Reducing structured prediction to classification

Richard Johansson

Machine learning seminar
March 3, 2016
acknowledgement

- this talk has drawn inspiration from the *learning to search* tutorial by Hal Daumé III and John Langford
- see http://hunch.net/~l2s/
overview

introduction

reduction to classification

training the action classifier

better training
structured prediction problems

- In classification, we learn classifiers that outputs an atomic label y for a given input x
 - and y comes from a finite (and typically small) set \mathcal{Y}
- In this talk, we will go beyond classification and predict a non-atomic **data structure**
 - for instance a sequence, a tree, a DAG, ...
- This type of problem is common in language processing, vision, biology, and other fields
example: sequence tagging

- input: a sequence of symbols (e.g. words, gene sequence)
- output: another sequence of the same length

United Nations official Ekeus heads for Baghdad .
B-ORG I-ORG O B-PER O O B-LOC O

A C A T G G T C T G A A
N N C C C C C C C C C C C C N
example: parsing a sentence

- input: a sequence of words
- output: a graph representing the grammatical relations

output from Stanford CoreNLP
a bit more formally

- in structured prediction,
 - the output space $\mathcal{Y}(x)$ is defined by the input x
 - $\mathcal{Y}(x)$ is huge
 - the outputs $y \in \mathcal{Y}(x)$ consist of distinct but interdependent parts
- we have a **loss function** $L(y, \hat{y})$ that compares a predicted output to a gold standard
 - e.g. the **Hamming loss** for sequences: the number of errors
 - **attachment errors** for parse trees
- we want our learning process to find a good predictor f, so that the expected loss is as low as possible:

$$\mathbb{E}_{(x,y)} L(f(x), y)$$
two high-level approaches

▶ structured learning algorithms: modify the learning algorithm to attack the complex problem directly
 ▶ perceptron → structured perceptron [Collins, 2002]
 ▶ SVM → structured SVM [Taskar et al., 2004]
 ▶ logistic regression → CRF [Lafferty et al., 2001]
 ▶ etc
two high-level approaches

- **structured learning algorithms**: modify the learning algorithm to attack the complex problem directly
 - perceptron \rightarrow structured perceptron [Collins, 2002]
 - SVM \rightarrow structured SVM [Taskar et al., 2004]
 - logistic regression \rightarrow CRF [Lafferty et al., 2001]
 - etc

- **reduction to classification** – this talk!
overview

introduction

reduction to classification

training the action classifier

better training
reduction to classification: general ideas

- break down the complex prediction problem into a sequence of simple decisions
 - think of it as a system that gradually consumes input and generates output
 - while doing that, the system has some notion of what it is doing: a state
 - formally: a state machine
- in each state, we have a finite set of actions to choose from
 - so we can use standard classifiers to select the action
 - the classifiers use features from the input and from the state
example: sequence tagging

United Nations official Ekeus heads for Baghdad.
example: sequence tagging

United Nations official Ekeus heads for Baghdad.
example: sequence tagging

United Nations official Ekeus heads for Baghdad.
example: sequence tagging

United Nations official Ekeus heads for Baghdad.
example: sequence tagging

United Nations official Ekeus heads for Baghdad.
example: sequence tagging

United Nations official Ekeus heads for Baghdad .

B-ORG I-ORG O B-PER O
example: sequence tagging

United Nations official Ekeus heads for Baghdad .

B-ORG I-ORG O B-PER O O
example: sequence tagging

United Nations official Ekeus heads for Baghdad.
example: sequence tagging

United Nations official Ekeus heads for Baghdad .
B-ORG I-ORG O B-PER O O B-LOC O
example: parsing a sentence

- **input**: a sequence of words
- **output**: a graph representing the grammatical relations

![Diagram of a parsing example](image)

- **transition-based parsing**:
 - **state**: stack and queue, and the relations we’ve output so far
 - **classifier** selects an action that modifies the stack or queue, and outputs relations
transition-based parsing example

\[
S \quad Q
\]

\[
\langle D \rangle \text{Then we met the cat.}
\]
transition-based parsing example

\[
\begin{array}{c}
S \\
<\text{D}> \\
Q \\
\text{Then} \quad \text{we} \quad \text{met} \quad \text{the} \quad \text{cat} \quad .
\end{array}
\]
transition-based parsing example

S

Q

$<D>$ Then

we met the cat .
transition-based parsing example

\[S \]
\[\text{Then we} \]

\[Q \]
\[\text{met the cat .} \]
transition-based parsing example
transition-based parsing example

Then we
transition-based parsing example

Then we met the cat.
transition-based parsing example

The diagram illustrates a transition-based parsing example, where the transition rules are applied to a sentence to parse it. The sentence is "Then we met the cat." The diagram shows the parsing process step by step, starting with the initial state S and ending with the final state Q, indicating the sentence is parsed correctly.
transition-based parsing example
advantages

- speed!

- flexibility: we can define any feature we want from the input and the state, no Markov assumptions etc
 - ...except that we can’t use features from future states
but won’t the greedy decisions be a problem?

▶ not necessarily, if we have good lookahead features [Liang et al., 2008]
▶ or we can keep a list of the k best sequences seen so far – **beam search**
overview

introduction

reduction to classification

training the action classifier

better training
training the action classifier

- how can we train the action classifier?

- simplest idea: learn from an expert
 - walk the state machine so that it generates the gold-standard outputs
 - collect the states we observe along the way: these are our training instances
- this is similar to imitation learning in robotics
training the action classifier

- how can we train the action classifier?
- simplest idea: learn from an expert
 - “walk” the state machine so that it generates the gold-standard outputs
 - collect the states we observe along the way: these are our training instances
- this is similar to imitation learning in robotics
simple learning from an expert: formalized

initialize training set $\mathcal{D} = \emptyset$
for $(x, y) \in (X, Y)$
 for each state visited by π^* in x
 add instance $(s, \pi^*(s))$ to \mathcal{D}
train classifier $\hat{\pi}$ on \mathcal{D}
return $\hat{\pi}$

- the expert π^* is also called the **optimal policy**
- it uses the gold-standard output y
example: sequence tagging (with features)

United Nations official Ekeus heads for Baghdad.

B-ORG I-ORG

↑

- let’s keep things simple and extract just two features from each state:
 - the tag from the previous step
 - the word at the current position

[(’<START>’, ’United’), ’B-ORG’),
 (’B-ORG’, ’Nations’), ’I-ORG’),
 (’I-ORG’, ’official’), ’O’),
...
]
examples of this training strategy

▶ a lot of name taggers following Ratinov and Roth [2009]
▶ MaltParser [Nivre et al., 2007] – probably the most widely used multilingual parser
▶ ... and the more recent Stanford neural-net dependency parser [Chen and Manning, 2014]
overview

introduction

reduction to classification

training the action classifier

better training
why is this problematic?
why is this problematic?

- when we are guided by the expert, we get no training in the unseen parts of the search space!
example: playing Super Mario

[Ross and Bagnell, 2010] prove a theorem showing that the expected number of errors can grow \textit{quadratically} as a function of the sequence length, because of error compounding
letting go of expert guidance

- we can address this problem by gradually letting the learned action classifier explore the state space
- a few different variants of this idea:
 - SEARN [Daumé III et al., 2009]
 - DAgger [Ross et al., 2011]
 - AggreVaTe [Ross and Bagnell, 2014]
 - LOCLS [Chang et al., 2015]
DAgger and AggreVaTe (preliminaries)

- in each iteration i we will train a classifier $\hat{\pi}_i$ – a policy
- we have some weight decay scheme β_1, β_2, \ldots that controls the probability of using the expert to generate states as training progresses
 - for instance $1, p, p^2, \ldots$
- in each state s, we can ask the expert for the best action $\pi^*(s)$ – even if s is a messed-up state!
DAgger (Ross et al., 2011)

initialize training set \(\mathcal{D} = \emptyset \)
\(\hat{\pi}_0 \) = dummy classifier
for \(i = 1, \ldots, N \)
 let \(\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_{i-1} \)
 for \((x, y) \in (X, Y) \)
 for each state \(s \) visited by \(\pi_i \) in \(x \)
 add instance \((s, \pi^*(s)) \) to \(\mathcal{D} \)
 train classifier \(\hat{\pi}_i \) on \(\mathcal{D} \)
return \(\hat{\pi}_N \)
AggreVaTe (Ross et al., 2014)

initialize training set $\mathcal{D} = \emptyset$

$\hat{\pi}_0 =$ dummy classifier

for $i = 1, \ldots, N$

let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_{i-1}$

for $(x, y) \in (X, Y)$

for each state s visited by π_i in x

for each action a available in s

compute cost c_a of a

add instance (s, a, c_a) to \mathcal{D}

train cost-sensitive classifier $\hat{\pi}_i$ on \mathcal{D}

return $\hat{\pi}_N$

- the cost c_a of action a is the difference in loss between executing a and the best action if we “roll out” using π^*
so what about π^*?

- as mentioned, $\pi^*(s)$ is the best action in s even if s is bad
- how easy is it in practice to determine $\pi^*(s)$?
- it depends – on the prediction problem and the loss function!
 - it is trivial for sequence tagging with Hamming loss
 - for transition-based parsing, it wasn’t known until recently [Goldberg and Nivre, 2013]
results: handwriting recognition (DAgger)

Figure 5: Character accuracy as a function of iteration.
Table 4. The UAS score on dependency parsing data set; columns are roll-out and rows are roll-in. The best result is bold. **SEARN** achieves 84.0, 81.1, and 63.4 when the reference policy is optimal, suboptimal, and bad, respectively. **LOLS** is Learned/Mixture and highlighted in green.
Results: training a sequence tagger (LOLS)
results: sequence tagging efficiency (LOLS)
try this at home

- **Vowpal Wabbit** is a highly efficient classification library
 - http://hunch.net/~vw/
- and it includes the reductions I’ve discussed today for sequence tagging and parsing
- it also has C and Python APIs, so that you can plug in your own problem
 - for a new prediction problem, you would have to define the search space and the loss
- see more at the learning to search tutorial:
 - http://hunch.net/~l2s/
references I

References II

