
TDA 231 Machine Learning: Homework 3 
Goal: Feed-forward neural networks

Grader: Mikael
kageback@chalmers.se

Due Date: May 7, 2018

General guidelines:

1. All solutions to theoretical problems, and discussion regarding practical problems, should be submitted 
in a single file named report.pdf

2. All matlab files have to be submitted as a single zip file named code.zip.

3. The report should clearly indicate your name, personal number and email address

4. All datasets can be downloaded from the course website.

5. All plots, tables and additional information should be included in report.pdf

6. For questions regarding the homework contact Mikael (kageback@chalmers.se)

1 Theoretical problems

Problem 1.1 [Topological properties, 2 points]

(a) Which of the following neural networks can be trained using backpropagation?

(1) (2) (3) (4)

(b) In general: Which topological properties must the network fulfill?

Problem 1.2 [Committee, 2 points]

Brian wants to make his feed-forward network (with no hidden units) using a linear output neuron more
powerful. He decides to combine the predictions of two networks by averaging them. The first network has

1



TDA 231 Homework 3, Page 2 of 6 Due: May 7, 2018

weights w1 and the second network has weights w2. The prediction of this committee for an example x is
therefore:

y =
1

2
wT

1 x+
1

2
wT

2 x

Can we get the exact same predictions as this combination of networks by using a single feed-forward network
(again with no hidden units) using a linear output neuron and weights w3 = f(w1,w2), where f(w1,w2) is
some linear function? Prove your claim!

Problem 1.3 [Backpropagation - shallow network, 2 points]

Consider a neural network with only one training case with input x = (x1, x2, . . . , xn)
T and correct output

t ∈ {0, 1}. There is only one output neuron, which is linear, i.e. y = wTx (notice that there are no biases).
The cost function is a simple squared error (E = 1

2 (t− y)
2). The network has no hidden units, so the inputs

are directly connected to the output neuron with weights w = (w1, w2, . . . , wn)
T . We’re in the process of

training the neural network with the backpropagation algorithm. What will the algorithm add to wi for the
next iteration if we use a step size (also known as a learning rate) of λ?

Problem 1.4 [Backpropagation, 4 points]

Derive general expressions for the partial derivatives of an error function E, surrounding a neuron j, in the
feed-forward neural network depicted in Figure 1.

j
layer

i
layer

k
layer

zi
yi

wij

zj
yj

wjk

zk
yk

Figure 1: Three layer feed-forward neural network. Each layer labeled by its respective index variable. I.e.
the letter of the index indicates which layer the symbol corresponds to.

For convenience, we may consider only one training example and ignore the bias term. Forward propagation
of the input zi is done as follows.

yi = g(zi)

zj =
∑
i

wijyi

yj = g(zj)

zk =
∑
j

wjkyj

yk = g(zk)

Where g(z) is some differentiable function (e.g. the logistic function).

Now it is your job to do the back propagation. The incoming error derivatives ∂E
∂yk

are here given and can
be used to compute downstream derivatives using the chain-rule. More precisely, give expressions where

Page 2



TDA 231 Homework 3, Page 3 of 6 Due: May 7, 2018

each factor is a computable derivative (or already computed as in the case of ∂E
∂yk

). Tips: It is ok to reuse
computed factors in subsequent subproblems.

(a) ∂E
∂zk

=

(b) ∂E
∂zj

=

(c) ∂E
∂wjk

=

(d) ∂E
∂wij

=

2 Practical problems

In this assignment, you are going to train a feed-forward neural network to recognizing handwritten digits.
You will be implementing back propagation and experimenting with efficient optimization and regularization.

The input to the neural network is a 16 by 16 image of greyscale pixels, showing an image of a handwritten
digit. The output, that the model is supposed to generate, is which of the 10 different digits that is currently
presented to the model.

The model needs an input layer consisting of 256 units, i.e. one for each pixel, one hidden layer of logistic
units, and it uses a 10-way softmax as the output layer. To keep things as simple as possible, we’re not
including biases in our model.

The dataset for this assignment is the USPS collection of handwritten digits. It consists of scans (images)
of digits that people wrote.

For training, we are mostly interested in the cross-entropy error of the model. As opposed to the classification
error rate, which is more useful for the evaluation of the model. The reason is that the cross-entropy error
is continuous and behaves better than the classification error rate. Only at the very end will we look at the
classification error rate.

Further, to promote simpler solutions during training we will use weight decay. In practice this means adding
the L2 norm as a term to the error function. Hence, the total error will be E = EClassification+αEweightdecay.
Where α is the weight decay constant.

Problem 2.1 [Backpropagation on paper, 3 points]

Before you can start coding you need to derive the equations you are going to implement. Compute expres-
sions for the gradients of the cost function, using back propagation, corresponding to the above described
network. You can think of these as instantiations of the general expressions derived in Problem 1.4 for this
specific problem, plus the gradient corresponding to the weight decay term. Include your derivations in the
report!

The cross-entropy error gradient with respect to the Softmax input (z), ∂EClassification

∂z = prediction−target,
can be considered as given. However, showing that the given gradient is indeed correct will gain you a special
place in the graders heart!

Page 3



TDA 231 Homework 3, Page 4 of 6 Due: May 7, 2018

2.1 Programming

Most of the code has already been written for you. The script in net.m loads the data (training, validation,
and test), performs the optimization, and reports the results, including some numbers and a plot of the
training data and validation data cost as training progresses. For the optimization it needs to be able to
compute the gradient of the cost function, and that part is up to you to implement, in the function grad.
You’re not allowed to change any other part of the code. However, you should take a quick look at it, and in
particular you should make sure that you understand the meaning of the various parameters that the main
script takes (see line 1 of net.m).

The program checks your gradient computation for you, using a finite difference approximation to the
gradient. If that finite difference approximation results in an approximate gradient that’s very different from
what your gradient computation procedure produced, then the program prints an error message. This is
hugely helpful debugging information. Imagine that you have the gradient computation done wrong, but
you don’t have such a sanity check: your optimization would probably fail in many weird and wonderful
ways, and you’d be worrying that perhaps you picked a bad learning rate or so. With a finite difference
gradient checker, at least you’ll know that you probably got the gradient right. It’s all approximate, so the
checker can never know for sure that you did it right, but if your gradient computation is seriously wrong,
the checker will probably notice.

Take a good look at the cost computation, and make sure that you understand it. Notice that there’s
classification cost (cross-entropy error) and weight decay cost, which are added together to make the cost.
Also notice that the cost function is an average over training cases, as opposed to a sum. Of course, that
affects the gradient as well.

2.1.1 Setting up

Download the code and the data from the course homepage. Make sure that the code file is called "net.m"
and the data file is called "data.mat". Place both of them in the same directory, start Matlab, cd to that
directory, and run a test run without any training: net(0, 0, 0, 0, 0, false, 0). You should see messages that
tell you the cost and classification error rate without any training. The cost on the training data for that
test run should be 2.302585.

Problem 2.2 [Backpropagation, 2 points]

Use the expressions you derived in Problem 2.1 to implement Backpropagation for the model by following
the steps below.

Optional: for-loops are very slow in matlab. Hence, though it is not necessary to do the experiments, they
will run much faster if you vectorize the code (see matlab help for more info).

1. Run net(1e7, 7, 10, 0, 0, false, 4), i.e. a run with a huge weight decay so that the weight decay cost
overshadows the classification cost. You should see a gradient error message from gradient checker.

2. Implement the weight decay part of the cost gradient and run net(1e7, 7, 10, 0, 0, false, 4) again. If
the gradient check passes, then you probably did this right. If it doesn’t, take a close look at the error
message, and try to figure out where you may have made a mistake.

3. Run net(0, 7, 10, 0, 0, false, 4), i.e. turn weight decay off, and you will see the gradient error message
coming back.

4. Implement the classification cost gradient, and if you get any error message from the gradient checker,
look closely at the numbers in that error message.

Page 4



TDA 231 Homework 3, Page 5 of 6 Due: May 7, 2018

Report the training data cost when running net(0.1, 7, 10, 0, 0, false, 4). Use at least 5 digits after the
decimal point. Please, include all the code you write in the the report.

2.2 Experimentation

To investigate generalization, we need a training set, a validation set, and a test set. Hence, the dataset has
been split in 3 groups. We train our networks on the training set, we use the validation set to find out what
parameter settings generalize well, and we use the test set to evaluate the models performance. Those three
subsets have already been made for you, and you’re not expected to change them (you’re not even allowed
to change them). The full USPS dataset has 11,000 images. We’re using 1,000 of them as training data,
another 1,000 as validation data, and the remaining 9,000 as test data. Normally, one would use most of the
data as training data, but for this assignment we’ll use less, so that our programs run more quickly.

Before we get to the issue of generalization, we need a good optimization strategy. The optimizer that we
will be using is stochastic gradient descent with momentum. The code is given but you will need to find
good values for the learning rate and the momentum multiplier.

We will start with a small version of the task, to best see the effect of the optimization parameters. The
small version do not use weight decay or early stopping, only 10 hidden units, 70 optimization iterations,
and mini-batches of size 4 (usually, mini-batch size is more like 100, but for now we use 4).

While investigating how the optimization works best, concentrate on the cost on training data. That’s what
we’re directly optimizing, so if that gets low, then the optimizer did a good job, regardless of whether the
solution generalizes well to the validation data.

Do an initial run with learning rate 0.005 and no momentum: run net(0, 10, 70, 0.005, 0, false, 4). What is
the training data cost? Write it down for reference, but you do not need to report it.

In the plot you’ll see that training data cost and validation data cost are both decreasing, but they’re still
going down steadily after those 70 optimization iterations. We could run it longer, but for now we won’t.
We’ll see what we can do with 70 iterations.

Try a bigger learning rate: LR=0.5, and still no momentum. You’ll see that this works better.

Finding a good learning rate is important, but using momentum well can also make things work better.
Without momentum, we simply add λ(−∂E

∂w ) to w at every iteration, but with momentum, we use a more
sophisticated strategy: we keep track of the momentum speed, using vt+1 = vtβ − ∂E

∂w , and then we add vλ
to w. The momentum parameter β can be anything between 0 and 1, but usually 0.9 works well.

Problem 2.3 [Optimization, 2 points]

Experiment with a variety of learning rates to find out which works best. Try 0.002, 0.01, 0.05, 0.2, 1.0, 5.0,
and 20.0. All of those both without momentum (i.e. momentum=0.0 in the program) and with momentum
(i.e. momentum=0.9 in the program). Hence, a total of 7 x 2 = 14 experiments to run. Remember, what we
are interested in right now is the cost on the training data, because that shows how well the optimization
works. Which of those 14 worked best?

(a) Was the best run a run with momentum or without momentum?

(b) What was the learning rate for the best of those 14 runs?

Page 5



TDA 231 Homework 3, Page 6 of 6 Due: May 7, 2018

Now that we found good optimization settings, we are switching to a somewhat bigger task, in order to
investigate generalization. Now we are mostly interested in the classification cost on the validation data: if
that’s good, then we have good generalization, regardless whether the cost on the training data is small or
large.

Notice that we’re measuring only the classification cost. We are not interested in the weight decay cost. The
classification cost is what shows how well we generalize. When we don’t use weight decay, the classification
cost and the final cost are the same, because the weight decay cost is zero.

Problem 2.4 [Generalization, 3 points]

(a) We’ll start with zero weight decay, 200 hidden units, 1000 optimization iterations, a learning rate of
0.35, momentum of 0.9, no early stopping, and mini-batch size 100, i.e. run net(0, 200, 1000, 0.35, 0.9,
false, 100). This run will take more time. What is the validation data classification cost now? Write
your answer with at least 5 digits after the decimal point.

(b) The simplest form of regularization is early stopping, i.e. use the weights as they were when validation
data cost was as lowest. As can be seen in the plot, this is not at the end of the 1000 optimization
iterations, but quite a bit earlier. The script has an option for early stopping. Run the experiment
with the early stopping parameter set to true. Now the generalization should be better. What is the
validation data classification cost now, i.e. with early stopping?

(c) Another regularization method is weight decay. Let’s turn off early stopping, and instead investigate
weight decay. The script has an option for L2 weight decay. As long as the coefficient is 0, in effect
there is no weight decay, but let’s try some different coefficients. We’ve already run the experiment
with WD = 0. Run additional experiments for WD ∈ {10, 1, 0.0001, 0.001, 5}, and indicate which of
them gave the best generalization. Be careful to focus on the classification cost (i.e. without the weight
decay cost), as opposed to the final cost (which does include the weight decay cost).

(d) Yet another regularization strategy is reducing the number of model parameters, so that the model
simply doesn’t have the brain capacity to overfit (learning fine grained details of the training set that
does not generalize). In our case, we can vary the number of hidden units. Since it’s clear that our
model is overfitting, we’ll look into reducing the number of hidden units.

Turn off the weight decay, and instead try the following hidden layer sizes 10, 30, 100, 130, 200. Indicate
which one worked best.

(e) Most regularization methods can be combined quite well. Let’s combine early stopping with a carefully
chosen hidden layer size. Which number of hidden units works best that way, i.e. with early stopping?
Remember, best, here, is based on only the validation data cost. Try the following hidden layer sizes
18, 37, 83, 113, 236.

(f) Of course, we could explore a lot more, such as maybe combining all 3 regularization methods, and that
might work a little better. If you want to, you can play with the code all you want. You could even
try to modify it to have 2 hidden layers, to add dropout, or anything else. The code is a reasonably
well-written starting point for Neural Network experimentation. All of that, however, is beyond the
scope of this assignment; here, we have only one question left.

Now that we have carefully established a good optimization strategy, as well as a good regularization
strategy, it’s time to see how well our model does on the task that we really cared about. Reading
handwritten digits. For the settings that you chose on the previous question, what is the test data
classification error rate?

Page 6


	Theoretical problems
	Practical problems
	Programming
	Setting up

	Experimentation




