
Computational Syntax

Aarne Ranta

Language Technology Masters Course, Gothenburg, Spring 2011

Contents

The key categories and rules

Morphology-syntax interface

Examples and variations in English, Italian, French, Finnish, Swedish,
German, Hindi

The miniature resource grammar: abstract syntax (the same as in GF
Book, Chapter 9)

The miniature resource grammar: English

Extended miniature resource grammar: abstract syntax and English

Extended miniature resource grammar: Italian (includes GF Book,
Chapter 9)

Syntax in the resource grammar

”Linguistic ontology”: syntactic structures common to languages

80 categories, 200 functions, which have worked for all resource lan-

guages so far

Sufficient for most purposes of expressing meaning: mathematics,

technical documents, dialogue systems

Must be extended by language-specific rules to permit parsing of arbi-

trary text (ca. 10% more in English?)

A lot of work, easy to get wrong!

The key categories and functions

The key categories

cat name example
Cl clause every young man loves Mary
VP verb phrase loves Mary
V2 two-place verb loves
NP noun phrase every young man
CN common noun young man
Det determiner every
AP adjectival phrase young

The key functions

fun name example
PredVP : NP -> VP -> Cl predication every man loves Mary
ComplV2 : V2 -> NP -> VP complementation loves Mary
DetCN : Det -> CN -> NP determination every man
AdjCN : AP -> CN -> CN modification young man
CompAP : AP -> VP adjectival predication is young

Feature design

cat variable inherent
Cl tense -
VP tense, agr -
V2 tense, agr case
NP case agr
CN number, case gender
Det gender, case number
AP gender, number, case -

agr = agreement features: gender, number, person

Predication: building clauses

Interplay between features

param Tense, Case, Agr

lincat Cl = {s : Tense => Str }

lincat NP = {s : Case => Str ; a : Agr}

lincat VP = {s : Tense => Agr => Str }

fun PredVP : NP -> VP -> Cl

lin PredVP np vp = {s = \\t => np.s ! subj ++ vp.s ! t ! np.a}

oper subj : Case

Feature passing

In general, combination rules just pass features: no case analysis (table

expressions) is performed.

A special notation is hence useful:

\\p,q => t === table {p => table {q => t}}

It is similar to lambda abstraction (\x,y -> t in a function type).

Predication: examples

English

np.agr present past future
Sg Per1 I sleep I slept I will sleep
Sg Per3 she sleeps she slept she will sleep
Pl Per1 we sleep we slept we will sleep

Italian (”I am tired”, ”she is tired”, ”we are tired”)

np.agr present past future
Masc Sg Per1 io sono stanco io ero stanco io sarò stanco
Fem Sg Per3 lei è stanca lei era stanca lei sarà stanca
Fem Pl Per1 noi siamo stanche noi eravamo stanche noi saremo stanche

Predication: variations

Word order:

• will I sleep (English), è stanca lei (Italian)

Pro-drop:

• io sono stanco vs. sono stanco (Italian)

Ergativity:

• ergative case of transitive verb subject; agreement to object (Hindi)

Variable subject case:

• minä olen lapsi vs. minulla on lapsi (Finnish, ”I am a child” (nom-

inative) vs. ”I have a child” (adessive))

Complementation: building verb phrases

Interplay between features

lincat NP = {s : Case => Str ; a : Agr }

lincat VP = {s : Tense => Agr => Str }

lincat V2 = {s : Tense => Agr => Str ; c : Case}

fun ComplV2 : V2 -> NP -> VP

lin ComplV2 v2 vp = {s = \\t,a => v2.s ! t ! a ++ np.s ! v2.c}

Complementation: examples

English

v2.case infinitive VP
Acc love me
at + Acc look at me

Finnish

v2.case VP, infinitive translation
Accusative tavata minut ”meet me”
Partitive rakastaa minua ”love me”
Elative pitää minusta ”like me”
Genitive + perään katsoa minun perääni ”look after me”

Complementation: variations

Prepositions: a two-place verb usually involves a preposition in addi-

tion case

lincat V2 = {s : Tense => Agr => Str ; c : Case ; prep : Str}

lin ComplV2 v2 vp = {s = \\t,a => v2.s ! t ! a ++ v2.prep ++ np.s ! v2.c}

Clitics: the place of the subject can vary, as in Italian:

• Maria ama Giovanni vs. Maria mi ama (”Mary loves John” vs.

”Mary loves me”)

Determination: building noun phrases

Interplay between features

lincat NP = {s : Case => Str ; a : Agr }

lincat CN = {s : Number => Case => Str ; g : Gender}

lincat Det = {s : Gender => Case => Str ; n : Number}

fun DetCN : Det -> CN -> NP

lin DetCN det cn = {

s = \\c => det.s ! cn.g ! c ++ cn.s ! det.n ! c ;

a = agr cn.g det.n Per3

}

oper agr : Gender -> Number -> Person -> Agr

Determination: examples

English

Det.num NP
Sg every house
Pl these houses

Italian (”this wine”, ”this pizza”, ”those pizzas”)

Det.num CN.gen NP
Sg Masc questo vino
Sg Fem questa pizza
Pl Fem quelle pizze

Finnish (”every house”, ”these houses”)

Det.num NP, nominative NP, inessive
Sg jokainen talo jokaisessa talossa
Pl nämä talot näissä taloissa

Determination: variations

Systamatic number variation:

• this-these, the-the, il-i (Italian ”the-the”)

”Zero” determiners:

• talo (”a house”) vs. talo (”the house”) (Finnish)

• a house vs. houses (English), une maison vs. des maisons (French)

Specificity parameter of nouns:

• varje hus vs. det huset (Swedish, ”every house” vs. ”that house”)

Modification: adding adjectives to nouns

Interplay between features

lincat AP = {s : Gender => Number => Case => Str }

lincat CN = {s : Number => Case => Str ; g : Gender}

fun AdjCN : AP -> CN -> CN

lin AdjCN ap cn = {

s = \\n,c => ap.s ! cn.g ! n ! c ++ cn.s ! n ! c ;

g = cn.g

}

Modification: examples

English

CN, singular CN, plural
new house new houses

Italian (”red wine”, ”red house”)

CN.gen CN, singular CN, plural
Masc vino rosso vini rossi
Fem casa rossa case rosse

Finnish (”red house”)

CN, sg, nominative CN, sg, ablative CN, pl, essive
punainen talo punaiselta talolta punaisina taloina

Modification: variations

The place of the adjectival phrase

• Italian: casa rossa, vecchia casa (”red house”, ”old house”)

• English: old house, house similar to this

Specificity parameter of the adjective

• German: ein rotes Haus vs. das rote Haus (”a red house” vs. ”the

red house”)

Adjectival predication

Interplay between features

lincat AP = {s : Gender => Number => Case => Str}

lincat VP = {s : Tense => Agr => Str }

fun CompAP : AP -> VP

lin CompAP ap =

{s = \\t,a => copula t a ++ ap.s ! gender a ! number a ! nom}

oper

copula : Tense -> Agr -> Str

gender : Agr -> Gender

number : Agr -> Number

nom : Case

Adjectival predication: examples

English

tense agr indicative VP
Pres Sg 3 is old
Pres Pl are old
Perf Sg 3 has been old

Italian

tense agr indicative VP
Pres Fem Sg 1 sono stanco
Perf Masc Sg 2 sei stato stanco
Perf Fem Sg 2 sei stata stanca

Adjectival predication: variations

Form of adjective

• invariable predicative form in German: (er ist, sie ist, wir sind) alt

• case depends on number in Finnish: olen vanha (”I am old”, singu-

lar nominative) vs. olemme vanhoja (”we are old”, plural partitive)

No copula (in present tense)

• Russian: Ivan staryi (”John (is) old”)

• Arabic:

– ar-ragulu qadi:mun (”the man (is) old”)

– but past tense: ka:na r-ragulu qadi:man (”the man was old”,

accusative!)

Selecting tense and polarity

Category S (sentence) fixes the variable tense and polarity of Cl, by

using abstract parameters (i.e. functions in abstract syntax).

cat

S ; Tense ; Pol ;

fun

UseCl : Tense -> Pol -> Cl -> S ;

Pos, Neg : Pol ;

Pres, Perf : Tense ;

Selecting tense and polarity: concrete syntax

The abstract parameters are mapped to concrete syntax realizations

consisting of strings (which can be empty) and parameters passed to

the clause.

lincat

S = {s : Str} ;

Tense = {s : Str ; t : TTense} ;

Conj = {s : Str ; n : Number} ;

lin

UseCl t p cl = {s = t.s ++ p.s ++ cl.s ! t.t ! p.b} ;

Pos = {s = ... ; b = True} ; Neg = {s = ... ; b = False} ;

Pres = {s = ... ; t = TPres} ; Perf = {s = ... ; t = TPerf} ;

(Notice: TTense = TPres | TPerf is a parameter type in the resource.)

Lexical insertion

To ”get started” with each category, use words from lexicon.

There are lexical insertion functions for each lexical category:

UseN : N -> CN

UseA : A -> AP

UseV : V -> VP

The linearization rules are often trivial, because the lincats match

lin UseN n = n

lin UseA a = a

lin UseV v = v

However, for UseV in particular, this will usually be more complex.

The head of a phrase

The inserted word is the head of the phrases built from it:

• house is the head of house, big house, big old house etc

As a rule with many exceptions and modifications,

• variable features are passed from the phrase to the head

• inherent features of the head are inherited by the noun

This works for endocentric phrases: the head has the same type as

the full phrase.

What is the head of a noun phrase?

In an NP of form Det CN, is Det or CN the head?

Neither, really, because features are passed in both directions:

lin DetCN det cn = {

s = \\c => det.s ! cn.g ! c ++ cn.s ! det.n ! c ;

a = agr cn.g det.n Per3

}

Moreover, this NP is exocentric: no part is of the same type as the

whole.

Structural words

Structural words = function words, words with special grammat-

ical functions

• determiners: the, this, every

• pronouns: I, she

• conjunctions: and, or, but

Often members of closed classes, which means that new words are

never (or seldom) introduces to them.

Linearization types are often specific and inflection are irregular.

A miniature resource grammar for Italian

We divide it to five modules - much fewer than the full resource!

abstract Grammar -- syntactic cats and funs

abstract Test = Grammar **... -- test lexicon added to Grammar

resource ResIta -- resource for Italian

concrete GrammarIta of Grammar = open ResIta in... -- Italian syntax

concrete TestIta of Test = GrammarIta ** open ResIta in... -- It. lexicon

Extension vs. opening

Module extension: N = M1, M2, M3 ** {...}

• module N inherits all judgements from M1,M2,M3

Module opening: N = open R1, R2, R3 in {...}

• module N can use all judgements from R1,R2,R3 (but doesn’t inherit

them)

Module dependencies

rectangle = abstract, solid ellipse = concrete, dashed ellipse = resource

Producing the dependency graph

Using the command dg = dependency graph and graphviz

> i -retain LangIta.gf

> dependency_graph

wrote graph in file _gfdepgraph.dot

> ! dot -Tpng _gfdepgraph.dot >testdep.png

The module Grammar

abstract Grammar = {
cat

S ; Cl ; NP ; VP ; AP ; CN ; Det ; N ; A ; V ; V2 ; Tense ; Pol ;
fun

UseCl : Tense -> Pol -> Cl -> S ;
PredVP : NP -> VP -> Cl ;
ComplV2 : V2 -> NP -> VP ;
DetCN : Det -> CN -> NP ;
ModCN : CN -> AP -> CN ;

UseV : V -> VP ;
UseN : N -> CN ;
UseA : A -> AP ;

a_Det, the_Det : Det ; this_Det, these_Det : Det ;
i_NP, she_NP, we_NP : NP ;

Pos, Neg : Pol ;
Pres, Perf : Tense ;

}

English implementation

Parameters

Parameters are defined in ResEng.gf. Just 3 of the 5 verb forms.

Number = Sg | Pl ;

Case = Nom | Acc ;

Agr = Ag Number Person ;

TTense = TPres | TPerf ;

Person = Per1 | Per2 | Per3 ;

VForm = VInf | VPres | VPast | VPart ;

Tense and agreement of a verb phrase, in syntax

UseV arrive V Pres, True Pres, False Perf
Ag Sg Per3 arrives does not arrive has (not) arrived
Ag arrive do not arrive have (not) arrived

The forms of a verb, in morphology

arrive V form
VInf arrive
VPres arrives
VPart arrived

The verb phrase type

Lexical insertion maps V to VP.

lincat VP = {

verb : AgrVerb ;

compl : Str

} ;

oper AgrVerb : Type = {

s : TTense => Bool => Agr => Str

} ;

An auxiliary

oper agrV : Verb -> AgrVerb = \v -> {

s = \\t,p,a => case <t,p,a> of {

<TPres,True, Ag Sg Per3> => v.s ! VPres ;

<TPres,False,Ag Sg Per3> => "does not" ++ v.s ! VInf ;

<TPres,True, _> => v.s ! VInf ;

<TPres,False,_> => "do not" ++ v.s ! VInf ;

<TPerf,_,Ag Sg Per3> => "has" ++ neg p ++ v.s ! VPart ;

<TPerf,_,_ > => "have" ++ neg p ++ v.s ! VPart

}

} ;

Verb phrase formation, V and V2

lin

ComplV2 v2 np = {

verb = agrV v2 ;

compl = v2.c ++ np.s ! Acc

} ;

UseV v = {

verb = agrV v ;

compl = []

} ;

Verb phrase formation, copula

lin CompAP ap = {

verb = copula ;

compl = ap.s

} ;

oper copula : AgrVerb = {

s = \\t,p,a => case <t,a> of {

<TPres,Ag Sg Per1> => "am" ++ neg p ;

<TPres,Ag Sg Per3> => "is" ++ neg p ;

<TPres,_ > => "are" ++ neg p ;

<TPerf,Ag Sg Per3> => "has" ++ neg p ++ "been" ;

<TPerf,_ > => "have" ++ neg p ++ "been"

}

} ;

English noun phrases

Worst case: as pronouns

lincat NP = {s : Case => Str ; a : Agr} ;

lin

i_NP = pronNP "I" "me" Sg Per1 ;

she_NP = pronNP "she" "her" Sg Per3 ;

we_NP = pronNP "we" "us" Pl Per1 ;

oper pronNP : (s,a : Str) -> Number -> Person -> NP =

\s,a,n,p -> {

s = table {

Nom => s ;

Acc => a

} ;

a = Ag n p

} ;

Determination

lincat Det = {s : Str ; n : Number} ;

lin

DetCN det cn = {

s = _ => det.s ++ cn.s ! det.n ;

a = Ag det.n Per3

} ;

every_Det = mkDet "every" Sg ;

the_Det = mkDet "the" Sg ;

oper mkDet : Str -> Number -> {s : Str ; n : Number} = \s,n -> {

s = s ;

n = n

} ;

The indefinite article

Prefix-dependent token:

lin

a_Det = mkDet (pre {#vowel => "an" ; _ => "a"}) Sg ;

oper

vowel : pattern Str = #("a" | "e" | "i" | "o") ;

This is an approximation; spelling doesn’t determine vocalicity.

Adjectival phrases

Trivial in English

lincat AP, A = {s : Str} ;

lin

ModCN ap cn = {

s = \\n => ap.s ++ cn.s ! n

} ;

UseA adj = adj ;

Predication, at last

Place the object and the clitic, and select the verb form.

lin

PredVP np vp = {

s = \\t,b => np.s ! Nom ++ vp.verb.s ! t ! b ! np.a ++ vp.compl

} ;

Selection of tense and polarity

The abstract parameters are empty strings.

lincat

S = {s : Str} ;

Cl = {s : TTense => Bool => Str} ;

lin

UseCl t p cl = {s = t.s ++ p.s ++ cl.s ! t.t ! p.b} ;

Pos = {s = [] ; b = True} ;

Neg = {s = [] ; b = False} ;

Pres = {s = [] ; t = TPres} ;

Perf = {s = [] ; t = TPerf} ;

The extended syntax

The new things

Utterances: questions, declaratives

Extraction: who does John walk with

Subordinate clauses: John runs because Mary walks

More verb categories: know that John walks, wonder if John walks,

want to walk

Adverbs, prepositions

Coordination: conjunctions of sentences, noun phrases, adjectival

phrases,...

More tenses: past (slept), future (will sleep)

Abstract syntax: new categories

Utt ; -- utterance (sentence or question) e.g. "does she walk"
QS ; -- question (fixed tense) e.g. "who doesn’t walk"
QCl ; -- question clause (variable tense) e.g. "who walks"
ClSlash ; -- clause missing noun phrase e.g. "she walks with"
Adv ; -- adverb e.g. "here"
Prep ; -- preposition (and/or case) e.g. "with"
VS ; -- sentence-complement verb e.g. "know"
VQ ; -- question-complement verb e.g. "wonder"
VV ; -- verb-phrase-complement verb e.g. "want"
IP ; -- interrogative pronoun e.g. "who"
PN ; -- proper name e.g. "John"
Subj ; -- subjunction e.g. "because"
IAdv ; -- interrogative adverb e.g. "why"

Abstract syntax: new sentence-level combination rules

UttS : S -> Utt ;
UttQS : QS -> Utt ;

UseQCl : Tense -> Pol -> QCl -> QS ;

QuestCl : Cl -> QCl ; -- does she walk
QuestVP : IP -> VP -> QCl ; -- who walks
QuestSlash : IP -> ClSlash -> QCl ; -- who does she walk with
QuestIAdv : IAdv -> Cl -> QCl ; -- why does she walk

SubjCl : Cl -> Subj -> S -> Cl ; -- she walks because we run

CompAdv : Adv -> VP ; -- (be) here
PrepNP : Prep -> NP -> Adv ; -- in the house

Question forms

1. Sentential questions, formed from a clause

QuestCl : Cl -> QCl ; -- does she walk ; is she old

2. Wh questions, formed with an interrogative pronoun

QuestVP : IP -> VP -> QCl ; -- who walks ; who walks with her

QuestSlash : IP -> ClSlash -> QCl ; -- who does she walk with

3. Interrogative adverbial question, formed with an interrogative

adverbial

QuestIAdv : IAdv -> Cl -> QCl ; -- why/where/when does she walk

Direct vs. indirect questions

Direct = as main clause; indirect = in subordinate clause

direct indirect (I wonder...)
is she old if she is old
does she walk if she walks
who is there who there is
who does she love who she loves
why does she walk why she walks

English makes them more different than many other languages; e.g.

in Finnish, there is no difference.

Extraction

Also known as wh movement:

she loves him -> *she loves who -> who she loves, who does

she love

We form this by introducing a slash category, ClSlash, ”clause missing

an NP”

SlashV2 : NP -> V2 -> ClSlash ; -- she loves

Often denoted Cl/NP, whence the ”slash” (but this is not correct

notation in GF).

Long distance dependencies

The ”missing NP” can be arbitrarily deep in the verb phrase.

We consider just one way of doing this:

SlashPrep : Cl -> Prep -> ClSlash ; -- she walks with

This gives us

who does she walk with

who does she walk in the street in the morning with

More on extraction

Other forms of ”slash propagation”, e.g. who do you want me to
meet

Usage in relative clauses, e.g. the man that she walks with

Interrogative adverbs could be seen as instances of Cl/Adv:

you live here -> where you live

English and Swedish: the preposition may follow or stay; the latter is
more common in languages.

• who do we walk with (preposition stranding)

• with who do we walk (pied piping)

Subordinate clauses

SubjCl : Cl -> Subj -> S -> Cl ;

although_Subj, because_Subj, when_Subj : Subj ;

John runs because Mary walks

Verb categories

Also known as subcategorization patterns of verbs:

cat complement example
VS sentence know that John walks
VQ question wonder if John walks
VV verb phrase want to walk

VS and VQ also introduce subordinate clauses

More still possible: V3 (she talks to him about it), VA (she becomes

hungry), V2A (she paints it red), V2V (she asks him to leave),...

Adverbs and prepositions

Lexical adverbs: here, now

Prepositional phrases: with Mary, in every village

PrepNP : Prep -> NP -> Adv ; -- in the house

More generally:

• ad-adjectives (AdA): very

• sentential adverbs: always (different position: she always runs
here)

Category Adv also usable as predicate: she is here

CompAdv : Adv -> VP ; -- be here

Coordination

Sentences: John walks and Mary runs

ConjS : Conj -> S -> S -> S ;

Adjectival phrases: big or small

ConjAP : Conj -> AP -> AP -> AP ;

Noun phrases: John and Mary

ConjNP : Conj -> NP -> NP -> NP ;

More generally:

• for many more categories X: ConjX : Conj -> X -> X -> X’

• list conjunction: ConjX : Conj -> ListX -> X’

The tense system

More tenses: past (slept), future (will sleep)

More genarally:

• tense (present, past, future, conditional) * order (simultaneous,

anterior)

• mood: indicative vs. conjunctive/subjunctive ; imperative

• nominal forms: infinitives, participles

English implementation

Module dependencies

Notice: names like in RGL; separate Lexicon and Lang.

Need to generalize the VP type

Main challenge: inversion

she is old is she old
she has walked has she walked
she does not walk does she not walk
she walks does she walk (not: walks she !)

We need to add discontinuity to VP. Moreover, we have the irregular

behaviour in simple tenses with positive polarity.

The new VP type

Separate fields for finite and infinite parts.

VP = {

verb : AgrVerb ;

compl : Str

} ;

AgrVerb = {

s : ClForm => TTense => Bool => Agr => {fin,inf : Str} ;

inf : Str

} ;

param ClForm = ClDir | ClInv ;

The finite part is the one that goes before the subject in inversion:
has she walked. (The inf field is used in constructions like want to
VP; see later)

How the parts look depends on the clause form, tense, and polarity.

Using the VP type: predication

lin PredVP np vp = {

s = \\d,t,b =>

let

vps = vp.verb.s ! d ! t ! b ! np.a

in case d of {

ClDir => np.s ! Nom ++ vps.fin ++ vps.inf ++ vp.compl ;

ClInv => vps.fin ++ np.s ! Nom ++ vps.inf ++ vp.compl

}

} ;

Producing a VP verb from a verb

oper agrV : Verb -> AgrVerb = \v ->
let

vinf = v.s ! VInf ;
vpart = v.s ! VPart

in {
s = \\d,t,p,a => case <d,t,p,a> of {

<ClDir,TPres,True, Ag Sg Per3> => {fin = v.s ! VPres ; inf = []} ;
<_, TPres,_, Ag Sg Per3> => {fin = "does" ; inf = neg p ++ vinf} ;
<ClDir,TPres,True, _ > => {fin = vinf ; inf = []} ;
<_, TPres,_, _ > => {fin = "do" ; inf = neg p ++ vinf} ;
<_, TPerf,_, Ag Sg Per3> => {fin = "has" ; inf = neg p ++ vpart} ;
<_, TPerf,_, _ > => {fin = "have" ; inf = neg p ++ vpart} ;
<ClDir,TPast,True, _ > => {fin = v.s ! VPast ; inf = []} ;
<_, TPast,_, _ > => {fin = "did" ; inf = neg p ++ vinf} ;
<_, TFut, _, _ > => {fin = "will" ; inf = neg p ++ vinf}
} ;

inf = vinf
} ;

A similar generalization for copula.

Using clauses in sentential questions

lincat QCl = {s : QForm => TTense => Bool => Str} ;

lin QuestCl cl = {s = \\q,t,p =>

case q of {

QDir => cl.s ! ClInv ! t ! p ;

QIndir => "if" ++ cl.s ! ClDir ! t ! p

}

} ;

param QForm = QDir | QIndir ;

Using clauses in adverbial questions: almost the same

lin QuestIAdv iadv cl = {s = \\q,t,p =>

iadv.s ++

case q of {

QDir => cl.s ! ClInv ! t ! p ;

QIndir => cl.s ! ClDir ! t ! p

}

} ;

The slash category

Clause + complement case

lincat ClSlash = {s : ClForm => TTense => Bool => Str ; c : Str} ;

Using it: append the preposition to the clause (preposition stranding)

or to the interrogative pronoun (pied piping):

lin QuestSlash ip cls = {

s = (\\q,t,p => ip.s ++ cls.s ! ClInv ! t ! p ++ cls.c)

| (\\q,t,p => cls.c ++ ip.s ++ cls.s ! ClInv ! t ! p)

} ;

Producing slashes

Like predication, V2 alone as verb phrase:

lin SlashV2 np v2 = {

s = \\d,t,b =>

let

vps = (agrV v2).s ! d ! t ! b ! np.a

in case d of {

ClDir => np.s ! Nom ++ vps.fin ++ vps.inf ;

ClInv => vps.fin ++ np.s ! Nom ++ vps.inf

} ;

c = v2.c

} ;

Complementation with the new verb categories

ComplVS v s = {

verb = agrV v ;

compl = "that" ++ s.s

} ;

ComplVQ v q = {

verb = agrV v ;

compl = q.s ! QIndir

} ;

ComplVV v vp = {

verb = v.s ;

compl = case v.isAux of {

True => infVP vp ;

False => "to" ++ infVP vp

}

} ;

Auxiliaries

Another complication with English: VV’s that are auxiliaries vs. VV’s

that are not (I can walk vs. I want to walk)

Auxiliaries

• don’t use to (except in compounds: I have been able to walk)

• don’t use auxiliary do: can she walk vs. does she want to walk

The most common VV’s are classified as structural words and not in

Lexicon (as they often have a special place in grammars, e.g. behave

like auxiliaries).

Coordination

Straightforward for sentences and adjectival phrases:

ConjS co x y = {s = x.s ++ co.s ++ y.s} ;

ConjAP co x y = {s = x.s ++ co.s ++ y.s} ;

For noun phrases, we need to return correct agreement features:

John or Mary walks: singular + singular = singular with or

John and Mary walk: singular + singular = plural with and

John or all other boys walk: singular + plural = plural

NP coordination, the idea

Idea: the agreement feature of the complex is a function of

• the features of the conjuncts

• the feature of the conjunction (and is plural, or is singular)

Thus:

• the number is singular iff every number is singular

• the person is 1st iff any person is 1st, 3rd iff all persons are 3rd

In other words: minimum function with Pl and Per1 as minimal values.

NP coordination, the code

lincat
NP = {s : Case => Str ; a : Agr} ;
Conj = {s : Str ; n : Number} ;

lin ConjNP co nx ny = {
s = \\c => nx.s ! c ++ co.s ++ ny.s ! c ;
a = conjAgr co.n nx.a ny.a
} ;

oper
conjAgr : Number -> Agr -> Agr -> Agr = \n,xa,ya ->

case <xa,ya> of {
<Ag xn xp, Ag yn yp> =>

Ag (conjNumber (conjNumber xn yn) n) (conjPerson xp yp)
} ;

conjNumber : Number -> Number -> Number = \m,n ->
case m of {Pl => Pl ; _ => n} ;

conjPerson : Person -> Person -> Person = \p,q ->
case <p,q> of {

<Per1,_> | <_,Per1> => Per1 ;
<Per2,_> | <_,Per2> => Per2 ;
_ => Per3
} ;

Italian implementation

First the basic part, as in the book Chapter 9.

Parameters

Parameters are defined in ResIta.gf. Just 11 of the 56 verb forms.

Number = Sg | Pl ;

Gender = Masc | Fem ;

Case = Nom | Acc | Dat ;

Aux = Avere | Essere ; -- the auxiliary verb of a verb

Tense = Pres | Perf ;

Person = Per1 | Per2 | Per3 ;

Agr = Ag Gender Number Person ;

VForm = VInf | VPres Number Person | VPart Gender Number ;

Algebraic datatypes

Parameter types that are not just enumerated, but have a hierarchy.

Instead of plain constants, constructors that take arguments.

param VForm = VInf | VPres Number Person | VPart Gender Number ;

The values are thus:

VInf

VPres Sg Per1, VPres Sg Per2, VPres Sg Per3,

VPres Pl Per1, VPres Pl Per2, VPres Pl Per3

VPart Masc Sg, VPart Masc Pl, VPart Fem Sg, VPart Fem Pl

Italian verb phrases

UseV arrive V Pres Perf
Ag Masc Sg Per1 arrivo sono arrivato
Ag Fem Sg Per1 arrivo sono arrivata
Ag Masc Sg Per2 arrivi sei arrivato
Ag Fem Sg Per2 arrivi sei arrivata
Ag Masc Sg Per3 arriva è arrivato
Ag Fem Sg Per3 arriva è arrivata
Ag Masc Pl Per1 arriviamo siamo arrivati
Ag Fem Pl Per1 arriviamo siamo arrivate
Ag Masc Pl Per2 arrivate siete arrivati
Ag Fem Pl Per2 arrivate siete arrivate
Ag Masc Pl Per3 arrivano sono arrivati
Ag Fem Pl Per3 arrivano sono arrivate

The forms of a verb, in morphology

arrive V form
VInf arrivare
VPres Sg Per1 arrivo
VPres Sg Per2 arrivi
VPres Sg Per3 arriva
VPres Pl Per1 arriviamo
VPres Pl Per2 arrivate
VPres Pl Per3 arrivano
VPart Masc Sg arrivato
VPart Fem Sg arrivata
VPart Masc Pl arrivati
VPart Fem Pl arrivate

Inherent feature: aux is essere.

The verb phrase type

Lexical insertion maps V to VP.

Two possibilities for VP: either close to Cl,

lincat VP = {s : Tense => Agr => Str}

or close to V, just adding a clitic and an object to verb,

lincat VP = {v : Verb ; clit : Str ; obj : Str} ;

We choose the latter. It is more efficient in parsing.

Verb phrase formation

Lexical insertion is trivial.

lin UseV v = {v = v ; clit, obj = []}

Complementation assumes NP has a clitic and an ordinary object part.

lin ComplV2 =

let

nps = np.s ! v2.c

in {

v = {s = v2.s ; aux = v2.aux} ;

clit = nps.clit ;

obj = nps.obj

}

Italian noun phrases

Being clitic depends on case

lincat NP = {s : Case => {clit,obj : Str} ; a : Agr} ;

Examples:

lin she_NP = {
s = table {

Nom => {clit = [] ; obj = "lei"} ;
Acc => {clit = "la" ; obj = []} ;
Dat => {clit = "le" ; obj = []}
} ;

a = Ag Fem Sg Per3
}

lin John_NP = {
s = table {

Nom | Acc => {clit = [] ; obj = "Giovanni"} ;
Dat => {clit = [] ; obj = "a Giovanni"}
} ;

a = Ag Fem Sg Per3
}

Noun phrases: alternatively

Use a feature instead of separate fields,

lincat NP = {s : Case => {s : Str ; isClit : Bool} ; a : Agr} ;

The use of separate fields is more efficient and scales up better to

multiple clitic positions.

Determination

No surprises

lincat Det = {s : Gender => Case => Str ; n : Number} ;

lin DetCN det cn = {

s = \\c => {obj = det.s ! cn.g ! c ++ cn.s ! det.n ; clit = []} ;

a = Ag cn.g det.n Per3

} ;

Building determiners

Often from adjectives:

lin this_Det = adjDet (mkA "questo") Sg ;

lin these_Det = adjDet (mkA "questo") Pl ;

oper prepCase : Case -> Str = \c -> case c of {

Dat => "a" ;

_ => []

} ;

oper adjDet : Adj -> Number -> Determiner = \adj,n -> {

s = \\g,c => prepCase c ++ adj.s ! g ! n ;

n = n

} ;

Articles: see GrammarIta.gf

Adjectival modification

Recall the inherent feature for position

lincat AP = {s : Gender => Number => Str ; isPre : Bool} ;

lin ModCN cn ap = {

s = \\n => preOrPost ap.isPre (ap.s ! cn.g ! n) (cn.s ! n) ;

g = cn.g

} ;

Obviously, separate pre- and post- parts could be used instead.

Italian morphology

Complex but mostly great fun:

regNoun : Str -> Noun = \vino -> case vino of {

fuo + c@("c"|"g") + "o" => mkNoun vino (fuo + c + "hi") Masc ;

ol + "io" => mkNoun vino (ol + "i") Masc ;

vin + "o" => mkNoun vino (vin + "i") Masc ;

cas + "a" => mkNoun vino (cas + "e") Fem ;

pan + "e" => mkNoun vino (pan + "i") Masc ;

_ => mkNoun vino vino Masc

} ;

See ResIta for more details.

Predication, at last

Place the object and the clitic, and select the verb form.

lin PredVP np vp =

let

subj = (np.s ! Nom).obj ;

obj = vp.obj ;

clit = vp.clit ;

verb = table {

Pres => agrV vp.v np.a ;

Perf => agrV (auxVerb vp.v.aux) np.a ++ agrPart vp.v np.a

}

in {

s = \\t => subj ++ clit ++ verb ! t ++ obj

} ;

Selection of verb form

We need it for the present tense

oper agrV : Verb -> Agr -> Str = \v,a -> case a of {

Ag _ n p => v.s ! VPres n p

} ;

The participle agrees to the subject, if the auxiliary is essere

oper agrPart : Verb -> Agr -> Str = \v,a -> case v.aux of {

Avere => v.s ! VPart Masc Sg ;

Essere => case a of {

Ag g n _ => v.s ! VPart g n

}

} ;

The definite article

Notorious: there are prefix-dependent forms

default il vino ”the wine”
before vowel l’albero ”the tree”
before ’impure s’ lo stato ”the state”

Moreover, there are contractions between preposition and article

bare preposition a Giovanni ”to Giovanni”
with default article al vino ”to the wine”
article before vowel all’albero ”to the tree”
article before ’impure s’ allo stato ”to the state”

Solution in GF: case parameter

Treat these prepositions as case (needed for pronouns anyway):

param Case = Nom | Acc | Dat | Gen | C_in | C_con | C_da ;

In ”bare” usage, they produce strings

oper prepCase : Case -> Str = \c -> case c of {

Dat => "a" ;

Gen => "di" ;

C_con => "con" ;

C_in => "in" ;

C_da => "da" ;

_ => []

} ;

Contractions with articles

lin the_Det = {

s = table {

Masc => table {

Nom | Acc => elisForms "lo" "l’" "il" ;

Dat => elisForms "allo" "all’" "al" ;

Gen => elisForms "dello" "dell’" "del" ;

C_in => elisForms "nello" "nell’" "nel" ;

-- etc

oper

elisForms : (_,_,_ : Str) -> Str = \lo,l’,il ->

pre {#s_impuro => lo ; #vowel => l’ ; _ => il} ;

vowel : pattern Str = #("a" | "e" | "i" | "o" | "u" | "h") ;

s_impuro : pattern Str =

#("z" | "s" + ("b"|"c"|"d"|"f"|"m"|"p"|"q"|"t")) ;

Similar solution as for English a,an but it works perfectly for Italian.

Italian, extended

More verb forms

Introducing mood and more tenses.

param

Mood = Ind | Con ;

VForm =

VInf

| VInfContr -- contracted infinitive, "amar"

| VPres Mood Number Person

| VPast Mood Number Person

| VFut Number Person

| VPart Gender Number ;

How many values of VForm are there now?

Sentences and clauses with mood

Because of VS and Subj, we need to vary S in mood.

lincat

S = {s : Mood => Str} ;

Cl = {s : Mood => ResIta.Tense => Bool => Str} ;

VS = Verb ** {m : Mood} ;

Subj = {s : Str ; m : Mood} ;

lin

SubjCl cl subj s = {

s = \\m,t,b => cl.s ! m ! t ! b ++ subj.s ++ s.s ! subj.m

} ;

Sharing the complementation code

To avoid copy and paste: we define in ResIta

oper useV : Verb -> (Agr => Str) -> VP = \v,o -> {

v = v ;

clit = [] ;

clitAgr = CAgrNo ;

obj = o

} ;

Then we can write in GrammarIta

lin

UseV v = useV v (_ => []) ;

CompAdv adv = useV essere_V (_ => adv.s) ;

ComplVS v s = useV v (_ => "che" ++ s.s ! v.m) ;

ComplVQ v q = useV v (_ => q.s ! QIndir) ;

Next steps

Look at the last lecture of LREC Tutorial, and Book Chapter 10

Look at the Resource Library Synopsis in

http://www.grammaticalframework.org/lib/doc/synopsis.html

http://www.grammaticalframework.org/lib/doc/synopsis.html

Application of Computational Syntax

Contents

Software libraries: programmer’s vs. users view

Semantic vs. syntactic grammars

Example of semantic grammar and its implementation

Interfaces and parametrized modules

Free variation

Overview of the Resource Grammar API

Software libraries

Collections of reusable functions/types/classes

API = Application Programmer’s Interface

• show enough to enable use

• hide details

Example: maps (lookup tables, hash maps) in Haskell, C++, Java, ...

type Map

lookup : key -> Map -> val

update : key -> val -> Map -> Map

Hidden: the definition of the type Map and of the functions lookup and
update.

Advantages of software libraries

Programmers have

• less code to write (e.g. how to look up)

• less techniques to learn (e.g. efficient Map datastructures)

Improvements and bug fixes can be inherited

Grammars as software libraries

Smart paradigms as API for morphology

mkN : (talo : Str) -> N

Abstract syntax as API for syntactic combinations

PredVP : NP -> VP -> Cl

ComplV2 : V2 -> NP -> VP

NumCN : Num -> CN -> NP

Using the library: natural language output

Task: in an email program, generate phrases saying you have n mes-

sage(s)

Problem: avoid you have one messages

Solution: use the library

PredVP you_NP (ComplV2 have_V2 (NumCN two_Num (UseN (mkN "message"))))

===> you have two messages

PredVP you_NP (ComplV2 have_V2 (NumCN one_Num (UseN (mkN "message"))))

===> you have one message

Software localization

Adapt the email program to Italian, Swedish, Finnish...

PredVP you_NP (ComplV2 have_V2 (NumCN two_Num (UseN (mkN "messaggio"))))

===> hai due messaggi

PredVP you_NP (ComplV2 have_V2 (NumCN two_Num (UseN (mkN "meddelande"))))

===> du har två meddelanden

PredVP you_NP (ComplV2 have_V2 (NumCN two_Num (UseN (mkN "viesti"))))

===> sinulla on kaksi viestiä

The new languages are more complex than English - but only internally,

not on the API level!

Correct number in Arabic

(From ”Implementation of the Arabic Numerals and their Syntax in GF” by Ali Dada, ACL workshop

on Arabic, Prague 2007)

Use cases for grammar libraries

Grammars need very much very special knowledge, and a lot of work

- thus an excellent topic for a software library!

Some applications where grammars have shown to be useful:

• software localization

• natural language generation (from formalized content)

• technical translation

• spoken dialogue systems

Two kinds of grammarians

Application grammarians vs. resource grammarians

grammarian applications resources
expertise application domain linguistics
programming skills programming in general GF programming
language skills practical use theoretical knowledge

We want a division of labour.

Two kinds of grammars

Application grammars vs. resource grammars

grammar application resource
abstract syntax semantic syntactic
concrete syntax using resource API parameters, tables, records
lexicon idiomatic, technical just for testing
size small or bigger big

A.k.a. semantic grammars vs. syntactic grammars.

Meaning-preserving translation

Translation must preserve meaning.

It need not preserve syntactic structure.

Sometimes it is even impossible:

• John likes Mary in Italian is Maria piace a Giovanni

The abstract syntax in the semantic grammar is a logical predicate:

fun Like : Person -> Person -> Fact

lin Like x y = x ++ "likes" ++ y -- English

lin Like x y = y ++ "piace" ++ "a" ++ x -- Italian

Translation and resource grammar

To get all grammatical details right, we use resource grammar and

not strings

lincat Person = NP ; Fact = Cl ;

lin Like x y = PredVP x (ComplV2 like_V2 y) -- Engligh

lin Like x y = PredVP y (ComplV2 piacere_V2 x) -- Italian

From syntactic point of view, we perform transfer, i.e. structure

change.

GF has compile-time transfer, and uses interlingua (semantic abstrac

syntax) at run time.

Domain semantics

”Semantics of English”, or of any other natural language as a whole,

has never been built.

It is more feasible to have semantics of fragments - of small, well-

understood parts of natural language.

Such languages are called domain languages, and their semantics,

domain semantics.

Domain semantics = ontology in the Semantic Web terminology.

Examples of domain semantics

Expressed in various formal languages

• mathematics, in predicate logic

• software functionality, in UML/OCL

• dialogue system actions, in SISR

• museum object descriptions, in OWL

GF abstract syntax can be used for any of these!

Example: abstract syntax for a ”Face” community

What messages can be expressed on the community page?

abstract Face = {

flags startcat = Message ;

cat

Message ; Person ; Object ; Number ;

fun

Have : Person -> Number -> Object -> Message ; -- p has n o’s

Like : Person -> Object -> Message ; -- p likes o

You : Person ;

Friend, Invitation : Object ;

One, Two, Hundred : Number ;

}

Notice the startcat flag, as the start category isn’t S.

Presenting the resource grammar

In practice, the abstract syntax of Resource Grammar is inconvenient

• too deep structures, too much code to write

• too many names to remember

We do the same as in morphology: overloaded operations, named mkC
where C is the value category.

The resource defines e.g.

mkCl : NP -> V2 -> NP -> Cl = \subj,verb,obj ->

PredVP subj (ComplV2 verb obj)

mkCl : NP -> V -> Cl = \subj,verb ->

PredVP subj (UseV verb)

Relevant part of Resource Grammar API for ”Face”

These functions (some of which are structural words) are used.

Function example
mkUtt : Cl -> Utt John loves Mary
mkCl : NP -> V2 -> NP -> Cl John loves Mary
mkNP : Numeral -> CN -> NP five cars
mkNP : Det -> CN -> NP that car
mkCN : N -> CN car
this Det : Det this, these
you NP : NP you (singular)
n1 Numeral, n2 Numeral : Numeral one, two
n100 Numeral : Numeral one hundred
have V2 : V2 have

Concrete syntax for English

How are messages expressed by using the library?

concrete FaceEng of Face = open SyntaxEng, ParadigmsEng in {
lincat

Message = Utt ;
Person = NP ;
Object = CN ;
Number = Numeral ;

lin
Have p n o = mkUtt (mkCl p have_V2 (mkNP n o)) ;
Like p o = mkUtt (mkCl p like_V2 (mkNP this_Det o)) ;
You = you_NP ;
Friend = mkCN friend_N ;
Invitation = mkCN invitation_N ;
One = n1_Numeral ;
Two = n2_Numeral ;
Hundred = n100_Numeral ;

oper
like_V2 = mkV2 "like" ;
invitation_N = mkN "invitation" ;
friend_N = mkN "friend" ;

}

Concrete syntax for Finnish

How are messages expressed by using the library?

concrete FaceFin of Face = open SyntaxFin, ParadigmsFin in {
lincat

Message = Utt ;
Person = NP ;
Object = CN ;
Number = Numeral ;

lin
Have p n o = mkUtt (mkCl p have_V2 (mkNP n o)) ;
Like p o = mkUtt (mkCl p like_V2 (mkNP this_Det o)) ;
You = you_NP ;
Friend = mkCN friend_N ;
Invitation = mkCN invitation_N ;
One = n1_Numeral ;
Two = n2_Numeral ;
Hundred = n100_Numeral ;

oper
like_V2 = mkV2 "pitää" elative ;
invitation_N = mkN "kutsu" ;
friend_N = mkN "ystävä" ;

}

Functors and interfaces

English and Finnish: the same combination rules, only different words!

Can we avoid repetition of the lincat and lin code? Yes!

New module type: functor, a.k.a. incomplete or parametrized mod-

ule

incomplete concrete FaceI of Face = open Syntax, LexFace in ...

A functor may open interfaces.

An interface has oper declarations with just a type, no definition.

Here, Syntax and LexFace are interfaces.

The domain lexicon interface

Syntax is the Resource Grammar interface, and gives

• combination rules

• structural words

Content words are not given in Syntax, but in a domain lexicon

interface LexFace = open Syntax in {

oper

like_V2 : V2 ;

invitation_N : N ;

friend_N : N ;

}

Concrete syntax functor ”FaceI”

incomplete concrete FaceI of Face = open Syntax, LexFace in {

lincat
Message = Utt ;
Person = NP ;
Object = CN ;
Number = Numeral ;

lin
Have p n o = mkUtt (mkCl p have_V2 (mkNP n o)) ;
Like p o = mkUtt (mkCl p like_V2 (mkNP this_Det o)) ;
You = you_NP ;
Friend = mkCN friend_N ;
Invitation = mkCN invitation_N ;
One = n1_Numeral ;
Two = n2_Numeral ;
Hundred = n100_Numeral ;

}

An English instance of the domain lexicon

Define the domain words in English

instance LexFaceEng of LexFace = open SyntaxEng, ParadigmsEng in {

oper

like_V2 = mkV2 "like" ;

invitation_N = mkN "invitation" ;

friend_N = mkN "friend" ;

}

Put everything together: functor instantiation

Instantiate the functor FaceI by giving instances to its interfaces

--# -path=.:present

concrete FaceEng of Face = FaceI with

(Syntax = SyntaxEng),

(LexFace = LexFaceEng) ;

Also notice the domain search path.

Porting the grammar to Finnish

1. Domain lexicon: use Finnish paradigms and words

instance LexFaceFin of LexFace = open SyntaxFin, ParadigmsFin in {

oper

like_V2 = mkV2 (mkV "pitää") elative ;

invitation_N = mkN "kutsu" ;

friend_N = mkN "ystävä" ;

}

2. Functor instantiation: mechanically change Eng to Fin

--# -path=.:present

concrete FaceFin of Face = FaceI with

(Syntax = SyntaxFin),

(LexFace = LexFaceFin) ;

Modules of a domain grammar: ”Face” community

1. Abstract syntax, Face

2. Parametrized concrete syntax: FaceI

3. Domain lexicon interface: LexFace

4. For each language L: domain lexicon instance LexFaceL

5. For each language L: concrete syntax instantiation FaceL

Module dependency graph

red = to do, orange = to do (trivial), blue = to do (once), green = library

Porting the grammar to Italian

1. Domain lexicon: use Italian paradigms and words

instance LexFaceIta of LexFace = open SyntaxIta, ParadigmsIta in {

oper

like_V2 = mkV2 (mkV (piacere_64 "piacere")) dative ;

invitation_N = mkN "invito" ;

friend_N = mkN "amico" ;

}

2. Functor instantiation: restricted inheritance, excluding Like

concrete FaceIta of Face = FaceI - [Like] with

(Syntax = SyntaxIta),

(LexFace = LexFaceIta) ** open SyntaxIta in {

lin Like p o =

mkUtt (mkCl (this_Det o) like_V2 p) ;

}

Building a web application

1. Compile the grammar to PGF (Portable Grammar Format)

$ gf -make -optimize-pgf FaceEng.gf FaceFin.gf FaceIta.gf

2. Start the PGF server (see also http://www.grammaticalframework.org/doc/gf-
quickstart.html)

$ pgf-http

3. Copy the PGF file to your server grammar repository, which is
documentRoot + /grammars/

$ cp -p Face.pgf /home/aarne/.cabal/share/gf-server-1.0/www/grammars/

4. Open http://localhost:41296/minibar/minibar.html in your web
browser, and select grammar Face.

http://www.grammaticalframework.org/doc/gf-quickstart.html
http://www.grammaticalframework.org/doc/gf-quickstart.html
http://localhost:41296/minibar/minibar.html

Other applications

Translation Quiz: http://www.grammaticalframework.org/demos/TransQuiz/

Theorem proving: http://www.grammaticalframework.org:41297/syllogism/syllogism.html

Dialogue system: http://www.youtube.com/watch?v=1bfaYHWS6zU

More: http://www.grammaticalframework.org/demos/index.html

http://www.grammaticalframework.org/demos/TransQuiz/
http://www.grammaticalframework.org:41297/syllogism/syllogism.html
http://www.youtube.com/watch?v=1bfaYHWS6zU
http://www.grammaticalframework.org/demos/index.html

Free variation

There can be many ways of expressing a given semantic structure.

This can be expressed by the variant operator |.

fun BuyTicket : City -> City -> Request

lin BuyTicket x y =

(("I want" ++ ((("to buy" | []) ++ ("a ticket")) | "to go"))

|

(("can you" | []) ++ "give me" ++ "a ticket")

|

[]) ++

"from" ++ x ++ "to" ++y

The variants can of course be resource grammar expressions as well.

Overview of the resource grammar API

For the full story, see the resource grammar synopsis in

grammaticalframework.org/lib/doc/synopsis.html

Main division:

• Syntax, common to all languages

• ParadigmsL, specific to language L

http://grammaticalframework.org/lib/doc/synopsis.html

Main categories and their dependencies

Categories of complex phrases

Category Explanation Example
Text sequence of utterances Does John walk? Yes.
Utt utterance does John walk
Imp imperative don’t walk
S sencence (fixed tense) John wouldn’t walk
QS question sentence who hasn’t walked
Cl clause (variable tense) John walks
QCl question clause who doesn’t walk
VP verb phrase love her
AP adjectival phrase very young
CN common noun phrase young man
Adv adverbial phrase in the house

Lexical categories for building predicates

Cat Explanation Compl Example
A one-place adjective - smart
A2 two-place adjective NP married (to her)
Adv adverb - here
N common noun - man
N2 relational noun NP friend (of John)
NP noun phrase - the boss
V one-place verb - sleep
V2 two-place verb NP love (her)
V3 three-place verb NP, NP show (it to me)
VS sentence-complement verb S say (that I run)
VV verb-complement verb VP want (to run)

Functions for building predication clauses

Fun Type Example
mkCl NP -> V -> Cl John walks
mkCl NP -> V2 -> NP -> Cl John loves her
mkCl NP -> V3 -> NP -> NP -> Cl John sends it to her
mkCl NP -> VV -> VP -> Cl John wants to walk
mkCl NP -> VS -> S -> Cl John says that it is good
mkCl NP -> A -> Cl John is old
mkCl NP -> A -> NP -> Cl John is older than Mary
mkCl NP -> A2 -> NP -> Cl John is married to her
mkCl NP -> AP -> Cl John is very old
mkCl NP -> N -> Cl John is a man
mkCl NP -> CN -> Cl John is an old man
mkCl NP -> NP -> Cl John is the man
mkCl NP -> Adv -> Cl John is here

Noun phrases and common nouns

Fun Type Example
mkNP Det -> CN -> NP this man
mkNP Numeral -> CN -> NP five men
mkNP PN -> NP John
mkNP Pron -> NP we
mkNP Quant -> Num -> CN -> NP these (five) man
mkCN N -> CN man
mkCN A -> N -> CN old man
mkCN AP -> CN -> CN very old Chinese man
mkNum Numeral -> Num five
n100 Numeral Numeral one hundred
plNum Num (plural)

Questions and interrogatives

Fun Type Example
mkQCl Cl -> QCl does John walk
mkQCl IP -> V -> QCl who walks
mkQCl IP -> V2 -> NP -> QCl who loves her
mkQCl IP -> NP -> V2 -> QCl whom does she love
mkQCl IP -> AP -> QCl who is old
mkQCl IP -> NP -> QCl who is the boss
mkQCl IP -> Adv -> QCl who is here
mkQCl IAdv -> Cl -> QCl where does John walk
mkIP CN -> IP which car
who IP IP who
why IAdv IAdv why
where IAdv IAdv where

Sentence formation, tense, and polarity

Fun Type Example
mkS Cl -> S he walks
mkS (Tense)->(Ant)->(Pol)->Cl -> S he wouldn’t have walked
mkQS QCl -> QS does he walk
mkQS (Tense)->(Ant)->(Pol)->QCl -> QS wouldn’t he have walked

Function Type Example
conditionalTense Tense (he would walk)
futureTense Tense (he will walk)
pastTense Tense (he walked)
presentTense Tense (he walks) [default]
anteriorAnt Ant (he has walked)
negativePol Pol (he doesn’t walk)

Utterances and imperatives

Fun Type Example
mkUtt Cl -> Utt he walks
mkUtt S -> Utt he didn’t walk
mkUtt QS -> Utt who didn’t walk
mkUtt Imp -> Utt walk
mkImp V -> Imp walk
mkImp V2 -> NP -> Imp find it
mkImp AP -> Imp be brave

More

Texts: Who walks? John. Where? Here!

Relative clauses: man who owns a donkey

Adverbs: in the house

Subjunction: if a man owns a donkey

Coordination: John and Mary are English or American

Exercises

1. Compile and make available the resource grammar library, latest

version. Compilation is by make in GF/lib/src. Make it available by

setting GF LIB PATH to GF/lib.

2. Compile and test the grammars face/FaceL (available in course

source files).

3. Write a concrete syntax of Face for some other resource language

by adding a domain lexicon and a functor instantiation.

4. Add functions to Face and write their concrete syntax for at least

some language.

5. Design your own domain grammar and implement it for some lan-

guages.

