4 could be easily defined for English
verbs and adjectives. The leading principle is that inflection is inferred from
as few characteristic forms as possible. An evaluation of smart paradigms
in the GF RGL (Détrez and Ranta 2012) showed that less than two forms
on the average were typically enough, even for Finnish, which has a rich
morphology.

For a language that has an established standard paradigm system, like
Latin, it makes sense to implement each paradigm as a separate function
and let the smart paradigms decide which standard paradigm to use. In
addition to the characteristic forms, the gender is typically a useful feature
to pattern-match on. The following paradigm using the singular nominative
and genitive, together with the gender, gives a good coverage of Latin nouns:

smartNoun : (nom,gen : Str) -> Gender -> Noun

= \nom,gen -> case <nom,gen> of {

<_ + "a", _ + "ae"> => decl_I_Noun nom g ;

<_ + ("us"|"er"|"um"), _ + "i" > => decl_II_Noun nom g ;

<_ + ("us"|"u"), _ + "us"> => decl_IV_Noun nom g ;

5.4. SMART PARADIGMS 99

smartNoun : Str -> Noun

= \s -> case s of {

_ + ("a"|"e"|"o"|"u") + "y" => regNoun s ;

x + "y" => mkNoun s (x + "ies") ;

_ + ("s"|"z"|"x"|"sh"|"ch") => mkNoun s (s + "es") ;

_ => regNoun s

} ;

mkN = overload {

mkN : Str -> Noun

= \s -> smartNoun s ;

mkN : (sg,pl : Str) -> Noun

= \sg,pl -> mkNoun sg pl ;

} ;

Key GF concepts used:
• a case expression for pattern matching over strings
• regular patterns in case expressions, where

– a double-quoted string matches itself
– matches anything
– a variable (e.g. x) matches anything and can be used on the

right hand side of =>
– a disjunctive pattern (|) matches alternatives
– a sequence pattern (+) matches sequences

• an overloaded operation, where
– different operations can be given the same name
– these operations just have to have different types
– the GF grammar compiler resolves the overloading based on

the type

Figure 5.2: A smart paradigm and an overloaded paradigm group.

100 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

<_ + "es", _ + "ei"> => decl_V_Noun nom g ;

<_, _ + "is"> => decl_III_Noun nom gen g ;

_ => Predef.error ("smartNoun doesn’t match" ++ nom ++ gen)

}

Some observations from this paradigm:
• decl II Noun and decl IV Noun make themselves pattern matching
over the ending

• decl III Noun has no particular nominative ending or gender, but is
recognized from the genitive ending

• the last case captures nouns that do not fit into any of the declensions,
either due to a typo when using the paradigm or because of irregularity

Another type of standard linguistic knowledge that helps in paradigm def-
initions is phonological and orthographical variation. An example is
consonant duplication in English. It means that certain final consonants
are duplicated in certain verb and adjective forms, when appearing after a
single vowel. Figure 5.3 shows the definition of consonant duplication as
a string operation and its use in verb and adjective paradigms. The other
special cases of these paradigms (such as basic forms ending in e or y) are
omitted.

The above examples taken from English, German, and Latin cover many
of the variations that can be found in different languages and will hopefully
help in implementing their morphologies. One important type of morphology
that we have not discussed here is the non-concatenative morphology of
Semitic languages such as Arabic and Maltese. The key idea for dealing with
it is to use records of three strings, instead of simple strings, to represent
roots of words. Each field in the string contains a radical, usually one
consonant. Inflectional forms are built by combining the root record with a
FaCaL pattern, which is a record of four strings:

Root : Type = {F,C,L : Str}

Pattern : Type = {F,FC,CL,L : Str}

fill : Pattern -> Root -> Str

= \p,r -> p.F + r.F + p.FC + r.C + p.CL + r.L + p.L

Full details can be found in the GF book (Section 4.5) and in the correspond-
ing section in the on-line GF tutorial, and of course the RGL code for Arabic
and Maltese.

5.4. SMART PARADIGMS 101

vowel : pattern Str

= #("a" | "e" | "i" | "o" | "u") ;

consonant : pattern Str

= #("b" |"d" |"g" |"l" |"m" |"n" |"p" |"r" |"t" |"z") ;

duplFinalCons : Str -> Str = \s -> case s of {

_ + #vowel + #vowel + ? => s ;

_ + #vowel + c@(#consonant) => s + c ;

_ + #vowel + "c" => s + "k" ;

_ => s

} ;

regVerb : Str -> Verb = \s ->

let

ss = duplFinalCons s

in

mkVerb s (s + "s") (ss + "ed") (ss + "ed") (ss + "ing") ;

regAdj : Str -> Adj = \s ->

let

ss = duplFinalCons s

in

mkAdj s (ss + "er") (ss + "est") ;

Key GF concepts used:
• pattern macros, vowel and consonant, formed by prefixing # to
a pattern

• use of pattern macro in pattern matching, #vowel
• the single character pattern ? matching a single-character string
• the alias pattern c@#consonant, which binds the variable c to the
value matched by the pattern #consonant

• the local definition (let... in) defining local constants, typically
in the scope of variables

Figure 5.3: English consonant duplication, as an example of string operations
and their use in paradigms. Other special cases of these paradigms have been
omitted.

102 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

5.5 Parts of speech revisited

In Table 4.1, we listed the lexical categories used in the phrase structure rules
of Chapter 4. The same categories are used in the GF Resource Grammar
Librarary, and their full list is given later, in Table ??. In this section, we
will give some guidelines about their linearization types in different languages,
thereby formalizing the discussion in Chapter 2.

Nouns, as we have seen, typically inflect for number and case (if the
language has these features) and have an inherent gender (if the language
has genders). The can also inflect for definiteness, as in Scandinavian
languages. In Chinese and Thai, the classifier can be included as an extra
string:

lincat N =

{s : Number => Str} -- Eng

{s : Number => Str ; g : Gender} -- Fre, Ita

{s : Number => Case => Str ; g : Gender} -- Lat, Ger

{s : Number => Def => Case => Str ; g : Gender} -- Swe, Ice

{s : Str ; c : Str} -- Chi, Tha

Proper names are like numbers but without number variation. They typ-
ically behave like singular noun phrases in agreement, but may need an in-
herent number to account for group names (The Beatles) or company names
(Google increase their revenues).

lincat PN =

{s : Case => Str ; g : Gender, n : Number}

Adjectives can be “3 times 3 times nouns” as in Latin, where each of the
three degrees produces noun-like inflection tables for each of the three gen-
ders. In German, we can used the optimized AdjForms record type defined
in Section 5.3. In English, only the degree matters. But an inherent feature
isComp can be added to determine if the adjective is complex, i.e. if its com-
parison is formed syntactically by the adverb more and most ; an alternative
is to include the adverb in the table itself, but this is not elegent from the
morphological point of view. In Chinese, a similar feature can be used to say
whether the adjective needs the particle de when used as an attribute. In
many languages, an adv field might be added to tell how adverbs are formed
from the adjective.

5.5. PARTS OF SPEECH REVISITED 103

lincat A =

{s : Degree => Str ; isComp : Bool} -- Eng

{s : Degree => Gender => Number => Case => Str} -- Lat

{pos,comp,sup : AdjForms} -- Ger

{s : Str ; isComp : Bool} -- Chi

** {adv : Degree => Str} -- many languages

Adverbs in general can be formed from adjectives (warmly) but also in-
dependently (now). When formed from adjectives, adverbs typically have
degrees parallel to the adjective degrees. But in general, adverbs do not have
degrees, and their linearization type is hence just a string. In addition, there
can be inherent features, such as in Chinese a feature saying whether the
adverb expresses time, place, or manner; this feature is needed to decide the
proper place of the adverb in a sentence, e.g. whether it is before or after
the verb:

lincat Adv =

{s : Str} -- Eng, Fre, Ger,...

{s : Str ; t : AdvType} -- Chi

The adverb type feature belongs to the concrete syntax and should not be
confused with another distinction, which is needed already in the abstract
syntax: separate categories for

• adverbs modifying adjectives, AdA e.g. very
• adverbs modifying numerals, AdN e.g. almost
• sentential adverbs, AdV e.g. never
• interrogative adverbs, IAdv e.g. why

The difference is that adverbs of different abstract categories have different
possible combinations, not just different positions in linearization. This for
instance an Adv can be used in the predicative position, but an AdA cannot:

the meeting is now

*the meeting is very

However, the RGL classification of adverbs is one of the least exact regions
of the library. Some adverbial words can be used in many of these ways,
which means that they need to have separate abstract syntax functions in
the categories involved. At the same time, the main category Adv allows

104 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

dubious combinations, such as the meeting is warmly. This would motivate
finer distinctions, which are of course possible to do in semantic grammars,
to be discussed in Chapter 8.

Verbs are in many languages the most complex category. They have a
rich morphology, but also a wide variety of combination possibilities due to
verb valencies. As for morphology, it is important to keep the number of
forms down to the absolutely necessary, i.e. only to include inflectional fea-
tures that can produce different forms. Thus for instance compound tenses
(have walked, will walk) should not be included, since they can be formed
from participles and infinitives. We concluded in Chapter 2 that English
verbs need five forms, which are conveniently listed in a special parameter
type VForm. In Romance languages and Latin, a hierarchic system of alge-
braic datatypes is natural. Thus in Latin, the following system is an accurate
formalization of how verb inflection is structured in traditional grammars,
and also the most economic way to store all and only the different verb
forms:

VForm = VFAct VActForm | VFPass VPassForm

| VFInf VInfForm | VFImp VImpForm

| VFGer VGerund | VFSup VSupine

| VFPart VPartForm ;

VActForm = VAct VAnter VTense Number Person ;

VPassForm = VPass VTense Number Person ;

VInfForm = VInfActPres | VInfActPerf Gender | VInfActFut Gender

| VInfPassPres | VInfPassPerf Gender | VinfPassFut ;

VImpForm = VImp1 Number | VImp2 Number Person ;

VGerund = VGenAcc | VGenGen |VGenDat | VGenAbl ;

VSupine = VSupAcc | VSupAbl ;

VPartForm = VActPres | VActFut | VPassPerf ;

VAnter = VAnt | VSim ;

VTense = VPres VMood | VImpf VMood | VFut ;

VMood = VInd | VConj ;

We leave it as an exercise to calculate the number of values of tyoe VForm

:-) For Latin verbs, unlike German adjectives, all of these forms, which are
traditionally included in inflection tables, can actually be different and are
therefore relevant.

Verbs may also have inherent features, for instance,

5.5. PARTS OF SPEECH REVISITED 105

• whether the verb is reflexive or deponent (used in passive only)
• what auxiliary is used for compound tenses (in e.g. French, Italian,
and German)

Let us collect these features in the parameter VType. One more thing we
need is particles used in compound verbs, e.g. look up in English, where
up is a separate word, or auf+passen in German, where auf is sometimes
separate, sometimes a prefix glued to the verb. From these considerations,
we end up with a general form of a type synonym,

Verb = {s : VForm => Str ; p : Particle ; t : VType}

On top of this, we can build linearization types for different subcategories
of verbs, encoding their valencies:

• V, one-place verbs, such as sleep:
lincat V = Verb

• V2, two-place verbs, such as love:
lincat V2 = Verb ** {c : ComplCase}

where ComplCase can include a preposition in addition to case.
• V3, three-place verbs, such as give:

lincat V3 = Verb ** {c1,c2 : ComplCase}

• VS, sentence-complement verbs, such as believe:
lincat VS = Verb ** {m : Mood}

The mood parameter is needed in languages such as French, where the
mood of the subordinate clause (indicative or subjunctive) depends on
the verb.

• VV, verb-phrase-complement verbs, such as want :
lincat VV = Verb ** {i : InfType}

where InfType records the form expected from the VP complement
(e.g. plain infinitive in can sing, infinitive with to in want to sing, and
gerund in start singing.

• V2V, NP+VP-complement verbs, such as order :
lincat V2V = Verb **

x{c : ComplCase ; i : InfType ; oc : Bool}

where oc records whether the VP complements agrees to the object
(e.g. I order you to wash yourself or the subject I promise you to wash
myself).

Verb valencies in the RGL thus have two aspects:
• abstract logical type: which categories serve as complements

106 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

• concrete rection: what forms (e.g. case, mood, infinitive form) the
complements take

Distinguishing between these aspects of valency is a crucial idea in an in-
terlingual lexicon: the abstract syntax encodes the logical types of verbs,
whereas rection is language-dependent. For example, whether a two-place
verb is transitive (takes an direct object, obj in UD) is not specified in the
abstract syntax, because an equivalent verb in another language may take a
prepositional object (obl) in UD. In this way regarder in French can have
the same abstract syntax entry as English look at.

More subcategories of verbs will be introduced in Chapter 8. Let us
conclude this section with some categories of function words and their
linearization types. Function words, also known as structural words, are
typically very few in each category. Nevertheless, they require a lot of at-
tention from the grammarian, since they often have complex and irregular
morphology. They may also have more inflection forms than content words:
for instance, pronouns in English have the accusative case, which nouns and
proper names do not have.

Personal pronouns (Pron) are typically inflected for case and have in-
herent agreement features (gender, number, person). In the RGL, each pro-
noun record includes the corresponding possessive pronoun, with alterna-
tive forms much like a determiner (see below), since the use of possessive
pronouns is syntactically like determiners.

Pron = {s : Case => Str ; poss : Determiner ; a : Agr}

In Enlish, pronouns need two case forms (I, me) and two determiner forms
(my, mine). In German, where determiners inflect similarly to adjectives
(but without degrees), 16 forms are needed for the possessive and four case
forms for the pronoun itself. Some languages, e.g. Romance and Slavic,
make a distinction between stressed and unstressed pronouns, where
the latter may appear as clitics or even be realized as empty strings because
of pro-drop. An extensive example with Italian can be found in the GF
book, Chapter 9, and the on-line GF tutorial.

Conjunctions (Conj) may need two strings (like both - and):

Conj = {s1, s2 : Str}

Prepositions typically need a string and an inherent case. In the RGL,
they actually correspond to adpositions, and may need an inherent feature

5.6. INTERLINGUAL LEXICON AND WORD SENSES 107

indicating if the adposition is used as s preposition or a postposition. Alter-
natively, they can have two strings, one before and one after the phrase they
are attached to, and one of these may be empty. If both fields are empty,
the abstact adposition is linearized to just a case passed to the noun phrase:

Prep = {s1, s2 : Str ; c : Case}

This type is typically the same as the complement case specified for verbs.
Determiners (Det) inflect much like adjectives, except that they have

no degrees and their number is inherent:

Det = {s : Gender => Case => : Str ; n : Number}

A special category in the RGL is called quantifiers (Quant), which have
both singular and plural forms. An example is English this-these. But also
articles (the, a) and possessive pronouns are from an interlingual perspective
in this category, since they can be combined with both singular and plural
nouns. In many languages, they consistently have different forms for different
numbers.

Quant = {s : Number => Gender => Case => : Str}

We will introduce other function word categories later when discussing syn-
tax. A typical feature for many of them is that they have no inflection.
Therefore the syntactic part of speech criterion is the only way to distin-
guish them from each other.

5.6 Interlingual lexicon and word senses

The abstract syntax of an interlingual lexicon is a collection of word senses.
Word senses are defined in terms of translation equivalence. Their pur-
pose is to support compositional translation, which in GF means parsing
the source language with its concrete syntax and generating the resulting
abstract tree with the concrete syntax of the target language. The abstract
tree remains the same, which means that the translation is structure by
structure and, ultimately, when the leaves of the tree are reached, word
by word.

Word senses are needed in the abstract syntax to encode ambiguities
that may arise when a word can have several translations with different
meanings. The RGL has some sense distinctions built in for structural words:

108 CHAPTER 5. THE INTERLINGUAL PERSPECTIVE: WORDS

youSg Pron, singular you, du in German

youPl Pron, plural you, ihr in German

youPol Pron, polite you, Sie in German

But these distinctions need to be extended to gender-specific forms, such as
anta (masculine singular) vs. anti (feminini singular) in Arabic, with similar
distinctions in the plural and moreover in the dual number. So a rough esti-
mate of the number of senses of you is 12 (3 numbers, 2 genders, 2 politeness
levels). Few languages have the full set as separate words, but the gender
distinction may still be needed in the inherent gender used in agreement:
French tu es heureux (“you are happy”) uses the masculine singular you,
whereas the feminine singular produces tu es heureuse.

A large-scale collection of interlingual senses is taking place in the GF-
WordNet project,

https://cloud.grammaticalframework.org/wordnet/

to which we will return later in Chapter 8. It is based on the Princeton
WordNet, which is a database of English word senses. The Princeton Word-
Net has been adapted to several languages, sometimes directly translated.
Analysing the translations has revealed that the original WordNet senses are
not directly usable as a translation interlingua; this was not their original
goal either. Some sense distinctions in the WordNet are too fine-grained and
irrelevant for translation in any language, whereas some senses are not fine-
grained enough. For example, the word drug has as one of its senses “medical
or narcotic substance”, but many languages have distinct words for medical
and narcotic drugs.

Another challenge for word-to-word translation is that one often needs
multiword constructions to translate single words. Luckily, these can in
GF be encoded as abstract syntax functions and given precise linearization
rules to support compositional translation in a more abstract sense. We will
return to this question in Chapter 8.

https://cloud.grammaticalframework.org/wordnet/

Chapter 6

The interlingual perspective:
syntax (IN PROGRESS)

In this chapter, we will develop an abstract and concrete syntax for phrases.
We will follow roughly the same order as in Chapter 4 and see how an abstract
syntax is extracted from phrase structure. But we will be more careful now:
we cannot just keep adding rules to cover more ground, as we must make
sure to obey the restrictions imposed by linearization types. This discipline
has advantages as well:

• once we know the linearization types, the linearization rules almost
write themselves automatically,

• we can build a large grammar with much fewer rules than when using
BNF.

The main reason of the discipline is, of course, that we will now be able to
build a grammar that can accurately generate language and use a shared
interlingual structure. Parsing is also possible with the grammar, but it is
less robust than with the overgenerating BNF grammar.

The description below aims at a good coverage of syntactic structures and
is therefore quite advanced. A more accessible introduction can be found in
the “mini resource grammar” description in the GF book, Chapter 9, and
the corresponding part of the book slides

http://www.grammaticalframework.org/gf-book/gf-book-slides.

pdf

starting from p. 366. To minimize overlap with the GF book, we are not
repeating the mini resource here but go directly to the “real thing”. More-

109

http://www.grammaticalframework.org/gf-book/gf-book-slides.pdf
http://www.grammaticalframework.org/gf-book/gf-book-slides.pdf

110CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

over, we will make it on a generic level ready for typical variations in many
languages, which means that even the concrete syntax is somewhat abstract.
This is done in the same way as in the previous chapter: we will for instance
say that noun prases inflect for case without specifying what the cases are.
More details of individual languages can be found in chapter 7.

6.1 General principles

We introduced in Section 5.1 the concepts of functions and their lineariza-
tions, which were later in Chapter 5 applied to lexical categories, that is,
to abstract syntax functions that take no arguments. The general idea was
that each word is linearized into a record that consists of an inflection table
and inherent features, as well as possibly discontinuous parts, such as with
particle verbs (look - up) and conjunctions (both - and).

Exactly the same idea applies to complex phrases: they are linearized to
records of similar types as lexical items. Thus a noun modified by an adjective
linearizes to a table of the same shape as a single noun. For instance, Latin
rosa delectabilis (“delightful rose”) is inflected like the noun rosa followed by
the adjective delectabilis in the feminine gender and in the same number and
case as the noun:

singular plural
nominative rosa delectabilis rosae delectabiles
accusative rosam delectabilem rosas delectabiles
genitive rosae delectabilis rosarum delectabilium
dative rosae delectabili rosis delectabilibus
ablative rosa delectabili rosis delectabilibus

This reflects the idea of the syntactic substitution test: a complex CN can
fit in the same places as a simple N.

The rule that produces the inflection table of rosa delectabilis is the ad-
jectival modification function and its linearization:

fun AdjCN : AP -> CN -> CN

lin AdjCN = {

s = \\n,c => cn.s ! n ! c ++ ap.s ! cn.g ! n ! c ;

g = cn.g ;

}

The linearization type of CN is the same as the type of N, whereas the AP
is different from A, as it has a fixed degree:

6.1. GENERAL PRINCIPLES 111

lincat N, CN = {s : Number => Case => Str ; g : Gender}

lincat A = {s : Degree => Gender => Number => Case => Str}

lincat AP = {s : Gender => Number => Case => Str}

Trees of phrasal categories are ultimately formed from their head lexical
items by lexical insertion functions:

fun UseN : N -> CN

lin UseN n = cn

fun PositA : A -> AP

lin PositA a = {s = a.s ! Posit}

The linearization of lexical insertion can be simply an identity function, like in
UseN here. But it can also be a bit more more complex, as it for instance fixes
some features, like the degree in PositA. In such cases, there are typically
many lexical insertion functions: for A to AP, we also have the choices of
comparative and superlative forms, to be discussed in Section 6.1.6 below.
But even then, the linearization rules will be relatively simple.

In BNF, the adjectival modification rule for Latin would be simply

CN ::= CN AP

assuming the post-modifier order; there can be another rule where the AP
precedes the CN. This rule, however, is vastly overgenerating: it permits the
combination of a CN of any gender and in any number and case with an AP
in any gender, number, and case. This may be fine when the grammar is used
for analysing language. But if we want to use the grammar for generation,
we must encode the agreement rules.

In BNF, agreement can be expressed by duplicating the categories for
every value of inflectional and inherent features. This would result in 30
(= 3× 2× 5) rules of the shape

CN_fem_sg_nom ::= CN_fem_sg_nom AP_fem_sg_nom

Such rules would of course be tedious to write. What is more, they would be
extremely language-specific and obscure the interlingual perspective.

Another feature of BNF rules that obscures the interlingual perspective
is the explicit use of syncategorematic words, that is, words that appear

112CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

“between categories” and make no semantic contribution of their own. We
have encoded such words in BNF by non-terminals starting with small letters;
the copula is a typical example:

VP ::= cop AP

In this chapter, we will get rid of all syncategorematic words in the abstract
syntax, and introduce them — in language-specific ways — in concrete syn-
tax. The most extreme example is perhaps the cluster of auxiliary verbs and
negation in English sentences:

S ::= NP aux? have? do? neg? VP

Depending on the usage of the sentence, the syncategorematic elements may
also appear before the subject NP, and their very appearance depends on
whether the VP itself has an auxiliary. In GF, this rule is split into two
abstract syntax functions: one forming a clause (Cl) and another using the
clause as a sentence with different temporal features (Temp) and polarities
(Pol).

fun PredVP : NP -> VP -> Cl

fun UseCl : Temp -> Pol -> Cl -> S

The linearization of these functions is the most complex part of the concrete
syntax of most languages (see Section 6.2.2). But keeping the abstract syntax
as simple as this helps us maintain the interlingual perspective that will be
essential in semantics (Chapter 8) and translation (Chapter 9).

6.2 Phrasal categories and their construction

functions

We will follow the same order of presentation as in Section 4.3. We will start
each subsection with the relevant categories and their linearization types,
which are given in a schematic way, using typical inflectional and inherent
features but not going to details of what values those features take in different
languages. Chapter 7 will go deeper with the details of some languages, as
well as exceptions from the schematic patterns.

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS113

For the functions, we will show function declarations and their schematic
linearization rules following the schematic linearization types. We will also
show dependency labels using the same notation as in DBNF: a hash mark
followed by the sequence of labels — for example,

fun PredVP : NP -> VP -> Cl # nsubj head

The number of labels must match the number of argument types, and ex-
actly one of them must be head. This will take care of most of the desired
labels in a language-independent way. However, the labels corresponding to
syncategorematics words (such as cop) will not appear among these labels,
and have to be added by language-specific annotations, to be discussed in
Section 6.3.

6.2.1 Utterances and texts

The RGL distinguishes between utterances and texts, where punctuation is
introduced only when an utterance is converted to a text:

cat Text ; Utt ; Punct

lincat Text, Utt, Punct = {s : Str}

fun mkText : Utt -> Punct -> Text # head punct

lin mkText utt punct = {s = utt.s ++ punct.s}

Even these rules have variations: for instance, in Spanish, the question mark
is discontinuous, with parts concatenated to both sides of the utterance:

lin questionMarkPunct = {s1 = "¿" ; s2 = "?"}

The function mkText, like all functions with names starting with a small let-
ter, are not ultimate constructors in the RGL, but shortcuts to more detailed
rules available in the RGL API. In Japanese, utterances depend on a style
parameter, with values “plain” and “respect”.

Utterances are formed from different categories, for instance,

fun UttS : S -> Utt

lin UttS s = {s = s.s ! Dir}

114CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

fun UttQS : QS -> Utt

lin UttQS qs = {s = qs.s ! DirQuest}

fun UttNP : NP -> Utt

lin UttNP np = {s = np.s ! Nom}

fun UttAdv : Adv -> Utt

lin UttAdv adv = adv

The string that is used as linearization is selected by some typical parameter.
For instance, sentences and questions use the “direct” instead of indirect or
subordinate form, and noun phrases the nominative. Depending on language,
more alternatives are needed in extensions of the core RGL — for instance,
all case forms of NP that might be used as utterances that answer a question.

Of course, “direct” may imply a different word order for declaratives and
questions. A typical rule in many languages is that a direct question has the
order of an inverted declarative, and an indirect question has the order of a
direct declarative:

Direct declarative: she is here.

Direct question: is she here.

Indirect question: (I don’t know) if she is here.

6.2.2 Sentences and clauses

The sentence category is divided into two levels:
• sentence (S) has fixed temporal features (Temp, including tense
and aspect) and polarity (Pol , positive or negative)

• clause (Cl), which has variable tense, aspect, and polarity
Sentences themselves can still have different forms for main clause and sub-
ordinate use, as well as questions. This can be expressed by an order pa-
rameter.

cat S

lincat S = {s : Order => Str}

cat Temp ; Pol

lincat Temp = {s : Str ; t : TenseForm}

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS115

lincat Pol = {s : Str ; b : Bool}

cat Cl

lincat Cl = {

subj : Str ;

agr : Agr ;

verb : Verb ;

comp : Str

}

fun UseCl : Temp -> Pol -> Cl -> S # aux advmod head

lin UseCl temp pol cl = {

s = \\d => arrange d

cl.subj

(verbForm cl.verb cl.agr temp pol)

cl.comp

}

oper arrange : Order -> Str -> Str^n -> Str -> Str

oper verbForm : Verb -> Agr -> Temp -> Pol -> Str^n

What is happening here? The clause is a vastly discontinuous constituents,
where

• the subject, verb, and complement are put into desired order by the
auxiliary arrange operation

• the verb contains the minimal inflection table (as in Section 5.3), from
which different tenses and polarities are formed by the verbForm oper-
ation in agreement to the subject

The verbForm operator can produce tuples (or records) of strings, marked
above as Str^n. For instance, in English, it produces a triple containing the
infinite and finite verb forms and a negation word (empty string for positive
polarity):

verbForm run_V ASgP3 TPresent PNeg ⇓ <"does","not","run">

The arrange operator shuffles them in different ways depending on order:

main clause: she does not run

question: does she not run

116CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

question, contracted negation: does + n’t she run

Getting these details right has been the most challenging part of the English
RGL, because of the auxiliary do in questions and negations. In other lan-
guages, UseCl can be relatively straightforward, since questions are formed
by inversion and the negation is just a word inserted somewhere; the exact
place of the negation can be a problem, however. We will return to the details
of this in some languages in Chapter 7.

Clauses are formed from an NP and VP by the predication rule. To
make sense of it, we need to define the linearization types of NP and VP
here.

cat VP

lincat VP = {verb : Verb ; comp : Agr => Str}

cat NP

lincat NP = {s : Case => Str ; a : Agr}

fun PredVP : NP -> VP -> Cl # nsubj head

lin PredVP np vp = {

subj = np.s ! Nom ;

agr = np.a ;

verb = vp.verb ;

comp = vp.comp ! np.a

}

One variation of this is verbs in e.g. Finnish and German that have different
subject cases as an inherent feature. The comp part of the VP may agree to
the subject; in English, this happens for instance when it contains a reflexive
pronoun. The comp part is often divided into several parts, as for instance in
the topological structures of Germanic languages or the control of clitics
and other kinds of objects in Romance languages (see Section 7).

Many of the actual implementations in the RGL differ from the above
schemas by shifting the load of arrange and verbForm one level lower and
making the clause and the VP into tables instead of records:

lincat Cl = {s : Order => TenseForm => Bool => Str}

lincat VP = {s : Order => TenseForm => Bool => Agr => Str}

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS117

This set-up is somewhat easier to understand conceptually, but it does not
scale up equally well to variant word orders. It can also become computation-
ally heavy, because the tables that are formed can get huge: the VP could
easily grow into a table of 1152 forms (with 4 orders, 8 tenses, 2 polarities,
and the 18 agreement feature combinations of 3 genders, 2 numbers, and 3
persons).

Whatever the variations in the concrete syntax, we have now covered all of
the NP-VP rules of Section 4.3 by just two abstract syntax functions: UseCl
and PredVP. This includes the rules that use a copula and its complement,
since they can be made into VPs, as we will see in Section 6.2.4.

To complete the picture of sentence formation (except for coordination),
we need to deal with the case where the subject is an embedded sentence, in
the category SC:

cat SC

lincat SC = {s : Str}

EmbedS : S -> SC

EmbedS s = {s = s.s ! Sub}

PredSCVP : SC -> VP -> Cl # csubj head

PredSCVP sc vp = PredVP (lin NP {s = _ => sc.s ; a = ASgP3}) vp

The last linearization rule forms an ad hoc noun phrase from the SC sentence
by building a record of expected type. This record is wrapped with the lin
NP operator to guide the type checker to treat it as an NP, even though it is
not formed by regular NP-forming abstract syntax rules.

6.2.3 Verb phrases with verb heads

In contrast to the BNF rules in Section 4.3.3, we will now form verb phrases
separately for different subcategories of verbs, as described in Section 5.5.
For verbs that take NP complements, the formation is done in two phases:
by first forming a VPSlash, and then adding the complement to it; this leaves
room for Wh complements when questions and relative clauses are formed.

The VPSlash category itself is just like VP with a complement case (usu-
ally with a preposition included), in analogy to the way V2 is formed from
V. But it also needs to keep track of the place of the new complement in

118CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

relation to a possible old one. One way to do this is to introduce another
complement, which normally occurs after the first complement. These two
complement fields create a “hole” in which the new complement is inserted.
The VPSlash also has to remember whether the agreement comes from the
inserted object, as with object-control V2V verbs (I order you to wash your-
self), or from the subject (I want to wash myself). This is done with the
boolean oc feature.

cat VPSlash

lincat VPSlash = VP ** {

comp2 : Agr => Str ;

c : ComplCase ;

oc : Bool ;

}

fun ComplSlash : VPSlash -> NP -> VP # head obj

lin ComplSlash vps np = vps ** {

comp = \\a =>

let agr = case vps.oc of {

True => np.a ;

False => a

}

in

vps.comp ! agr ++

complForm np vps.c ++

vps.comp2 ! agr

}

oper complForm : NP -> ComplCase -> Str

Notice the use of record extension in ComplSlash: it retains all VPSlash
fields as they are, except that

• the new NP complement is added to the old complement
• the compiler will automatically delete the c field, because it is not a
part of the linearization type of VP

The operation compForm selects the proper case of the NP and adds the
preposition if there is one.

We should also notice that the UD label for the complement is obj, even if
the object has a preposition, in which case UD would choose obl. The choice

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS119

between obl and obj is not possible at the abstract syntax level, and it is not
uniform across languages. Therefore one might question whether it is actually
a good decision of UD to make this distinction at all. However, if we want to
be pragmatic and support for instance generation of synthetic UD treebanks,
we can refine the labelling by using language-dependent annotation rules, to
be discussed in Section 6.3.

Now we are ready to list the VP formation rules corresponding to the
subcategories of verbs:

fun UseV : V -> VP

lin UseV v =

{verb = v ; comp = _ => []}

fun SlashV2 : V2 -> VPSlash

lin SlashV2 v = UseV v **

{comp2 = _ => [] ; c = v.c ; oc = False}

fun Slash2V3 : V3 -> NP -> VPSlash # head iobj

lin Slash2V3 v np = SlashV2 v **

{comp = _ => complForm np v.c1 ; c = v.c2}

fun Slash3V3 : V3 -> NP -> VPSlash # head obj

lin Slash3V3 v np = SlashV2 v **

{comp2 = _ => complForm np v.c2 ; c = v.c1}

fun ComplVS : VS -> S -> VP # head ccomp

lin ComplVS v s = UseV v **

{comp = _ => that ++ s.s ! Sub}

oper that : Str

fun ComplVV : VV -> VP -> VP # head xcomp

lin ComplVV v vp = UseV v **

{comp = \\a => vpForm vp v.i a}

fun SlashV2V : V2V -> VP -> VP # head xcomp

lin SlashV2V v vp = UseV v **

{comp2 = \\a => vpForm vp v.i a ; c = v.c ; oc = v.oc}

120CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

oper vpForm : VP -> InfForm -> Agr -> Str

Notice that we can use UseV in a uniform way to take care of the verb part
of the VP, and just overwrite the empty complement. This is similar to the
use of prototypes in object-oriented programming: a prototype VP has a
verb and an empty complement. In the same way, SlashV2 gives a prototype
VPSlash (but its official RGL is SlashV2a for historical reasons).

The two versions of V3 slash formation correspond to whether the middle
or the last argument is inserted first. We indicate the place of the correspond-
ing non-wh argument with the symbol Ø:

SlashV2V3 give V3 she NP

{comp = _ => "her" ; comp2 = _ => []}

what did you give her Ø

SlashV3V3 give V3 it NP

{comp = _ => [] ; comp2 = _ => "it"}

whom did you give Ø it

The UD annotation uses this information when selecting iobj for the middle
argument. However, the correct label could be obl as well. What is more,
in the latter example, the label given to whom is obj in accordance with the
ComplSlash rule. But the semantically relevant information about which
object does not get lost, as it is encoded in the abstract syntax tree.

Verb phrases can be modified by “ordinary” adverbials (Adv) and sen-
tence adverbials (AdV in the RGL).

fun AdvVP : VP -> Adv -> VP # head advmod

lin AdvVP vp adv = vp ** {comp = \\a => vp.comp ! a ++ adv.s}

fun AdVVP : AdV -> VP -> VP # advmod head

lin AdVVP adv vp = vp ** {preverb = adv.s}

The latter rule requires in many languages a new field in the VP, preverb,
to store material that appears between the subject and the verb. The order
of the arguments in the abstract syntax functions is of course just mnemonic,
and precludes in no way the linear position of the adverb in different lan-
guages.

What about passive verb phrases? In English, they can be built from the
copula and a passive participle form of a VPSlash:

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS121

fun PassVPSlash : VPSlash -> VP

lin PassVPSlash vps = UseV copula **

{comp = \\a => vpForm vps passPart a}

Notice that the result is an ordinary VP, which gives no information to
select the UD label nsubj:pass when the VP is combined with a subject.
(The Core RGL has a more specific function PassV2, but many languages
implement this more general function in extension modules.)

Another way of converting VPSlash to VP without any supplementary
arguments is by reflexivization: by filling the argument place with a reflex-
ive pronoun (myself, yourself, etc). The reflexive pronoun will eventually
be chosen in agreement to the subject, which is why the comp part of the VP
depends on the agreement features of the NP even in languages like English:

fun ReflVP : VPSlash -> VP

lin ReflVP vps = vps ** {

comp = \\a =>

let agr = case vps.oc of {

True => np.a ;

False => a

}

in

vps.comp ! agr ++

reflPron agr vps.c ++

vps.comp2 ! agr

}

oper reflPron : Agr -> ComplCase -> Str

Notice that the reflexive pronoun is syncategorematic, and its UD label must
be assigned in concrete syntax annotions. In some languages, it might not
be a separate word at all, but a part of the verb inflection.

6.2.4 Complements of the copula

Verb phrases may be built from adjectives, noun phrases, common nouns,
and adverbials together with a copuls. The copula is however not a part of
the abstract syntax but introduced in linearization.

122CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

cat Comp

lincat Comp = {s : Agr => Str}

fun UseComp : Comp -> VP

lin UseComp cmp = UseV copula ** {comp = cmp}

oper copula : Verb

fun CompAP : AP -> Comp

lin CompAP ap = {s = \\a => agrForm ap a}

oper agrForm : AP -> Agr -> Str

fun CompAdv : Adv -> Comp

lin CompAdv adv = {s = _ => adv.s}

fun CompNP : NP -> Comp

lin CompNP np = {s = _ => np.s ! Nom}

fun CompCN : CN -> Comp

lin CompCN cn = {s = \\a => indefCN cn a Nom}

oper indefCN : CN -> Agr -> Str

Notice the difference between CompNP and CompCN: the latter agrees to the
subject. Thus the sentences

I am a student
we are students

have the same complement formed by CompCN from the CN student, whereas

I am a disaster
we are a disaster

have the same complement formed by CompNP from the indefinite NP a dis-
aster.

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS123

6.2.5 Noun phrases, adjectives, and adverbials

Noun phrases are typically inflected for case and have inherent agreement
features. The simplest way to build them is by lexical insersion from proper
names (PN) and personal pronouns (Pron). The linearization types are rep-
etition from earlier sections:

cat NP ; Pron ; PN

lincat NP, Pron, PN = {s : Case => Str ; a : Agr}

lincat PN = {s : Case => Str ; a : {g : Gender ; n : Number}}

fun UsePron : Pron -> NP

lin UsePron pron = pron

fun UsePN : PN -> NP

lin UsePN pn = pn ** {a = pn.a ** {p = P3}}

Notice the definition of Agr in NP and PN as a record of gender, number
and person. In PN, we do not need to include person, because it is always
the third, automatically added by UsePN.

Another way to form noun phrases is by determiners from common nouns:

cat Det

lincat Det = {s : Gender => Case => Str ; n : Number}

cat CN

lincat CN = {s : Number => Case => Str ; g = Gender}

fun DetCN : Det -> CN -> NP

lin DetCN det cn = {

s = \\c => det.s ! cn.g ! c ++ cn.s ! det.n ! c ;

a = {g = cn.g ; n = det.n ; p = P3}

}

Notice that the agreement features come from two sources: the number from
the determiner, the gender from the common noun.

It is possible to build a noun phrases from nouns without determiners, as
if there was an empty determiner. This makes typically sense only for mass
nouns (such as water), including abstract nouns (grammaticality). But the
RGL does not make the distinction on the level of syntax:

124CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

fun MassNP : CN -> NP

lin MassNP cn = DetCN (lin Det {s = _,_,_ => [] ; n = Sg}) cn

Also determiners without nouns can become NPs, as if with an empty CN.

fun DetNP : Det -> NP

lin DetNP det = DetCN det (lin CN {s = _,_ => [] ; g = Neutr})

For many determiners, this works with the same form of the determiner that
is used in DetCN: this, this cat. But for some, depending on language, a
specific substantival form is needed in the Det record: mine, my cat. A
straightforward way to enable this is by adding another field subst to the
linearization, with the same type as the normal s field:

lincat Det = {s,subst : Gender => Case => Str ; n : Number}

Notice that the subst field has gender variation in languages where, un-
like English, determiners have gender-dependent forms (e.g. French celui-ci,
celle-ci, “this” in its substantival form. For such languages, gender-dependent
variants of DetNP are needed as abstract syntax functions. Such functions are,
however, not completely interlingual: they are typically used as anaphoric
expressions referring to some entities, so that for instance this often refers
to the last-mentioned thing in the text. Just like anaphoric pronouns (he,
she, it), the word this must then agree to the gender of the thing it refers
to. The gender can vary across languages, so that for instance feminine this
may have to be changed to masculine this. We will return to this problem in
Section 8.4.

As we noticed in Section 5.5, many determiners vary in number, e.g. this
- these. The RGL uses the category symbol Quant (quantifier) for them.
Just like Det, Quant needs a record field for substantival uses:

cat Quant

lincat Quant = {s,subst : Number => Gender => Case => Str}

In the RGL syntax, Quant is made into a Det by combining it with a number
modifier, Num:

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS125

cat Num

lincat Num = Det

fun DetQuant : Quant -> Num -> Det

lin DetQuant quant num = {

s = \\g,c => quant.s ! num.n ! g ! c ++ num.s ! g ! c ;

-- similar for subst

n = num.n

}

A Num can be built from a Numeral (one, two, twenty-three) or Digits (1,
2, 23,000), to be introduced in Section 6.2.10. The limiting case is empty
numeral modifiers, which just specify the number:

fun NumSg, NumPl : Num

lin NumSg = {s,subst = _,_ => [] ; n = Sg}

lin NumPl = {s,subst = _,_ => [] ; n = Pl}

Thus we get the following analyses for this cat, these cats :

DetCN (DetQuant this Quant NumSg) (UseN cat N)

this cat

DetCN (DetQuant this Quant NumPl) (UseN cat N)

these cats

This slightly cumbersome analysis of determiner structure is the result of
trying to compress the set of rules to a minimal set of orthogonal, binary
rules. The same ambition has led to the treatment of indefinite and definite
articles as quantifiers:

fun IndefArt, DefArt : Quant

In many languages, the strings are empty (for instance, the plural form of
the indefinite article). The substantival forms often come out a bit artificial,
for instance, as demonstrative pronouns (it) for the definite article. The
treatment of possessive pronouns as quantifiers comes out a bit more
natural, with e.g. my, mine:

fun PossPron : Pron -> Quant

126CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

To finish the discussion of determiner structure, we introduce predetermin-
ers, which can be applied to already formed noun phrases that may contain
their own determiners (e.g. only these cats, all this beer):

cat Predet

lincat Predet = {s : Gender => Number => Case => Str}

fun PredetNP : Predet -> NP -> NP

lin PredetNP predet np = {

s = \\c => predet.s ! np.a.g ! np.a.n ! c ++ np.s ! c ;

a = np.a

}

Notice that all, which “logically” is a quantifier, syntactically works as a
predeterminer. Thus the analysis of all cats is a bit cumbersome, involving
the (empty) plural indefinite article:

PredetNP all_Predet

(DetCN (DetQuant IndefArt NumPl) (UseN cat_N))

all cats

6.2.6 Common nouns, adjectives, and adverbials

Common nouns

fun UseN : N -> CN

lin UseN n = n

cat AP

lincat AP = {

s : Gender => Number => Case => Str ;

isPre : Bool

}

fun AdjCN : AP -> CN -> CN

lin AdjCN ap cn = {

s = \\c,n => case ap.isPre of {

True => ap.s ! cn.g ! n ! c ++ cn.s ! n ! c ;

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS127

False => cn.s ! n ! c ++ ap.s ! cn.g ! n ! c ;

} ;

g = cn.g

}

fun AdvCN : CN -> Adv -> CN

lin AdvCN cn adv = {

s = \\c,n => cn.s ! n ! c ++ adv.s ;

g = cn.g

}

fun RelCN : RS -> CN -> CN

lin RelCN rs cn = {

s = \\n,c =>

cn.s ! n ! c ++ rs.s ! {g = cn.g ; n = n ; p = P3} ;

g = cn.g

}

fun RelNP : RS -> NP -> NP

lin RelNP rs np = {

s = \\c => np.s ! c ++ comma ++ rs.s ! np.a ;

a = np.a

}

fun SentCN : CN -> SC -> CN

lin SentCN cn sc = {

s = \\c,n => cn.s ! n ! c ++ sc.s ;

g = cn.g

}

fun ApposCN : CN -> NP -> CN

6.2.7 Adjectives, and adverbials

Adjectival phrases

fun PositA : A -> AP

lin PositA a = {

128CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

s = a.s ! Posit ;

isPre = True

}

fun ComparA : A -> NP -> AP

lin ComparA a np = {

s = \\g,n,c => a.s ! Compar ! g ! n ! c ++ complForm np than ;

isPre = False

}

fun UseComparA : A -> AP

lin UseComparA a = {

s = \\g,n,c => a.s ! Compar ! g ! n ! c ;

isPre = True

}

fun AdAP : AdA -> AP -> AP

lin AdAP ada ap = ap ** {

s = \\g,n,c => ada.s ++ ap.s ! g ! n ! c ;

}

fun AdvAP : AP -> Adv -> AP

lin AdvAP ap adv = {

s = \\g,n,c => ap.s ! g ! n ! c ++ adv.s ;

isPre = False

}

Adverbial phrases

fun PositAdvAdj : A -> Adv

lin PositAdvAdj a = {s = a.adv ! Posit}

cat Prep

lincat Prep = ComplCase

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS129

fun PrepNP : Prep -> NP -> Adv

lin PrepNP prep np = complForm np prep

fun AdAdv : AdA -> Adv -> Adv

lin AdAdv ada adv = {s = ada.s ++ adv.s}

fun SubjS : Subj -> S -> Adv

lin SubjS subj s = {s = subj.s ++ s.s ! Sub}

6.2.8 Questions, relatives, and imperatives

There are two main ways to form questions:
• sentential questions (yes/no)
• wh questions, with an interrogative phrase (IP, who, which CN) or
adverbial (IAdv, why)

Compared with the BNF rules in Section 4.3.5, these ways can be covered
with four abstract syntax functions, which are moreover precise (not over-
generating). In addition, there is a conversion of question clauses (QCl) to
question sentences (QS) similar to the conversion from Cl to S, by fixing
temporal features and polarity.

cat QS

lincat QS = {s : QuestOrder => Str}

cat QCl

lincat QCl = Cl ** {q : Str}

cat IP

lincat IP = NP

fun UseQCl : Temp -> Pol -> QCl -> QS # aux advmod head

lin UseQCl t p qcl = {

s = \\d => arrangeQuestion

d qcl.q qcl.subj

(verbForm qcl.verb qcl.agr temp pol)

qcl.comp

}

130CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

fun QuestCl : Cl -> QCl

lin QuestCl cl = cl ** {q = []}

fun QuestVP : IP -> VP -> QCl # nsubj head

lin QuestVP ip vp = PredVP ip vp ** {q = []}

Here we have assumed that the linearization types for questions match those
for declaratives, only extending them with a field q for a Wh phrase to be
added before the subject. This assumption can in fact be maintained if the
clause types (QCl and Cl) are discontinuous enough. The auxiliary operation
arrangeQuestion is similar to arrange in Section 6.2.2 except that it also
places the interrogative element qcl.q in its proper place.

QuestVP places the interrogative on the subject position. To put it on
another position, we introduce a category ClSlash, which is formed from
VPSlash by adding a subject:

cat ClSlash

lincat ClSlash = {

subj : Str ;

verb : Verb ;

comp : Agr => Str ;

c : ComplCase

}

fun SlashVP : NP -> VPSlash -> ClSlash # nsubj head

lin SlashVP np vps = PredVP np vps ** {

comp = \\a =>

let agr = case vps.oc of {

True => a ;

False => np.a

}

in vps.comp ! agr ++ vps.comp2 ! agr ;

c = vps.c

}

Notice the subtle dependence of the complement on agreement: if the VP-
Slash is object-control, the decision must be postponed,

which boy did you order to wash himself

which girl did you order to wash herself

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS131

But if it is subject-control, the complement is fixed when SlashVP is applied:

to which boy did you promise to wash yourself

to which girl did you promise to wash yourself

Now we can finally define the formation of Wh questions for non-subject
positions:

fun QuestSlash : IP -> ClSlash -> QCl

lin QuestSlash ip cls = cls ** {

comp = cls.comp ! ip.a ;

q = complForm ip cls.c

}

This rule implements the so-called pied-piping version of non-subject Wh
phrases, where the preposition is attached to the Wh phrase (to which girl).
English and some other languages also have a preposition stranding vari-
ant, where the preposition is appended to the end of the sentence:

which girl did you promise to wash yourself to

The corresponding rule is

fun StrandQuestSlash : IP -> ClSlash -> QCl

lin StrandQuestSlash ip cls = cls ** {

comp = cls.comp ! ip.a ++ cls.c.s

q = ip.s ! Acc

}

where the “complement case” is assumed to include a preposition in the s

field.
Question with interrogative adverbials are simple: just add the IAdv to

the clause record,

fun QuestIAdv : IAdv -> Cl -> QCl

lin QuestIAdv iadv cl = cl ** {q = iadv.s}

Relative clauses do not need different orders, because they are used only in
subordinate positions. However, they need to agree to their correlates:

132CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

(the boy) who washed himself

(the girl) who washed herself

Therefore we add an agreement parameter to RS (corresponding to S and
QS). RCl is related to QCl, but has a more complex agreement behaviour:

cat RS

lincat RS = {s : Agr => Str}

cat RCl

lincat RCl = {

r, subj : Agr => Str

agr : RAgr ;

verb : Verb ;

comp : Agr => Str ;

}

fun UseRCl : Temp -> Pol -> RCl -> RS # aux advmod head

lin UseRCl t p rcl = arrangeRelative --

What makes the agreement of relative pronouns subtle is that an RP may
just mediate the agreement of the correlate:

(boy) who washed himself

(girl) who washed herself

or have itself an agreement that the correlate cannot change:

(boy) whose sister washed herself

(girl) whose brother washed himself

This is encoded in the parameter

param RAgr = RANone | RAAgr Agr

where who has the RANone value, whose CN a value inherited from the CN.

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS133

cat RP

lincat RP = {s : Agr => Case => Str ; a : RAgr}

fun IdRP : RP

lin IdR = {s = ... ; a = RANone}

fun FunRP : Prep -> NP -> RP -> RP # case nmod head

lin FunRP prep np rp = {

s = \\a,c => np.s ! c ++ complForm {s = rp.s ! a ; a = a} prep ;

a = RAAgr np.a

}

fun GenRP : Num -> CN -> RP # nummod head

lin GenRP num cn = {

s = \\a,c => IdRP.s ! a ! Gen ++ num.s ! cn.g ! c ++ cn.s ! num.n ! c ;

a = RAAgr {g = cn.g ; n = num.n}

}

This makes the rule for subject position relative pronouns somewhat complex:

fun RelVP : RP -> VP -> RCl

lin RelVP rp vp = {

r = \\ => [] ;

subj = rp.s ! Nom ;

agr = rp.a ;

verb = vp.verb ;

comp = vp.comp

}

For non-subject relatives, we have

fun RelSlash : RP -> ClSlash -> RCl

lin RelSlash rp cls = {

r = complFormRP rp cls.c ;

subj = _ => [] ;

verb = cls.verb ;

comp = \\a => cls.comp ! rp.a ; ----

}

134CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

Imperatives

cat Imp

fun ImpVP : VP -> Imp

Using indirect questions

cat VQ

lincat VQ

fun CompVQ : VQ -> QS -> VP

fun EmbedQS : QS -> SC

6.2.9 Coordination

cat ListX

fun BaseX : X -> X -> X # head conj

fun ConsX : X -> ListX -> X # head conj

fun ConjX : Conj -> ListX -> X # cc head

6.2.10 Numerals and symbols

For the sake of curiosity, because so different from UD.

cat

Digit ; -- 2..9

Sub10 ; -- 1..9

Sub100 ; -- 1..99

Sub1000 ; -- 1..999

Sub1000000 ; -- 1..999999

fun

num : Sub1000000 -> Numeral ; -- 123456

6.2. PHRASAL CATEGORIES AND THEIR CONSTRUCTION FUNCTIONS135

n2, n3, n4, n5, n6, n7, n8, n9 : Digit ; -- 2,3,4,5,6,7,8,9

pot01 : Sub10 ; -- 1

pot0 : Digit -> Sub10 ; -- d * 1

pot110 : Sub100 ; -- 10

pot111 : Sub100 ; -- 11

pot1to19 : Digit -> Sub100 ; -- 10 + d

pot0as1 : Sub10 -> Sub100 ; -- coerce 1..9

pot1 : Digit -> Sub100 ; -- d * 10

pot1plus : Digit -> Sub10 -> Sub100 ; -- d * 10 + n

pot1as2 : Sub100 -> Sub1000 ; -- coerce 1..99

pot2 : Sub10 -> Sub1000 ; -- m * 100

pot2plus : Sub10 -> Sub100 -> Sub1000 ; -- m * 100 + n

pot2as3 : Sub1000 -> Sub1000000 ; -- coerce 1..999

pot3 : Sub1000 -> Sub1000000 ; -- m * 1000

pot3plus : Sub1000 -> Sub1000 -> Sub1000000 ; -- m * 1000 + n

Use of numerals:

cat Card ; Ord

fun NumNumeral : Numeral -> Card

fun OrdNumeral : Numeral -> Ord

fun NumCard : Card -> Num

May look strange:

fun OrdSuperl : A -> Ord

fun AdjOrd : Ord -> AP

Numerals from digits, to store agreement features:

cat Digits ; Dig

fun IDig : Dig -> Digits ; -- 8

136CHAPTER 6. THE INTERLINGUAL PERSPECTIVE: SYNTAX (IN PROGRESS)

fun IIDig : Dig -> Digits -> Digits ; -- 876

fun D_0, D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9 : Dig ;

fun NumDigits : Digits -> Card

Symbols and literals:

cat Symb

cat Int ; Float ; String

fun SymbPN : Symb -> PN

fun IntPN : Int -> PN

fun FloatPN : Float -> PN

fun MkSymb : String -> Symb

6.3 From abstract syntax to dependencies

6.4 The Core Resource Grammar and its ex-

tensions

Chapter 7

A tour of languages (TO BE
WRITTEN)

In this chapter, we will take a look at some RGL languages and the issues
encountered in their concrete syntax. The first version is limited to languages
where the author of the book has contributed, but this chapter will later be
completed with contributions from other grammarians.

7.1 English

• auxiliary verbs, negation, questions
• the indefinite article a/an

7.2 German, Dutch, and Afrikaans

• the topological structure
• discontinuous NP and CN, non-projective dependency trees
• German subject case variation
• Afrikaans double negation

7.3 Scandinavian languages

• the topological structure
• definiteness and determiner types

137

138 CHAPTER 7. A TOUR OF LANGUAGES (TO BE WRITTEN)

• functor for mainland Scandinavian
• Icelandic separate

7.4 Romance languages and Latin

• functor for modern Western Romance
• Romanian and Latin separate
• the tense system
• the clitics system
• subjunctive mood

7.5 Slavic languages

• tense and aspect
• number agreement

7.6 Finnish and Estonian

• rich Morphology: tables vs. stemming
• expressions for definiteness
• the accusative case
• discourse clitics

7.7 Arabic and Maltese

• non-concatenative morphology
• tables vs. stemming

7.8 Bantu languages

• prefix classes and agreement
• working around missing adjectives

7.9. CHINESE AND THAI 139

7.9 Chinese and Thai

• tokenization in the absence of word boundaries
• classifiers
• the place of adverbials
• reduplication
• phonetic and orthographic versions of the grammar

140 CHAPTER 7. A TOUR OF LANGUAGES (TO BE WRITTEN)

Chapter 8

Grammar and semantics (TO
BE WRITTEN)

8.1 Abstract syntax as semantic hub

• the compiler tradition
• using Python dataclasses and pattern matching
• using Haskell datatypes
• almost compositional functions

8.2 Logical semantics

• semantic types of parts of speech
• Montague-style rules
• implementation in Python and Haskell

8.3 Semantic grammars and constructions

• the GDPR example

8.4 Semantic analysis beyond utterances

• context and anaphora
• grammars for texts and dialogues

141

142 CHAPTER 8. GRAMMAR AND SEMANTICS (TO BE WRITTEN)

Chapter 9

Grammar-based systems (TO
BE WRITTEN)

9.1 Accessing GF from other languages

The focus will be on GF bindings in Python, which has become the most
popular programming language in the natural language processing commu-
nity. Similar techniques are available for Haskell and Java, but we refer to
on-line documentation for details.

9.2 Translation

• the interlingual model

9.3 Multilingual generation

• almost compositional functions
• example: generation from logic
• example: Abstract Wikipedia

143

144 CHAPTER 9. GRAMMAR-BASED SYSTEMS (TO BE WRITTEN)

9.4 Text analysis

9.5 Interactive systems

Chapter 10

Algorithms for grammar-based
language processing (TO BE
WRITTEN)

The focus in this book has been on describing grammars and implementing
them with available tools, in particular GF. The actual processing — parsing,
linearization, translation — is taken care of tools such as GF and dependency
parsers. The computational grammarian’s need to know them are similar to
any programmer’s: they can write programs in a high level language without
knowing the compiler or run-time system of the language.

This said, it is always interesting to know how things work under the
hood. This knowledge can also have practical value, since it can guide gram-
marians to choose coding alternatives that result in optimal processing.

145

146CHAPTER 10. ALGORITHMS FORGRAMMAR-BASED LANGUAGE PROCESSING (TO BEWRITTEN)

10.1 Morphological analysis and generation

10.2 Part of speech tagging

10.3 Context-free parsing

10.4 Dependency parsing

10.5 Parallel context-free parsing

10.6 Statistical disambiguation

10.7 Semantic disambiguation

10.8 Hybrid systems

10.9 Evaluation

10.9.1 Machine translation evaluation

10.9.2 Dependency parser evaluation

The evaluation metrics measures the agreement between dependency trees:
what percentage of words have been labelled correctly. There are two vari-
ants:

• Labelled Attachment Score (LAS): “correctly” means that both the
head (i.e.\ the position number of the head) and the label to be tested
are equal to the head and label in the gold standard.

• Unlabelled Attachment Score (UAS): “correctly” means only that
the head to be tested is equal to the head in the gold standard.

The UAS score is obviously always at least as high as LAS.

This metrics can be assigned to every dependency tree individually. When
computed for a set of trees, there are two options:

10.9. EVALUATION 147

• Micro-average: the average score for all words in the set:

MIC =
#correct-words

#words-in-total

• Macro-average: the average of the scores for each tree in the set.

MAC =
Σ#MIC-per-sentence

#sentences

The outcomes can be different as soon as the set contains trees of different
sizes. For instance, if we have two trees

• t1 of size 5, 4 correct, 1 wrong
• t2 of size 15, 9 correct, 6 wrong

then
• MIC = (4 + 9)/(5 + 15) = 13/20 = 0.65
• MAC = (0.8 + 0.6)/2 = 1.4/20 = 0.7

We leave it as an exercise to find a situation where the macro average is lower
than micro.

148CHAPTER 10. ALGORITHMS FORGRAMMAR-BASED LANGUAGE PROCESSING (TO BEWRITTEN)

References (TO BE
CREATED)

149

	Introduction
	Why grammar
	A first example
	The interlingual perspective

	Grammatical analysis: words
	Units of analysis
	Tokens
	Parts of speech: an overview
	Morphological features and inflection
	Morphological lexicon

	Grammatical analysis: dependencies
	Syntactic relations in Universal Dependencies
	The main clause and its parts
	The root
	The subject
	Complements and adjuncts
	Auxiliary verbs
	Punctuation

	Dependents of nominals
	Determiners
	Modifiers

	Subordinate clauses and embedded verb phrases
	Clausal complements
	Clausal subjects
	Clausal modifiers

	Coordination structures
	Remaining relations

	Grammatical analysis: phrase structure
	Categories
	The DBNF rule format
	English phrase structure in DBNF
	Utterances
	Sentences
	Verb phrases
	Complements of the copula
	Questions, relatives, and imperatives
	Noun phrases, adjectives, and adverbials
	Coordination

	Phrase structure in other languages
	Parsing with DBNF

	The interlingual perspective: words
	From phrase structure to abstract syntax
	Parameters and linearization types
	Linearization types for lexical categories
	Smart paradigms
	Parts of speech revisited
	Interlingual lexicon and word senses

	The interlingual perspective: syntax (IN PROGRESS)
	General principles
	Phrasal categories and their construction functions
	Utterances and texts
	Sentences and clauses
	Verb phrases with verb heads
	Complements of the copula
	Noun phrases, adjectives, and adverbials
	Common nouns, adjectives, and adverbials
	Adjectives, and adverbials
	Questions, relatives, and imperatives
	Coordination
	Numerals and symbols

	From abstract syntax to dependencies
	The Core Resource Grammar and its extensions

	A tour of languages (TO BE WRITTEN)
	English
	German, Dutch, and Afrikaans
	Scandinavian languages
	Romance languages and Latin
	Slavic languages
	Finnish and Estonian
	Arabic and Maltese
	Bantu languages
	Chinese and Thai

	Grammar and semantics (TO BE WRITTEN)
	Abstract syntax as semantic hub
	Logical semantics
	Semantic grammars and constructions
	Semantic analysis beyond utterances

	Grammar-based systems (TO BE WRITTEN)
	Accessing GF from other languages
	Translation
	Multilingual generation
	Text analysis
	Interactive systems

	Algorithms for grammar-based language processing (TO BE WRITTEN)
	Morphological analysis and generation
	Part of speech tagging
	Context-free parsing
	Dependency parsing
	Parallel context-free parsing
	Statistical disambiguation
	Semantic disambiguation
	Hybrid systems
	Evaluation
	Machine translation evaluation
	Dependency parser evaluation

