
ABS: A Core Language for
Abstract Behavioral Specification ?

Einar Broch Johnsen1, Reiner Hähnle2, Jan Schäfer3,
Rudolf Schlatte1, and Martin Steffen1

1 Department of Informatics, University of Oslo, Norway
{einarj,rudi,msteffen}@ifi.uio.no

2 Chalmers University of Technology, Sweden
reiner@chalmers.se

3 Department of Computer Science, University of Kaiserslautern
jschaefer@cs.uni-kl.de

Abstract. This paper presents ABS, an abstract behavioral specifica-
tion language for executable designs of distributed object-oriented sys-
tems. The language combines advanced concurrency and synchronization
mechanisms for concurrent object groups with a functional language for
modeling data. ABS uses asynchronous method calls, interfaces to en-
force encapsulation, and cooperative scheduling of method activations
inside concurrent objects. This feature combination results in a concur-
rent object-oriented model which is inherently compositional. This paper
discusses central design issues for ABS and formalizes the type system
and semantics of Core ABS, a calculus with the main features of ABS.
For Core ABS, we prove a subject reduction property which shows that
well-typedness is preserved by execution; in particular that method not
understood errors do not occur at runtime for well typed ABS models.
Finally, we briefly discuss the tool support developed for ABS.

1 Introduction

This paper presents ABS, an abstract behavioral specification language for dis-
tributed object-oriented systems. Abstract behavioral specification languages
can be situated between design-oriented and implementation-oriented specifi-
cation languages. ABS targets the specification of executable designs for object-
oriented systems: it allows a high-level specification of a system, including its
concurrency and synchronization mechanisms. Thus ABS models capture the
concurrent control flow of object-oriented systems, yet ABS abstracts from many
implementation details which may be undesirable at the modeling level, such as
the concrete representation of internal data structures, the scheduling of method
activations, and the properties of the communication environment.

The target domain of ABS is distributed systems. In the distributed setting,
the implementation details of other objects in the system are not necessarily
? Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Models (http://www.hats-project.eu).

known. Instead, ABS uses interfaces as types for objects, abstracting in the type
system from the classes implementing the functionality of these objects. The
strict separation of types and implementations makes concurrent ABS models
compositional. The concurrency model of ABS is similar to that of JCoBox [32],
which generalizes the concurrency model of Creol [22] from single concurrent
objects to concurrent object groups (so-calls cogs). The language supports asyn-
chronous method calls, which trigger activities in other objects without trans-
ferring control from the caller, using first-class futures [14]. Thus, an object may
have many method activations competing to be executed. A distinguishing fea-
ture of this concurrency model is the use of cooperative scheduling of method
activations to explicitly control the internal interleaving of activities inside cogs.
Thus, a clear notion of quiescent state may be formulated, namely when the
active process of each object in the cog is idle. This allows an approach to sys-
tem verification in which local reasoning is based on the maintenance of mon-
itor invariants which must hold in quiescent states. Because of the cooperative
scheduling and the interface encapsulation mechanism, local reasoning about the
concurrent object system can be done by means of standard verification systems
for sequential object-oriented programs. This approach is explored in [3, 14,17].

This paper discusses the design decisions behind ABS and defines Core ABS,
a calculus formalizing the main features of ABS. The contributions of this paper
may be summarized as follows:

– We define the functional level of ABS, which is used to abstract computations
on internal data in concurrent objects. ABS supports user-defined parametric
data types and functions with pattern matching. We define a syntax, type
system, and reduction system for functional expressions in Core ABS.

– We define the concurrent object level of ABS, which is used to capture con-
current control flow and communication in ABS models. This part of ABS
integrates functional expressions and concurrent object groups with cooper-
ative scheduling. We define a syntax, type system, and an SOS style opera-
tional semantics for the concurrent object level of Core ABS.

– We show how type preservation is guaranteed at runtime for well typed
models in Core ABS, with a particular on focus on the creation of concurrent
object groups, objects, and first-class futures.

2 Abstract Behavioral Specification

Specification languages may be roughly categorized into three categories, which
serve partly complementary and partly overlapping purposes:

– Design-oriented languages focus on structural aspects of systems, such as the
relationship between features or classes, and the flow of messages between
objects. Examples of design-oriented languages are UML/OCL [34], FDL
[33], and architectural description languages [12,27].

– Foundational languages focus on foundational aspects of, e.g., concurrency
and interaction, by identifying a small set of primitives and their formal

2

semantics. Examples of foundational languages are process algebras [29],
automata models [25], and object calculi [1, 21].

– Implementation-oriented languages focus on behavioral properties of im-
plemented systems. Examples of implementation-oriented specification lan-
guages are JML [8] and Spec# [7].

Design-oriented languages often provide elegant graphical means of displaying a
system’s structure, but typically lack flexible constructs for expressing concur-
rency and synchronization aspects of a system. Foundational languages address
this concern, but their focussed scope excludes language features which makes it
cumbersome to develop models of real systems without complicating encodings;
the resulting models will typically not reflect the structure of an object-oriented
target program. Even the abstractions of object calculi make it difficult to express
real systems; for example, Featherweight Java does not provide fields in objects.
In contrast, implementation-oriented languages are restricted to the particular
concurrency and synchronization mechanisms of their target language, and typ-
ically enforce particular solutions which may be undesirable at the design stage.

ABS takes an approach in between these three categories of specification
languages. It is designed to be close to the way programmers think, by main-
taining a Java-like syntax and a control flow close to an actual implementation.
In fact, ABS models may be automatically compiled into, e.g., Java (see Sect. 7).
On the other hand, the language has a formally defined semantics, in the style
of foundational languages, and allows the modeler to abstract from undesir-
able implementation details by means of user-defined algebraic data types and
functions. Consequently, imperative structures may be used to study particular
aspects of a system, while other aspects may be abstracted to ADTs. In addition,
the concurrency model of ABS abstracts from particular assumptions about the
communication environment, such as ordering schemes for message transfer and
scheduling policies for the selection of method activations inside the objects.

3 The Design of ABS

ABS targets distributed object-oriented systems which communicate asynch-
ronously. The concurrency model of ABS ressembles that of JCoBox [32], which
generalizes the concurrency model of Creol [14,22] from single concurrent objects
to concurrent object groups (cogs). Cogs can be seen as object-based runtime
components, with their own object heap, which solely communicate via asyn-
chronous method calls. A cog’s behavior is based on cooperative multi-tasking
of method activations. Cooperative multi-tasking guarantees data-race freedom
inside a cog and enables the safe combination of active and reactive behavior.

Complementing the object language, ABS supports user-defined data types
with (non-higher-order) functions and pattern matching. This functional level
of ABS is largely orthogonal to the concurrent object level and is intended to
model data manipulation. As such data is immutable, it can safely be exchanged
between cogs. Using functional data types to realize most internal data structures
of cogs can significantly simplify the specification and verification of models.

3

ABS contains non-deterministic constructs; in particular, the outcome of ex-
ecuting concurrency primitives is non-deterministic. While underspecification is
used for data abstraction, non-deterministic execution semantics is the prereq-
uisite for abstracting behavior. As ABS is a modeling language, it makes no a
priori assumptions about, for example, concrete scheduling mechanisms. Under-
specification and non-determinism do not preclude executability: the outcome
of a non-deterministic transition step is a set of possible successor states which
can be systematically inspected in simulation, analysis, and visualization tools.

In this remainder of this section, we briefly describe how to represent and
work with data, and then discuss the concurrent object level of ABS.

3.1 Data Types, Functions, and Pattern Matching

ABS does not have primitive types for working with basic values. Instead alge-
braic data types may be defined by the user. A library of predefined data types
and operators is provided, including Unit, Bool, Int, and String. Data types in
ABS can be polymorphic; i.e., their definition may have type parameters.

Example 1. The following code shows the polymorphic data type Set<A> (which
is part of the ABS Standard Library), as well as a function contains, which
checks whether an element e is a member of a given set s.

data Set<A> = EmptySet | Insert(A, Set<A>);

def Bool contains<A>(Set<A> s, A e) =

case s { EmptySet => False ;

Insert(e, _) => True;

Insert(_, xs) => contains(xs, e); };

3.2 Interfaces in ABS

ABS is a class-based language, which uses interfaces for typing. ABS has no
class inheritance, but multiple inheritance is allowed at the interface level. A
class may implement several interfaces, provided that it supports all methods
offered by these interfaces. Reasoning control is ensured at the level of interfaces:
an object supporting an interface I may be replaced by another object supporting
I or a subtype of I in a context where I is expected, although the class of
the two objects may differ. Due to the typing of object variables by interfaces,
it is not possible to access the fields of another object directly, only method
calls to the object are possible. This way, the object controls its own state;
another object can only manipulate the state indirectly via the methods made
available through an interface. In fact, interfaces are the only encapsulation
mechanism of ABS objects and no access modifiers are provided. However, since
the class may support several interfaces, different methods may be offered to
the environment through different interfaces; for example, a super-user interface
may export methods not seen through the normal user interface.

4

3.3 The Concurrency Model of ABS

Intuitively, cogs have dedicated processors and live in a distributed environment
with asynchronous and unordered communication. A set of objects is located in a
cog. All communication is between named objects, typed by interfaces, by means
of asynchronous method calls. Calls are asynchronous as the caller may decide at
runtime when to synchronize with the reply from a call. Asynchronous method
calls may be seen as triggers of concurrent activity, spawning new method ac-
tivations (so-called processes) in the called object. Active behavior, triggered
by an optional method run, is interleaved with passive behavior, triggered by
method calls. Thus, an object has a set of processes to be executed, which stem
from method activations. Among these, at most one process in the objects of a
cog is active and the other processes are suspended in a process pool. Process
scheduling is non-deterministic, but controlled by processor release points in a
cooperative way. Thus, the amount of concurrency in an ABS model is reflected
in the number of cogs introduced in the model. A concurrent object model (as
in Creol) corresponds to an ABS model in which each object has its own cog.

Example 2. Consider a book shop where clients order books for delivery to a
country. Clients connect to the shop by the getSession method of an Agent ob-
ject, which hands out Session objects from a dynamically growing pool. Clients
call the order method of their Session, which calls the getInfo and confirmOrder

methods of a Database shared between the different sessions. Session objects re-
turn to the agent’s pool upon order completion. (The full model is given in [4].)

interface Agent {

Session getSession();

Unit free(Session session);

}

interface Session {

OrderResult order(

List<Bname> books, Cname country);

}

interface Database {

DatabaseInfo getInfo(

List<Bname> books, Cname country);

Bool confirmOrder(List<Bname> books);

}

class DatabaseImp(Map<Bname,Binfo> bDB,

Map<Cname,Cinfo> cDB) implements Database {

DatabaseInfo getInfo(

List<Bname> books, Cname country) {

Map<Bname,Binfo> bOrder =

getBooks(bDB, books);

Pair<Cname,Cinfo>cDestiny =

getCountry(cDB, country);

return Info(bOrder, cDestiny);

}

...

}

The DatabaseImp class stores and handles the information about the shop’s avail-
able books (in the bDB map) and about the delivery countries (in the cDB map).
This class has a method getInfo; given an order with a list of books and a des-
tination country, this method extracts information about book availability from
bDB and shipping information from cDB by means of function calls getBooks(bDB,
books) and getCountry(cDB, country) The result from a call to the method has
type DatabaseInfo, with a constructor of the form: Info(bOrder, cDestiny).

5

Syntactic categories.
T in Ground Type
A in Type
x in Variable
e in Expression
b in Bool Expression
t in Ground Term
br in Branch
p in Pattern

Definitions.
T ::= B | I | D | D〈T 〉
A ::= N | T | N〈A〉

Dd ::= data D[〈A〉] = Cons[|Cons];
Cons ::= Co[(A)]

F ::= def A fn[〈A〉](A x) = e;
e ::= b | x | t | this | Co[(e)] | fn(e) | case e {br}
t ::= Co[(t)] | null
br ::= p⇒ e;
p ::= _ | x | t | Co[(p)]

Fig. 1. Core ABS syntax for the functional level. Terms e and x denote possibly empty
lists over corresponding syntactic categories, and square brackets [] optional elements.

4 A Formal ABS Calculus

This section presents Core ABS, a formal calculus which simplifies ABS by
excluding, e.g., the module system, type synonyms, the predefined data types
(except Bool), and annotations. However, it captures the central features of ABS.
(A complete formalization of ABS exists in the rewriting logic of Maude [11].)

4.1 The Syntax of Core ABS

An ABS model defines interfaces, classes, datatypes, and functions, and a main
block to configure the initial state. Objects are dynamically created instances of
classes; their attributes are initialized to type-correct default values (e.g., null
for object references), but may be redefined in an optional method init.

A Functional Language for User-Defined Parametric Data Types and Functions.
The functional level of Core ABS defines data types and functions, as shown in
Fig. 1. The ground types consist of basic types such as Bool and Int, as well as
namesD for data types and I for interfaces. In general, a type Amay also contain
type variables (i.e., uninterpreted type names [30]). In data type declarations Dd,
a data type D has at least one constructor Cons, which has a name Co and a list
of types A for its arguments. Function declarations F consist of a return type A,
a function name fn, a list of variable declarations x of types A, and an expression
e. Expressions e include Boolean expressions b, variables x, (ground) terms t,
the self-identifier this, constructor expressions Co(e), function expressions fn(e),
and case expressions case e {br}. Ground terms t are constructors applied to
ground terms Co(t), and null. Case expressions have a list of branches p ⇒ e,
where p is a pattern. The branches are evaluated in the listed order. Patterns
include wild cards _, variables x, terms t, and constructor patterns Co(p).

The Concurrent Object Level of Core ABS is given in Fig. 2. An interface IF
has a name I and method signatures Sg. A class CL has a name C, interfaces I

6

Syntactic categories.
C, I,m in Names
g in Guard
s in Statement

Definitions.
IF ::= interface I {Sg }
CL ::= classC [(T x)] [implements I] {T x; M}
Sg ::= T m (T x)
M ::= Sg {T x; s }
g ::= b | x? | g ∧ g
s ::= s; s | x = rhs | suspend | await g | return e
| if b then { s } [else { s }] | while b { s } | skip

rhs ::= e | new [cog] C [(e)] | e!m(e) | e.m(e) | x.get

Fig. 2. Core ABS syntax for the concurrent object level.

(specifying types for its instances), class parameters and state variables x of type
T , and methodsM (The attributes of the class are both its parameters and state
variables). A method signature Sg declares the return type T of a method with
name m and formal parameters x of types T .M defines a method with signature
Sg, local variable declarations x of types T , and a statement s. Statements may
access attributes of the current class, locally defined variables, and the method’s
formal parameters. A program’s main block is a method body {T x; s}. There
are no type variables at the concurrent object level of ABS.

Right hand side expressions rhs include object creation within the same cog
new C(e) and in a fresh cog new cog C(e), method calls, and (pure) expressions e.
Statements are standard for assignment x = rhs, sequential composition s1; s2,
and skip, if, while, and return constructs. suspend unconditionally releases the
processor, suspending the active process. In await g, the guard g controls proces-
sor release and consists of Boolean conditions b and return tests x? (see below).
If g evaluates to false, the processor is released and the process suspended. When
the processor is idle, any enabled process from the object’s pool of suspended
processes may be scheduled. Explicit signaling is redundant.

Communication in ABS is based on asynchronous method calls, denoted
o!m(e), and synchronous method calls, denoted o.m(e). Any method may be
called either synchronously or asynchronously. After asynchronously calling x =
o!m(e), the caller may proceed with its execution without blocking on the call.
Here x is a future variable, o is an object (an expression typed by an interface),
and e are expressions. A future variable x refers to a return value which has yet
to be computed. There are two operations on future variables, which explicitly
control external synchronization in ABS. First, a return test x? evaluates to false
unless the reply to the call can be retrieved. (Return tests are used in guards.)
Second, the return value is retrieved by the expression x.get, which blocks all
execution in the object until the return value is available. Internally in a process,
the reserved variable destiny refers to the future associated with the process. The
statement sequence x = o!m(e); v = x.get encodes a blocking, synchronous call
between objects in different cogs and is abbreviated v = o.m(e). In contrast,
synchronous calls v = o.m(e) inside a cog have the reentrant semantics known
from, e.g., Java threads. The statement sequence x = o!m(e); await x?; v =
x.get encodes a non-blocking, preemptable call, abbreviated await v = o.m(e).

7

(T-ConsDecl)
Γ (Co) = A→ D[〈B〉]
Γ ` Co(A) : D[〈B〉]

(T-DataDecl)
Γ ` Cons : D[〈A〉]

Γ ` data D[〈A〉] = Cons

(T-Case2)
∆ ` case t {br}
∆ ` case2 t {br}

(T-Bool)
Γ ` b : Bool

(T-Null)
Γ ` null : A

(T-Wildcard)
Γ ` _ : A

(T-Var)
Γ (x) = A

Γ ` x : A

(T-FuncExpr)
tmatch(A,C) = σ σ 6= ⊥
Γ ` e : C Γ (fn) = A→ B

Γ ` fn(e) : Bσ

(T-ConsExpr)
Γ ` e : C σ 6= ⊥
tmatch(A,C) = σ

Γ (Co) = A→ D[〈B〉]
Γ ` Co(e) : D[〈B〉]σ

(T-Sub)
Γ ` e : T
T � T ′
Γ ` e : T ′

(T-FuncDecl)
Γ (fn) = B → C

Γ [x 7→ B] ` e : C
Γ ` def C fn[〈A〉](B x) = e;

(T-Branch)
Γ ′ ` p : A Γ ′ ` e : B
Γ ′ = Γ ◦ psubst(p,A)
Γ ` p⇒ e : A→ B

(T-Case)
Γ ` e : A

Γ ` br : A→ B

Γ ` case e {br} : B

Fig. 3. The type system for the functional level of ABS.

4.2 Type System

A mapping binds names to values. Let Γ be a mapping, [N 7→ V] a binding from
name N to value V , and denote lookup by Γ (x). Then Γ [N 7→ V] denotes the
mapping such that Γ [N 7→ V](N) = V Γ [N 7→ V](x) = Γ (x) if x 6= N . Denote
the empty mapping by ε, lists of bindings by [N 7→ V] and [N 7→ V ,N

′ 7→ V
′],

and mapping composition by Γ ◦Γ ′. We say that Γ ′ extends Γ , denoted Γ ⊆ Γ ′,
if dom(Γ) ⊆ dom(Γ ′) and Γ (x) = Γ ′(x) if x ∈ dom(Γ).

A typing context Γ is a mapping from names to typings which assigns types
A to variables, type constants T to constants, and type signatures A → B to
function symbols. For simplicity, overloading is not considered. A name can only
have one typing, and interface and class names are assumed to be distinct. We
omit the typing of basic types such as Bool and Int, and assume that expressions
of the basic types are type checked directly as in the rule T-Bool.

The functional level of the ABS type system is shown in Figure 3 and explained
below. We assume a typing context Γ which maps names to their declared types;
i.e., the initial typing context gives types to variables and to (user-defined) con-
structors and functions. The expression null can have any type by rule T-Null.
A variable is well typed if declared in Γ by rule T-Var. In rule T-ConsDecl,
constructor declarations are treated like variables. (Note that the constructor
may be parametric; e.g., for List〈A〉, the list constructor Cons should have the
type A, List〈A〉 → List〈A〉.) In rule T-ConsExpr, a constructor expression is
well typed if its actual and formal parameter types are the same when matching
the type variables of the formal parameter type to the actual parameter types
by the auxiliary function tmatch. If there is no match, tmatch(A,C) returns ⊥.
(In this case, if x is an Int and y is a List〈Int〉, then Cons(x, y) should get type
List〈Int〉, which happens since tmatch binds A to Int.) Function definition and ap-
plication are handled in the same way by rules T-FunDecl and T-FuncExpr.
Additionally the function body is type-checked in Γ extended with the typing
of formal parameters in T-FunDecl, which may again be type variables.

8

(T-Poll)
Γ ` x : fut〈T 〉
Γ ` x? : Bool

(T-Get)
Γ ` x : fut〈T 〉
Γ ` x.get : T

(T-Skip)

Γ ` skip

(T-Await)
Γ ` g : Bool
Γ ` await g

(T-Suspend)

Γ ` suspend

(T-Composition)
Γ ` s Γ ` s′
Γ ` s; s′

(T-Assign)
Γ ` e : Γ (v)
Γ ` v := e

(T-And)
Γ ` g1 : Bool
Γ ` g2 : Bool

Γ ` g1 ∧ g2 : Bool

(T-New)
Γ ` e : ptypes(C)
T ∈ interfaces(C)

Γ ` new [cog] C(e) : T

(T-AsyncCall)
Γ ` e.m(e) : T

Γ ` e!m(e) : fut〈T 〉

(T-Conditional)
Γ ` b : Bool Γ ` s1 Γ ` s2

Γ ` if b then { s1 } else { s2 } fi

(T-While)
Γ ` b : Bool Γ ` s
Γ ` while b { s }

(T-Return)
Γ ` e : T

Γ (destiny) = fut〈T 〉
Γ ` return e

(T-SyncCall)
Γ ` e : N Γ ` e : T
match(m,T → T,N)

Γ ` e.m(e) : T

(T-Method)
Γ ′ = Γ [x 7→ T , x′ 7→ T ′]
Γ ′[destiny 7→ fut〈T ′〉] ` s
Γ ` T ′ m (T x){T ′ x′; s}

(T-Class)
∀I ∈ I · implements(C, I)
Γ [this 7→ C,fields(C)] `M

Γ ` class C implements I {T f ;M}

(T-Program)
Γ [x 7→ T] ` s

∀CL ∈ CL · Γ ` L
Γ ` CL {T x; s}

Fig. 4. The type system for the concurrent object level of ABS.

The declaration of a data type is well typed if its constructors are well typed,
by rule T-DataDecl. Case expressions are well typed by rules T-Case and T-
Case2 if all branches type check to the same type. (Here, case2 is run-time
syntax.) The pattern must have the same type A as the case expression. A
branch is well typed by rule T-Branch if there is an extension of Γ which adds
types for the variables in the pattern p and which allows the expression e to
be type-checked. The desired mapping can be reconstructed from A and p by
induction over the structure of p as follows: If A is a type variable, then p is a
variable and psubst(p,A) = [p 7→ A]. Otherwise, we proceed by induction over p.
If p = x, psubst(p,A) = [p 7→ A]. If p = t or p = _, psubst(p,A) = ε. Otherwise
p = Co(p1, . . . , pn) such that Γ (Co) = A1, . . . , An → A, and psubst(p,A) =
psubst(p1, A1) ◦ . . . ◦ psubst(pn, An). Remark that the type of a variable x in p
may be different from Γ (x), which reflects the change of scope.

Subtyping T � T ′ is nominal and reflects the extension relation on interfaces. For
simplicity we extend the subtype relation such that C � I if class C implements
interface I, and type object identifiers by their class and object references by
their interface. We don’t consider subtyping for data types or type variables.

The concurrent object level of the type system is given in Fig. 4. By rule T-
Program, a program is well typed if its classes and main body are well typed
and by T-Class, a class is well typed if its methods are well typed in the
typing context extended by the typing of its fields. By T-Method, a method
declaration is well typed if its body is well typed in the typing context extended

9

e ::= case2 t {br} | . . . s ::= cont(f) | . . .
cn ::= ε | fut | object | invoc | cog | cn cn cog ::= cog(c, act)
fut ::= fut(f, val) val ::= v | ⊥

object ::= ob(o, a, p, q) a ::= T x v | a, a
process ::= {a | s} | error p ::= process | idle

q ::= ε | process | q q v ::= o | f | b | t
invoc ::= invoc(o, f,m, v) act ::= o | ε

Fig. 5. Runtime syntax; o, f , and c are object, future, and cog identifiers.

by the typing of formal parameters and local variables. We add a name return

to the typing context, which binds to the return type of the method. The rules
for skip, suspend, assignment, composition, conditional, and while are standard.
By T-Return, a return statement is well typed if its expression types to the
type of the return variable. In rule T-Await, await g is well typed if g is of
type Bool, rule T-And decomposes guards, and by rule T-Poll a reply-guard
x? is a Bool if x is a future reference. Similarly, by T-Get, the get operation
unwraps the type of a future. By T-New, object creation has a type T if the
actual parameters can be typed to the types of the formal parameters (given by
a function ptypes and T is among the declared interfaces of the class. By T-
AsyncCall, an asynchronous method call has type fut〈T 〉 if the corresponding
synchronous call has type T . By T-SyncCall, a call to a method m has type
T if its actual parameters have types T and the signature T → T matches
a signature for m in the known interface of the callee (given by an auxiliary
function match). Remark that for internal calls, Γ (this) gets as type the class
of this, which allows internal methods to be invoked. We omit the definitions
of the auxiliary functions of the type system, which are straightforward; e.g.,
fields(C) returns the typing context given by the attributes of C.

5 An Operational Semantics for ABS

The operational semantics of ABS is presented as a transition system in an SOS
style [31]. Rules apply to subsets of configurations (the standard context rules
are not listed). For simplicity we assume that configurations can be reordered
to match the left hand side of the rules (i.e., matching is modulo associativity
and commutativity as in rewriting logic [28]). A run is a possibly nonterminating
sequence of rule applications. When auxiliary functions are used in the semantics,
these are evaluated in between the application of transition rules in a run.

Runtime Configurations. The runtime syntax is given in Fig. 5. Configurations
cn are sets of objects, invocation messages, concurrent object groups (cogs) and
futures. The associative and commutative union operator on configurations is de-
noted by whitespace and the empty configuration by ε. These configurations live
inside curly brackets; in the term {cn}, cn captures the entire configuration. A
substitution is a mapping from variable names to values (for convenience, we here
associate the declared type of the variable with the binding). An object is a term

10

ob(o, a, p, q) where o is the object’s identifier, a a substitution representing the
object’s fields, p an active process, and q a pool of suspended processes. A process
p consists of a substitution l of local variable bindings and a list s of statements,
denoted by {l|s} when convenient. In an invocation message invoc(o, f,m, v), o
is the callee, f the future to which the call’s result is returned, m the method
name, and v the call’s actual parameter values. A cog only contains an identifier
c and the currently active object o, or ε if no object of the cog is currently active
(i.e., all objects have the idle process as active process). A future fut(f, v) has
an identifier f and a reply value v (which is ⊥ when the future’s reply value has
not been received). Values are object and future identifiers, Boolean expressions,
and ground terms from the functional language. For simplicity, classes are not
represented explicitly in the semantics, but may be seen as static tables.

5.1 A Reduction System for ABS Functional Expressions

The evaluation [[e]]σ of functional expressions e, given in Figure 6, happens in the
context of a substitution σ. and is defined inductively over the data types of the
functional language. Let the syntactic category t consist of ground terms; i.e.,
constructor terms and built-in constants such as, e.g., null and object names.

For simplicity, we let function evaluation be strict. Thus, for every (user
defined) function definition def T fn(T x) = efn, the evaluation of a function
call [[fn(e)]]σ reduces to the evaluation of the corresponding expression [[efn]]x 7→t
when the arguments e have already been reduced to ground terms t. (Note
the change in scope. Since functions are defined independently of the context
where they are used, we here assume that the expression e does not contain free
variables and the substitution σ does not apply in the evaluation of e.) In the
case of pattern matching, variables in the pattern p may be bound to ground
terms in the term t. Thus the substitution context for evaluating the right hand
side e of the branch p → e extends the current substitution σ with bindings
that occurred during the pattern matching. Let the function match(p, t) return
a substitution σ such that σ(p) = t (if there is no match, it returns the empty
substitution ⊥). For a typing context Γ and a substitution σ, we say that σ is
well typed in Γ , denoted Γ ` σ, if Γ ` σ(x) : Γ (x).

Lemma 1 (Type preservation). Let Γ be a typing context and let σ be a
substitution such that Γ ` σ. If Γ ` e : A, then there is a B � A such that
Γ ` [[e]]σ : B.

Proof (sketch). By structural induction over e. The base cases are straightfor-
ward. For the remaining cases, we need that typing is preserved under type
substitutions [30] and that well-typedness is preserved when σ is extended.

5.2 The Operational Semantics for Concurrent Objects in ABS

Evaluating Guards. Given a substitution σ and a configuration cn, we lift the
functional evaluation function and denote by [[g]]cnσ an evaluation function which

11

[[b]]σ = b

[[x]]σ = σ(x)
[[t]]σ = t

[[Co(e)]]σ = Co([[e]]σ)

[[fn(e)]]σ =
{

[[efn]]x7→t if e = t

[[fn([[e]]σ)]]σ otherwise

[[case e {br}]]σ = [[case2 [[e]]σ {br}]]σ

[[case2 t {p⇒ e; br}]]σ =
{

[[e]]σ◦match(p,t) if match(p, t) 6= ⊥
[[case2 t {br}]]σ otherwise

Fig. 6. The evaluation of functional expressions.

reduces guards g to data values (the state configuration is needed to evaluate
future variables). Let [[g1 ∧ g2]]cnσ = [[g1]]cnσ ∧[[g2]]cnσ , [[x?]]cnσ = true if [[x]]cnσ = f and
fut(f, v) ∈ cn for some value v 6= ⊥, otherwise [[x?]]cnσ = false, and [[b]]cnσ = [[b]]σ.

Auxiliary functions. If T is the return type of a method m in a class C, we let
bind(o, f,m, v, C) return a process resulting from the activation of m in C with
actual parameters v, callee o and associated future f . If binding succeeds, this
process has a local variable destiny of type fut〈T 〉 bound to f , and the method’s
formal parameters are bound to v. If binding does not succeed, we get the error

process. The function atts(C, v, o, c) returns the initial state of an instance of class
C, in which the formal parameters are bound to v and the reserved variables this
and cog are bound to the object identity o and the concurrent object group c,
respectively. The function init(C) returns an activation of the init method of C,
if defined. Otherwise it returns the idle process. The predicate fresh(n) asserts
that a name n is globally unique (where n may be an identifier for an object, a
future or a cog). Let idle denote the idle process.

Transition rules transform state configurations into new configurations, and
are given in Figs. 7 and 8. We define different assignment rules for side effect free
expressions (Assign1 and Assign2), object creation (New-Object and New-
Cog-Object), method calls (Async-call, Cog-Sync-Call and Self-Sync-
Call), and future dereferencing (Read-Fut). Rule Skip consumes a skip in the
active process. Here and in the sequel, the variable s will match any (possibly
empty) statement list. Rules Assign1 and Assign2 assign the value of expression
e to a variable x in the local variables l or in the fields a, respectively. Rules
Cond1 and Cond2 branch the execution depending on the value obtained by
evaluating the expression e. (We omit the standard rule for while.)

Process Suspension and Activation. Three operations manipulate a process
pool q; q ∪ p adds a process p to q, q \ p removes p from q, and select(q, a, cn)
selects a process from q (if q is empty or no process is ready, the result is the idle
process [22]). The actual definitions of these operations are left undefined; differ-
ent definitions correspond to different scheduling policies for processes, although
care must be taken that select always gives the initial process of an object the
highest priority (otherwise another process might see uninitialized object state).

12

(Skip)
ob(o, a, {l|skip; s}, q)
→ ob(o, a, {l|s}, q)

(Assign1)
x ∈ dom(l) v = [[e]](a◦l)
ob(o, a, {l|x = e; s}, q)
→ ob(o, a, {l[x 7→ v]|s}, q)

(Assign2)
x ∈ dom(a) v = [[e]](a◦l)
ob(o, a, {l|x = e; s}, q)
→ ob(o, a[x 7→ v], {l|s}, q)

(Async-Call)
o′ = [[e]](a◦l) v = [[e]](a◦l) fresh(f)

ob(o, a, {l|x = e!m(e); s}, q)
→ ob(o, a, {l|x = f ; s}, q)
invoc(o′, f,m, v) fut(f,⊥)

(Bind-Mtd)
p′ = bind(o, f,m, v, class(o))
ob(o, a, p, q) invoc(o, f,m, v)

→ ob(o, a, p, q ∪ p′)

(Cond1)
[[e]](a◦l)

ob(o, a, {l|if e then s1 else s2 fi; s}, q)
→ ob(o, a, {l|s1; s}, q)

(Cond2)
¬[[e]](a◦l)

ob(o, a, {l|if e then s1 else s2 fi; s}, q)
→ ob(o, a, {l|s2; s}, q)

(Await1)
[[g]]cn(a◦l)

{ob(o, a, {l|await g; s}, q) cn}
→ {ob(o, a, {l|s}, q) cn}

(Await2)
¬[[g]]cn(a◦l)

{ob(o, a, {l|await g; s}, q) cn}
→ {ob(o, a, {l|suspend; await g; s}, q) cn}

(Return)
v = [[e]](a◦l) l(destiny) = f

ob(o, a, {l|return e; s}, q) fut(f,⊥)
→ ob(o, a, {l|s}, q) fut(f, v)

(Read-Fut)
v 6= ⊥ f = [[e]](a◦l)

ob(o, a, {l|x = e.get; s}, q) fut(f, v)
→ ob(o, a, {l|x = v; s}, q) fut(f, v)

Fig. 7. ABS Semantics (1).

Let ∅ denote the empty pool. Rule Suspend suspends the active process to
the process pool, leaving the active process idle. Rule Await1 consumes await g
if g evaluates to true in the current state of the object, rule Await2 adds a
suspend statement in order to suspend the process if the guard evaluates to
false. Rule Activate selects a process from the process pool for execution if this
process is ready to execute, i.e., if it would not directly be resuspended or block
the processor [22]. These rules ensure that a process can only be scheduled if the
cog associated with the object is idle, and that a process activation always occurs
together with the object acquiring the cog. Synchronous calls and synchronous
self-calls, which also influence scheduling, are discussed below.

Communication and Object Creation. Rule Async-Call sends an invocation
message to o′ with the unique identity f of a new future (since fresh(f)), the
method name m, and actual parameters v. The return value of the new future is
undefined (i.e., ⊥). Rule Bind-Mtd consumes an invocation method and places
the process p corresponding to the method activation in the callee’s process pool.
Note that a reserved local variable ‘destiny’ is used to store the identity of the
future associated with the call. Rule Return places the return value into the
call’s associated future. Rule Read-Fut dereferences the future f if v 6= ⊥. Note
that if this attribute is ⊥ the reduction in this object is blocked.

Rules Cog-Sync-Call and Cog-Sync-Return-Sched address synchronous
method calls between two objects that share a common cog. For a synchronous
call, possession of the cog directly transfers control from the calling object to

13

(New-Cog-Object)
fresh(o′) fresh(c′) p = init(C)
a′ = atts(C, [[e]](a◦l), o′, c′)

ob(o, a, {l|x = new C(e); s}, q)
→ ob(o, a, {l|x = o′; s}, q)
ob(o′, a′, p, ∅) cog(c′, o′)

(New-Object)
fresh(o′) p = init(C)

a′ = atts(C, [[e]](a◦l), o′, c)
ob(o, a, {l|x = new C(e); s}, q) cog(c, o)
→ ob(o, a, {l|x = o′; s}, q) cog(c, o)

ob(o′, a′, idle, {p})
(Activate)

p = select(q, a, cn) c = a(cog)
{ob(o, a, idle, q) cog(c, ε) cn}
→ {ob(o, a, p, q\p) cog(c, o) cn}

(Suspend)
c = a(cog)

ob(o, a, {l|suspend; s}, q) cog(c, o)
→ ob(o, a, idle, q ∪ {l|s}) cog(c, ε)

(Release-Cog)
c = a(cog)

ob(o, a, idle, q) cog(c, o)
→ ob(o, a, idle, q) cog(c, ε)

(Self-Sync-Call)
f ′ = l(destiny)

o = [[e]](a◦l) v = [[e]](a◦l) fresh(f)
{l′|s′} = bind(o, f,m, v, class(o))
ob(o, a, {l|x = e.m(e); s}, q)

→ ob(o, a, {l′|s′; cont(f ′)}, q ∪ {l|x = f.get; s})
fut(f,⊥)

(Cog-Sync-Return-Sched)
a′(cog) = c l′(destiny) = f

ob(o, a, {l|cont(f)}, q) cog(c, o)
ob(o′, a′, idle, q′ ∪ {l′|s})
→ ob(o, a, idle, q) cog(c, o′)

ob(o′, a′, {l′|s}, q′)

(Rem-Sync-Call)
o′ = [[e]](a◦l) fresh(f) a(cog) 6= a′(cog)
ob(o, a, {l|x = e.m(e); s}, q) ob(o′, a′, p, q′)
→ ob(o, a, {l|f = e!m(e);x = f.get; s}, q)

ob(o′, a′, p, q′)

(Self-Sync-Return-Sched)
l′(destiny) = f

ob(o, a, {l|cont(f)}, q ∪ {l′|s})
→ ob(o, a, {l′|s}, q)

(Cog-Sync-Call)
o′ = [[e]](a◦l) v = [[e]](a◦l) fresh(f)

a′(cog) = c f ′ = l(destiny)
{l′|s′} = bind(o′, f,m, v, class(o′))

ob(o, a, {l|x = e.m(e); s}, q)
ob(o′, a′, idle, q′) cog(c, o)

→ ob(o, a, idle, q ∪ {l|x = f.get; s}) fut(f,⊥)
ob(o′, a′, {l′|s′; cont(f ′)}, q′) cog(c, o′)

Fig. 8. ABS Semantics (2).

the callee and back, bypassing the Suspend and Activate rules. A special cont
instruction is inserted at the end of the statement list of the new process in rule
Cog-Sync-Call, which is then used to re-activate the caller process in rule
Cog-Sync-Return-Sched. Synchronous self-calls are implemented similarly
by Self-Sync-Call and Self-Sync-Return-Sched. The cog invariant (only
one object with a non-idle process per cog) is maintained by these rules.

Finally, New-Object creates a new object with a unique identifier o′. The
object’s fields are given default values by atts(C, [[e]](a◦l), o′, c), extended with
the actual values e for the class parameters (evaluated in the context of the
creating process), o′ for this and with the creating object’s cog c. (For New-
Cog-Object, the cog c of the new object is also created with a fresh name.)
In order to instantiate the remaining attributes, the process p is queued (we
assume that this process reduces to idle if init(C) is unspecified in the class
definition, and that it asynchronously calls run if the latter is specified). p is

14

not directly scheduled in order to uphold the cog invariant (only one object per
cog is active), hence any scheduling policy must take care to always schedule an
initial process p with highest priority. The rule New-Cog-Object is equivalent
to New-Object, except that a fresh cog is created with o′ as its (only) active
object, and the initial process p is directly scheduled.

6 Subject Reduction for ABS

The initial state of a well typed program consists of an object ob(start, ε, p, ∅),
where the process p corresponds to the activation of the program’s main method.
A run is a sequence of reductions of an initial state according to the rules of the
operational semantics. We now show that a run from a well typed initial config-
uration will maintain well typed configurations; in particular, that substitutions
remain well typed and that method binding does not result in the error process.

Runtime Configurations. Typing rules are given for the runtime syntax given
in Fig. 5. The typing context of the runtime configurations extends the static
typing context with types for dynamically created values, i.e., object and future
identifiers. Object identifiers are typed by the class of the created object.

Typing Rules for Runtime Configurations. Let ∆ `R config ok express that the
runtime configuration config is well typed in the typing context ∆. The typing
rules for runtime configurations are given in Fig. 9. In T-Object, the premise
fields(∆(o)) = [x 7→ T] asserts that the object attributes have the types declared
in its class. If a configuration is well typed in a typing context∆, the substitutions
a and l (for any object and any process) are well typed in ∆. Consequently, by
Lemma 1, function evaluation in ABS processes preserve typing.

Well-typedness assumptions for the auxiliary functions of the operational se-
mantics. Let C be a class with formal parameters x of types T . We assume that
init(C) returns a well typed process. We assume that atts(C, v, o, c) returns a
well typed substitution if v have types T and o and c are object and cog identi-
fiers, respectively. If C implements a method m with return type T and formal
parameters x of types T , we assume that bind(o, f,m, v, C) returns a well typed
process if f has type fut〈T 〉 and v have the types T .

We prove that the object corresponding to the main method of a well typed
program is well typed (Lemma 2) and show that the well-typedness of runtime
configuration is preserved by reductions (Theorem 1).

Lemma 2. Let P {T x; s} be an ABS program. If Γ ` P {T x; s} for some
typing context Γ , then Γ `R ob(start, ε, {T x default(T)|s}, ∅) ok.

Proof. Let Γ ′ = Γ [x 7→ T]. It is obvious that Γ ′ `R T x default(T) ok. By
assumption, Γ ` P {T x; s}, so Γ ′ ` s.

Theorem 1 (Subject Reduction). If ∆ `R cn ok and cn → cn′, then there
is a ∆′ of ∆ such that ∆ ⊆ ∆′ and ∆′ `R cn′ ok.

15

(T-State1)
∆(v) = T

∆ `R val : T
∆ `R T v val ok

(T-Cont)
∆(f) = fut〈T 〉
∆ ` cont(f)

(T-Future)
∆(f) = fut〈T 〉

val 6= ⊥ ⇒ ∆(val) = T

∆ `R fut(f, val) ok

(T-Configurations)
∆ `R cn ok

∆ `R cn′ ok
∆ `R cn cn′ ok

(T-State2)
∆ `R fds ok

∆ `R fds′ ok
∆ `R fds fds′ ok

(T-Process-Queue)
∆ `R q ok

∆ `R q′ ok

∆ `R q q′ ok

(T-Process)
∆′ = ∆[x→ T]
∆′ `R T x val ok

∆′ ` s ok

∆ `R (T x val, s) ok

(T-Cog)
∆(c) = cog

∆ `R cog(c, act)

(T-Empty)
∆ `R ε ok

(T-Idle)
∆ `R idle ok

(T-Object)
∆′ = ∆[x 7→ T]
∆′ `R T x val ok

∆′ `R q ok ∆′ `R p ok

fields(∆(o)) = [x 7→ T]
∆ `R (o, T x val, p, q) ok

(T-Invoc)
∆(f) = fut〈T 〉
∆(v) = T

match(m,T → T,∆(o))
∆ `R invoc(o, f,m, v)

Fig. 9. The typing rules for runtime configurations.

Proof. The proof is by induction over the transition rules. We assume that the
class definitions (which are omitted from the runtime syntax since they do not
change) are well typed. We may assume that objects, futures, and messages not
affected by a transition remain well typed, so these are ignored below. We show
the cases related to object creation and asynchronous communication in ABS.
The remaining cases are fairly straightforward.

Object Creation. For rule New-Object, assume that ∆ `R ob(o, a, {l|x =
new C(e); s}, q) ok, that ∆(x) = I, and that implements(C, I) (so C � I). Since
fresh(o′), let ∆′ = ∆[o′ 7→ C]. Obviously, ∆′ `R ob(o, a, {l|x = o′; s}, q) ok. By
assumption, a′ and p are well typed in o′, and ∆′ `R ob(o′, a′, idle, {p}) ok.

Asynchronous calls. Let ∆ `R ob(o, a, {l|x = e!m(e}, q) ok. We first consider
the case e 6= this. By AsyncCall, we may assume that ∆ ` e!m(e) : fut〈T 〉
and by Assign that ∆(x) = fut〈T 〉. Therefore, ∆ ` e : I and ∆ ` e : T such that
match(m,T → T, I). Let [[e]]a◦l = o′ and let ∆(o′) = C . By Lemma 1, C � I
and since by assumption class definitions are well typed , it follows that for any
class C that implements interface I we have match(m,T → T,C). Similarly,
∆′ ` e : ∆′(v). Let ∆′ = ∆[f 7→ fut〈T 〉]. Since fresh(f) we may assume that
f 6∈ dom(∆), so if ∆ `R cn ok, then ∆′ `R cn ok. Since ∆ ` e!m(e) = ∆′(f),
we get ∆′ `R ob(o, a, {l|x = f ; s}, q) ok. Furthermore, ∆′ ` invoc(o′, f,m, v) ok

and ∆′ `R fut(f,⊥) ok. The case e = this is similar, but uses the class of this
directly for the match (so internal methods are also visible).

Method Binding. Let C = ∆(o). By assumption ∆ `R invoc(o, f,m, v) ok

and ∆ `R ob(o, a, p, q) ok, so ∆(f) = fut〈T 〉, ∆(v) = T , and match(m,T →
T,C). Let x be the formal parameters of m in C. Consequently, the auxil-
iary function bind(o, f,m, v, C) returns a process {l[T x v, fut〈T 〉 destiny f]|s}

16

which is well typed in ∆[fields(C)], and it follows that ∆ `R ob(o, a, p, q ∪
{bind(o, f,m, v, C)}) ok.

Method Return. By assumption, ∆ `R ob(o, a, {l|return e; s}, q) ok and ∆ `R
fut(f,⊥) ok. Obviously, ∆ `R ob(o, a, {l|s}, q) ok. Since l(destiny) = f and l is
well typed, we know that ∆(destiny) = ∆(f). Let ∆(f) = fut〈T 〉. By Lemma 1,
∆(v) � T and ∆ `R fut(f, v) ok.

Reading a future. Let ∆(f) = fut〈T 〉. By assumption, ∆ `R ob(o, a, {l|x =
e.get; s}, q) ok and ∆ `R fut(f, v) ok, and [[e]]a◦l = f . Consequently, ∆ `R e.get :
T and ∆(v) = T , ∆ ` x = v, and ∆ `R ob(o, a, {l|x = v; s}, q) ok.

7 Tool Support

The ABS language is being used and developed in the EU project HATS. Consid-
erable effort has been made towards language implementation and tool support.
There is support for editing, compiling, running and visualizing ABS models in
the Emacs editor and in the Eclipse integrated development environment.

Compiler Frontend. All ABS tools use a common compiler frontend which sup-
plies basic parsing, type-checking, and error reporting. The compiler frontend is
implemented using the JastAdd toolkit and provides an object-oriented, type-
annotated syntax tree representing an ABS model. All backend implementations,
code analyzers, etc. are implemented on top of this common base. At present
there are two language backends, making ABS executable on the Maude rewrit-
ing engine and the Java virtual machine, with more backends planned.

The Maude Backend is a translation of the operational semantics given in this
paper into equational logic for the functional level of ABS and rewriting logic for
the concurrent object level. This semantics is executed as a language interpreter
using the Maude tool [11]. Compiling an ABS model into Maude results in a
set of class and function definitions (since all type checking is done at compile
time, interface and datatype declarations do not have runtime representations).
A special, hidden class implements the (class-less) main method; starting an
ABS model in Maude means instantiating an object of that class.

The conciseness and high level of abstraction of Maude have made this back-
end a good fit for experiments with alternative language constructs and seman-
tics. Maude also provides model-checking functionality, but the large size of each
state, as well as the nondeterministic scheduling and concurrent execution that
ABS provide and the resulting combinatorial explosion, make model-checking
ABS models of realistic size very difficult in practice.

The Java Backend provides a translation of ABS models into Java source code,
which is compiled into bytecode using the standard Java tool chain. The Java
backend uses a Java translation similar to the one for JCoBox [32], which proved
to be very efficient. Compared to JCoBox, the generated code of ABS has better
support for configuring the scheduling strategies, for system observation, and

17

debugging. The ABS main block is translated into a standard Java main method
so the generated code can be executed like standard Java programs.

The Java backend provides higher execution speed, an integration into exist-
ing Java tools, and the potential for integrating “native” or library functionality
(e.g., file handling) into the language. Hence, the Java and Maude backends
provide complement and attractive features for the modeller.

8 Related Work

The concurrency model provided by concurrent objects and Actor-based com-
putation, in which software units with encapsulated processors communicate
asynchronously, is increasingly attracting attention due to its intuitive and com-
positional nature (e.g., [2,6,10,14,19,35]). ABS uses the communication mecha-
nisms of Creol for remote communication, based on asynchronous method calls
and first-class futures [14]. A distinguishing feature of Creol is the cooperative
scheduling between asynchronously called methods [22], which allows active and
reactive behavior to be combined within objects as well as compositional ver-
ification of partial correctness properties [3, 14]. Creol’s model of cooperative
scheduling has recently been generalized from single objects to groups of objects
in a Java extension called JCoBox [32], which form the basis for cogs in ABS.

Formal models are useful to clarify the intricacies of object orientation and
may thus contribute to improve programming languages, making programs eas-
ier to understand, maintain, and analyze. Object calculi such as the ς-calculus [1]
and its concurrent extension [18] aim at a direct expression of object-oriented fea-
tures such as self-reference, encapsulation, and method calls, but asynchronous
method calls are not addressed. This also applies to Obliq [9], a programming
language using similar primitives which targets distributed concurrent objects.
The concurrent object calculus of Di Blasio and Fisher [15] provides both syn-
chronous and asynchronous method calls. In contrast to ABS, return values are
discarded when methods are called asynchronously and the two ways of call-
ing a method have different semantics. Caromel, Henrio, and Serpette propose
ASP [10], a concurrent object calculus with asynchronous method calls which
support return values using first-class futures. In contrast to ABS, their futures
are transparent (i.e., there is no polling and the get-operation is implicit). Fur-
thermore, communication is ordered to make reductions deterministic.

The internal concurrency model of cogs in ABS follows Creol’s concept of
cooperative scheduling, but lifted from the level of objects to the level of cogs.
Synchronous method calls inside a cog are reentrant, which allows standard re-
cursive programming of internal imperative data structures. Cogs in ABS may
be compared to monitors [20] or to thread pools executing on a single proces-
sor. In contrast to monitors, explicit signaling is avoided. Sufficient signaling is
ensured by the semantics, which significantly simplifies reasoning [13]. However,
general monitors may be encoded in the language [22]. In contrast to thread
pools, processor release is explicit. The activation of suspended processes is non-
deterministically handled by an unspecified scheduler. Consequently, intra-object

18

concurrency is similar to the interleaving semantics of concurrent process lan-
guages [5, 16], and each process resembles a series of guarded atomic actions
(discarding local variables). Internal reasoning control is facilitated by the ex-
plicit declaration of release points, at which class invariants should hold [3, 17].

The type system presented in this paper resembles that of Featherweight
Java [21], a core calculus for Java, because of its nominal approach. Feather-
weight Java is class based and uses a class table to represent class information in
its type system. Subtyping is the reflexive and transitive closure of the subclass
relation. In contrast ABS cleanly distinguishes classes and types. Creol combined
asynchronous method calls and interfaces as in ABS with class inheritance, choice
operators, and a notion of cointerface at the interface level to accomodate type-
safe callbacks [23]. Creol’s type system used an effect system [26] to track types
implicitly associated with the untyped futures, which allowed a flexible reuse of
future variables for method calls with different return types. By means of back-
wards analysis, the effect system could insert deallocation operations to garbage
collect inaccessible futures from the runtime system, depending on the local con-
trol flow [24]. In contrast, futures in ABS have explicit types for return values,
which restricts the reuse of future variables but allows a type analysis without
effects. Furthermore, compared to previous work on Creol, this paper formalizes
user-defined data types and functions in the context of concurrent objects. The
type safety results presented in this paper for ABS show how the typing context
is dynamically extended when new objects and futures are created.

9 Conclusion

This paper has discussed the design of ABS, an abstract behavioral specification
language for the executable object-oriented design of distributed systems. The
language is situated between design-oriented, foundational, and implementation-
oriented languages by being abstract, yet executable. ABS is based on groups
of concurrent objects which are encapsulated behing interfaces and do not share
state. While the groups may execute in parallel, there is a cooperative model of
interleaving concurrency inside each group, reflected by explicit processor release
points in the language. This model of concurrency is inherently compositional
and allows to reason about the behavior of the concurrent system in terms of
monitor invariants and sequential object-oriented proof systems. The combina-
tion of a functional and a concurrent object level in the ABS language allows the
modeler to focus the model on crucial parts of an imperative system, including
its concurrency and synchronization mechanisms, by using functional data types
to abstract from other parts of the internal data structures and by abstracting
from specific scheduling policies and environmental properties. ABS is a formally
defined specification language. In this paper we have defined the syntax, type
system, and operational semantics of Core ABS, a formal calculus incorporating
the basic features of ABS. We prove a subject reduction result showing that ex-
ecution preserves well-typedness in the sense that method not understood errors
do not occur for well typed ABS models.

19

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
2. G. A. Agha. ACTORS: A Model of Concurrent Computations in Distributed Sys-

tems. The MIT Press, 1986.
3. W. Ahrendt and M. Dylla. A system for compositional verification of asynchronous

objects. Science of Computer Programming, 2010. In press.
4. E. Albert, S. Genaim, M. Gómez-Zamalloa, E. B. Johnsen, R. Schlatte, and

S. L. Tapia Tarifa. Simulating concurrent behaviors with worst-case cost bounds.
Research Report 403, Dept. of Informatics, Univ. of Oslo, Jan. 2011. http:

//einarj.at.ifi.uio.no/Papers/rr403.pdf.
5. G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Program-

ming. Addison-Wesley, 2000.
6. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic

Bookshelf, 2007.
7. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:

An overview. In Proc. CASSIS, LNCS 3362, pages 49–69. Springer, 2005.
8. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M.

Leino, and E. Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer (STTT), 7(3), June 2004.

9. L. Cardelli. A language with distributed scope. Comp. Sys., 8(1):27–59, 1995.
10. D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous sequential processes.

Information and Computation, 207(4):459–495, 2009.
11. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. L.

Talcott, editors. All About Maude - A High-Performance Logical Framework, LNCS
4350. Springer, 2007.

12. P. C. Clements. A survey of architecture description languages. In Proc. Workshop
on Software Specification and Design (IWSSD’96), pages 16–25. IEEE, 1996.

13. O.-J. Dahl. Monitors revisited. In A Classical Mind, Essays in Honour of
C.A.R. Hoare, pages 93–103. Prentice Hall, 1994.

14. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
Proc. ESOP, LNCS 4421, pages 316–330. Springer, Mar. 2007.

15. P. Di Blasio and K. Fisher. A calculus for concurrent objects. In Proc. CONCUR,
LNCS 1119, pages 655–670. Springer, Aug. 1996.

16. E. W. Dĳkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453–457, Aug. 1975.

17. J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of dynamic systems:
Component reasoning for concurrent objects. In Proc. Foundations of Interactive
Computation (FInCo’07), ENTCS 203: 19–34. Elsevier, 2008.

18. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and
typing. In, Proc. High-Level Concurrent Languages (HLCL), ENTCS 16(3), 1998.

19. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theor. Comp. Sci., 410(2–3):202–220, 2009.

20. C. A. R. Hoare. Monitors: an operating systems structuring concept. Communi-
cations of the ACM, 17(10):549–557, 1974.

21. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Trans. Prog. Lang. and Sys, 23(3):396–450, 2001.

22. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, Mar. 2007.

20

23. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for
distributed concurrent systems. Theor. Comp. Sci., 365(1–2):23–66, Nov. 2006.

24. E. B. Johnsen and I. C. Yu. Backwards type analysis of asynchronous method
calls. Journal of Logic and Algebraic Programming, 77:40–59, 2008.

25. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT), 1(1–2):134–152, 1997.

26. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proc. POPL,
pages 47–57. ACM Press, 1988.

27. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. In Proc. ESEC, LNCS 989, pages 137–153. Springer, 1995.

28. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor.
Comp. Sci., 96:73–155, 1992.

29. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, May 1999.

30. B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.
31. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic

and Algebraic Programming, 60–61:17–139, 2004.
32. J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to concur-

rent components. In Proc. ECOOP, LNCS 6183, pages 275–299. Springer, 2010.
33. A. van Deursen and P. Klint. Domain-specific language design requires feature

descriptions. Journal of Computing and Information Technology, 10(1):1–18, 2002.
34. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling

with UML. Object Technology Series. Addison-Wesley, 1999.
35. A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In Proc. OOPSLA,

pages 439–453. ACM, 2005.

21

