
The GF Grammar Compiler

Aarne Ranta

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Abstract. GF (Grammatical Framework) is a grammar formalism based
on the distinction between abstract and concrete syntax. An abstract
syntax is a free algebra of trees, and a concrete syntax is a mapping
from trees to nested records of strings and features. These mappings are
naturally defined as functions in a functional programming language;
the GF language provides the customary functional programming con-
structs such as algebraic data types, pattern matching, and higher-order
functions, which enable productive grammar writing and linguistic gen-
eralizations. Given the seemingly transformational power of the GF lan-
guage, its computational properties are not obvious. However, all gram-
mars written in GF can be compiled into a simple and austere core
language, Canonical GF (CGF). CGF is well suited for implementing
parsing and generation with grammars, as well as for proving properties
of GF. This paper gives a concise description of both the core and the
source language, the algorithm used in compiling GF to CGF, and some
back-end optimizations on CGF.

1 Introduction

Grammar formalisms are formal systems used for defining languages. As formal
systems, they can be reasoned about, so that their mathematical properties
such as worst-case parsing complexity can be determined. To make rigorous
mathematical reasoning feasible, a grammar formalism should be austere, i.e.
have as few constructs as possible.

At the same time, grammar formalisms are also programming languages used
for writing grammars. For this task, austerity is no more a virtue. If we think
of general-purpose programming languages, such as C or Haskell, we can easily
establish them as Turing-complete—thus they are, in a way, grammar formalisms
in class 0 of the Chomsky hierarchy. But no-one would like to write programs
in a Turing-complete language with as few constructs as possible, such as pure
lambda calculus or Böhm’s P” [3].

Practical programming languages have constructs that are redundant, i.e. not
strictly necessary for writing programs. Typical redundant features are high-level
control structures that can squeeze several lines of code to just one, and rich type
systems, which help the programmer to keep the code consistent. Redundancies
are also involved in various abstractions that human programmers want to do
but which will get lost in the austere machine representation.

In the research on grammar formalisms, the formal system aspects have been
more prominent than the programming language aspects. One reason is certainly
that many mathematical properties are still an open question—for instance, what
complexity class is appropriate for a grammar formalism. Working on austere
formalisms is essential to keep track of these aspects. However, when actually
writing grammars, redundant constructs that help grammarians are welcome.
What is more, linguists have always strived after abstractions and generaliza-
tions. To support this, those grammar formalisms that are actually used by
linguists typically provide mechanisms such as the following:

– Reducible language extensions For example, EBNF extends BNF by regu-
lar expressions over BNF items, which can always be eliminated but make
grammar writing more compact.

– Macros. For example, the finite-state scripting language XFST [2] can be
made to look almost like a functional language by the use of carefully chosen
macros.

Such facilities can raise the abstraction level of grammars without sacrificing
their mathematical properties, and they are straightforward to implement: only
a syntax-based preprocessor is needed, rather than a real compiler that has
to analyse the code semantically. In general-purpose programming languages,
the compiler has to do more work. The following constructs are found in many
modern languages, but seldom in grammar formalisms:

– Type systems. Grammar formalisms usually operate in an untyped universe
of strings or atoms in the sense of Prolog or LISP.

– Functions. Grammar formalisms usually rely on macros, a kind of “poor
man’s functions”. Replacing macros by proper functions contributes to type
safety, but also permits the powerful technique of higher-order functions.

– Module systems. Grammar formalisms usually rely on inclusions of files,
rather than on separately compiled modules.

These constructs are characteristic of GF, Grammatical Framework [19]. GF a
grammar formalism first and foremost designed as a programming language. It
is modelled after the typed functional languages ML and Haskell (types, func-
tions, pattern matching), but has also been inspired by C++ (overloading, mul-
tiple inheritance). GF aims to be easy for ordinarily trained programmers (non-
linguists) to use, but at the same time to give linguists a tool by which they can
enjoy of powerful abstractions. GF supports the development of grammars in
collaborative projects, where resource grammars written by linguists are used as
libraries in application grammars written by programmers. Since the first imple-
mentation in 1998, hundreds of programmers have used GF to create linguistic
resources, user applications, and of course toy programs testing the limits of
GF. Grammars have been written for fragments of at least 100 languages, and
12 languages have extensive resource grammars [18].

The linguists’ feel of GF is exemplified by a quote from Robin Cooper (per-
sonal communication): “using GF feels like having the power of a transforma-
tional grammar”. The key to this power is functional programming. A syntactic

rule can use “transformations”, i.e. functions that manipulate syntax trees, and
even higher-order functions that take such functions as arguments. However, GF
does not in the end have the transformational power: GF grammars reside in
the class of polynomially parsable languages, as shown by Ljunglöf [10].

The “secret” of the controlled power of GF is the same thing that makes
general-purpose programming languages work: compilation. “The GF grammar
formalism” is actually two formalisms:

– Source GF, the rich language in which grammars are written.
– Canonical GF (CGF), the austere language to which grammars are compiled.

It would be hopeless for most humans to write grammars in CGF: it would feel
like programming in machine code. At the same time, it would be hopeless to
reason about source GF. There are too many language constructs to keep track
of—a rough measure for this is that the BNF grammar used for parsing GF files
has 247 productions. At the same time, the CGF format can be defined with
less than 20 constructs.

The compiler that converts GF to CGF follows the compilation phases fa-
miliar from most modern compilers [1]:

1. Dependency analysis of the GF grammar to be compiled, determining what
modules need compilation.

2. Lexing and parsing the GF code.
3. Type checking the parsed GF code with respect to the type system partly

built within the code itself.
4. Simplifying the GF code so that it fits in a fragment of GF corresponding

to CGF.
5. Generating the CGF code from the GF code.
6. Linking the grammar modules together into run-time grammar objects.
7. Optimizing the run-time grammar objects.

In this paper, we will first present the CGF formalism (Section 2) and give and
outline of source GF (Section 3). The type checking phase is briefly discussed
in Section 4, the simplifying phase in Section 5, the effect of simplification in
grammar specialization in Section 6, generation of CGF in Section 7, and CGF
optimizations in Section 8. A full presentation of source GF and its type system
is given in [19]. The module system is introduced in [20].

2 Canonical GF

GF follows an architecture that divides a grammar into an abstract syntax and
a concrete syntax. This division is commonplace in computer science, as a way
of organizing compilers of programming languages. In linguistics, the same dis-
tinction was suggested by Curry [6] under the headings of tectogrammatical and
phenogrammatical structure, respectively. It was implicitly followed by Montague
[11] as observed by Dowty [9], but it has gained popularity only since the 1990’s
[17, 12, 19, 7, 15, 13].

A run-time grammar in GF is a grammar used for parsing and generation, as
well as for type checking abstract syntax trees. It consists of one abstract syntax
and one or more concrete syntaxes. The different concrete syntaxes typically
model different languages, and the abstract syntax defines a common structure
of those languages. GF grammars are thus multilingual.

To give a simplest possible example of a multilingual grammar, we first show
a CGF grammar for constructing abstract greetings and linearizing them into
two languages, English (hello world) and Italian (ciao mondo):

abstract Hello
cat Greeting ; Addressee ;
fun Hello : Addressee -> Greeting ;
fun World : Addressee ;

concrete HelloEng
lin Hello = [("hello",($0!0))] ;
lin World = [("world")] ;

concrete HelloIta
lin Hello = [("ciao",($0!0))] ;
lin World = [("mondo")] ;

The abstract syntax has cat judgements defining the categories of the grammar,
and fun judgementes definining the functions that construct trees of the cat-
egories. The functions can take zero or more arguments. For instance, (Hello
World) is a tree formed by applying the one-argument function Hello to the
zero-argument function World.

Each concrete syntax has lin judgements defining the linearizations of all
functions. The linearization of a function with arguments may contain pointers
to linearizations of the corresponding subtrees, denoted $0, $1, $2, etc. Lin-
earization is thus a compositional operation, since it builds the linearization of
a complex tree from the linearizations of its immediate subtrees.

The domain of linearization is a free algebra of syntax trees, inductively
defined by an abstract syntax. The range of linearization is a universe whose
elements are tokens, token lists, integers, and tuples. More formally, the universe
T of tuples is built as follows:

– Tokens: "foo" : T.
– Token lists: (t1, . . . , tn) : T for t1, . . . , tn : T, n ≥ 0.
– Integers: 0,1,2,... : T.
– Tuples: [t1, . . . , tn] : T for t1, . . . , tn : T, n ≥ 0.

Obviously, the universe T could be given a more discriminating type system,
which would guarantee properties such as the impossibility to include integers
in token lists. However, such restrictions are not needed in CGF, as long as we
have a static type system for the GF source language and can thereby guarantee
that the generated CGF expressions are meaningful.

Expressions for objects of the universe T also include variables, i.e. pointers
to subtree linearizations, and projections, which select numbered components
from tuples:

– Variables: $0, $1, $2,... : T.
– Projections: (t ! u) : T if t : T and u : T.

Notice that projections are only needed because of the presence of variables.
The values of variables are not known at compile time; but as soon as they get
known, a well-formed projection can be brought into a form from which it can
be eliminated:

([t1, . . . , tn] ! i) =⇒ ti

In fact, this is the only computation rule needed in CGF, together with the
rule of replacing variables with subtree linearizations. For this replacement, we
maintain an array of these linearizations. The variable replacement rule is

$i{t0, . . . , tn} =⇒ ti

The top-level linearization t∗ is defined compositionally as follows:

f t1 . . . tn =⇒ f∗ {t∗1, . . . , t∗n}

where f∗ is the term defining the linearization of f in the grammar.
The tuple structure is exploited to express linguistic combinations that in-

volve more than just string concatenation. Actually, tuples are just an austere
representation of feature structures, in which all atomic features are encoded as
integers. Tuples can moreover contain more than one string component, which
gives a model of discontinuous constituents. The computational advantage of the
integer representation of features is that tuples can be implemented as arrays,
which can be stored compactly and have efficient lookup.

Here is an example showing how to deal with number agreement in English.
A verb phrase (VP) is a tuple that contains both a singular and a plural form.
A noun phrase (NP) is a tuple that contains both a string and a parameter, the
latter indicating the grammatical number.

abstract Predic
cat S ; NP ; VP ;
fun Pred : NP -> VP -> S ;
fun He : NP ;
fun They : NP ;
fun Talk : VP ;
fun Walk : VP ;

concrete PredicEng of Predic
lin Pred = [(($0!0),(($1!0)!($0!1)))] ;
lin He = ["he",0] ;
lin They = ["they",1] ;
lin Talk = [["talks","talk"]] ;
lin Walk = [["walks","walk"]] ;

The linearization of the tree (Pred They Walk) is computed as follows:

[(($0!0),(($1!0)!($0!1)))] {["they",1], [["walks","walk"]]}
= [((["they",1]!0),(([["walks","walk"]]!0)!(["they",1]!1)))]
= [("they",(["walks","walk"]!1))]
= [("they","walk")]

Again, it is crucial for the computation that the values held by the variables are
of certain types. This is guaranteed when CGF is generated from GF source,
where every category in the abstract syntax is assigned a linearization type in
the concrete syntax. Here, for instance, it is assumed that every NP is a tuple
holding a string and a parameter in range {0,1}, and that every VP is a tuple
holding a tuple with two strings.

To reach the expressive power of GF, in the language-theoretic sense, nothing
more is needed than CGF as presented above. For this formalism, we can define
a linearization algorithm that is linear in the size of the tree, and a parsing
algorithm that is polynomial in the size of the string. The parsing algorithm
is obtained via a reduction to PMCFG [22], which indeed is another grammar
formalism based on tuples. (This result, in [10], does not hold in general if
dependent types appear in the abstract syntas; using them collapses GF to level-
0 formalisms.)

In addition to reasoning, CGF is a good format for implementation. Inter-
preters for CGF have been built in C++, Haskell, Java, and Prolog [18], and
make it possible to embed grammar components in those languages. An even
more intimate embedding is achieved when CGF grammars are translated into a
programming language; such translators have been written for C and JavaScript
[18]. Moreover, CGF grammars can be translated (via context-free or finite-state
approximations) to various formats used for defining language models in speech
recognizers [4].

3 Source GF

Writing grammars in CGF manually is neither safe nor productive. The reasons
are similar to the reasons why machine code is not a good medium for general-
purpose programming:

– The lack of type checking makes it difficult to avoid errors when writing
grammars.

– The selection of elements from tuples by position is error-prone.
– The use of integers to represent grammatical features charges human memory

and makes it possible to confuse features of different types.
– Writing explicit tuples without any abstractions makes the grammars bulky.

The GF source formalism solves these problems by providing a higher-level lan-
guage. A strict, static type system makes the language failure-safe, and abstrac-
tion mechanisms make grammars concise. The range of concrete syntax mappings
is changed from the austere all-encompassing universe of tuples to systems of
records and tables, whose layout can be defined by the programmer and is thus
not given once and for all.

In the GF source language—from now on, just GF—linearizations are built
from the following ingredients:

– Tokens: "foo" : Str (also used as one-element token lists).
– Empty token list: []
– Concatenation of token lists: s ++ t : Str if s,t : Str.
– User-defined parameter types: param Number = Sg | Pl.
– Labelled records: { r1 = t1; . . . ; rn = tn } : { r1 : T1; . . . ; rn : Tn }.
– Finite functions, i.e. tables: table {Sg => "walks" ; Pl => "walk"} :

Number => Str.

Each category in an abstract syntax is given a linearization type (lincat) in the
concrete syntas, and all linearization judgements are type-checked with respect
to these types. Here is the second example from the previous section rewritten
in GF.

abstract Predic = {
cat S ; NP ; VP ;
fun Pred : NP -> VP -> S ;
fun He, They : NP ;
fun NP ;
fun Talk, Walk : VP ;

}
concrete PredicEng of Predic = {
param Number = Sg | Pl ;
lincat S = {s : Str} ;
lincat NP = {s : Str ; n : Number} ;
lincat VP = {s : Number => Str} ;
oper regVP : Str -> VP = \v -> {
s = table {Sg => v + "s" ; _ => v}
} ;

lin Pred np vp = {s = np.s ++ vp.s ! np.n} ;
lin He = {s = "he" ; n = Sg} ;
lin They = {s = "they" ; n = Pl} ;
lin Talk = regVP "talk" ;
lin Walk = regVP "walk" ;

}

The presence of variables means, as in CGF, that more expression forms are
needed:

– Projections from records: t.r returns the field labelled r from the record t.
– Selections from tables: t ! v returns the value assigned to v in the table t.
– Gluing of tokens: "walk" + "s" is computed to "walks".

Note that the case expressions familiar from functional programming languages
can be defined as syntactic sugar for table selections:

case t of {. . .} ≡≡ table {. . .} ! t

This form of expression is convenient for programmers, and will also be used for
presentation purposes below.

An important way in which GF is stronger than CGF is that variables are
no longer only used for the arguments of linearization rules, but can appear
anywhere in the concrete syntax:

– Auxiliary functions (oper) whose definitions bind variables.
– Local anonymous functions (lambda abstracts).
– Local definitions (let expressions).
– Pattern variables in table expressions used for case analysis.

It is the task of compilation from GF to CGF is to eliminate these ”superfluous”
variables. This can be done because their values are known at compile time. A
technique based on partial evaluation is used. The usual evaluation rules of type
theory are in this process applied to terms containing run-time variables.

Because of the way parsing algorithms work, the set of tokens must be known
at compile-time (although it need not be finite). A token expression may thus not
depend on run-time variables, which means that all instances of gluing tokens
(s + t) are eliminated at compile time.

Let us conclude the presentation of GF with an example of parameter types
and pattern matching. Parameter type definitions in GF are like algebraic datatype
definitions in ML and Haskell, except that recursion is not allowed. They are thus
not just enumerations of atomic features, but may introduce constructors that
take arguments. An example is given by the following system, defining French
agreement features as combinations of gender, number, and person:

param Gender = Masc | Fem ;
param Number = Sg | Pl ;
param Person = P1 | P2 | P3 ;
param Agr = Ag Gender Number Person ;

The linearization of verb phrases depends on a parameter of type Agr. In actual
pattern matching, separate branches are not necessarily needed for all values,
but pattern variables can be passed to the right-hand side. This is what happens
when verb phrases are formed from adjectival phrases by using the copula.

cat VP ; AP ;
lincat VP = {s : Agr => Str} ;
lincat AP = {s : Gender => Number => Str} ;
fun CompAP : AP -> VP ;
lin CompAP ap =
{s = table {Ag g n p => copula n p ++ ap.s ! g ! n}} ;

oper copula : Number -> Person -> Str = ...

4 Type checking of GF expressions

The role of type checking in compilers is not just to verify the consistency of the
code and report on errors. It also informs later compilation phases by adding

type annotations to expressions. The most important annotations in GF are the
following:

– Annotate tables with their argument types, to enable eta expansion.
– Annotate projections with integers indicating the positions of the projected

fields.

The information needed for these operations is available at type checking time
and would require the duplication of much of type checking work if performed
later.

A recent addition to the type system is overloading of functions, which has
proved useful in the presentation of large grammar libraries. In type checking,
overloaded functions are replaced by their instances determined by the overload-
ing resolution algorithm. The way overloading works in GF is inspired by C++
[23]. In comparison with C++, the possibility of partial applications makes the
problem more complex, whereas the absence of type casts simplifies the problem.

5 Simplification of GF expressions

Simplification is performed as partial evaluation, which has several ingredients:
eta expansion (5.1); application of evaluation rules (5.2); generalized reductions
needed to guarantee the subformula property (5.3); elimination of variables from
complex parameter expressions (5.4).

5.1 Eta expansion

Eta expansion is step that converts a term to the data form required by the
type of the term. For function types, this form is that of a lambda abstract. For
record types, it is a record with explicit fields appearing in the type. For table
types, it is a table that has explicitly enumerated cases for each value of the
argument type. Thus the expansion rules are as follows:

– t : A → B =⇒ \x → (t x)
– t : { r1 : T1; . . . ; rn : Tn } =⇒ { r1 = t.r1; . . . ; rn = t.rn }
– t : P ⇒ T =⇒ table { V0 ⇒ t !V0; . . . ;Vn ⇒ t !Vn }

Eta-expanded forms correspond directly to CGF expressions of the correspond-
ing types.

5.2 Evaluation rules

The evaluation rules of GF are completely standard: beta conversion of lambda
abstracts, projection from records, selection from tables by pattern matching,
and concatenation of tokens.

– (\x → b) a =⇒ b{x := a}
– {. . . ; r = t; . . .}.r =⇒ t

– table {. . . ; p ⇒ t; . . .} !u =⇒ tγ for the first p that matches u with γ
– "foo" + "bar" =⇒ "foobar"

Pattern matching is similar to ML and Haskell, scanning the patterns from left
to right. Its result is a term tγ where γ is a substitution by which the pattern p
matches the value u. The matched term u may not in general contain variables. If
variables occur in u, the selection must be postponed until the variables receive
values; for run-time variables this means that the selection is passed to the
generated CGF code.

5.3 The subformula property

Eta-expanded records and tables can be easily converted to CGF, but functions
can be converted only if they appear as top-level linearization terms; no terms
of a function type may occur inside those terms.

Now, a linearization term t in

fun f : A1 → · · · → An → A ; linf = t

is a function from the linearization types of A1, . . . , An to the linearization type of
A. These types are built from strings, features, records, and tables: no functions
appear in these types. By a version of Curry-Howard isomorphism, the term t
can be seen as a proof of A depending on the hypotheses A1, . . . , An. In this
isomorphism, record types correspond to conjunctions and parameter types to
disjunctions. No function types occur in the hypotheses or the conclusion. That
no terms of a function type need occur in t is an instance of the subformula
property of intuitionistic propositional calculus in proof theory.

To prove the subformula property, it is not enough to use the ordinary eval-
uation rules. The problem is that the elimination of a function can be blocked
by a variable. A case in point is a term of the form

(casex of{A ⇒ f ; B ⇒ g}) c

where the function application cannot be performed because of x. This term is
isomorphic to a proof in which disjunction elimination is followed by a modus
ponens. For this constellation, Prawitz [16] introduced a generalized reduction
rule:

A ∨B
(A)

C → D
(B)

C → D

C → D C
D =⇒

A ∨B

(A)
C → D C

D

(B)
C → D C

D
D

Now the modus ponens has moved closer to the introductions of the implication,
and can, as Prawitz proved, eventually be reduced away. The corresponding term
transformation in the GF compiler is

(casex of{A ⇒ f ; B ⇒ g}) c =⇒ casex of{A ⇒ f c ; B ⇒ g c}

5.4 Parameter constructors with variables in arguments

Parameter type definitions can introduce constructors that takes arguments,
e.g. the constructor type Ag of French agreement features in Section 3. Now, an
argument of Ag can be a run-time variable, as in

Ag Fem np.n P3

This expression has no translation in CGF. But we can first translate it to a
case expression,

case np.n of {
Sg => Ag Fem Sg P3 ;
Pl => Ag Fem Pl P3
}

which can then be translated to CGF by applying the compilation schemes
of Section 7. This transformation has of course has be performed recursively,
since there can be several occurrences of run-time variables in a constructor
application.

6 Compilation and grammar specialization

A typical GF application is built on top of a domain grammar, whose abstract
syntax is a type-theoretical model of a domain semantics. In the beginning, all
GF grammars were such domain grammars implemented by writing concrete
syntaxes from scratch. But gradually the evolution of the GF compiler permit-
ted writing large-scale resource grammars and using them as libraries. The use
of resource grammars in writing domain grammars is also known as grammar
specialization.

As resource grammars are large and complex, they have high demands on
both time and space. Properly implemented grammar specialization should elim-
inate all run-time penalty potentially caused by resource grammars. To show
how this happens in GF, let us trace through the compilation of a simple do-
main grammar rule implemented using the GF resource grammar library [18].
The purpose of the application is to cover voice commands such as I want to
hear this song. This is an example of how GF was used in the TALK project for
building dialogue systems [14].

The abstract syntax covering the voice command is

cat Command ; Kind ;
fun want_hear_this : Kind -> Command ;
fun Song, Record, Singer : Kind ;

The concrete syntax assigns resource grammar categories as linearization types
to the domain categories. Thus commands are utterances (Utt), kinds are com-
mon nouns (CN):

lincat Command = Utt ; Kind = CN ;

The linearization of the function want hear this is built by using constructor
functions from the resource API. These constructors are either syntactic, having
the form mkC for a function whose value category is C, or lexical, having the
form word C for a lexical unit of category C.

lin want_hear_this x = mkUtt (mkCl i_Pron
(mkVP want_VV (mkVP hear_V2 (mkNP this_Quant x))))

The syntactic constructors are overloaded, for instance mkVP is here used for
both V2 (NP-complement verbs) and VV (VP-complement verbs).

In the resource grammar, a clause like our example has forms for different
tenses and polarities and, e.g. in the case of German, also for different word
orders. So the German variation includes 48 sentence forms, in the range

Pres Simul Pos Main: ich will dieses x hören
Pres Simul Pos Inv: will ich dieses x hören
...
Cond Anter Neg Sub: ich dieses x nicht würde hören wollen haben

Moreover, the form of dieses (“this”) varies according to the gender of x: diesen
Sänger, dieses Lied, diese Platte. All this variation gives initially 3*48 = 144
forms in the expanded tables. However, the linearization type Utt of the top-
level category Command is a plain string, with no variation. The constructor
mkUtt without explicit tense and polarity uses the values present, positive, and
main clause. The category Kind is linearized to CN, which has a 3-valued gender
parameter, so that the variation diesen, dieses, diese cannot be eliminated. So
we have 3 forms that remain in the generated CGF grammar:

ich will diesen x hören
ich will dieses x hören
ich will diese x hören

Further optimizations on the CGF code compactify this grammar by e.g. remov-
ing the repetitions of word strings (Section 8).

7 Translating GF to CGF

Once the GF grammar has been type-annotated and partial-evaluated, transla-
tion to CGF can be performed by compositional compilation schemes:

– lin f $0...$n = t =⇒ lin f = t
– {r1 = t1; . . . ; rn = tn} =⇒ [t1, . . . , tn]
– table{V1 ⇒ t1; . . . ;Vn ⇒ tn} =⇒ [t1, . . . , tn]
– s ++t =⇒ (s, t)
– [] =⇒ (s, t)
– t.r[i] =⇒ (t ! i)

– t!u =⇒ (t!u)
– C v1 . . . vn =⇒ #(C v1 . . . vn)

The expression t.r[i] is a projection annotated by the position i of the label r.
The expression #(v) denotes the integer value of the parameter value v.

The other forms of judgement—param and lincat—are not needed in run-
time grammars and are hence omitted. However, when library grammars are
separately compiled into CGF, these judgements are needed for type checking
modules that use them.

Abstract syntax must be present in CGF, but it needs not be translated, apart
from eliminating some syntactic sugar provided by the GF source language [19].

8 Back-end optimizations on CGF

Even though partial evaluation eliminates unnecessary rules from grammars
(Section 6), the code bloat resulting from eta expansion can be significant. While
eta expansion is indispensable for the compilation to work, some of its drawbacks
can be relieved by back-end optimizations on CGF. This section gives a sum-
mary of two such optimizations, each of which uses a new expression form and
thereby makes CGF less austere.

8.1 Common subexpression elimination

One and the same CGF term can appear several times in a grammar. Such terms
can be captured by a standard technique of common subexpression elimination,
which replaces the subterms with new constants and adds the definitions of those
constants into the grammar. These expressions can contain run-time variables,
and they are computed by simple syntactic replacement. The computation can
be performed off-line in the whole grammar, but usually it is better to keep them
in the run-time grammar and look them up at need.

Automatic subexpression elimination is often more powerful than hand-devised
code sharing in the source code, because it catches all subexpressions that are
used at least twice in the code. It is moreover iterated so that it takes into ac-
count the subexpressions in the definitions of global constants. The shrinkage of
code size is typically by an order of magnitude.

8.2 Prefix-suffix tables

Suppose we have in a grammar the rule

Walk = [["walk", "walks", "walked", "walking"]]

The prefix-suffix table representation divides an array of words to the longest
common prefix and an array of suffixes.

Walk = [[("walk" + ["","s", "ed", "ing"])]]

The power of this representation comes from the fact that suffix arrays tend to be
repeated in a language, and can therefore be collected by common subexpression
elimination. After this, a grammar may look as follows:

__a18 = ["","s", "ed", "ing"]
Destroy = [[("destroy" + __a18)]]
Talk = [[("talk" + __a18)]]
Walk = [[("walk" + __a18)]]

Thus this optimization in fact identifies a set of concatenative inflection paradigms
of the language.

9 Implementation

The GF grammar compiler is a central component of the GF grammar develop-
ment system, i.e. the program called gf and available from [18] as open-source
software. The austere CGF format described in this paper is a second-generation
target language for GF. At the moment, the GF system still uses a richer target
language called GFC. GFC is a compromise between run-time simplicity and the
concerns of separate compilation. The current GF system does produce CGF as
a back-end format (under the name GFCC), but separate compilation and parser
generation still depend on GFC.

10 Related work

Static type checking and library specialization are not very common in grammar
formalisms. HPSG has type checking of typed feature structures [5], and Regu-
lus [21] uses a technique called explanation-based learning for specializing large
resource grammars to domain-specific run-time grammars. Regulus moreover
compiles high-level unification grammars into lower-level context-free grammars
by expanding rules depending on finite feature sets into sets of context-free rules.

In the new wave of grammar formalisms inspired by Curry [6], ACG has
an implementation where generation is treated as term rewriting and parsing
as higher-order linear matching [7]. These techniques are direct and elegant ap-
plications of the metatheory of ACG, but they do not give narrow complexity
bounds. However, the equivalence results for fragments of ACG and classes such
as context-free and mildly context-sensitive grammars [8] could serve as basis of
efficient implementations via compilation.

References

1. A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and
Tools. Second Edition. Addison-Wesley, 2006.

2. K. Beesley and L. Karttunen. Finite State Morphology. CSLI Publications, 2003.

3. C. Böhm. On a family of Turing machines and the related programming language.
ICC Bulletine, 3:185–194, 1964.

4. B. Bringert. Speech Recognition Grammar Compilation in Grammatical Frame-
work. In SPEECHGRAM 2007: ACL Workshop on Grammar-Based Approaches
to Spoken Language Processing, June 29, 2007, Prague, 2007.

5. A. Copestake and D. Flickinger. An open-source grammar development environ-
ment and broad-coverage English grammar using HPSG. Proceedings of the Second
conference on Language Resources and Evaluation (LREC-2000), 2000.

6. H. B. Curry. Some logical aspects of grammatical structure. In Roman Jakobson,
editor, Structure of Language and its Mathematical Aspects: Proceedings of the
Twelfth Symposium in Applied Mathematics, pages 56–68. American Mathematical
Society, 1963.

7. Ph. de Groote. Towards Abstract Categorial Grammars. In Association for Com-
putational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter, Toulouse, France, pages 148–155, 2001.

8. Ph. de Groote. Tree-Adjoining Grammars as Abstract Categorial Grammars. In
TAG+6, Proceedings of the sixth International Workshop on Tree Adjoining Gram-
mars and Related Frameworks, pages 145–150. Università di Venezia, 2002.

9. D Dowty. Word Meaning and Montague Grammar. D. Reidel, Dordrecht, 1979.
10. P. Ljunglöf. The Expressivity and Complexity of Grammatical Framework. PhD

thesis, Dept. of Computing Science, Chalmers University of Technology and
Gothenburg University, 2004.

11. R. Montague. Formal Philosophy. Yale University Press, New Haven, 1974. Col-
lected papers edited by Richmond Thomason.

12. R. Muskens. Meaning and Partiality. PhD thesis, University of Amsterdam, 1989.
13. R. Muskens. Lambda Grammars and the Syntax-Semantics Interface. In R. van

Rooy and M. Stokhof, editors, Proceedings of the Thirteenth Amsterdam Collo-
quium, pages 150–155, Amsterdam, 2001.

14. N. Perera and A. Ranta. Dialogue System Localization with the GF Resource
Grammar Library. In SPEECHGRAM 2007: ACL Workshop on Grammar-Based
Approaches to Spoken Language Processing, June 29, 2007, Prague, 2007.

15. C. Pollard. Higher-Order Categorial Grammar. In M. Moortgat, editor, Proceedings
of the Conference on Categorial Grammars (CG2004), Montpellier, France, pages
340–361, 2004.

16. D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, 1965.
17. A. Ranta. Type Theoretical Grammar. Oxford University Press, 1994.
18. A. Ranta. Grammatical Framework Homepage, 2002.

www.cs.chalmers.se/~aarne/GF/.
19. A. Ranta. Grammatical Framework: A Type-theoretical Grammar Formalism. The

Journal of Functional Programming, 14(2):145–189, 2004.
20. A. Ranta. Modular Grammar Engineering in GF. Research on Language and

Computation, 2007. To appear.
21. M. Rayner, B. A. Hockey, and P. Bouillon. Putting Linguistics into Speech Recog-

nition: The Regulus Grammar Compiler. CSLI Publications, 2006.
22. H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-free gram-

mars. Theoretical Computer Science, 88:191–229, 1991.
23. B. Stroustrup. The C++ Programming Language, Third Edition. Addison-Wesley,

1998.

