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1 Problem 1.1

The multivariate spherical Gaussian:

P (X = x|σ2 = s) =
1

(2π)
p
2 σp

exp

(
− (x− µ)>(x− µ)

2σ2

)
The likelihood of several independent observations:∏

x∈D

P (X = x|σ2 = s)

The maximum likelihood estimator:

σ̂MLE = arg max
s

∏
x∈D

P (X = x|σ2 = s)

which, through steps not shown here, becomes

σ̂2
MLE =

∑
x∈D(x− µ)>(x− µ)

pn

where n = |D|, the number of observations.
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2 Problem 1.2

2.1 1.2 a)

The posterior distribution P (σ2 = s|D) is proportional to the product of the
likelihood and the prior distribution:

P (σ2 = s|D) ∝ P (D|σ2 = s)P (σ2 = s)

The likelihood is again the product of the likelihood of X = x for n data
points. The prior distribution is Inv-Gamma(α, β). We know that the inverse
gamma distribution is a conjugate prior to the spherical Gaussian, with posterior
hyperparameters

αpost = α+ n

βpost = β +
1

2

∑
x∈D

(x− µ)>(x− µ)

This can be derived by performing the multiplication above and discounting
all constant terms (we only care about proportionality, not equality).

2.2 1.2 b)

The Bayes factor is the ratio between the likelihoods for the two models:

BFA,B =
P (D|MA)

P (D|MB)

We know P (D|σ2 = s), i.e. the likelihood given a particular value for
sigma2. However, each model only gives a distribution over σ2. In order to
find the likelihood given the entire model, we must integrate out s:

P (D|MA) =

∫
P (D|σ2 = s)P (σ2 = s|MA) ds

The quantities inside this integral is known, since P (σ2 = s|MA) is Model
A’s prior inverse Gamma distribution (analogously for MB).

2.3 1.2 c)

Before, we said that each model only gave a distribution over σ2 rather than
a single value. Now we are allowed to assume that each model consists of one
value, specifically the MAP value, using the posterior distribution from 1.2 a).

The MAP value is

σ̂2
MAP =

βpost
αpost + 1

We then get the Bayes Factor through the likelihoods:
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BFA,B =
P (D|MA)

P (D|MB)
=
P (D|σ2 = σ̂2

MAP,A)

P (D|σ2 = σ̂2
MAP,B)

Where each likelihood is a product of the likelihood of each data point,
re-written into a sum in the exponential:

P (D|σ2 = s) =
1

(2π)
np
2 σnp

exp
∑
x∈D

(
− (x− µ)>(x− µ)

2σ2

)

3 2.1

Finding the MLE of µ once again consists of maximising the likelihood function:

µ̂MLE = arg max
m

∏
x∈D

P (X = x|µ = m,σ2 = s)

which, through steps not shown here, becomes

µ̂MLE =

∑
x∈D x

n

i.e. the empirical mean.

4 Coding

A correct solution to the coding exercise is not provided at this time.
To clarify the hint about the “log-sum-exp trick”, it refers to the fact that

implementing the inverse Gamma distribution according to the definition will
lead to problems with MATLAB’s gamma function. When given too large argu-
ments, it returns inf, which yields errors down the line. However, the lngamma,
which implements the function log(Γ(x)), can handle much larger arguments.
So the problem can be circumvented by encoding the logarithm of the inverse
Gamma distribution, which will be a sum of terms rather than a product, and
then taking the exponential function to retrieve the distribution itself.
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Comments

This is not a complete solution; only a sketch. If students were to hand in a
report with as many steps omitted as this one, they would not get full marks.

The purpose of this document is to show students whether their solution was
along the right lines. Firstly, this allows them to improve their understanding,
if they had not solved the problem correctly; secondly, it gives a hint as to
whether they can expect to score points for each task. (Of course, eventually
each submission will be graded, and the actual number of points reported to
the student.)

4.1 Jonatan’s grading policy

If a student submission (a) explains its reasoning and (b) is correct, it will
receive full marks.

A correct answer presented poorly can be grounds for deductions, but never
for more than half of the point total on the task.

If the answer is incorrect, at least 1 point will be deducted. I will try to
follow the reasoning and find where the mistake occurred. Depending on how
severe the mistake was, and how good the reasoning was before and after the
mistake(s), the deduction might be only the 1 point, or anything up to all the
points for that task.

For tasks with more than one sub-problem (a, b, c...) my policy is that a
correct answer to one sub-problem guarantees at least 1 point, but an incorrect
answer to one of them rules out getting the maximum points for the task. In
between those two extremes, each sub-problem does not correspond to an exact
number of points; rather, the solution is considered as a whole.

I do not concern myself very much with coding style. If (1) the answers in
the report are correct, (2) the code works when I run it, and (3) I don’t have
reason to suspect that code has been copied, then the quality of the code won’t
further affect the grade.

If there is a mistake or incorrect answer, clear code might make it easy for
me to realise that it was only a typo, and deduct fewer points.

If the answers are correct but I can’t see how the code provides them (e.g.
it won’t run), I will deduct up to half of the task’s points.
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