
Grammars as Software Libraries

Aarne Ranta

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

à la mémoire de Gilles Kahn

Abstract

Grammars of natural languages are needed in programs like natural
language interfaces and dialogue systems, but also more generally, in soft-
ware localization. Writing grammar implementations is a highly special-
ized task. For various reasons, no libraries have been available to ease
this task. This paper shows how grammar libraries can be written in GF
(Grammatical Framework), focusing on the software engineering aspects
rather than the linguistic aspects. As an implementation of the approach,
the GF Resource Grammar Library currently comprises ten languages.
As an application, a translation system from formalized mathematics to
text in three languages is outlined.

1 Introduction

How can we generate natural language text from a formal specification of mean-
ing, such as a formal proof? Coscoy, Kahn and Théry [10] studied the problem
and built a program that worked for all proofs constructed in the Coq proof
assistant [30]. Their program translates structural text components, such as we
conclude that, but leaves propositions expressed in formal language:

We conclude that Even(n) -> Odd(Succ(n)).

A similar decision is made in Isar [32], whereas Mizar [31] permits English-like
expressions for some predicates. One reason for stopping at this level is certainly
that typical users of proof systems are comfortable with reading logical formulas,
so that only the proof-level formalization needs translation.

Another good reason for not translating propositions in a system like [10] is
the difficulty of the task. It is enough to look at any precise formalization of
natural language syntax to conclude that a lot of work and linguistic knowledge
is demanded to get it right. This knowledge is largely independent of the domain
of translations: the very same grammatical problems appear in tasks as different
from proofs as, for instance, systems for hands-free controling of an MP3 player
in a car [23].

1



In this paper, we will introduce a (to our knowledge) novel approach to
natural language programming tasks. We view grammar rules as specialist
knowledge, which should be encapsulated in libraries. Using a grammar in an
application program then becomes similar to, for instance, using a numerical
analysis library in a graphics rendering programme. The user of the library
just has to specify on a high abstraction level what she wants—for instance,
that she wants to build a sentence from a certain noun phrase and a certain
adjective. The library takes care of picking the proper forms of words (which
e.g. in French must obey the rules of gender and number agreement) and putting
the words in right order (which e.g. in German depends on whether the sentence
is subordinate or a main clause).

To introduce the grammar-related problems in programming, we will start
with a simple example from the area of software localization—a task of nat-
ural language rendering of messages produced by a program. We continue with
an outline of GF (Grammatical Framework, [25]), which is a special-purpose
programming language for writing grammars, in particular designed to permit
modularity and information hiding [26]. One major asset of GF is a Resource
Grammar Library, which formalizes the central grammatical structures of 14
languages [27]. We give an outline of this library, with the main focus on the
organization, presentation, and evaluation of the library from the software engi-
neering point of view (rather than the linguistic point of view, which is treated in
other publications). As an example of the use of the library, we show how to use
the library for the translation of formalized mathematics to natural language,
which can be seen as complementing the work of [10].

2 Grammars and software localization

2.1 A very simple example

Many programs produce natural-language output in the form of short messages.
In software localization, these messages must be translated to new languages.
One important property of translation is grammatical correctness. Even in
English, this is often violated: an email program may tell you,

You have 1 messages

If a little more thought has been put into the program, it might say

You have 1 message(s)

The code that should be written to get the grammar right is of course

msgs n = "You have" ++ show n ++ messages

where

messages = if n==1 then "message" else "messages"

Now, what is it we need in order to generate this in a new language?

2



First of all, we have to know the words you, have, and message in the new
language. This is not quite as simple as it may sound. For instance, looking
up the word message in an English-Swedish dictionary on the web1 gives the
variants bud and budskap. Which one to choose? In fact, the correct answer is
neither: the translation of message in the domain of emails is meddelande.

In addition to the dictionary forms of the words, we need to know how they
are inflected. Only when we know that the plural of meddelande is meddelanden,
can we write the Swedish rule

msgs n = "Du har" ++ show n ++ messages

where

if n == 1 then "meddelande" else "meddelanden"

However, it is not universal that only the one/many distinction affects inflection.
In Arabic, there are five cases [13]:

if n == 1 then "risAlatun" else

if n == 2 then "risAlatAni" else

if n < 11 then "rasA’ila" else

if n % 100 == 0 then "risAlatin" else

"risAlatan"

From these strictly grammatical decisions we arrive to more pragmatic, or cul-
tural, ones. In many languages, we have to know the proper way to politely
address the user. In Swedish, one tends to use the familiar du har 3 meddelanden
rather than the formal ni har 3 meddelanden. In French, the preference is the
opposite: vous avez 3 messages rather than tu as 3 messages. The preferred
choice depends not only on language but also on the intended audience of the
program.

Localization clearly needs more knowledge than what can be found in a
dictionary. Hiring native-speaker programmers is one solution, but only if these
programmers have explicit grammatical knowledge of their native languages. In
general, the expertise that is needed is the linguist’s expertise. At the same
time, localization may require expertise on the application domain rather than
in linguistics, so that truly appropriate terminology is used. Can we find these
two experts in one and the same person? Or do we have to hire two programmers
per language?

2.2 A library-based solution

A common technique used in localization are databases that contain words
and standard texts in different languages. Such a library may contain a key,
YouHaveMessages, or simply, sentence 2019, which is rendered as a function
of language. Companies may have databases of thousands of sentences used for
localizing their products.

1www.freedict.com/onldict/swe.html

3



If a localization library is really sophisticated, the renderings are not just
constant strings but can be templates, so that e.g. YouHaveMessages is a tem-
plate in which a number is filled and the proper rendering is chosen by case
analysis on the number.

Now, an unlimited number of sentences of the same form as you have 3
messages can be produced by changing the subject and the object:

You have 4 points.

We have 2 cases.

The first example could be from a game, whereas the second appears in the proof
renderings of [10]. To cover all possible variations, a database is not enough:
something like a grammar is needed. However, grammars as usually written
by linguists do not have a format that is usable for this task. For instance,
a context-free grammar or a unification grammar defines the set of strings of
a language, but it does not provide explicit functions for rendering particular
structures.

To see what format is required of a grammar, let us take a cue from databases
with keys to ready-made sentences and templates. Keys to sentences can be seen
as constants, and keys to templates as functions:

Hello : Sentence

YouHaveMessages : Number -> Sentence

A grammar arises from this picture in a natural way: we just add more types
of expressions and more complex functions, including recursive ones:

Modify : Adjective -> Noun -> Noun

Following a tradition in grammar, we call these types the categories of the
grammar. The “keys” could be called grammatical functions. The cate-
gories and the function type signatures together form the API (Application
Programmer’s Interface) of the grammar library: they are everything the user
of the library needs in order to build grammatically correct expressions. In
addition, the library has to provide a rendering function, such that for each
category C,

render : Language -> C -> String

The linguistic knowledge contained in the library is hidden behind the API
showing the categories, the grammatical functions, and the rendering functions;
the user of the library does not need to care about how they are implemented.
Notice, moreover, that the API is independent of rendering language: the same
combinations of grammatical functions can be rendered to different languages
by varying the Language parameter.

Returning to the n messages example, we would need a grammar library
API containing the categories

Sentence, NounPhrase, Noun, Number

4



and the constructor functions

Have : NounPhrase -> NounPhrase -> Sentence

NumberOf : Number -> Noun -> NounPhrase

PoliteYou, FamiliarYou, We : NounPhrase

Message, Point, Case : Noun

Then we can translate the examples above by using different values of lang in

render lang (Have PoliteYou (NumberOf 1 Message))

render lang (Have FamiliarYou (NumberOf 4 Point))

render lang (Have We (NumberOf 3 Case))

2.3 Searching translations by parsing

If localization is implemented with an ordinary database, we can use a string
in one language to search translations in other languages. In a grammar, the
corresponding technique is parsing, i.e. the inverse of the rendering function.

parse : Language -> String -> C

This would enable us to write

msgs lang n = render lang (parse english "you have n messages")

thus avoiding the manual construction of grammatical function applications.
This can be a very efficient way to use a grammar library. However, since
natural languages are ambiguous, parse may give many results:

"you have 3 messages"

Have PoliteYou (NumberOf 3 Message)

Have FamiliarYou (NumberOf 3 Message)

Have PluralYou (NumberOf 3 Message)

It then remains to the user of the library to select the correct alternative, and
she must thus have at least some understanding of the grammatical functions.

3 Implementing a grammar library in GF

Those who know GF [25] must have recognized the introduction as a seduction
argument eventually leading to GF. The main components of a grammar library
correspond exactly to the main components of GF:

• categories and grammatical functions = abstract syntax

• rendering and parsing = concrete syntax

• abstract library objects = abstract syntax trees

5



We refer to [25, 26, 27] for the details of GF. Let us just show a set of GF
modules forming a very simple English-French language library. First, there is
an abstract syntax module listing categories (cat) and grammatical functions
(fun):

abstract Lib = {

cat

Noun ;

Adjective ;

fun

Modify : Adjective -> Noun -> Noun ;

}

This module has adjectives and nouns, and a function that modifies a noun by
an adjective (e.g. even number, nombre pair).

Second, there is a concrete syntax module of this abstract syntax, assigning
a linearization type (lincat) to each category, and a linearization function

(lin) to each function. Linearization may involve parameters (param) that
control the rendering of abstract syntax trees.

concrete LibEng of Lib = {

lincat

Noun = {s : Number => Str} ;

Adjective = {s : Str} ;

lin

Modify adj noun = {

s = table {n => adj.s ++ noun.s ! n}

} ;

param

Number = Singular | Plural ;

}

Linearization is a homomorphism that obeys the linearization types. Lineariza-
tion types, in general, are record types that contain all relevant linguistic in-
formation. Minimally, they contain just a string, as Adjective does in this
English example. But Noun in this example has a table (a finite function),
which produces a string as a function of Number (defined by the constructors
Singular and Plural). The linearizarion of modification passes the number
parameter (variable n) to the noun (where ! marks selection from a table) and
concatenates (++) the adjective with the resulting noun form. In this way, we
get (one) new message and (three) new messages

In the French module, we have different linearization types and different
word order.

concrete LibFre of Lib = {

lincat

Noun = {s : Number => Str ; g : Gender} ;

Adjective = {s : Gender => Number => Str ; isPre : Bool} ;

6



lin

Modify adj noun = {

s = table {n => case adj.isPre of {

True => adj.s ! noun.g ! n ++ noun.s ! n ;

False => noun.s ! n ++ adj.s ! noun.g ! n

}

} ;

g = noun.g

} ;

param

Number = Singular | Plural ;

Gender = Masculine | Feminine ;

Bool = True | False ;

}

The modification rule shows agreement between the noun and the adjective:
the adjective is inflected by selecting the gender of the noun. In this way, we
get nombre pair but somme paire. Unlike in English, the adjective can be
placed after the noun; a boolean parameter is used to take care of whether
the adjective is placed before of after the noun (e.g. nouveau message, “new
message” vs. message privé, “private message”).

This simple example is enough to show that natural languages have complex
grammars but also, more importantly, that the abstract syntax can abstract
away from complexities like word order and agreement, which are different from
one language to another. An application programmer using the library can thus
be freed from thinking about these details. With the adjective new and the noun
message added to the abstract and the concrete syntaxes, the abstract syntax
tree Modify new message will produce all desired forms of this combination in
both languages.

The example we just showed is a a multilingual grammar: an abstract
syntax together with a set of concrete syntaxes. A multilingual grammar can
be used as a translator, where translation is the composition of parsing from
one language with linearization to another. But it is also a suitable format for
a grammar library. As the API of the library, the abstract syntax can be used,
together with the names of the concrete syntaxes, showing what languages are
available.

The render method is a direct application of the linearization rules. Also
a parse method is available, as a consequence of the reversibility property of
GF grammars: a set of linearization rules automatically generates a parser.

3.1 Using GF grammars in other programming languages

A GF grammar library can obviously be used for writing GF grammars—but
this is not yet very useful if the grammar is to be a part of an application written
in another programming languages. The simplest way to make it usable is off-
line: to construct texts that are cut and pasted to the application, or stored

7



in databases of fixed phrases. But this is not always possible, since the proper
natural-language output of a program may depend on the run-time input of the
program, as was the case in the n messages example, and also in applications
like natural-language interfaces to proof assistants.

A fully satisfactory method is to compile the multilingual grammar into
code usable in other languages. These languages can then make the rendering
functions available as ordinary functions. For instance, in Java 1.5, we have

String linearize(Language l, Tree t)

Collection<Tree> parse(Language l, Category c, String str)

(see [5]). In order to use these functions, the programmer also has to be able
to construct and analyse objects of type Tree. This can be done in two ways.
The first alternative is a universal type of trees. This type has a constructor
that builds a tree from a label representing an abstract syntax function, and an
array of subtrees:

Tree(String label, Tree[] children)

While this tree type is powerful enough to represent all trees, it also permits
false ones: the types of the abstract syntax functions do not constrain the
construction of trees. A better alternative is to encode the abstract syntax
types by using Java’s class system, in the same way as Appel [1] does for the
abstract syntax of programming languages. In this method, an abstract base
class is created for every category of abstract syntax. Every function is encoded
as a class extending its value category:

public abstract class Noun { ... }

public abstract class Adjective { ... }

public class Modify extends Noun {

public final Adjective adjective_ ;

public final Noun noun_ ;

public Modify(Adjective p1, Noun p2){ ... }

}

The concrete syntax implementation is not presented to the application pro-
grammer, and is in that sense uninteresting. But how does it work? The
method we have used is to compile GF grammars into a simpler low-level for-
mat called PGF, Portable Grammar Format. This format consists essentially
of arrays of strings and pointers to other arrays, implementing the linearization
records of all well-typed trees. While the compiler from GF to PGF is a highly
complex program, a PGF interpreter is fairly easy to write in any programming
language. Such interpreters have been written in Java, Haskell, C++, and Pro-
log [27]. Also tree building is supported, so that e.g. a Java class system in the
format shown above can be generated from an abstract syntax.

An alternative to the PGF interpreter is compilation from PGF to host pro-
gram code. This method is useful if high performance is needed. For instance,
in order to use GF grammars in portable devices with severe constraints, we
have developed a compiler from PGF to C. In order to run language processing
in web browsers, we compile PGF to JavaScript.

8



3.2 The GF Resource Grammar Library

By building the high-level grammar formalism GF and its compiler to the low-
level format PGF, we have created two components of the infrastructure for
grammar engineering. The next component, which we now want to focus on, is
the GF Resource Grammar Library [27, 19]. The library project started
in 2001, with the purpose of creating a standard library for GF, and thereby to
make GF more usable for non-linguist programmers. As of version 1.2 (Decem-
ber 2007), the library covers ten languages: Danish, English, Finnish, French,
German, Italian, Norwegian, Russian, Spanish, and Swedish. For these lan-
guages, a full coverage of the API is provided. Partial but already useful imple-
mentations exist for Arabic [14], Bulgarian, Catalan, and Urdu [18].

The GF Resource Grammar Library has had three major applications out-
side the group developing the library: in the KeY project, for translating be-
tween formal and informal software specifications [2, 6]; in the WebALT project,
for translating mathematical exercises from formal representations to seven lan-
guages [8]; and in the TALK project, for localizing spoken dialogue systems to
different languages [23]. These projects together have forced the library to cover
both written technical language and spoken casual language. They have also
involved library users with varying backgrounds: linguists, computer scientists,
mathematicians, engineers.

In the following sections, we will discuss some critical questions of grammar
libraries, including design, presentation, and programming language aspects.
We will do this in the light of the experience gained from the GF Resource
Grammar Library project.

4 Design questions for a grammar library

When designing a library, the first question is of course coverage. A grammar
library should cover the grammars of the involved languages—but what this
means is not so clear-cut for natural languages as it is for programming lan-
guages. Natural languages are open-ended: they evolve all the time, and the
boundary between what is grammatical and what is not is often vague.

The second question is organization and presentation: division into modules,
level of granularity, orthogonality. In the domain of grammars, we have also the
choice between traditional “school grammar” concepts (which however do not
suffice for all purposes) and modern, sophisticated linguistic concepts. (which
however vary from one linguistic theory to another).

While these design questions have analogues in other areas of software li-
braries, the use of grammars as libraries has not been studied before. The rea-
son is that grammars have mainly been written to provide stand-alone parsers
and generators, with, so to say, render and parse as the only points of access.

9



5 The coverage of the library

5.1 Morphology

If we want the library to cover a language, the first thing that we need is
inflectional morphology. This component enables the analysis and synthesis
of all word forms in the language. What the rules of the morphology are is a well
understood question for all the languages in GF Resource Grammar Library, so
that the implementation is a question of engineering. GF is a typed functional
programming language, and it is therefore natural to use similar techniques as
in the Zen toolkit [17] and in Functional Morphology [15].

A functional-style morphology implementation consists of an inflection en-

gine and a lexicon. The inflection engine is a set of paradigms, that is, func-
tions that compute a full inflection table from a single word form. The lexicon
can then be presented as a list of word-paradigm pairs.

It is the lexicon that makes the morphology usable as a tool for tasks like
analysing texts. In a library, however, a static lexicon is less important than the
inflection engine. Domain-specific applications of the library often require new
words not appearing in any standard lexicon. Fortunately, such technical words
tend to follow regular inflection patterns, and it is easy to provide paradigms for
defining their inflection without very much knowledge of linguistics. The most
useful part of a lexicon provided by a library is one containing irregular words,
e.g. the French irregular verbs, as well as function words, such as pronouns,
which are both frequent, domain-independent, and very irregular. These lexica
together result in some hundreds of words in each language.

5.2 Syntax

The most challenging part of the library is syntax. In the GF Resource Gram-
mar Library, we started from an extension of the PTQ fragment of Montague
(“Proper Treatment of Quantification in Ordinary English”, [21]) and ended up
with a coverage similar to the CLE (Core Language Engine [28]). This language
fragment has proven sufficient for the aforementioned large-scale applications of
GF Resource Grammar Library, as well as for many small-scale test applications.

The syntax in the GF Resource Grammar Library covers the usual syntactic
structures within sentences: predication, coordination, relative clauses, indirect
questions, embedded sentences, pronouns, determiners, adjectives, etc. It also
covers structures above the sentence level: the topmost category is Text. Texts
are lists of Phrases, which can be declarative sentences, questions, imperatives,
and exclamations; also subsentential phrases are covered, as they are needed in
dialogues: (What do you want to drink?) Red wine.

10



6 The organization and presentation of the li-

brary

6.1 Morphology

The morphology API is a set of paradigms. A paradigm takes a string (usu-
ally, the dictionary form also known as the lemma) and produces a complete
inflection table. For instance, French verb paradigms look as follows:

v_besch56 : Str -> V -- mettre

The naming of verb paradigms in French and other Romance languages follows
the authoritative Bescherelle series of books [4]. Each paradigm in the API is
endowed with a comment containing some example words.

Traditionally, as in the Bescherelle books, an inflectional paradigm is a func-
tion that takes one form and produces all the others (51 forms in the case of
French verbs). Paradigm are identified by the sets of endings that are used
for each word form: if two words show any difference in their endings, they
belong to different paradigms. Thus the French Bescherelle contains 88 verb
paradigms. This is a prohibitive number for the user of the library, and it is
easy to make mistakes in picking a paradigm.

Fortunately, most paradigms in most languages are unproductive, in the
sense that they apply only to a limited number of words—all new words can be
treated with a handful of paradigms, often known as “regular”. In Bescherelle,
for instance, less than 10 of the 88 paradigms are regular in this sense. They
are, moreover, predictable: to choose what paradigm to use, it is enough to
consider the ending of the verb infinitive form. This prediction can be encoded
as a smart paradigm, which inspects its argument using regular expression
patterns, and dispatches to the productive Bescherelle paradigms:

mkV : Str -> V = \v ->

case v of {

_ + "ir" => v_besch19 v ; -- finir

_ + "re" => v_besch53 v ; -- rendre

_ + "éger" => v_besch14 v ; -- assiéger

_ + ("eler" | "eter") => v_besch12 v ; -- jeter

_ + "éder" => v_besch10 v ; -- céder

_ + "cer" => v_besch7 v ; -- placer

_ + "ger" => v_besch8 v ; -- manger

_ + "yer" => v_besch16 v ; -- payer

_ => v_besch6 v -- aimer

} ;

The morphology API for French verbs now consists of this smart paradigm,
together with a lexicon of those 379 verbs that do not follow it.

The smart paradigm idea was the single most important reason to add reg-
ular pattern matching to GF. The GF Resource Grammar Library has shown

11



that it scales up well. For instance, in Finnish, which (together with Arabic) is
morphologically the most complex of the library languages, 90% of words are
covered by one-argument smart paradigms.

6.2 Syntax

Maybe the most useful and at the same time the most surprising feature of the
GF Resource Grammar Library is that its syntax API is language-independent.
In other words, the library describes all languages as having the same structure.
To make this possible, the power of separating concrete syntax from abstract
syntax is sometimes stretched to the extreme. However, since linearization is
a homomorphism, the relation between trees and their linearizations remains
compositional.

In version 1.2, the syntax API consists of an abstract syntax with 44 cat-
egories and 190 functions. If each language had a separate API, the library
would have something like 440 categories and 1900 functions. The common
syntax API thus improves the manageability of the library by an order of mag-
nitude. Another advantage is that, once a programmer learns to use the library
for one language, she can use it for all the other languages as well.

The disadvantages are mostly on the implementor’s side: the concrete syntax
is often more complex and less natural than it would be if each language had its
own abstract syntax. The user of the library will mainly notice this disadvantage
as long and memory-demanding compilations from time to time.

The common API is complete and sound in the sense that it permits the
programmer to express everything in all languages with grammatically correct
sentences. The resulting language is highly normalized and can be unidiomatic.
Therefore the library also provides language-dependent syntax extensions. For
instance, the great number of tenses in Romance languages (e.g. simple vs. com-
posite past) has no counterpart in other languages. Just some of the tenses are
accessible via the common API, and the rest via language-dependent extensions.

6.3 The common syntax API

The concepts of syntax are more abstract and less commonly known than the
concepts of morphology. For instance, how many non-linguist programmers
would know that a sentence is built from a noun phrase and a verb phrases,
and that a verb phrase is formed by combining a verb with a sequence of com-

plements that depend on the subcategorization frame of the verb?
Let us see how the library deals with sentence construction. There are several

categories of verbs, corresponding to the different subcategorization frames. The
API shows the category declarations, each commented with a description and
an example. Here are some of the frames we use:

V -- one-place verb e.g. "sleep"

V2 -- two-place verb e.g. "love"

V3 -- three-place verb e.g. "show"

12



VS -- sentence-complement verb e.g. "claim"

For each category, there is a function that forms verb phrases:

UseV : V -> VP -- sleep

ComplV2 : V2 -> NP -> VP -- use it

ComplV3 : V3 -> NP -> NP -> VP -- send it to her

ComplVS : VS -> S -> VP -- know that she runs

Verb phrases can moreover be formed from the copula (be in English) with
different kinds of complements,

UseComp : Comp -> VP -- be warm

CompAP : AP -> Comp -- (be) small

CompNP : NP -> Comp -- (be) a soldier

CompAdv : Adv -> Comp -- (be) here

These complements can again be built in many ways; for instance, an adjectival
phrase (AP) can be built as the positive form of an the adjective (A), using the
function

PositA : A -> AP -- warm

On the top level, a clause (Cl) can be built by putting together a noun phrase
and a verb phase:

PredVP : NP -> VP -> Cl -- this is warm

A clause is like a sentence (S), but with unspecified tense, anteriority (to do
vs. to have done), and polarity (positive or negative). A complete sentence is
thus produced by fixing these features:

UseCl : Cl -> Tense -> Ant -> Pol -> S

The structure of this abstract syntax is motivated by the demands of com-
pleteness, succinctness, and non-redundancy. Similar ways of forming trees are
factored out. The categories VP and Comp are examples of this: in a sense, they
are artifacts of the linguistic theory.

6.4 Ground API vs. end-user API

In the common syntax API, trees become deeply hierarchical. The very simple
sentence this is warm becomes

UseCl TPres ASimul PPos

(PredVP this_NP (UseComp (CompAP (PositA (regA "warm")))))

Factoring out similar structures, as succinctness and non-redundancy in general,
is good for the implementors of the resource grammars, since it minimizes the
duplication of work. For users, however, constructing deeply nested trees, and

13



even reading them, is intimidating, especially because it is difficult to make the
naming conventions completely logical and easy to remember.

After the completion of the first version of GF Resource Grammar Library,
the main attention was devoted to making the library easier to understand.
The succinct, non-redundant API as described above is now called the ground

API. Its main purpose is to serve as a specification of the functionalities that
a resource implementation must provide. The end-user API has different
requirements. For instance, redundancy can be helpful to the user. The resulting
presentation of the end-user API was inspired by one of the most influential
software libraries, the Standard Template Library (STL) of C++ [29].

6.5 Overloading

An important instrument in STL is overloading: the use of a common name
for different functions that in some sense perform similar tasks. Two different
criteria of similarity used in STL have proven useful in our library:

• functions that construct objects of the same type: constructors in STL

• functions that operate in the same way on their arguments, irrespectively
to type: algorithms in STL

Overloading in GF is implemented by a compile-time resolution algorithm. As
in C++ (and ALGOL68), it performs bottom-up type inference from the argu-
ments. Unlike C++, GF has partial applications, and must therefore use the
value type in resolution, in addition to argument types.

The implementation of overloading was unexpectedly simple and efficient.
In conclusion, overloading is a small language feature from the implementation
point of view but has a deep effect on the way in which the language is used.

6.6 Constructors

What is a constructor? In the technical sense of type theory, all functions
of an abstract syntax are constructors, since they define the data forms of an
inductive system of data types [20]. Overloading of constructors in this sense
poses technical problems, for instance, when constructors are used as patterns
in case analysis.

However, what corresponds to type-theoretical constructors in C++ is not
the C++ constructor functions, but the forms of records of class variables. These
variables are usually not disclosed to the user of a class. The very purpose of the
C++ constructors is to hide the real data constructors. This distinction gives
one more reason for GF to have an end-user API separate from the ground API:
to achieve full data abstraction, the ground API must not be disclosed to users
at all!

We have built a set of overloaded constuctors that covers the resource gram-
mar syntax with just 22 function names. All these names have the form mkC,
where C is the value category of the constructor. For instance, we have a set of
Cl forming functions,

14



mkCl : NP -> V -> Cl -- he sleeps

mkCl : NP -> V2 -> NP -> Cl -- he uses it

mkCl : NP -> V3 -> NP -> NP -> Cl -- he sends it to her

mkCl : NP -> VS -> S -> Cl -- he knows that she runs

mkCl : NP -> A -> Cl -- he is warm

mkCl : NP -> AP -> Cl -- he is warmer than you

mkCl : NP -> NP -> Cl -- he is a man

mkCl : NP -> Adv -> Cl -- he is here

Notice that the set of constructors also flattens the structure of the ground API:
the theoretical categories VP and Comp have been eliminated in favor of functions
using their constituents directly. Furthermore, we have added a flattening con-
structor taking an adjective (A), which is a special case of the adjectival phrase
(AP).

The constructor forming sentences from clauses shows yet another typical
use of overloading: default arguments. Any of the arguments for tense, ante-
riority, and polarity may be omitted, in which case the defaults present, simul-
taneous, and positive are used, respectively. The API shows optional argument
types in parentheses (for the GF compiler, parentheses have only their usual
grouping function; the following is really implemented as a group of overloaded
functions):

mkS : Cl -> (Tense) -> (Ant) -> (Pol) -> S

With this set of constructors, the sentence this is warm can now be written

mkS (mkCl this_NP (regA "warm"))

6.7 Combinators

What about the “algorithms” of STL? In grammar, one analogue are gram-
matical functions that operate on different categories, such as coordination

(forming conjunctions and disjunctions). These functions are of course redun-
dant because constructors cover the same ground, but often combinators give a
more direct and intuitive access to the resource grammar. Here is an example,
a part of the coordination function:

coord : Conj -> ListAdv -> Adv -- here, now and fast

coord : Conj -> ListAP -> AP -- warm and very tasty

coord : Conj -> ListNP -> NP -- John, Mary and I

coord : Conj -> ListS -> S -- I sleep and you walk

coord : Conj -> Adv -> Adv -> Adv -- here and now

coord : DConj -> Adv -> Adv -> Adv -- both here and now

Altogether, there are 4*2*2 = 16 coordination functions, since there are 4 cat-
egories that can be coordinated, 2 kinds of coodinated collections (lists of arbi-
trary length and the special case of two elements), and 2 kinds of coordinating
conjunctions (types and and both-and). Since all of them have different types,
they can be represented by one overloaded constant.

15



7 Success criteria and evaluation

Natural-language grammars are usually evaluated by testing them against some
text corpus, such as the Wall Street Journal corpus. The current GF Resource
Grammar Library would not perform well in such a test. Even if it did, the
test would miss the most important points about the use of the grammar as a
library, rather than as a stand-alone parser. Thus we need some new criteria for
grammar evaluation, to a large extent similar to software libraries in general.

7.1 The success criteria

Correctness. This is the most important property of any library. The user
of the library must be able to rely on the expertise of its authors, and all
library functions must thus do the right thing. In the case of a grammar library,
this means grammatical correctness of everything that is type-correct in the
grammar.

Coverage. In tasks such as localization or document generation, this means
above all semantic coverage: although limited, the language fragment must
be sufficient for expressing whatever programmers need to express.

Usability. In this case, usability by non-linguists is the interesting question.
The success in this point depends on presentation and documentation, rather
than on the implementation.

Efficiency. This is a property often mentioned in the C++ community:
using the library should not create any run-time overhead compared with hand-
written code [29]. Interestingly, a considerable amount of compile-time overhead
is created in both C++ (because of template instantiation) and GF (because of
partial evaluation; see [25]).

7.2 These are not our success criteria

Completeness, in the sense of the grammar’s being able to parse all expres-
sions. While this would be useful in applications that need to parse user input,
it would clutter the grammar with questionable constructions and compromise
its correctness.

Semantic correctness, in the sense of the grammar only producing mean-
ingful expressions. Now we can produce grammatically well-formed nonsense:

colourless green ideas sleep furiously

draw an equilateral line through the rectangular circle

It is difficult to rule out such sentences by general principles. The philosophy of
the resource grammar library is that semantics is given in applications, not in
the library. What is meaningful, and what meaning is, varies from one domain
to the other.

Translation equivalence. The common syntax API does not guarantee
common meanings, let alone common pragmatic value. In applications, it is
often necessary to use the API in different ways for different languages. For

16



instance, a standard English mathematical exercise uses the imperative, whereas
French uses the infinitive:

Compute the sum X. -- *Calculez la somme X.

Calculer la somme X. -- *To compute the sum X.

It is the programmer of the mathematics application who selects the right con-
structions in both languages. The grammar library only takes care of the proper
renderings of these constructions. Of course, a special-purpose mathematics li-
brary can introduce a function for constructing exercises, which uses the ground
library in different ways for English and French.

Linguistic innovation. The idea of the resource grammar library is to
formalize a body of “known facts” about languages and offer them to non-
linguist users. While we do believe that some innovation was needed to make
the library work, the purpose of the API is to hide this from the users, and
make it look natural and easy.

7.3 Evaluation

To evaluate correctness, coverage, and usability, it is good to have applications
from different areas and by different users. In this sense, testing a grammar li-
brary is much like testing any software. An extra method for testing grammati-
cal correctness is the possibility of automatically generating trees and linearizing
them, and inspecting the results. Version 1.0 of the GF Resource Grammar Li-
brary was released when a stable point was reached in this process.

Completeness in the usual mathematical sense is even possible to prove, by
writing a translator from a system of logic to the library API. This has been
done for several systems, thus proving instances of expressive completeness.

Compile-time efficiency is a serious problem with some resource grammars
(in particular, the Romance languages and Finnish). This has led us to looking
for improvements to the partial evaluation method used. But grammars written
by using resource grammars as libraries, when compiled, are free from overhead,
because the partial evaluation specializes them accurately to the type system of
the application, as shown in [25].

8 Example: rendering mathematical concepts

Mathematical text is a mixture of natural language and symbolic notation.
While the proportion of symbolic notation varies, the following rules are usually
obeyed:

• Only logically atomic sentences are symbolic: quantifiers and connectives
are verbal.

• Some conventional, mostly 2-place, predicates are symbolic, e.g. = and <,
while most new predicates are verbal, e.g. x is even.

17



• Singular terms are often symbolic, e.g. x + y, but also often verbal, e.g.
the greatest prime factor of x.

• A symbolic expression may not contain parts expressed in words.

The last rule has an important consequence for a symbolic predicate that is
given a verbal argument: either the predicate is rendered verbally,

the greatest prime factor of x is equal to x/2

or a symbol is locally defined for the argument,

p = x/2, where p is the greatest prime factor of x.

If we want a proof assistant to generate text of publication quality, we have
to obey these rules. They are also important in educational applications [8].
Correct verbalization is a part of standard mathematical language as much as
correct symbolic notation is. The symbolic notation problem is to a large extent
solved in computer algebras and many proof assistants, e.g. by using TeX. But
verbalization is a more difficult problem, since it involves so much linguistics.

On the topmost level of definitions and proofs, the main problem is proper
order and structure, which questions are studied in e.g. [9] and [33]. What a
grammar library can contribute is the replacement of concrete text by abstract
syntax trees. For instance, the formula we have n cases can be expressed by

mkCl (mkNP we_Pron) have_V2 (mkNP n case_N)

which will produce the correct forms for any language as function of n.
Going down to the level of propositional structure, we need to express quan-

tifiers and connectives by using natural language. It is easy use the GF Resource
Grammar Library to write rules such as

Conj A B = coord and_Conj A B -- A and B

Disj A B = coord or_Conj A B -- A or B

But now we encounter the problem of ambiguity. We cannot just composition-
ally translate A & (B v C) with A and B or C. This problem is solved in [6] by
the use of grouping (indentation, bullets) and subsentential coordination (x is
prime and y is even or odd), also known as aggregation in natural language
generation literature. The translation of logical structures, although tricky, can
be solved generically in the implementation of a proof system and then reused
in applications on any domain, largely independently of language.

The vast majority of textual rendering problems is encountered when new
concepts are defined by users as a part of proof construction. In [16], we pre-
sented a plug-in to the Alfa proof editor, where definitions can be seen as GF
abstract syntax rules and annotated by concrete syntax rules telling how the
new concepts are expressed in natural language. This idea is applicable in any
proof assistant that is able to express the types of new concepts; it is also used
in the KeY program verification system [2, 6].

18



At the time of [16], the GF Resource Grammar Library was not available,
and users had to think of both grammar rules and mathematical idioms when
writing annotations. For the WebALT project [8], a combinator library was
written to cover the most frequent needs. It has a set of predication rules
(pred) building clauses (Cl) to express prepositions, and a set of application
rules (app) building noun phrases (NP) to express individual objects:

pred : V -> NP -> Cl -- x converges

pred : V -> ListNP -> Cl -- x, y and z intersect

pred : V2 -> NP -> NP -> Cl -- x intersects y

pred : A -> NP -> Cl -- x is even

pred : A -> ListNP -> Cl -- x, y and z are equal

pred : A2 -> NP -> NP -> Cl -- x is divisible by y

pred : N -> NP -> Cl -- x is a prime

pred : N -> ListNP -> Cl -- x, y and z are relative primes

pred : N2 -> NP -> NP -> Cl -- x is a divisor of y

app : N2 -> NP -> NP -- the successor of x

app : N2 -> ListNP -> NP -- the sum of x, y and z

app : N3 -> NP -> NP -> NP -- the interval from x to y

Together with morphological paradigms, these combinators can be used for
defining renderings of mathematical concepts easily and compactly.

The pred functions are very much like the mkCl constructors in Section 6.6
above, with the difference that the predicate (verb or adjective) is given the first
argument position. In typical linearization rules for mathematical predicates,
this has the advantage of permitting the use of partial application. This is what
we do in the following examples, which produce English, French, and Finnish:

Succ : Nat -> Nat

Succ = app (mkN2 "successor")

Succ = app (mkN2 "successeur")

Succ = app (mkN2 "seuraaja")

Div : Nat -> Nat -> Prop

Div = pred (mkA2 "divisible" "by")

Div = pred (mkA2 "divisible" "par")

Div = pred (mkA2 "jaollinen" adessive)

Prime : Nat -> Prop

Prime = pred (mkA "prime")

Prime = pred (mkA "premier")

Prime = pred (mkA "jaoton")

8.1 A functor implementation of the translator

In the previous example, the languages use the syntax API in exactly the same
way, and differ only in the lexicon. This results in repetition of code, which

19



can actually be avoided in GF by using a functor. A functor in GF is, like
in ML, a module that depends on interfaces (called signatures in ML), that
is, modules that only show the types of constants and omit definitions. The
resource API itself is an interface. In a typical GF application, the programmer
builds herself another one to define a domain lexicon. In the present example,
the domain lexicon interface declares the constants

successor_N2 : N2

divisible_A2 : A2

prime_A : A

The functor can then be written

Succ = app successor_N2

Div = pred divisible_A2

Prime = pred prime_A

To add a new language to a multilingual grammar implemented with a functor
like this, it is enough to write a new instance of the domain lexicon. This
technique is explained in more detail in [26] and [23].

9 Related work

9.1 Grammar formalisms

The fundamental idea of GF is the division of a grammar into an abstract
and concrete syntax. It is this division that at the same time supports the
communication between grammatical structures and other data structures, and
permits the construction of multilingual grammars. The idea is first found
in Curry [11], and it was used by Montague [21] with the purpose of giving
denotational semantics to a fragment of English.

In linguistics, Curry’s idea was for a long time ignored, with Montague as
one of the few exceptions. The situation has however changed in the past ten
years, with GF and related formalisms: ACG (Abstract Categorial Grammars
[12]), HOG (Higher-Order Grammar, [24]), and Lambda Grammars [22]. Only
GF has so far produced a large-scale implementation and grammar libraries.

9.2 Grammar libraries

CLE (Core Language Engine [28]) has been the closest point of comparison
as for both the coverage and purpose of the GF Resource Grammar Library.
The languages included in CLE are English, Swedish, French, and Danish, with
similar but structurally distinct fragments covered. The “glue” between the
languages is called QLF (Quasi-Logical Form), which in fact gives a structure
rather similar to the ground API of the GF Resource Grammar. Like GF,
CLE adresses the idea of sharing code between grammar implementations. It
uses macros and file includes instead of functions and modules for this purpose.

20



Moreover, specializing a large grammar to a small application is adressed by a
technique called explanation-based learning. The effect is often similar to GF’s
partial evaluation.

The LinGO Matrix project [3] defines a methodology for building gram-
mars of different languages that cover the same phenomena. The language-
independent syntax API of GF can be seen as an extreme version of the same
idea, using a common formal representation for all languages. LinGO grammars
are aimed to parse real texts.

Pargram [7] is a project with the goal of building a set of parallel gram-
mars. Its original purpose was machine translation between English, French,
and German. The grammars are connected with each other by transfer func-
tions, rather than a common representation. Currently the project covers more
than ten languages.

9.3 Compiling to natural language

When introducing a proof-to-text translator, the paper [10] opens a new per-
spective to the problem: natural language generation is seen as similar to com-
pilation. Thus it uses code optimization techniques to improve the generated
text, in a partly similar way to what in main-stream natural language generation
is known as aggregation. These optimizations operate on what in a compiler
would be called intermediate code—a level between source code (Coq proofs)
and target code (natural language). Now, if we see natural language as target
code, or machine code, we can understand the nature of some of the difficulties
of generating it. Natural language, just like machine code, is difficult to deal
with directly: it is better to hide it under a level of abstraction. Assembly code
is one such level, but it is even better if the compiler can generate intermediate
code retargetable to many machines. The intermediate code of [10] was indeed
retargeted to English and French. The language-independent abstract syntax
of GF Resource Grammar Library can be seen as a format implementing the
same idea, now retargeted to more languages.

10 Conclusion

We have discussed the GF Resource Grammar Library from the point of view
of library-based software engineering. This is a novel perspective on grammars,
which are usually seen as programs performing parsing and generation, rather
than as libraries. Libraries are useful for software localization and applications
such as proof assistants. A main problem is to make the library API intelligible
for non-linguist users. The use of a common API for different languages helps
considerably; another useful instrument is overloading, which helps to keep the
functions names memorizable and to create different views of the library.

21



Acknowledgments

It was Gilles Kahn who turned my attention to compiler techniques in natural
language generation. I am deeply grateful for the invitation to visit him in
Sophia-Antipolis in 1995, and also for the contact we had afterwards. GF was
born from a combination of these compiler techniques and the type-theoretical
view of abstract and concrete syntax, for which I am grateful to Per Martin-Löf.

The GF Resource Grammar Library has been built as a cooperation of many
people, and gained from comments and suggestions from even more—to men-
tion just some: Krasimir Angelov, Jean-Philippe Bernardy, Lars Borin, Björn
Bringert, Lauri Carlson, Robin Cooper, Ali El Dada, Hans-Joachim Daniels,
Elisabet Engdahl, Markus Forsberg, Harald Hammarström, Kristofer Johannis-
son, Janna Khegai, Peter Ljunglöf, Wanjiku Ng’ang’a, Bengt Nordström, and
Jordi Saludes. During the past year, collaboration with the Software Method-
ology and Systems group at Chalmers (Andreas Priesnitz, Sibylle Schupp, and
Marcin Zalewski) has brought to my attention the important conceptual work
on software libraries done in the C++ community.

The research has been supported by the grant Library-Based Grammar En-
gineering from Vetenskapsr̊adet.

References

[1] A. Appel. Modern Compiler Implementation in Java. Cambridge University
Press, 1998.

[2] B. Beckert, R. Hähnle, and P. Schmitt. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag,
2006.

[3] Emily M. Bender and Dan Flickinger. Rapid prototyping of scalable gram-
mars: Towards modularity in extensions to a language-independent core. In
Proceedings of the 2nd International Joint Conference on Natural Language
Processing IJCNLP-05 (Posters/Demos), Jeju Island, Korea, 2005.

[4] Bescherelle. La conjugaison pour tous. Hatier, 1997.

[5] B. Bringert. Embedded Grammars. MSc Thesis, Department of Computing
Science, Chalmers University of Technology, 2004.

[6] D. A. Burke and K. Johannisson. Translating Formal Software Specifica-
tions to Natural Language / A Grammar-Based Approach. In P. Blache and
E. Stabler and J. Busquets and R. Moot, editor, Logical Aspects of Com-
putational Linguistics (LACL 2005), volume 3402 of LNCS/LNAI, pages
51–66. Springer, 2005.

[7] M. Butt, H. Dyvik, T. Holloway King, H. Masuichi, and C. Rohrer. The
Parallel Grammar Project. In COLING 2002, Workshop on Grammar
Engineering and Evaluation, pages 1–7, 2002.

22



[8] O. Caprotti. WebALT! Deliver Mathematics Everywhere. In Proceedings
of SITE 2006. Orlando March 20-24, 2006.

[9] Y. Coscoy. Explication textuelle de preuves pour le calcul des constructions
inductives. PhD thesis, Université de Nice-Sophia-Antipolis, 2000.

[10] Y. Coscoy, G. Kahn, and L. Thery. Extracting text from proofs. In
M. Dezani-Ciancaglini and G. Plotkin, editors, Proc. Second Int. Conf.
on Typed Lambda Calculi and Applications, volume 902 of LNCS, pages
109–123, 1995.

[11] H. B. Curry. Some logical aspects of grammatical structure. In Roman
Jakobson, editor, Structure of Language and its Mathematical Aspects: Pro-
ceedings of the Twelfth Symposium in Applied Mathematics, pages 56–68.
American Mathematical Society, 1963.

[12] Ph. de Groote. Towards Abstract Categorial Grammars. In Association
for Computational Linguistics, 39th Annual Meeting and 10th Conference
of the European Chapter, Toulouse, France, pages 148–155, 2001.

[13] A. El Dada. Implementation of the Arabic Numerals and their Syntax in
GF. In Computational Approaches to Semitic Languages: Common Issues
and Resources, ACL-2007 Workshop, June 28, 2007, Prague, 2007.

[14] A. El Dada and A. Ranta. Implementing an Open Source Arabic Resource
Grammar in GF. In M. A. Mughazy, editor, Perspectives on Arabic Lin-
guistics XX, pages 209–232. John Benjamins, Amsterdam and Philadelphia,
2007.

[15] M. Forsberg and A. Ranta. Functional Morphology. In ICFP 2004, Show-
bird, Utah, pages 213–223, 2004.

[16] T. Hallgren and A. Ranta. An extensible proof text editor. In M. Parigot
and A. Voronkov, editors, LPAR-2000, volume 1955 of LNCS/LNAI, pages
70–84. Springer, 2000.

[17] Gerard Huet. A Functional Toolkit for Morphological and Phonological
Processing, Application to a Sanskrit Tagger. The Journal of Functional
Programming, 15(4):573–614, 2005.

[18] M. Humayoun. Urdu Morphology, Orthography and Lexicon Extraction.
MSc Thesis, Department of Computing Science, Chalmers University of
Technology, 2006.

[19] J. Khegai. GF Parallel Resource Grammars and Russian. In Coling/ACL
2006, pages 475–482, 2006.

[20] Per Martin-Löf. Constructive mathematics and computer programming. In
Cohen, Los, Pfeiffer, and Podewski, editors, Logic, Methodology and Phi-
losophy of Science VI, pages 153–175. North-Holland, Amsterdam, 1982.

23



[21] R. Montague. Formal Philosophy. Yale University Press, New Haven, 1974.
Collected papers edited by Richmond Thomason.

[22] R. Muskens. Lambda Grammars and the Syntax-Semantics Interface. In
R. van Rooy and M. Stokhof, editors, Proceedings of the Thirteenth Ams-
terdam Colloquium, pages 150–155, Amsterdam, 2001.

[23] N. Perera and A. Ranta. Dialogue System Localization with the GF
Resource Grammar Library. In SPEECHGRAM 2007: ACL Workshop
on Grammar-Based Approaches to Spoken Language Processing, June 29,
2007, Prague, 2007.

[24] C. Pollard. Higher-Order Categorial Grammar. In M. Moortgat, editor,
Proceedings of the Conference on Categorial Grammars (CG2004), Mont-
pellier, France, pages 340–361, 2004.

[25] A. Ranta. Grammatical Framework: A Type-theoretical Grammar Formal-
ism. The Journal of Functional Programming, 14(2):145–189, 2004.

[26] A. Ranta. Modular Grammar Engineering in GF. Research on Language
and Computation, 5:133–158, 2007.

[27] A. Ranta. Grammatical Framework Homepage, 2008.
digitalgrammars.com/gf.

[28] M. Rayner, D. Carter, P. Bouillon, V. Digalakis, and M. Wirén. The Spoken
Language Translator. Cambridge University Press, Cambridge, 2000.

[29] B. Stroustrup. The C++ Programming Language, Third Edition. Addison-
Wesley, 1998.

[30] The Coq Development Team. The Coq Proof Assistant Reference Manual.
pauillac.inria.fr/coq/, 1999.

[31] A. Trybulec. The Mizar Homepage. http://mizar.org/, 2006.

[32] M. Wenzel. Isar - a Generic Interpretative Approach to Readable Formal
Proof Documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Théry, editors, Theorem Proving in Higher Order Logics, TPHOLs’99,
volume 1690 of LNCS, 1999.

[33] F. Wiedijk. Formal Proof Sketches. In Types for Proofs and Programs,
LNCS 3085, pages 378–393. Springer, 2004.

24


