
Introduction

D. Dubhashi

Introduction

Bayesian machine
learning

Example

Marginal likelihood

Choosing a prior

Summary

TDA231
Going Bayesian

Devdatt Dubhashi
dubhashi@chalmers.se

Dept. of Computer Science and Engg.
Chalmers University

January 30, 2017



Introduction

D. Dubhashi

Introduction

Bayesian machine
learning

Example

Marginal likelihood

Choosing a prior

Summary

Introduction

I We have seen two ways of finding the ‘best’ parameter
values:

I Those that minimise the loss.
I Those that maximise the likelihood.
I If noise is Gaussian, both are the same:

ŵ = (XTX)−1XTt

I Is this the ‘right’ set of parameters?

I Is there a ‘right’ set of parameters?
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Problems with a point estimate

w

L

I Might be more than one ‘best’ value.

I Might not be a single representative value.

I Different values might give very different predictions.

I Is there an alternative?
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Averaging

w

L

w1 w2 wA. . .

I Prediction is some function of w. Say f (w).

I Choose A different values – w1, . . . ,wA.

I Compute
∑A

a=1 qaf (wa)

I qa is proportional to L (subject to
∑

a qa = 1)

I Increasing A seems like a good idea....
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Example

I Olympic 100 m data.

I Want to predict winning time at London 2012 – tnew.
I Choose 2 ‘good’ values of w

I w1 predicts tnew = 9.5 s
I w2 predicts tnew = 9.2 s

I According to likelihood, w2 is twice as likely as w1.
I q1 + q2 = 1, q2 = 2q1.
I Therefore: q1 = 1/3, q2 = 2/3

I Average prediction is (1/3)× 9.5 + (2/3)× 9.2 = 9.3
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Averaging

I What if w is a random variable with density p(w|stuff)?
I Imagine a weird die that chucks out values of w.

I We can use every value of w!
I We do this with the following expectation:

Ep(w|stuff) {f (w)} =

∫
f (w)p(w|stuff) dw

I An average of predictions from each possible w
weighted by how likely that w value is.

I What is ‘stuff’?

I How do we compute p(w|stuff)?
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Bayes rule

I ‘Stuff’ should include data: X, t: p(w|X, t)
I i.e. what we know about w after observing some data.

I We’ve seen something like this before: p(t|w,X, σ2) –
the likelihood.

I We’ll ignore σ2 for now.

I Can we use p(t|X,w) to find p(w|X, t)?

I Bayes rule:

p(w|X, t) =
p(t|X,w)p(w)

p(t|X)

I Comes from:

p(w|X, t)p(t|X) = p(t|w,X)p(w)

p(w, t|X) = p(w, t|X)
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Bayes rule

I Bayes rule:

p(w|X, t) =
p(t|X,w)p(w)

p(t|X)

I Posterior density: p(w|X, t)
I This is what we’re after.

I Likelihood : p(t|X,w)
I We’ve used this before.

I Prior density: p(w)
I This is new: do we know anything about the parameters

before we see any data?

I Marginal likelihood: p(t|X)
I This is new: w isn’t in here. It is a normalisation

constant. Ensures
∫
p(w|X, t) dw = 1.
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Computing the posterior

I Unfortunately, computing the posterior is hard...

I ...because marginal likelihood p(t|X) is hard to
compute:

p(t|X) =

∫
p(t|w,X)p(w) dw

I In some cases we can do it (this lecture).
I In most we can’t and are forced to (later in course):

I Approximate p(w|X, t) with something else.
I Sample from p(w|X, t) (incredibly, we can sample from

it even if we can’t compute it!)
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When can we compute the posterior?

Conjugacy (definition)

A prior p(w) is said to be conjugate to a likelihood it results
in a posterior of the same type of density as the prior.

I Example:
I Prior: Gaussian; Likelihood: Gaussian; Posterior:

Gaussian
I Prior: Beta; Likelihood: Binomial; Posterior: Beta
I Many others, e.g.

http://en.wikipedia.org/wiki/Conjugate_prior

http://en.wikipedia.org/wiki/Conjugate_prior
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Why is this important?

I Bayes rule:

p(w|X, t) =
p(t|X,w)p(w)

p(t|X)

I If prior and likelihood are conjugate, we know the form
of p(w|X, t)

I Therefore, we know the form of the normalising
constant.

I Therefore, we don’t need to compute p(t|X)

I We just need to use some algebra to make
p(t|X,w)p(w) look like the correct density, ignoring all
terms without w.
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Example - Olympic data

I We’ll use the (Gaussian) likelihood we used for
maximum likelihood:

p(t|w,X, σ2) = N (Xw, σ2I)

I The prior conjugate to the Gaussian is Gaussian. So:

p(w) = N (0,S), S =

[
100 0

0 5

]
I Mean (0) and covariance (S) are design choices.

I Posterior must be gaussian with unknown parameters:

p(w|X, t, σ2) = N (µ,Σ)
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Finding posterior parameters

I Ignoring normalising constant, the posterior is:

p(w|X, t, σ2) ∝ exp

{
−1

2
(w − µ)TΣ−1(w − µ)

}
= exp

{
−1

2
(wTΣ−1w − 2wTΣ−1µ + µTΣ−1µ)

}
∝ exp

{
−1

2
(wTΣ−1w − 2wTΣ−1µ)

}
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Finding posterior parameters

I Ignoring non w terms, the prior multiplied by the
likelihood is:

p(t|w,X, σ2)

∝ exp

{
− 1

2σ2
(t− Xw)T(t− Xw)

}
exp

{
−1

2
wTS−1w

}
∝ exp

{
−1

2

(
wT

[
1

σ2
XTX + S−1

]
w − 2

σ2
wTXTt

)}
I Posterior (from previous slide):

∝ exp

{
−1

2
(wTΣ−1w − 2wTΣ−1µ)

}
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Finding posterior parameters

I Equate individual terms on each side.

I Covariance:

wTΣ−1w = wT

[
1

σ2
XTX + S−1

]
w

Σ =

(
1

σ2
XTX + S−1

)−1

I Mean:

2wTΣ−1µ =
2

σ2
wTXTt

µ =
1

σ2
ΣXTt
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Olympic example

I To make numbers better, rescape olympic year:
I 1896 = 1, 1900 = 2, . . . , 2008 = 27, 2012 = 28

I Prior density:

w0

w
1

−20 −10 0 10 20
−6

−4

−2

0

2

4

6

I Mean (0) and covariance (S).

I Quite a vague prior.
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Olympic example

w0

w
1

8 10 12 14
−0.5

0

0.5

0 5 10 15 20 25 30
8

9

10

11

12

13

x

t

Posterior (left) (prior shown in grey, zoomed in) and
functions corresponding to some w sampled from posterior

(right).
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Olympic example – predictions

I Our motivation for being Bayesian was to be able to
average predictions (at wnew) over all w:

Ep(w|X,t,σ2 {f (w)} =

∫
f (w)p(w|t,X, σ2) dw

I For our model, f (w) is another Gaussian

N (wTxnew, σ
2)

I Make sure you’re happy with this!

I We can compute this expectation exactly, to give
predictive density:

p(tnew|X, t, xnew, σ
2) = N (xT

newµ, σ
2 + xT

newΣxnew)
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Olympic example – predictions

8.5 9 9.5 10 10.5
0

0.5

1

1.5

2

tnew

p
(t

n
e
w
|x

n
e
w
,.

..
)

Predictive density at 2012 Olympics. Note that σ2 was fixed
at 0.05.
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Computing posterior: recipe

I (Assuming prior conjugate to likelihood)

I Write down prior times likelihood (ignoring any
constant terms)

I Write down posterior (ignoring any constant terms)

I Re-arrange them so the look like one another

I Equate terms on both sides to read off parameter
values.
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Marginal likelihood

I So far, we’ve ignored p(t|X, σ2), the normalising thing
in Bayes rule.

I We stated that it was equal to (because it’s a
normalising thing):

p(t|X, σ2) =

∫
p(t|X,w, σ2)p(w) dw

I We’re averaging over all values of w to get a value for
how good the model is.

I How likely is t given X and the model. e.g. ‘first order
polynomial’.

I Can use this to compare models.
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Marginal likelihood

I When prior is N (µ0,Σ0) and likelihood is N (Xw, σ2I),
marginal likelihood is:

p(t|X, t, σ2,µ0,Σ0) = N (Xµ0, σ
2I + XΣ0XT)

I i.e. an N-dimensional Gaussian evaluated at t.



Introduction

D. Dubhashi

Introduction

Bayesian machine
learning

Example

Marginal likelihood

Choosing a prior

Summary

Marginal likelihood – example
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Some data generated from a 3rd order polynomial (left) and
the marginal likelihood for polynomials of varying order.
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Choosing a prior

I How should we choose the prior?
I Prior effect will diminish as more data arrive.
I When we don’t have much data, prior is very important.

I Some influencing factors:
I Data type: real, integer, string, etc.

I Expert knowledge: ’the coin is fair’, ’the model should
be simple’

I Computational considerations (not as important as it
used to be!)

I If we know nothing, can use a broad prior – e.g.
uniform density.
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Summary

I Moved away from a single parameter value.

I Saw how predictions could be made by averaging over
all possible parameter values – Bayesian.

I Saw how Bayes rule allows us to get a density for w
conditioned on the data (and other stuff).

I Computing the posterior is hard except in some cases....

I ....we can do it when things are conjugate.

I Can also (sometimes) compute the marginal
likelihood....

I ...and use it for comparing models.
I No need for costly cross-validation.
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