
Computational Morphology: Introduction

Aarne Ranta

European Masters Course, Malta, March 2011



Objective

Implement a morphology module for some language, comprising

• an inflection engine

• a morphological lexicon

Make this into a reusable resource, i.e.

• usable for various linguistic processing tasks

• available free and open-source



What is needed

Theoretical knowledge of morphology

• speaker’s intuition

• grammar book

Programming skills

• mastery of appropriate tools

• design and problem solving



What languages will be addressed

Any languages of your choice; you can work in groups, too.

Addressed in the lectures (in more detail): English, Italian, Finnish,

Arabic.



What tools will be used

Principal tool: GF, Grammatical Framework.

Also introduced: XFST, Xerox Finite State tool.

These tools can co-operate!



The GF Resource Grammar Project

Morphology and syntax for natural languages. Currently covering

Afrikaans Amharic Arabic Bulgarian+ Catalan Danish

Dutch English+ Finnish+ French German Hindi

Italian Latin Norwegian Polish Punjabi Romanian

Russian Spanish Swedish+ Turkish+ Urdu

where + = with large lexicon.

We mainly expect lexica for the other languages, and inflection en-

gines for languages outside the list.



How much work it is

Basic inflection engine: 1 week

Complete inflection engine: up to 8 weeks

Lexicon: 1 to 8 weeks.

All this depends on language and on available resources



Contents of these lectures

Overview of concepts and tools

Getting started with GF

Designing a simple inflection engine: English

Morphology-syntax interface

Richer inflection engine with traditional paradigms: Latin

Complex morphology with phonological processes: Finnish



Nonconcatenative morphology: Arabic

Building a morphological lexicon

Algorithms and tools: analysis vs. synthesis, GF vs. XFST



Overview of concepts and tools



Plan

What morphology is

Morphological processing tasks

Finite state transducers and other formats

Hockett’s three models

Not morphology: POS tagging, tokenization, stemming



Morphology

Theory of forms (Gr. morphe)

• of plants and animals (biology)

• of words (linguistics)

In linguistics, ”between phonology and syntax”.

Examples of morphological questions:



• What is the past tense of English drink?

• What word form in Latin is amavissent?

• How are past tenses of verbs formed in Swedish?

• Do Greek nouns have dual forms?

• In what ways can causative verbs be formed in Finnish?



Morphological processing

Analysis: given a word (string), find its form description.

Synthesis: given a form description, find the resulting string.

Example of words and form descriptions in English

play - play +N +Sg +Nom

play +V +Inf

plays - play +N +Pl +Nom

play +V +IndPres3sg

Description = lemma followed by tags

Both analysis and synthesis can give many results.



Morphology, mathematically

Between words W and their form descriptions D in a language, the

morphology is defined by a relation M,

M : P(W x D)

A morphological analyser is a function

f : W -> P(D) such that d : f(w) iff (w,d) : M

A morphological synthesizer is a function

g : D -> P(W) such that w : g(d) iff (w,d) : M



Finite-state morphology

A common assumption in computational morphology: M is a reg-

ular relation.

This implies:

• M can be defined using a regular expression

• word-description pairs in M can be be recognized by a finite-state

automaton, a transducer

In most system of computational morphology, M is moreover finite:



• the language has a finite number of words

• each word has a finite number of forms

A finite morphology M is trivially a regular relation.

We’ll return to finite-state descriptions later.



Other formats for a finite morphology

Full-form lexicon: list of all words with their descriptions

play - play +N +Sg +Nom

play +V +Inf

plays - play +N +Pl +Nom

play +V +IndPres3sg

player - player +N +Sg +Nom

Morpological lexicon: list of all lemmas and all their forms

play N: play, plays, play’s, plays’

play V: play, plays, played, played, playing



player N: player, players, player’s, players’

The forms come in a canonical order, so that it is easy to restore the

full description attached to each form.

It is easy to transform a morphological lexicon to a full-form lexicon.



Analysing with a full-form lexicon

It is easy to compile a full-form lexicon into a trie - a prefix tree.

A trie has transitions for each symbol, and it can return a value (or
several values) at any point:

’ - s(3) ’ - s(12)

/ /

p - l - a - y(1,5) ---- e - r(10) - s(11) - ’(13)

\

s(2,6) - ’(4)

N.B. a trie is also a special case of a finite automaton - an acyclic
deterministic finite automaton.



Three models of morphological description

From Hockett, ”Two models of grammatical description” (Word,
1954):

• item and arrangement: inflection is concatenation of morphemes
(stem + affixes).

– dog +Pl --> dog s --> dogs

• item and process: inflection is application of rules to the stem
(one rule per feature)

– baby +Pl --> baby(y -> ie / s) s --> babie s --> babies



• word and paradigm: inflection is association of a model inflection

table to a stem

– {Sg:fly, Pl:flies}(fly := baby) --> {Sg:baby, Pl:babies}



The word and paradigm model

The traditional model (Greek and Latin grammar).

The most general and powerful: ”anything goes”.

The other models can be used as auxiliaries when defining a paradigm.

But: there is no precise definition of a paradigm and its application.



Paradigms, mathematically

For each part of speech C (”word class”), associate a finite set F(C)

of inflectional features.

An inflection table for C is a function of type F(C) -> Str.

Type Str: lists of strings (which list may be empty).

A paradigm for C is a function of type String -> F(C) -> Str.

Thus there are different paradigms for nouns, adjectives, verbs,...



Example: English nouns

F(N) = Number x Case, where Number = {Sg,Pl}, Case = {Nom,Gen}

The word dog has the inflection table (using GF notation)

table {

<Sg,Nom> => "dog" ;

<Sg,Gen> => "dog’s" ;

<Pl,Nom> => "dogs" ;

<Pl,Gen> => "dogs’"

}

regN, the regular noun paradigm, is the function (of variable x)



\x -> table {

<Sg,Nom> => x ;

<Sg,Gen> => x + "’s" ;

<Pl,Nom> => x + "s" ;

<Pl,Gen> => x + "s’"

}



Two more paradigms for English nouns

esN, nouns with plural ending es

\x -> table {

<Sg,Nom> => x ;

<Sg,Gen> => x + "’s" ;

<Pl,Nom> => x + "es" ;

<Pl,Gen> => x + "es’"

}

iesN, nouns with plural ending ies, dropping last character

\x -> table {



<Sg,Nom> => x ;

<Sg,Gen> => x + "’s" ;

<Pl,Nom> => init x + "ies" ; -- init drops the last char

<Pl,Gen> => init x + "ies’"

}



Building a lexicon with paradigms

For a new entry: just give a stem and a paradigm,

dog regN

baby iesN

coach esN

boy sN

hero esN

This can be compiled into a morphological lexicon by applying the

paradigms.

Analysis can be performed by compiling the lexicon into a trie.



But how do we select the right paradigm for each word?

And how to do with irregular words (such as man - men)?



Multiargument paradigms

To inflect highly irregular words, one can quite as well use several

arguments:

irregN = \x,y -> table {

<Sg,Nom> => x ;

<Sg,Gen> => x + "’s" ;

<Pl,Nom> => y ;

<Pl,Gen> => y + "’s"

}

Similarly: irregular verb paradigms taking three forms.



man men irregN

mouse mice irregN

house regN

drink drank drunk irregV



Arabic verb inflection: the problem

form perfect imperfect
P3 Sg Masc kataba yaktubu
P3 Sg Fem katabat taktubu
P3 Dl Masc katabaA yaktubaAni
P3 Dl Fem katabataA taktubaAni
P3 Pl Masc katabuwA yaktubuwna
P3 Pl Fem katabna yaktubna
P2 Sg Masc katabta taktubu
P2 Sg Fem katabti taktubiyna
P2 Dl katabtumaA taktubaAni
P2 Pl Masc katabtum taktubuwna
P2 Pl Fem katabtunv2a taktubna
P1 Sg katabtu A?aktubu
P1 Pl katabnaA naktubu



This is not morphology

Tokenization: split up the input into words, punctuation marks,
digit groups, etc. before morphological analysis.

Part-of-speech tagging: resolve ambiguities after morphological
analysis.

Stemming, also known as lemmatization: find out the ground form
of a word, but ignore the morphological tags. This is sometimes done
instead of proper morphological analysis, usually in quick-and-dirty
ways.

All these techniques can be implemented using finite-state methods,
e.g. XFST.



Part-of-speech tagging (= POS tagging)

Task: among the many possible morphological analyses, find the one
that is correct in the given context.

She plays the guitar. play +V

She likes your plays. play +N

Statistical POS tagging: (+Pron, +V, +Det) is a more frequent trigram
than (+Pron, +N, +Det)

Rule-based POS tagging (constraint grammar): after +Pron, +N is
not allowed.

POS tagging is covered in another course - morphology just ”feeds”
it.



Other material

The LREC-2010 tutorial to GF:

http://www.grammaticalframework.org/doc/gf-lrec-2010.pdf

GF reference manual:

http://www.grammaticalframework.org/doc/gf-refman.html

GF library synopsis:

http://www.grammaticalframework.org/lib/doc/synopsis.html

http://www.grammaticalframework.org/doc/gf-lrec-2010.pdf
http://www.grammaticalframework.org/doc/gf-refman.html
http://www.grammaticalframework.org/lib/doc/synopsis.html

