
Features in Abstract and Concrete Syntax

Aarne Ranta
Department of Computer Science and Engineering

Chalmers University of Technology and Göteborg University

Abstract. The division of grammars into
abstract and concrete syntax is universally used
in compilers. In linguistics, Curry’s distinction
between tectogrammar and phenogrammar is a
similar idea. This architecture has become pop-
ular in recent years, exemplified by formalisms
such as GF, ACG, and HOG. These formalisms
give a perspective on language that is very dif-
ferent from the perspective in feature-based for-
malisms. The topic of this paper is how to “put
the features back” into an abstract-syntax based
formalism. After discussing a number of possi-
bilities, we end up with the customary solution
in GF, which uses records and record types and
is thereby in many ways similar to typed fea-
ture structures. The viability of this approach is
demonstrated by the GF Resource Grammar Li-
brary, which covers comprehensive fragments of
15 languages with a shared abstract syntax.

1 Introduction

What is language-independent in a grammar?
The units that are invariably present in all gram-
mars of the Western tradition are certain parts
of speech - noun, adjective, verb, etc - and cer-
tain syntactic constructs - sentences, questions,
relative clauses, etc. Looking at the table of con-
tents of a grammar book shows these concepts
as the titles of major chapters. Thus a reader
familiar with grammars can easily find informa-
tion on a new language.

In addition to the language-invariant con-
cepts, the grammar of each language needs con-
cepts proper to that language. The major ingre-
dient here is what the tradition calls grammati-

cal categories: gender, number, case, tense, etc.
While the names of these categories are again
kept constant across languages, their contents
show a considerable variation.

Not explicit in grammars, but more so in the
philosophical tradition of “universal grammar”,
is that the parts of speech are essential to lan-
guage, whereas the categories are, perhaps in
varying grade, accidental. This view is partly
confirmed by what is shown in grammar books:
parts of speech are the same in all languages,
but the grammatical categories are not.

In the formal grammars of modern linguistics,
traditional concepts are still used for describing
languages. The division into parts of speech and
grammatical categories is shown in the distinc-
tion between what is now called categories and
features, respectively. The category structure is,
so to say, the backbone of most grammar for-
malisms, whereas features are secondary to this
primary structure.

The real novelty in modern grammars is the
systematic recognition of phrases as grammat-
ical objects: noun phrases, adjectival phrases,
verb phrases, etc. Just like words, phrases can
take features, often inherited from or realized by
the words functioning as their their heads.

For example, many grammars have an equiv-
alent of a rule of predication, which combines a
noun phrase (NP) and a verb phrase (VP) into a
sentence (S). In pure phrase structure grammar,
the rule reads

S -> NP VP

This rule does not say anything about agree-
ment. Restricting attention to the number



agreement of English present-tense third-person
sentences, agreement means that the bird flies
and the birds fly are correct, whereas e.g. the
birds flies is not.

In DCG (Definite Clause Grammar, (Pereira
and Warren, 1980)), the predication rule with
agreement is expressed by using a feature vari-
able n ranging over numbers:

S -> NP(n) VP(n)

In feature structure grammars, such as PATR
(Shieber, 1986), the grammatical units are pre-
sented as structures which put together a pho-
netic string, its category, and its features:

{phon = "birds" ; cat = N ; num = Pl}

2 The essence of the predication rule

In both DCG and PATR formats, the categories
and features are intimately mixed. Even though
it is possible to discern the “context-free back-
bone” of the grammar by retaining the cate-
gories and ignoring the features, this backbone
cannot be formally separated from the features
and recombined with a different system of fea-
tures.

Another restriction, inherited from phrase
structure grammars, is fixed word order. A
verb-initial language cannot be given the same
context-free skeleton as English. Yet, in a sense,
word order is an accidental property of lan-
guages: it is possible to speak about predication
in an abstract way, independently of whether it
is realized in e.g. the SVO or the VSO manner.

All these problems can be solved if we distin-
guish between the abstract syntax and the con-
crete syntax of a language. This distinction,
commonplace in computer science since (Mc-
Carthy, 1962), was introduced in linguistics by
(Curry, 1963). The main idea is that

• the abstract syntax is a system of syntax
trees (a free algebra)

• the concrete syntax is a mapping (a homo-
morphism) of the abstract syntax to some
other structure (e.g. strings)

An abstract syntax is defined by

• a set of categories: types of syntax trees

• a set of constructors: functions between
categories

The predication rule involves three categories
and one constructor. Let us write this grammar
fragment by using the notation of GF (Gram-
matical Framework, (Ranta, 2004)), which uses
the keyword cat for judgements introducing cat-
egories, and fun for judgements introducing con-
structors.

cat S ; NP ; VP
fun Pred : NP -> VP -> S

The concrete syntax is defined in terms of lin-
earization rules (lin), which can place the noun
phrase before the verb phrase,

lin Pred np vp = np ++ vp

but also, obviously, in the reverse order. The
variables np and vp refer to the linearizations
of the subtrees, not to the subtrees themselves.
Linearization is, in other words, compositional,
which means that the linearization of a tree is
a function of the linearizations of its subtrees.
In the ordinary homomorphism notation, and
expressing linearization with the asterisk, the
above linearization rule says

(Pred np vp)* = np* ++ vp*

3 Features and abstract syntax

Having seen how word order is expressed in an
abstract-syntax-based grammar, let us turn at-
tention to features. A considerable variation
is shown across the different approaches imple-
menting Curry’s architecture.

3.1 Features as part of abstract syntax

Following DCG, categories can be made depen-
dent on features. Agreement can then be ex-
pressed in abstract syntax, by using a feature
variable:

Pred : (n:Num) -> NP(n) -> VP(n) -> S

From the type-theoretical perspective, this is an
instance of dependent types. Dependent types
are available in GF and also in ACG (Abstract
Categorial Grammars, (de Groote, 2001)), and



have recently been used to model agreement in
ACG (Philippe de Groote, private communica-
tion). In HOG (Higher Order Grammar, (Pol-
lard, 2004)), a related device of subtypes is used
to introduce agreement in abstract syntax.

If agreement is expressed in the way above,
it becomes problematic to instantiate the rules
in languages with different feature systems. To
be fair, multilinguality is not among the goals
stated in ACG and HOG. Moreover, including
features in abstract syntax is a powerful tech-
nique and can handle some rules that are diffi-
cult without; see Section 6.1 below.

3.2 Sets of linearization functions

(Montague, 1974) used the Curry architecture
without mentioning it. In his grammar frag-
ments, he did not include plural because of diffi-
culties in interpreting them semantically. How-
ever, modelling an agreement-sensitive predica-
tion rule after some of his other rules gives the
following formulation for the function F4 Mon-
tague used for predication:

F4(α, δ) is αδ′, where δ′ is the result
of turning the first verb of δ is to the
singular or the plural depending on
whether α is singular or plural.

Since the rule involves a change of the lineariza-
tion of y, it is not compositional. But it is easy
to reformulate it compositionally, by making the
linearization of verb phrases dependent on num-
ber.

linVP : VP -> Number -> Str

Linearizing sentences and noun phrases needs no
extra arguments,

linS : S -> Str
linNP : NP -> Str

but the number of noun phrases has to be com-
putable,

numNP : NP -> Number

Now we can define

linS (Pred np vp) =
linNP np ++ linVP (numNP np) vp

The abstract syntax is now free from features. It
is also efficient to use the grammar in the direc-
tion of generation: no unification of features is
needed, since there is always a direction in which
one constituent passes its features to another.

Formally, implementing features by sets of
functions is similar to attribute grammars
(Knuth, 1968) limited to synthesized attributes
only. Linguistically, it is a direct implementa-
tion of the distinction between variable and in-
herent features, which is present in traditional
grammars but disappears in unification gram-
mars. In the example above, number is inherent
for noun phrases but variable for verb phrases.
A representative of tradition, (Grevisse, 1993)
systematically lists the variable and inherent
features when introducing the different parts of
speech in French. For example, “a noun or sub-
stantive is a word that carries a gender and is
susceptible to vary in number” (paragraph 449).

The method of sets of functions was adopted
in (Ranta, 1994). But it turned out tedious and
error-prone to work with systems of many func-
tions instead of just one linearization function
per category. Moreover, the definition of com-
positionality for families of functions is compli-
cated.

3.3 Linearization types

The French linearization function of nouns is

linN : N -> Number -> Str

Bearing in mind that the function type arrow
is right-associative, linN is in effect a function
from N to functions from Number to Str. This
gives rise to the notion of linearization type,
which is a language-dependent type indicating
the value type of linearizing a given category. It
is analogous to the domain of possible denota-
tions of a category in Montague’s semantic ho-
momorphisms.

To define linearization types of categories, GF
provides judgements with the keyword lincat.
Thus, we can write

lincat N = Number -> Str

for French, whereas in English, we write

lincat N = Number -> Case -> Str



As a general rule, the linearization function lin
has the dependent product type

lin : (C : Cat) -> C -> lincat C

This is exactly what is needed for a rigorous def-
inition of compositionality: if

f : C1 → · · · → Cn → C

then (denoting both linearization types and lin-
earizations with an asterisk)

f∗ : C∗
1 → · · · → C∗

n → C∗

and

(fa1 . . . an)∗ = f∗a∗
1 . . . a∗

n

We are not quite ready with the concept of
a linearization type, because we have not shown
how the inherent features fit in them. In French,
nouns have gender as an inherent feature. In-
stead of using a separate gender function, we can
now include gender as a part of the linearization
type of nouns by using a complex type: a labelled
record type,

lincat N = {
s : Number => Str ;
g : Gender
}

With such linearization types, which collect to-
gether all the information assigned to a tree by a
concrete syntax, compositionality is easily veri-
fied: it follows the above scheme precisely. (The
double arrow => denotes a finite function type,
which is an important concept in the metathe-
ory of GF; see Section 5 below.)

A precise formulation of the agreement rule
can now be given. The linearization types are

lincat S = {s : Str}
lincat NP = {s : Str ; n : Number}
lincat VP = {s : Number => Str}

The linearization rule for predication is

lin Pred np vp =
{s = np.s ++ vp.s np.n}

3.4 Grammatical objects

The step from families of linearization functions
to linearization types can be seen as a step to
object-oriented programming. The linearization
is now, so to say, in the data objects themselves
rather in the functions that manipulate them.
A linearization type is thus like a class in the
object-oriented sense, and the linearization of a
tree is like an object of such a class. The methods
of the class are the functions that yield strings,
and the attributes are the inherent features.

The object-oriented move is beneficial for the
maintenance of grammars: if we want to add a
new rule or a new lexical entry, we don’t need
to go and change many different already existing
functions, but just write a a new rule.

4 Labelled records and typed feature
structures

The labelled records of GF have a structural
type system, similar to records in Pascal and
structures in C. They are thus weaker than the
typed feature structures of HPSG (Pollard and
Sag, 1994). The latter use circular references to
model recursion; in GF, recursion is modelled by
trees in the abstract syntax.

Even more importantly, the way records are
used in GF is different from feature-based uni-
fication grammars. This follows directly from
the abstrac syntax based architecture: In GF,
a record represents the information needed for
linearizing a tree. In unification grammars, a
record represents the information obtained from
parsing a string. For instance, the abstract
French word Maison has a linearization record

{s = table {
Sg => "maison" ;
Pl => "maisons"} ;

g = Fem}

In a PATR-like system, two feature structures
are involved: one for the string maison and one
for maisons:

{s = "maison" ; {s = "maisons" ;
n = Sg ; n = Pl ;
g = Fem] g = Fem}



5 Expressivity and complexity

GF is equivalent to Parallel Multiple Context-
Free Grammars (Seki et al., 1991) and has there-
fore an unbounded polynomial parsing complex-
ity. This result holds under some restrictions on
dependent types in abstract syntax (Ljunglöf,
2004). Linearization can be made linear in the
size of trees by using partial evaluation to a sim-
pler format (Ranta, 2004). Both these results
use in a crucial way the fact that parameter-
dependent functions can only take a finite num-
ber of different arguments and are therefore rep-
resentable as records at runtime.

6 The GF Resource Grammar
Library

Typical applications of GF are multilingual
grammar systems based on a shared abstract
syntax. To ease the creation of such applica-
tions, a grammar library has been developed to
take care of linguistic details (Ranta 2007, El
Dada & al. 2006). The main part of the li-
brary has a common abstract syntax, called the
Ground API. The library is currently available
in 15 languages, of which 10 have a full imple-
mentation of the Ground API. (Danish, English,
Finnish, French, German, Italian, Norwegian,
Russian, Spanish, and Swedish) and 5 are work
in progress (Arabic, Catalan, Swahili, Thai, and
Urdu).

The Ground API covers a fragment compa-
rable to CLE (Core Language Engine, (Rayner
et al., 2000)). Apart from the practical advan-
tage of having a common interface to different
languages, there is a typological interest in be-
ing able to formally compare the realization of
grammatical structures in different languages.
In this respect, the Ground API is similar to the
LinGO grammar matrix (Bender and Flickinger,
2005), which is a method of grammar develop-
ment starting with a questionnaire including a
few crucial questions (such as how negation and
questions are formed). Our approach takes this
idea to the extreme, covering almost all of the
grammar, in a formal way permitted by the ab-
stract syntax architecture.

The functioning of a common abstract syn-

tax is of course heavily dependent on the use of
different features and linearization types for dif-
ferent languages. To take just one example, we
can consider the category of verb phrases (VP).
Verb phrases are used for building clauses (Cl),

PredVP : NP -> VP -> Cl

which are like sentences (S) but have a variable
tense and polarity (negatedness). Clauses can
also be converted to yes-no questions and must
therefore support inversion in many languages.
In addition to clauses, verb phrases are used for
building relative clauses and wh-questions, and
as complements of certain verbs. Verb phrases
are constructed from different kinds of verbs and
their appropriate complements.

The challenge in implementing rules involv-
ing VP varies from one language to another. In
German and the Scandinavian languages, the
topological structure (Diderichsen, 1962) im-
plies that a VP consists of different parts that
can be combined in diffent ways in main clauses,
subordinate clauses, and various topicalizations.
The Scandinavian VP linearization type is

{s : VPForm => {
v1 : Str ; -- har
v2 : Str -- lovat
} ;

a1 : Pol => Str ; -- inte
n2 : Agr => Str ; -- dig
a2 : Str ; -- idag
ext : Str -- att sluta
}

Together with a subject, e.g. jag, this permits
the different combinations jag har inte lovat dig
idag att sluta (“I haven’t promised you today to
quit”, unmarked), jag inte har lovat dig idag att
sluta (subordinate), har jag inte lovat dig idag
att sluta (question), dig har jag inte lovat idag
att sluta (emphasis on “you”), etc.

In Romance languages, the main problems
of VPs are different: clitic pronouns and the
agreement of the participle in compound tenses.
Therefore, the linearization type is quite dif-
ferent from Scandinavian. (However, by using
parametrized modules, the library manages to
have just one definition for the Scandinavian



family and another one for the Romance fam-
ily; cf. (Ranta, 2007).)

6.1 Language-dependent parts

In addition to the ground API, there are
language-dependent extensions. Some struc-
tures cannot be naturally implemented in all
the included languages. In particular, there are
rules whose formulation requires features to be
present in abstract syntax, to control what trees
are constructible. One example is two-place-
verb coordination in case-rich languages. With
some variations, the usual requirement is that
the complement cases be the same:

fun coord : Conj -> (c : Case) ->
V2(c) -> V2(c) -> V2(c)

7 Related work

Several frameworks based on a distinction be-
tween abstract and concrete syntax have ap-
peared in the last 5 years: ACG (de Groote,
2001), HOG (Pollard, 2004), and Lambda gram-
mars (Muskens, 2001). Multilinguality has not
been in focus in these formalisms. Possibly for
this reason, the treatment of features in terms
of linearization types is unique to GF.

Multilingual grammar packages in other for-
malisms include the LinGO matrix (Bender and
Flickinger, 2005), ParGram (Butt et al., 2002),
CLE (Rayner et al., 2000), and Regulus resource
grammars (Rayner et al., 2006). None of these
uses a formally shared representation similar to
GF’s abstract syntax. The number of languages
covered in these projects is comparable to GF
in LinGO and ParGram, half of it in CLE and
Regulus. The coverage in terms of structures
varies from one language to another in each of
these packages.

References

E. M. Bender and D. Flickinger. 2005. Rapid proto-
typing of scalable grammars: Towards modularity
in extensions to a language-independent core. In
Proceedings of the 2nd International Joint Confer-
ence on Natural Language Processing IJCNLP-05
(Posters/Demos), Jeju Island, Korea.

M. Butt, H. Dyvik, T. Holloway King, H. Masuichi,
and C. Rohrer. 2002. The Parallel Grammar
Project. In COLING 2002, Workshop on Gram-
mar Engineering and Evaluation, pages 1–7.

H. B. Curry. 1963. Some logical aspects of grammat-
ical structure. In Roman Jakobson, editor, Struc-
ture of Language and its Mathematical Aspects:
Proceedings of the Twelfth Symposium in Applied
Mathematics, pages 56–68. American Mathemati-
cal Society.

A. El Dada, J. Khegai, and A. Ranta. 2006. The
GF Resource Grammar Library. Software and
documentation, available on GF library homepage
http://www.cs.chalmers.se/~aarne/GF/lib/.

Ph. de Groote. 2001. Towards Abstract Cate-
gorial Grammars. In Association for Computa-
tional Linguistics, 39th Annual Meeting and 10th
Conference of the European Chapter, Toulouse,
France, pages 148–155.

P. Diderichsen. 1962. Elementaer dansk grammatik.
Kobenhavn.

M. Grevisse. 1993. Le bon usage, 13me edition.
Duculot, Paris.

D. Knuth. 1968. Semantics of context-free lan-
guages. Mathematical Systems Theory, 2:127–145.

P. Ljunglöf. 2004. The Expressivity and Complexity
of Grammatical Framework. Ph.D. thesis, Dept. of
Computing Science, Chalmers University of Tech-
nology and Gothenburg University.

J. McCarthy. 1962. Towards a mathematical science
of computation. In Proceedings of the Information
Processing Cong. 62, pages 21–28, Munich, West
Germany, August. North-Holland.

R. Montague. 1974. Formal Philosophy. Yale Uni-
versity Press, New Haven. Collected papers edited
by Richmond Thomason.

R. Muskens. 2001. Lambda Grammars and the
Syntax-Semantics Interface. In R. van Rooy and
M. Stokhof, editors, Proceedings of the Thirteenth
Amsterdam Colloquium, pages 150–155, Amster-
dam.

F. Pereira and D. Warren. 1980. Definite clause
grammars for language analysis—a survey of the
formalism and a comparison with augmented tran-
sition networks. Artificial Intelligence, 13:231–
278.

C. Pollard and I. Sag. 1994. Head-Driven Phrase
Structure Grammar. University of Chicago Press.



C. Pollard. 2004. Higher-Order Categorial Gram-
mar. In M. Moortgat, editor, Proceedings of the
Conference on Categorial Grammars (CG2004),
Montpellier, France, pages 340–361.

A. Ranta. 1994. Type Theoretical Grammar. Oxford
University Press.

A. Ranta. 2004. Grammatical Framework: A Type-
theoretical Grammar Formalism. The Journal of
Functional Programming, 14(2):145–189.

A. Ranta. 2007. Modular Grammar Engineering in
GF. Research on Language and Computation, to
appear.

M. Rayner, D. Carter, P. Bouillon, V. Digalakis, and
M. Wirn. 2000. The Spoken Language Translator.
Cambridge University Press, Cambridge.

M. Rayner, B. A. Hockey, and P. Bouillon. 2006.
Putting Linguistics into Speech Recognition: The
Regulus Grammar Compiler. CSLI.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami.
1991. On multiple context-free grammars. Theo-
retical Computer Science, 88:191–229.

S. Shieber. 1986. An Introduction to Unification-
Based Approaches to Grammars. University of
Chicago Press.


