
Databases Exam

TDA357 (Chalmers), DIT621 (University of Gothenburg)

22 March 2019 at 8:30–12:30 at Johanneberg

Department of Computer Science and Engineering

Examiner: Aarne Ranta tel. 031 772 10 82.

Results: Will be published by 10 April.

Exam review: 18 April at 10-12 in room 6106, EDIT Building.

Grades: Chalmers: 24 for 3, 36 for 4, 48 for 5. GU: 24 for G, 42 for VG.

Help material: One “cheat sheet”, which is an A4 sheet with hand-written notes. You may write on both
sides of that sheet. If you bring a sheet, it must be handed in with your answers to the exam questions.
One English language dictionary is also allowed.

Specific instructions: You can answer in English, Danish, Dutch, Finnish, French, German, Icelandic,
Italian, Norwegian, Spanish, or Swedish (in this exam; next time it can be another set of languages ;-)
Begin the answer to each question (numbers 1 to 6) on a new page. The a,b,c,... parts with the same
number can be on the same page. If you need many pages for one question, number the pages as well,
for instance, “Question 3 p. 2”. Write the question number on every page.

Write clearly: unreadable = wrong! Fewer points are given for unnecessarily complicated solutions.
Indicate clearly if you make any assumptions that are not given in the question. In particular: in SQL
questions, use standard SQL or PostgreSQL. If you use any other variant (such as Oracle or MySQL),
say this; but full points are not guaranteed since this may change the nature of the question.

1

1 Entity-Relationship Modelling, 12p

The domain to be modelled is music: artists, albums, songs, etc. The goal of this task could be to build
a database for one’s own music or a streaming service. We build the model in two steps. In both steps,
your task is to build

• an E-R diagram
• a database schema, either in SQL or in the usual schema notation

You are allowed to derive the schema from the E-R diagram, but you can also build them independently.
They are graded separately, with 4p for the diagrams and 2p for the schemas.

1.1 Step 1: artists and bands, 6p

Here are the main elements of the domain:
• Artists, uniquely identified by their names. An artist (as indicated by the author of a song or an
album), can be

– an individual person, who has a birth date
– a band, which has a founding date

• An individual person can be a member in a band, also in several bands. Here we want the database
to tell us who is a member of which bands.

1.2 Step 2: albums and songs, 6p

You should write the diagram for these elements beside or below the first diagram, but it should of course
have arrows to the first diagram when appropriate.

• An album is identified by its title and the artist that made it, for instance, ”Greatest Hits” of Bob
Dylan as opposed to ”Greatest Hits” by The Beatles. An album also has a year of appearance.

• A song is likewise identified by its title and the artist that made it. A song also has a length.

• A song can appear on several albums. The artist of the album can be di↵erent from the artist of
the song, as for instance if the album is by ”Various Artists”. The database should be able to list,
as separate rows, all songs that appear on di↵erent albums.

2

2 Functional Dependencies, 8p

2.1 Dependencies and keys, 3p

Consider the following relation and functional dependencies:

R(A,B,C,D,E)
A -> B
C -> D
E -> A

Find at least one possible key, and prove that it is a superkey by showing why all attributes belong to
its closure (by using for instance transitivity).

2.2 Normalization, 3p

Is the relation in BCNF? If yes, give an argument in terms of the dependencies and keys. If not, show
some of the violations and a decomposition to BCNF.

2.3 Real-world example, 2p

Give a real-world example of attributes A,B,C,D,E that would have exactly these dependencies and none
else (except of course derived ones). An attempted example would have the same format as

Lectures(courseCode, courseTitle, date, room, teacher)

This would reasonably satisfy
• A -> B, because course code determines the title
• C -> D, because we assume that the course has at most one lecture each date

But it would not satisfy E -> A, because a teacher can have several courses. It might also have the the
unwanted dependency A C -> E, if we assume that a each lecture has one teacher.

3

3 SQL queries, 12p

We go back to the domain of Question 1. We assume the following schemas, which are related to the
answers of Question 1, but not exactly the same.

Artists(name)
Bands(name)
name->Artists(name)

Persons(name,birthyear)
name->Artists(name)

Albums(artist,title,year)
artist->Artists(name)

Songs(artist,title,length)
artist->Artists(name)

Tracks(album,song)
album->Albums(title)
song->Songs(title)

Members(person,band)
person->Persons(name)
band->Bands(name)

Your task is to write SQL queries with the following specifications.

3.1 Query 1, 2p

All albums by Metallica from this millennium, i.e. year 2000 or later, with their years of appearance.
The format of the answer is

title | year
-------------------+------
Death Magnetic | 2008

3.2 Query 2, 3p

The total length of Björk’s Album ”Vespertine”, meaning the total length of all songs on that album,
assuming for simplicity that lengths are expressed in seconds as an integer. The format of the answer is

sum

3528

3.3 Query 3, 3p

The titles of all solo albums, i.e. albums whose artist is not a band but a person. The format of the
answer is

title

Vespertine

3.4 Query 4, 4p

The name of the oldest member of Metallica. The format of the answer is

name

Kirk Hammett

4

4 Algebra and theory, 8p

4.1 Relational algebra, 4p

Assuming the same relation schemas as in Question 3, express Query 2 (”the total length of the album
Vespertine”) in relational algebra.

4.2 Joins, 4p

Still using to the schemas in Question 3, consider the tables

Albums:
title | artist | year

-------------------+-----------+------
Vespertine | Björk | 2001
Master of Puppets | Metallica | 1986

Songs:
title | artist | year | length

-------------------+-----------+------+--------
Hidden Place | Björk | 2001 | 264
Cocoon | Björk | 2001 | 264
Master of Puppets | Metallica | 1986 | 513

Show the tables resulting from these two di↵erent queries:

SELECT *
FROM Albums NATURAL JOIN Songs

SELECT *
FROM Albums FULL OUTER JOIN Songs USING (title,artist)

(Optional question: no points just kudos ;-) Do these joins make sense?

5

5 Constraints and Triggers, 12p

Consider the following definition of playlists, by reference to the table Songs in Question 3.

CREATE TABLE Playlists (
id TEXT PRIMARY KEY,
name TEXT,
owner TEXT
) ;

CREATE TABLE PlaylistSongs (
playlist TEXT REFERENCES Playlists(id),
song TEXT,
artist TEXT,
position INTEGER,
FOREIGN KEY (song,artist) REFERENCES Songs(title,artist),
PRIMARY KEY (playlist,position)
) ;

5.1 Constraints, 4p

Which of the following properties are guaranteed by the given constraints?
1. Every song in the playlist exists.
2. All playlists of one and the same owner have di↵erent names.
3. All positions in a given playlist are unique.
4. The positions can be listed in order 1,2,3,... with no numbers missing.

Answer as follows:
• If a property is guaranteed, say by which constraints exactly.
• If a property is not guaranteed, give a counterexample.

5.2 Views, 3p

Create a view that, for a playlist with id M123, shows the contents of the playlist with the following
layout:

position | song | artist | length
----------+---------------+-----------+--------

1 | Hidden Place | Björk | 264
2 | Unforgiven | Metallica | 383

5.3 Triggers, 5p

Create a trigger that enables directly building the playlist M123 via the view defined in the previous
question. The behaviour should be as follows:

• Insertion of (position,song,artist,length) in M123 means an insert in PlaylistSongs such that
– the song and artist are inserted as they are given by the user
– the length is ignored (even if it contradicts the Songs table)
– the position given by the user is respected, at the same time maintaining the sequential order

1,2,3,. . . of the playlist
Maintaining the sequential order implies the following: assume that the positions in the old playlist are
1,2,3,4. Then

• if the user inserts in the next position, 5, then 5 is also used as the position of the row inserted to
the table

• if it is larger, say 8, then the position of the row inserted to the table is still 5
• if it is smaller, say 3, then the position of the row inserted is 3, but the positions of the old rows 3
and 4 are changed to 4 and 5, respectively

Note: You may notice the problem that, while the trigger is running, the unicity of positions is tem-
porarily violated. But you can ignore the complications with this: just make sure that, when the trigger
has finished its work, all positions are unique.

6

6 JSON/XML, 8p

The following questions can be answered in two alternative formats: either JSON/JSONPath or XML/XPath.
Choose just one of the alternative formats!

6.1 SQL data representation, 2p

A natural way to represent a list of bands is to list every band with all the artists belonging to it, so that
every band name is mentioned only once. For example, consider the following lists with band members
and the years they joined the band (the lists are not complete):

• The Beatles: John Lennon 1960, Paul McCartney 1960, Ringo Starr 1962, George Harrison 1960
• Metallica: James Hetfield 1981, Lars Ulrich 1981, Kirk Hammett 1983, Dave Mustaine 1982, Cli↵
Burton 1982

Is this possible in the relational data model, such as SQL? If yes, show the table. If no, explain why.
Notice: We expect the solution to use just band names, artist names, and years as attributes - no other
attributes such as ID numbers.

6.2 JSON schema, 2p

The previous question is probably easier in JSON than in SQL. Write a JSON schema suitable for listings
of bands with their members and joining years. (If your answer is in XML, use either a DTD or an XML
schema.)

6.3 JSON data, 2p

Write a JSON object that lists The Beatles and Metallica with their members and joining years as listed
above, conformant to your schema. (Or a corresponding XML object.)

6.4 JSONPath, 2p

Formulate a JSONPath query that finds all members of The Beatles that joined later than 1960. (Or a
corresponding XPath query.)

7

E-R diagrams and database schemas

Functional dependencies

Definition (tuple, attribute, value). A tuple has the form

{A1 = v1, . . . , An = vn}

where A1, . . . , An are attributes and v1, . . . , vn are their values.

Definition (signature, relation). The signature of a tuple, S, is the set of all its attributes, {A1, . . . , An}. A relation

R of signature S is a set of tuples with signature S. But we will sometimes also say ”relation” when we mean the

signature itself.

Definition (projection). If t is a tuple of a relation with signature S, the projection t.Ai computes to the value vi.
Definition (simultaneous projection). If X is a set of attributes {B1, . . . , Bm} ✓ S and t is a tuple of a relation with

signature S, we can form a simultaneous projection,

t.X = {B1 = t.B1, . . . , Bm = t.Bm}

Definition (functional dependency, FD). Assume X is a set of attributes and A an attribute, all belonging to a

signature S. Then A is functionally dependent on X in the relation R, written X ! A, if

• for all tuples t,u in R, if t.X = u.X then t.A = u.A.
If Y is a set of attributes, we write X ! Y to mean that X ! A for every A in Y.
Definition (multivalued dependency, MVD). Let X,Y,Z be disjoint subsets of a signature S such that S = X [Y [Z.

Then Y has a multivalued dependency on X in R, written X !! Y , if

• for all tuples t,u in R, if t.X = u.X then there is a tuple v in R such that

– v.X = t.X
– v.Y = t.Y
– v.Z = u.Z

1

Definition. An attribute A follows from a set of attributes Y, if there is an FD X ! A such that X ✓ Y .

Definition (closure of a set of attributes under FDs). The closure of a set of attributes X ✓ S under a set FD of

functional dependencies, denoted X+, is the set of those attributes that follow from X.
Definition (trivial functional dependencies). An FD X ! A is trivial, if A 2 X.

Definition (superkey, key). A set of attributes X ✓ S is a superkey of S, if S ✓ X+.

A set of attributes X ✓ S is a key of S if

• X is a superkey of S
• no proper subset of X is a superkey of S

Definition (Boyce-Codd Normal Form, BCNF violation). A functional dependency X ! A violates BCNF if

• X is not a superkey

• the dependency is not trivial

A relation is in Boyce-Codd Normal Form (BCNF) if it has no BCNF violations.

Definition (prime). An attribute A is prime if it belongs to some key.

Definition (Third Normal Form, 3NF violation). A functional dependency X ! A violates 3NF if

• X is not a superkey

• the dependency is not trivial

• A is not prime

Definition (trivial multivalued dependency). A multivalued dependency X !! A is trivial if Y ✓ X or X [Y = S.
Definition (Fourth Normal Form, 4NF violation). A multivalued dependency X !! A violates 4NF if

• X is not a superkey

• the MVD is not trivial.

Algorithm (BCNF decomposition). Consider a relation R with signature S and a set F of functional dependencies.

R can be brought to BCNF by the following steps:

1. If R has no BCNF violations, return R
2. If R has a violating functional dependency X ! A, decompose R to two relations

• R1 with signature X [{A}
• R2 with signature S � {A}

3. Apply the above steps to R1 and R2 with functional dependencies projected to the attributes contained in each

of them.

Algorithm (4NF decomposition). Consider a relation R with signature S and a set M of multivalued dependencies.

R can be brought to 4NF by the following steps:

1. If R has no 4NF violations, return R
2. If R has a violating multivalued dependency X !! Y , decompose R to two relations

• R1 with signature X [{Y }
• R2 with signature S � Y

3. Apply the above steps to R1 and R2
Concept (minimal basis of a set of functional dependencies; not a rigorous definition). A minimal basis of a set F
of functional dependencies is a set F- that implies all dependencies in F. It is obtained by first weakening the left hand

sides and then dropping out dependencies that follow by transitivity. Weakening an LHS in X ! A means finding a

minimal subset of X such that A can still be derived from F-.
Algorithm (3NF decomposition). Consider a relation R with a set F of functional dependencies.

1. If R has no 3NF violations, return R.
2. If R has 3NF violations,

• compute a minimal basis of F- of F
• group F- by the left hand side, i.e. so that all depenencies X ! A are grouped together

• for each of the groups, return the schema XA1 . . . An with the common LHS and all the RHSs

• if one of the schemas contains a key of R, these groups are enough; otherwise, add a schema containing just

some key

2

Relational algebra

relation ::=

relname name of relation (can be used alone)

| �condition relation selection (sigma) WHERE

| ⇡projection+ relation projection (pi) SELECT

| ⇢
relname (attribute+)?

relation renaming (rho) AS

| �
attribute*,aggregationexp+

relation

grouping (gamma) GROUP BY, HAVING

| ⌧expression+ relation sorting (tau) ORDER BY

| � relation removing duplicates (delta) DISTINCT

| relation ⇥ relation cartesian product FROM, CROSS JOIN

| relation [relation union UNION

| relation \ relation intersection INTERSECT

| relation � relation di↵erence EXCEPT

| relation ./ relation NATURAL JOIN

| relation ./condition relation theta join JOIN ON

| relation ./attribute+ relation INNER JOIN

| relation ./o
attribute+

relation FULL OUTER JOIN

| relation ./oL
attribute+

relation LEFT OUTER JOIN

| relation ./oR
attribute+

relation RIGHT OUTER JOIN

projection ::=

expression expression, can be just an attribute

| expression ! attribute rename projected expression AS

aggregationexp ::=

aggregation(*|attribute) without renaming

| aggregation(*|attribute) ! attribute with renaming AS

expression, condition, aggregation, attribute ::=

as in SQL, but excluding subqueries

3

SQL

statement ::= type ::=
CREATE TABLE tablename (CHAR (integer) | VARCHAR (integer) | TEXT

* attribute type inlineconstraint* | INT | FLOAT
* [CONSTRAINT name]? constraint deferrable?
) ; inlineconstraint ::= ## not separated by commas!

| PRIMARY KEY
DROP TABLE tablename ; | REFERENCES tablename (attribute) policy*

| | UNIQUE | NOT NULL
INSERT INTO tablename tableplaces? values ; | CHECK (condition)

| | DEFAULT value
DELETE FROM tablename

? WHERE condition ; constraint ::=
| PRIMARY KEY (attribute+)

UPDATE tablename | FOREIGN KEY (attribute+)
SET setting+ REFERENCES tablename (attribute+) policy*

? WHERE condition ; | UNIQUE (attribute+) | NOT NULL (attribute)
| | CHECK (condition)

query ;
| policy ::=

CREATE VIEW viewname ON DELETE|UPDATE CASCADE|SET NULL
AS (query) ; deferrable ::=

| NOT? DEFERRABLE (INITIALLY DEFERRED|IMMEDIATE)?
ALTER TABLE tablename tableplaces ::=

+ alteration ; (attribute+)
|

COPY tablename FROM filepath ; values ::=
postgresql-specific, tab-separated VALUES (value+) ## VALUES only in INSERT

| (query)
query ::=

SELECT DISTINCT? columns setting ::=
? FROM table+ attribute = value
? WHERE condition
? GROUP BY attribute+ alteration ::=
? HAVING condition ADD COLUMN attribute type inlineconstraint*
? ORDER BY attributeorder+ | DROP COLUMN attribute

|
query setoperation query localdef ::=

| WITH tablename AS (query)
query ORDER BY attributeorder+

no previous ORDER in query columns ::=
| * ## literal asterisk

WITH localdef+ query | column+

table ::= column ::=
tablename expression

| table AS? tablename ## only one iteration allowed | expression AS name
| (query) AS? tablename
| table jointype JOIN table ON condition attributeorder ::=
| table jointype JOIN table USING (attribute+) attribute (DESC|ASC)?
| table NATURAL jointype JOIN table

setoperation ::=
condition ::= UNION | INTERSECT | EXCEPT

expression comparison compared
| expression NOT? BETWEEN expression AND expression jointype ::=
| condition boolean condition LEFT|RIGHT|FULL OUTER?
| expression NOT? LIKE ’pattern*’ | INNER?
| expression NOT? IN values
| NOT? EXISTS (query) comparison ::=
| expression IS NOT? NULL = | < | > | <> | <= | >=
| NOT (condition)

4

compared ::=
expression ::= expression

attribute | ALL|ANY values
| tablename.attribute
| value operation ::=
| expression operation expression "+" | "-" | "*" | "/" | "%"
| aggregation (DISTINCT? *|attribute) | "||"
| (query)

pattern ::=
value ::= % | _ | character ## match any string/char

integer | float | string ## string in single quotes | [character*]
| value operation value | [^ character*]
| NULL

aggregation ::=
boolean ::= MAX | MIN | AVG | COUNT | SUM

AND | OR

triggers ## privileges

functiondefinition ::= statement ::=
CREATE FUNCTION functionname() RETURNS TRIGGER AS $$ GRANT privilege+ ON object TO user+ grantoption?
BEGIN | REVOKE privilege+ ON object FROM user+ CASCADE?

* triggerstatement | REVOKE GRANT OPTION FOR privilege
END ON object FROM user+ CASCADE?
$$ LANGUAGE ’plpgsql’ | GRANT rolename TO username adminoption?
;

privilege ::=
triggerdefinition ::= SELECT | INSERT | DELETE | UPDATE | REFERENCES
CREATE TRIGGER triggernane | ALL PRIVILEGES ## | ...
whentriggered
FOR EACH ROW|STATEMENT object ::=

? WHEN (condition) tablename (attribute+)+ | viewname (attribute+)+
EXECUTE PROCEDURE functionname | trigger ## | ...
;

user ::= username | rolename | PUBLIC
whentriggered ::=

BEFORE|AFTER events ON tablename grantoption ::= WITH GRANT OPTION
| INSTEAD OF events ON viewname

adminoption ::= WITH ADMIN OPTION
events ::= event | event OR events
event ::= INSERT | UPDATE | DELETE ## transactions

triggerstatement ::= statement ::=
IF (condition) THEN statement+ elsif* END IF ; START TRANSACTION mode* | BEGIN | COMMIT | ROLLBACK

| RAISE EXCEPTION ’message’ ;
| statement ; ## INSERT, UPDATE or DELETE mode ::=
| RETURN NEW|OLD|NULL ; ISOLATION LEVEL level

| READ WRITE | READ ONLY
elsif ::= ELSIF (condition) THEN statement+

level ::=
SERIALIZABLE | REPEATABLE READ | READ COMMITTED

| READ UNCOMMITTED

indexes

statement ::=
CREATE INDEX indexname ON tablename (attribute+)?

5

JSON

Both json* and member* indicate comma-separated lists. Strings are in double-quotes, numbers use decimal dot.

json ::= object | array | string | number | boolean
object ::= "{" member* "}"
member ::= string ":" json
array ::= "[" json* "]"

JSON Path: Expressions are built from operators, the result is an array with all matching json elements.

$ is the path for the root of the document

. is the child operator (e.g. $.name gives the value of the name attribute of the root node)

* is the wild-card operator, it selects all attribute values of an object, or all items in an array

.. is the recursive descent operator (e.g. $..name gives the value of the name attribute of all nodes)

[n] is array indexing (n is an integer)

[n:m] is array slicing, selecting all indexes from n to m in an array

[a,b,c] selects multiple attributes (in double quotes) or array indexes

[?(condition)] is used to filter values

@ is the current object in conditions ($.*[?(@.x>1)] gets attributes of the root node whose x attribute exceeds 1)

JSON Schema: Each schema is a JSON document.

false matches nothing

true matches everything (same as {})
Objects contain any number of keywords (as keys), that limit what is accepted. Keywords and types of values:

• "enum" (array) accepts only the listed values.

• "type" (string) accepts only the given type, one of object/array/string/number/integer/boolean.

• "minimum","maximum","minLength","maxLength","minProperties","maxProperties","minItems","maxItems" (integer)
specifies bounds for numbers, string lengths, array lengths and number of attributes respectively.

• "properties" (object with name:schema pairs) specifies schemas for attributes of objects.

E.g. {"properties":{"x":{"type":"string"}, "y":false}} accepts only objects where the type of attribute ”x” is a

string (or ”x” does not exist) and attribute ”y” does not exist.

• "additionalProperties" (schema) specifies the schema for all attributes not mentioned in ”properties”.

• "required" (array of strings) accepts only objects that have all the listed attributes

• "items" (schema) accepts only arrays where all items are accepted by the given schema

• "contains" (schema) accepts only arrays that where at least one item is accepted by the given schema

• "uniqueItems" (boolean) if boolean is true, accepts only arrays where items are unique

• "allOf", "anyOf", "oneOf" (array of schemas) accepts only what is accepted by all of, at least one of, or exactly one of

the given schemas.

• "not" (schema) accepts only what is not accepted by the given schema.

• "definitions" (object with name:schema pairs) specifies named schemas, that can be used with "$ref". Only used in

the root object of a schema.

• "$ref" (string) accepts values that are accepted by the referenced schema. Use "#" to refer back to the root of the

schema. Use "#\definitions\x" to refer to definition ”x”.

6

XML

document ::= header? dtd? element
starttag ::= < ident attr* >

header ::= "<?xml version=1.0 encoding=utf-8 standalone=no?>" endtag ::= </ ident >
standalone=no if with DTD emptytag ::= < ident attr* />

dtd ::= <! DOCTYPE ident [definition*]> attr ::= ident = string ## string in double quotes

definition ::= ## XPath
<! ELEMENT ident rhs >

| <! ATTLIST ident attribute* > path ::=
axis item cond? path?

rhs ::= | path "|" path
EMPTY | #PCDATA | ident
| rhs"*" | rhs"+" | rhs"?" axis ::= / | //
| rhs , rhs
| rhs "|" rhs item ::= "@"? (ident*) | ident :: ident

attribute ::= ident type #REQUIRED|#IMPLIED cond ::= [exp op exp] | [integer]

type ::= CDATA | ID | IDREF exp ::= "@"? ident | integer | string

element ::= starttag element* endtag | emptytag op ::= = | != | < | > | <= | >=

Grammar conventions

• CAPITAL words are SQL or XML keywords, to take literally
• small character words are names of syntactic categories, defined each in their own rules
• | separates alternatives
• + means one or more, separated by commas in SQL, by white space in XML
• * means zero or more, separated by commas in SQL, by white space in XML
• ? means zero or one
• in the beginning of a line, + * ? operate on the whole line; elsewhere, they operate on the word just before
• ## start comments, which explain unexpected notation or behaviour
• text in double quotes means literal code, e.g. "*" means the operator *
• other symbols, e.g. parentheses, also mean literal code (quotes are used only in some cases, to separate code
from grammar notation)

• parentheses can be added to disambiguate the scopes of operators, in both SQL and XML

14

	Entity-Relationship Modelling, 12p
	Step 1: artists and bands, 6p
	Step 2: albums and songs, 6p

	Functional Dependencies, 8p
	Dependencies and keys, 3p
	Normalization, 3p
	Real-world example, 2p

	SQL queries, 12p
	Query 1, 2p
	Query 2, 3p
	Query 3, 3p
	Query 4, 4p

	Algebra and theory, 8p
	Relational algebra, 4p
	Joins, 4p

	Constraints and Triggers, 12p
	Constraints, 4p
	Views, 3p
	Triggers, 5p

	JSON/XML, 8p
	SQL data representation, 2p
	JSON schema, 2p
	JSON data, 2p
	JSONPath, 2p

