
Project No: FP7-231620

Project Acronym: HATS

Project Title: Highly Adaptable and Trustworthy Software using Formal Models

Instrument: Integrated Project

Scheme: Information & Communication Technologies

Future and Emerging Technologies

Deliverable D4.2

Report on Resource Guarantees

Due date of deliverable: (T24)

Actual submission date: 1st March 2011

Start date of the project: 1st March 2009 Duration: 48 months

Organisation name of lead contractor for this deliverable: UPM

Final version

Integrated Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Report on Resource Guarantees

This document summarizes deliverable D4.2 of project FP7-231620 (HATS), an Integrated Project supported
by the 7th Framework Programme of the EC within the FET (Future and Emerging Technologies) scheme.
Full information on this project, including the contents of this deliverable, is available online at http:

//www.hats-project.eu.

The report contains the basic framework for resource usage analysis (a.k.a. cost analysis) of ABS pro-
grams as well as a series of advanced issues which aim at improving the efficiency, the accuracy and the
applicability of the proposed framework. Besides, we have studied the verification of the resource bounds
obtained by the resource usage analyzer by using the KeY system. The report contains conceptually three
parts:

1. Cost analysis of ABS. This part develops the framework for resource guarantees (or resource consump-
tion) analysis of ABS programs. To the best of our knowledge, it is the first static cost analysis for
concurrent object-oriented programs. The analysis is field-sensitive, as proposed in [2, 8]. It includes
a general notion of resource that can be instantiated to measure both traditional and concurrency-
related types of resources. One of the interesting notions of resource is the task-level of an application,
which refers to the maximum number of tasks that are spawned along any execution of the program.
This cost model has been published in [3]. The overall cost analysis framework is under revision for
its publication.

2. Advanced issues in cost analysis. Next, we focus on a series of advanced issues in cost analysis which
are of general interest in the context of cost analysis of any language, and can be applied in particular
to the ABS cost analysis framework above:

• Component-based approach. First, we present the modular extension of the cost analysis frame-
work where the objective is that different components can be analyzed independently and the
results then composed together. The compositional framework has been recently presented in [58].

• Asymptotic upper bounds. The results of cost analysis are usually precise, non-asymptotic upper
bounds (UBs). For most applications in HATS, their asymptotic versions can be of further interest
because they are simpler, allow ignoring implementation details and are more efficient to obtain.
We have designed an automatic transformation of non-asymptotic UBs into asymptotic form,
published in [5].

• Checking against specifications. The next step is to define a technique, presented in [6], to compare
the UBs automatically generated by a cost analyzer against resource specifications provided by
the user (or the system vendor). This will allow us to actually verify that the software will safely
run on the actual configuration.

• Accurate upper and lower bounds. Clearly, improving the accuracy of the results is crucial for
all applications of cost analysis (verification, certification, optimization, etc). We have presented
in [14] a novel technique to infer more precise UBs than [9] and which, furthermore, can be dually
applied to infer lower bounds.

2

http://www.hats-project.eu
http://www.hats-project.eu

HATS Deliverable D4.2 Report on Resource Guarantees

3. Verification of resource guarantees using KeY+costa. In spite of being based on theoretically sound
techniques, the resource analyzer may contain bugs which render the resource guarantees thus obtained
not completely trustworthy. We have investigated, and published in [4], an approach to formally verify
the correctness of such resource guarantees using the KeY system.

List of Authors

Elvira Albert (UCM)
Puri Arenas (UCM)
Richard Bubel (CTH)
Samir Genaim (UCM)
Miguel Gómez-Zamalloa (UCM)
Reiner Hähnle (CTH)
Germán Puebla (UPM)

3

Contents

1 Introduction 6

2 Preliminaries 9

2.1 Linear Constraints . 9

2.2 Cost Relations . 9

3 Cost Analysis of ABS 12

3.1 Overview of the ABS Language . 12

3.1.1 Informal Description and P2P Example . 12

3.1.2 A Rule-based Intermediate Language . 14

3.1.3 The Abstract Syntax . 16

3.1.4 Operational Semantics . 17

3.2 Cost and Cost Models for Concurrent Programs . 18

3.2.1 Cost Models . 19

3.3 The Basic Cost Analysis Framework . 20

3.3.1 Field-Sensitive Size Analysis for Concurrent OO Programs 21

3.3.2 Cost Relations Based on Cost Centers . 25

3.4 Class Invariants in Cost Analysis . 27

3.5 Implementation and Experimental Evaluation . 29

3.5.1 Experimental Evaluation . 30

4 Advanced Issues in Cost Analysis 33

4.1 Component-Based Approach . 33

4.1.1 Abstract Interpretation Fundamentals . 34

4.1.2 Modular Cost Analysis . 35

4.2 Asymptotic UBs . 36

4.2.1 Asymptotic Notation for Cost Expressions . 37

4.2.2 Asymptotic Orders of Cost Expressions . 38

4.3 Checking Against Specifications . 40

4.3.1 Context Constraints . 41

4.3.2 Comparison of Cost Functions . 41

4.3.3 Inclusion of Cost Functions . 44

4.4 Accurate Upper and Lower Bounds . 47

4.4.1 An Informal Account of Our Approach . 48

5 Verification of Resource Guarantees using KeY + costa 52

5.1 Introduction . 52

5.2 Inference of UBs in costa . 53

5.2.1 Main Components of an UB . 53

5.2.2 costa Claims as JML Annotations . 54

5.3 Verification of UBs using KeY . 55

4

HATS Deliverable D4.2 Report on Resource Guarantees

5.3.1 Verification by Symbolic Execution . 55
5.3.2 Proof-Obligation for Verifying UBs . 56
5.3.3 Verification of Proof-Obligations . 57

5.4 Implementation and Experiments . 57

6 Related Work 59

7 Conclusion 62

Bibliography 63

Glossary 68

A Task-Level Analysis for a Language with async-finish Parallelism 69

B Modular Termination Analysis of Java Bytecode and its Application to phomeME Core
Libraries 81

C Asymptotic Resource Usage Bounds 100

D Comparing Cost Functions in Resource Analysis 117

E More Precise yet Widely Applicable Cost Analysis 135

F Verified Resource Guarantees using costa and KeY 151

G Closed-Form Upper Bounds in Static Cost Analysis 156

5

Chapter 1

Introduction

One of the most important features of a program is its resource consumption. By resource, we mean not only
traditional cost measures (e.g., memory consumption, executed instructions) but also concurrency-related
measures (e.g., tasks spawned, requests to remote servers). In the present HATS Deliverable D4.2, we
develop a novel cost analysis framework [63] (a.k.a. resource usage analysis) for concurrent ABS programs.

Cost analysis aims at statically (i.e., without having to run the program) inferring sound approximations
of the resource consumption of executing the program. The classical approach to cost analysis by Wegbreit
dates back to 1975 [63]. It consists of two phases. In the first phase, given a program and a cost model,
the analysis produces cost recurrence equations (or simply cost relations—CRs for short), i.e., a system
of recursive equations which capture the cost of the program in terms of the size of its input data. Cost
analyzers are usually parametric on the cost model, e.g., cost models widely used are the number of executed
instructions, memory allocated, number of calls to methods, etc. (see, e.g., [12]). In the second phase, once
CRs are generated, analyzers try to compute closed-forms for them, i.e., cost expressions which are not in
recursive form.

costa is a state-of-the-art cost analyzer initially developed for sequential Java bytecode programs, which
already existed before the project HATS started. The main challenge in HATS, which is described in this
deliverable in detail, has been to apply the main techniques in costa to the context of ABS programs, con-
currency being the most difficult aspect. Automatically inferring the resource usage of concurrent programs
is challenging because of the inherent complexity of concurrent behaviors. Computations in a concurrent
system can be suspended and resumed and shared variables can be modified by different tasks that interact
with each other. A cost analyzer must consider all possible paths and interactions in order to infer a sound
approximation of the resource consumption.

In addition to traditional applications (e.g., optimization [63], verification and certification of resource
consumption [33]), cost analysis opens up interesting applications in the context of concurrent programming.
In general, having anticipated knowledge of the resource consumption of the different components which
constitute a system is useful for distributing the workload. Upper bounds (UBs) can be used to predict
that one component may receive a large amount of remote requests, while other siblings are idle most
of the time. An interesting instance of our framework is the task-level analysis (published in [3]) which
infers the maximum number of tasks spawned along the program execution. Also, our framework allows
instantiating the different components with the particular features of the infrastructure on which they are
deployed (memory available, etc.). Then, the analysis can be used to detect the components that consume
more resources and may introduce bottlenecks. Lower bounds (LBs) on the resource usage can be used to
decide whether it is worth executing locally a task or requesting remote execution.

After introducing some preliminary notions, in Chapter 3, we propose, to the best of our knowledge,
the first static cost analysis for concurrent object-oriented (OO) programs. It includes a general notion of
resource that can be instantiated to measure both traditional and concurrency-related types of resources.
The main novelties of this analysis are:

1. We introduce a sound size analysis for concurrent execution. The analysis is field-sensitive, i.e., it

6

HATS Deliverable D4.2 Report on Resource Guarantees

tracks (the sizes/values of) data stored in the heap whenever it is sound to do so. Intuitively, no
information about object fields can be assumed when a task is started (entry points of methods) or
resumed (after a processor release point). This is because, since ABS makes no assumption on the
scheduling, there is no control on which other tasks may have executed previously and whether they
have modified the values of fields.

2. We lift the standard definition of cost used in sequential programming to the distributed setting by
relying on the notion of cost center. Cost centers [57] were originally introduced for profiling functional
executions, but their use in static analysis is new. In our setting, each cost center represents a
(potentially distributed) component and allows us to separate their costs.

3. We present a novel form of cost recurrence relations (RRs), which is parametric w.r.t. the notion of
cost center, and which uses the field-sensitive size relations of item 1. From the obtained equations,
it is possible to obtain both upper and lower bounds on the resources consumed by the different
components of the system. Importantly, these recurrence equations can be solved by using standard
solvers developed for cost analysis of sequential programs.

4. We increase the accuracy of the field-sensitive size analysis by means of class invariants [52] which
contain information on the shared memory. In most cases, the required invariants can be automatically
generated.

5. We report on a prototype implementation (which can be used online through a web interface) and
evaluate it on concurrent ABS applications developed within HATS.

Chapter 4 presents a number of advanced issues in the field of resource analysis. The techniques proposed are
of general interest in cost analysis for any programming language and, indeed, most of them were initially
developed (during the first year of HATS) in the context of the costa system for cost analysis of Java
bytecode. Besides, the same techniques can be applied directly to cost analysis of ABS programs and, in
particular, to the framework presented in Chapter 3. Chapter 4 is divided in the following four parts:

• Component-based approach. Cost analyzers typically obtain UBs of medium size applications by means
of global analysis, in the sense that all the code used by such applications has to be analyzed. How-
ever, global analysis has important weaknesses, such as its high memory requirements and its lack of
efficiency, since often some parts of the code have to be analyzed over and over again, libraries being
a paramount example of this. We have developed and implemented an extension of cost analysis in
order to make it modular by allowing separate analysis of individual methods. The compositional
framework has been presented at FACS’2010 [58].

• Asymptotic UBs. A well-known mechanism for keeping the size of cost functions manageable and,
thus, facilitate human manipulation and comparison of cost functions is the asymptotic analysis. The
asymptotic point of view is basic in computer science, where the question is typically how to describe
the resource implication of scaling-up the size of a computational problem, beyond the “toy” level.
We have designed an automatic transformation of non-asymptotic UBs into asymptotic form, pub-
lished at APLAS’09 [5]. The scopes of non-asymptotic and asymptotic analysis are complementary.
Non-asymptotic bounds are required for the estimation of precise execution time, like in worst cost
execution time (WCET) or to predict accurate memory requirements [13]. The motivations for infer-
ring asymptotic bounds are twofold: (1) They are essential during program development, when the
programmer tries to reason about the efficiency of a program, especially when comparing alternative
implementations for a given functionality. (2) Non-asymptotic bounds can become unmanageably
large expressions, imposing huge memory requirements. We have shown that asymptotic bounds are
syntactically much simpler, can be produced at a smaller cost, and, interestingly, in cases where their
non-asymptotic forms cannot be computed.

7

HATS Deliverable D4.2 Report on Resource Guarantees

• Checking against specifications. In all applications of resource analysis, such as resource-usage verifica-
tion, program synthesis and optimization, etc., it is necessary to compare cost functions. This allows
choosing an implementation with smaller cost or to guarantee that the given resource-usage bounds are
preserved. Essentially, given a method m, a cost function fm and a context (set of linear constraints)
φm which impose size restrictions (e.g., that a variable in m is larger than a certain value or that the
size of an array is non zero, etc.), we aim at comparing it with another cost function bound b and
corresponding size constraints φb. We have developed a new method, presented at FOPARA’09 [6], to
compare the UBs automatically generated by a cost analyzer against resource specifications provided
by the user (or the system vendor). This will allow us to actually verify that the software will safely
run on the actual configuration.

• Accurate upper and lower bounds. Needless to say, precision is fundamental for most applications of
cost analysis. For instance, the UBs are widely used to estimate the space and time requirements of
programs execution and provide resource guarantees [33]. Lack of precision can make the system fail
to prove the resource usage requirements imposed by the software client. For example, it makes much
difference for the precision we gain if we infer 1

2n
2 instead of n2 for a given method. With the latter

UB, an execution with n=10 will be rejected if we have only 50 resources available, while with the
former one it is accepted. LBs are used for scheduling the distribution of tasks in parallel execution in
such a way that it is not worth parallelizing a task unless its LB resource consumption is sufficiently
large. Precision will be essential here to achieve a satisfactory scheduling. We have published at
VMCAI’11 [14] a novel technique to infer more precise UBs which, furthermore, can be dually applied
to infer LBs.

Finally, Chapter 5 presents how, using KeY, it is possible to formally and automatically verify the correctness
of the UBs obtained by cost analysis. There is a growing awareness, both in industry and academia, of the
crucial role of formally proving the correctness of systems. Verifying the correctness of modern static
analyzers (like costa) is rather challenging, among other things, because of the sophisticated algorithms
used in them, their evolution over time, and, possibly, proprietary considerations. A simpler alternative is
to construct a validating tool [55] which, after every run of the analyzer, formally confirms that the results
are correct and, optionally, generates correctness proofs. We will see how it is possible to verify the resource
guarantees obtained by static analysis using the KeY system. Realizing the cooperation between costa and
KeY requires a number of non-trivial extensions of both systems, which are described in more detail in the
corresponding chapter.

8

Chapter 2

Preliminaries

In this chapter, we recall some preliminary definitions which are useful to understand the next chapters.

2.1 Linear Constraints

Let us first introduce some notation. The sets of natural, integer, rational, real, non-zero natural, non-
negative rational and non-negative real values are denoted respectively by N, Z, Q, R, N+, Q+ and, R+. We
write x, y, and z, to denote variables which range over Z. A linear expression has the form v0 + v1x1 +
. . . + vnxn, where vi ∈ Z, 0 ≤ i ≤ n. Similarly, a linear constraint (over Z) has the form l1 ≤ l2, where
l1 and l2 are linear expressions. For simplicity we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1, and l1 < l2
instead of l1 + 1 ≤ l2. Note that the constraints with rational coefficients can be always transformed to
equivalent constraints with integer coefficients, e.g., 1

2x > y is equivalent to x > 2y. The notation t̄ stands
for a sequence of entities t1, . . . , tn, for some n > 0, and vars(t) to refer to the set of variables that appear
syntactically in an entity t. We write ϕ, φ or ψ (possibly subscripted and/or superscripted) to denote sets
of linear constraints which should be interpreted as the conjunction of each element in the set. A solution
for ϕ is an assignment σ : vars(ϕ) 7→ Z for which ϕ is satisfiable. The set of all solutions (assignments) of ϕ
is denoted by [[ϕ]]. We use ϕ1 |= ϕ2 to indicate that [[ϕ1]] ⊆ [[ϕ2]]. We use σ(t) or tσ to bind each x ∈ vars(t)
to σ(x), ∃x̄.ϕ for the elimination of the variables x̄ from ϕ, and ∃̄x̄.ϕ for the elimination of all variables but
x̄ from ϕ.

2.2 Cost Relations

The following definition presents our notion of cost expression e, which characterizes syntactically the kind
of expressions we deal with.

Definition 2.2.1 (cost expressions). A symbolic expression e is a cost expression if it can be generated
using the grammar below:

e :: = r | nat(l) | e+ e | e ∗ e | er | log(nat(l)) | nnat(l) | max(S)

where r ∈ R+, n ∈ N+, l is a linear expression, S is a non empty set of cost expressions, nat : Z → N is
defined as nat(v) = max({v, 0}), and the base of the log is 2 (since any other base can be rewritten to 2).

is not a valid cost expression, and shbut rather Cost expressions are symbolic expressions which represent
the resources we accumulate and are the non-recursive building blocks for defining CRs and for the closed-
form UBs that we infer for them. Importantly, linear expressions are always wrapped by nat in order to
avoid negative cost. E.g., instead of writing x+ y we write nat(x+ y), which lifts x+ y to 0 when x+ y < 0.
Observe that cost expressions are monotonic in their nat sub-expressions, i.e., replacing nat(l) ∈ e by nat(l′)
such that l′ ≥ l results in a cost expression e′ such that e′ ≥ e. This property is fundamental for the
correctness results in the next sections.

9

HATS Deliverable D4.2 Report on Resource Guarantees

static void m(List x, int i, int n){
while (i<n){

if (x.data) {g(i,n); i++;}
else {g(0,i); n=n-1;}
x=x.next;
}
}

(1) 〈Cm(i, n) = 3
, ϕ1 = {i ≥ n}〉

(2) 〈Cm(i, n) = 15 + Cg(i, n) + Cm(i′, n)
, ϕ2 = {i < n, i′ = i+ 1}〉

(3) 〈Cm(i, n) = 17 + Cg(0, i) + Cm(i, n′)
, ϕ3 = {i < n, , n′ = n− 1}〉

Figure 2.1: Java method and CRS .

Definition 2.2.2 (cost relation system). A cost relation system (CRS) is a set of equations of the form
〈C(x̄) = e +

∑k
i=1Di(ȳi), ϕ〉 with k ≥ 0, where C and Di are cost relation symbols, all variables x̄ and ȳi

are distinct variables; e is a cost expression; and ϕ is a set of linear constraints over x̄ ∪ vars(e)
⋃k
i=1 ȳi.

As notation, we use CR to denote a single cost relation, i.e., to the set of cost equations in a CRS for a
cost relation symbol C. A cost equation 〈C(x̄) = e+

∑k
i=1Di(ȳi), ϕ〉 states that the cost of C(x̄) is e plus

the sum of the cost of all Di(ȳi), where the linear constraints ϕ contain the applicability conditions for the
equation as well as size relations for the equation variables.

Example 2.2.3. Consider the simple Java method m shown in Figure 2.1, which invokes the auxiliary
method g, where x is a linked list of boolean values implemented in the standard way. The CR associated
to method m is shown at the right. The relations Cm and Cg capture, respectively, the costs of the methods
m and g. Intuitively, in a CRS, variables represent the sizes of the corresponding data structures in the
program and in the case of integer variables they represent their integer value. Equation (1) is a base case
and captures the case where the loop body is not executed. It can be observed that we have two recursive
equations (equation (2) and equation (3)) which capture the respective costs of the then and else branches
within the while loop. As the list x has been abstracted to its length, the values of x.data are not visible in the
CRS and the two equations have the same (incomplete) guard, which results in a non-deterministic CRS.
Also, variables which do not affect the cost (e.g., x) do not appear in the CRS.

W.l.o.g., we make two assumptions on the CRS defined above:

(a) Direct recursion: all recursions are direct (i.e., cycles in the call graph are of length one). Direct
recursion can be automatically achieved by applying partial evaluation [47] as described in [7]; and

(b) Standalone CRs: CRs do not depend on any other CR, i.e., the equations do not contain external
calls, and thus have the form 〈C(x̄) = e+

∑n
j=1C(ȳj), ϕ〉. This can be assumed because our approach

is compositional. We start by computing bounds for the CRs which do not depend on any other CR.
Then, we continue by replacing the computed bounds on the equations which call such a relation which
in turn become standalone. This operation is repeated until no more CR needs to be solved. In what
follows, CR refers to a standalone CR in direct recursive form, unless we explicitly state otherwise.

Example 2.2.4. Assuming that an UB on the number of executed instructions in g is C+
g (i, n) = 4 + 5 ∗

nat(n− i), the CR in Example 2.2.3 becomes standalone by replacing Cg(i, n) by C+
g (i, n) in Equation (2),

and Cg(0, i) by C+(0, i) = 4+5∗nat(i) in equation (3). The resulting standalone CR, after adding constants,
results in:

(1) 〈Cm(i, n) = 3, ϕ1 = {i ≥ n}〉
(2) 〈Cm(i, n) = 19 + 5 ∗ nat(n− i) + Cm(i′, n), ϕ2 = {i < n, i′ = i+ 1}〉
(3) 〈Cm(i, n) = 21 + 5 ∗ nat(i) + Cm(i, n′), ϕ3 = {i < n, n′ = n− 1}〉

In order to compute an upper bound for the above CR, the costa analyzer first computes an upper bound
for the number of iterations of the loop. For this example, such a bound is n − i. Afterwards, the nat-
subexpressions nat(n− i) and nat(i) in equations (2) and (3), respectively, must be “maximized” according to

10

HATS Deliverable D4.2 Report on Resource Guarantees

the constraints in ϕ2 and ϕ3. For equation (2), the maximum value results in the same expression. However,
in equation (3), the constraint i < n establishes that variable i takes its maximum value when i = n − 1.
Hence, the maximization of nat(i) results in nat(n − 1). As a result, the costa analyzer outputs the cost
expression:

C+
m(i, n) = 3 + nat(n− i) ∗max({19 + 5 ∗ nat(n− i), 21 + 5 ∗ nat(n− 1)})

as an UB on the number of bytecode instructions that m executes. Each Java instruction is compiled to
possibly several bytecode instructions. Observe that the use of nat is required in order to avoid incorrectly
evaluating UBs to negative values. When i ≥ n, the cost associated to the recursive cases has to be nulled
out, this effect is achieved with nat(n− i) since it will evaluate to 0.

The evaluation of a CR symbol C for a given valuation v̄ (integer values), denoted C(v̄) is done as follows:

(1) choose a matching equation from those defining C, e.g. 〈C(x̄) = e+
∑k

i=1C(ȳi), ϕ〉;

(2) choose a solution σ ∈ [[x̄ ∧ ϕ]], which indicates that the chosen equation is applicable;

(3) recursively evaluate each recursive call C(σ(ȳi)); and

(4) the cost is σ(e) plus the results of all calls.

Note that due to the non-deterministic choices in 1 and 2 we might have several solutions for C(v̄). The set
of all answers for C(v̄) is denoted by Ans(C(v̄)). Furthermore, even if the original program is deterministic,
due to the abstractions performed during the generation of the CRs, it might happen that several results
can be obtained for a given C(v̄). Correctness of the underlying analysis used to obtain the CRs must ensure
that the actual cost is one of such solutions (see [9]). This makes it possible to use CRs to infer both, upper
and lower bounds from them.

Example 2.2.5. Let us evaluate Cm(0, 2). We have two matching equations (2) and (3). Applying (2) we
get 19 + 2 ∗ 5 + Cm(1, 2). Similarly the application of (3) generates 21 + 0 + Cm(0, 1). For Cm(1, 2) and
Cm(0, 1) both equations (2) and (3) can be applied again. If we continue executing all possible derivation
steps until reaching the base case, the final result for C(0, 2) is any of {45, 48, 56, 58}. The actual cost is
guaranteed to be one of these values.

As shown in the above example, the evaluation of a CR for a method m returns a set of values, each one
of them being a correct solution. We say that C+(x̄) = e is an UB for CR C if C+(v̄) ≥ max(Ans(C(v̄))).
For the above example note that {45, 48, 56, 58} are less than C+

m(0, 2) = 61. We say that C−(x̄) = e is an
LB for CR C if C−(v̄) ≤ min(Ans(C(v̄))).

11

Chapter 3

Cost Analysis of ABS

This chapter presents, to the best of our knowledge, the first cost analysis for OO concurrent programs. Our
analysis is developed on the ABS language, whose concurrency model is based on the notion of concurrently
running (groups of) objects, in the spirit of the actor-based and active-objects approaches [59, 61]. These
models aim at taking advantage of the inherent concurrency implicit in the notion of object in order to
provide programmers with high-level concurrency constructs that help in producing concurrent applications
more modularly and in a less error-prone way.

The rest of the chapter is organized as follows. Section 3.1 overviews the ABS language and the example
on which we will illustrate our analysis. In Section 3.2, we introduce the notion of cost and the cost models
that we want to approximate by means of static analysis. Section 3.3 presents our basic framework for cost
analysis of OO programs. In order to increase accuracy, we improve the abstraction of fields in Section 3.4.
Finally, the implementation and experimental evaluation is described in Section 3.5.

3.1 Overview of the ABS Language

The concurrency model of Java and C# is based on threads which share memory and are scheduled preemp-
tively, i.e., they can be suspended or activated at any time. To prevent threads from undesired interleavings,
low-level synchronization mechanisms such as locks have to be used. Experience has shown that software
written in such a thread-based model is error-prone, difficult to debug, verify and maintain. In order to
overcome these problems, several concurrency models that take advantage of the inherent concurrency im-
plicit in the notion of object have been developed [59, 61, 46, 34, 52]. They provide programmers with
simple language extensions which allow programming concurrent applications with relatively little effort. In
particular, the ABS language [35, 42] inherits the concurrency model of Creol [46, 34] and extends it with the
possibility of grouping objects together, as in JCoBoxes [59]. For simplicity, we do not consider object groups
and assume that all objects are independent. Also, in the presentation, but not in the implementation, we
exclude interfaces and interface inheritance.

3.1.1 Informal Description and P2P Example

An ABS program consists of a functional, sequential part (with data-type and function declarations) and
an imperative, concurrent part (with interfaces, class definitions, and a main method to configure the initial
state). This distinction allows combining encapsulation and data transfer between objects in such a way
that: standard objects are passed by reference and used to make asynchronous calls, while to transfer
information between objects, functional data is used. Note that functions and functional data play the role
of passive objects in ASP [24] or immutable objects in JCoBox [59]. In order to illustrate our approach, we
use as running example a peer-to-peer (P2P) distributed application, adapted from [46]. Figure 3.1 shows
the functional fragment of the program with a number of types (only String and Int are predefined) and
some functions which can be executed using standard strict evaluation. In our example, a FileName (FN
for short) is represented as a String and the contents of a File are represented as a list of Packets. Node

12

HATS Deliverable D4.2 Report on Resource Guarantees

data List〈A〉 = Nil | Cons(A,List〈A〉);
data Set〈A〉 = EmptySet | Insert(A,Set〈A〉);
data Pairs〈A,B〉 = Pair(A,B);
data Map〈A,B〉 = EmptyMap |

InsAss(Pairs〈A,B〉,Map〈A,B〉);
type FN, Packet = String;
type FNs = Set〈String〉;
type File = List〈Packet〉;
type Catalog = List〈Pairs〈Node,FNs〉〉;
def Int length〈A〉(List〈A〉 list) =

case list { Nil ⇒ 0 ;
Cons(p, l) ⇒ 1+length(l);}

def A nth〈A〉(List〈A〉 list, Int n) =
case n { 0 ⇒ head(list);

⇒ nth(tail(list),n-1);}
def B lookup〈A,B〉(Map〈A,B〉 ms, A k) =

case ms { InsAss(Pair(k,y),) ⇒ y;
InsAss(,tm) ⇒ lookup(tm,k);}

def List〈A〉 app〈A〉(List〈A〉 l1, List〈A〉 l2) =
case l1 {

Nil ⇒ l2;
Cons(h,t) ⇒ Cons(h,app(t,l2));}

def Bool contains〈A〉(Set〈A〉 s, A e) =
case s {

EmptySet ⇒ False;
Insert(e,) ⇒ True;
Insert(, xs) ⇒ contains(xs, e);}

def Node findServer(FN f, Catalog c) =
case c {

Nil ⇒ null;
Cons(Pair(s, fs), r) ⇒

case contains(fs, f) {
True ⇒ s;
False ⇒ findServer(f, r); };

}

Figure 3.1: Functional Sequential Part of ABS Implementation of P2P Network

is a class defined in Figure 3.2 together with the rest of the imperative program (which consists of three
classes). Class Node reflects that peers can act both as clients and servers. A P2P network is formed by a
set of interconnected peers which make the files stored in their database (an object of class DB) available to
other peers, without the need for central coordination. In our simple implementation, the only coordination
is by means of an object of class Network, whose code is not shown due to space limitations. It suffices
to know that nodes learn who their neighbors are by invoking getNeighbors from such an object. A node
acting as client triggers computation with searchFile, which first finds a neighbor node s which can provide
the file and then asks s for the file using reqFile, which in turn makes a number of activations of the remote
method getPacks on s. Whenever possible, size packages are transferred at a time. The field size is set by
the constructor of the Node class and then remains constant.

Concurrent objects. The central concept of our concurrency model is that of concurrent objects. This
means that, conceptually, each object has a dedicated processor and encapsulates a local heap which is
not accessible from outside this object. This is achieved by making fields accessible only from this object.
Any other object can only access such fields through method calls. Concurrent objects live in a distributed
environment with asynchronous and unordered communication between objects. Such communication is by
means of asynchronous method calls that can be seen as triggers of concurrent activity (so-called tasks) in
the called object. Thus, an object has a set of tasks to be executed and, among them, at most one task is
active and the others are suspended on a task queue. As there is only one active task in each object and
each object can only access fields of its own object, data-races cannot occur in ABS. Figure 3.3 shows to
the left a possible main method. It creates a network configuration with three nodes, two databases and
one Network object (admin). In the graphical representation to the right, we can see that these six objects
become distinct concurrent entities which communicate with each other by means of asynchronous calls
(shown as labeled arrows) and use future variables (shown at the top right) to eventually return/retrieve
the results. In n1, n2 and n3, we depict the fact that concurrent objects have their own heaps, their queue
of pending tasks and an active task (if any). Though not shown graphically, the same holds for db1, db2,

13

HATS Deliverable D4.2 Report on Resource Guarantees

class DB {
Map〈FN,File〉 dbf;

DB(Map〈FN,File〉 db){dbf = db;}
File getFile(FN fn) {

return lookup(dbf,fn); }
Int lengthDB(FN fn) {

return length(lookup(dbf,fn)); }
Unit storeFile(FN fn, File f) {

dbf=InsAss(Pair(fn,f),dbf); }
}
class Node {

DB db; Catalog catalog;
List〈Node〉 myNeighbors;
Network admin; Int size;

Node(DB dbf, Int s) {db = dbf; size = s;}
Catalog availFiles(List〈Node〉 sList)
{. . . }

List〈Packet〉 getPacks(FN fn, Int ps, Int n) {
File f = Nil; File res = Nil;
Fut〈File〉 ff;
ff = db ! getFile(fn);
await ff?; f = ff.get;
while(ps > 0) {

res = Cons(nth(f,n+ps-1),res);
ps = ps-1;
}
return res; }

Int lengthNode(FN fn) {
Fut〈Int〉 length;
length=db ! lengthDB(fn);
await length?; return length.get; }

Unit reqFile(Node s, FN fn) {
Fut〈Int〉 l1; Fut〈List〈Packet〉〉 l2;
File f = Nil;
List〈Packet〉 ps = Nil;
Int i = 0; Int incr = 0;
l1 = s ! lengthNode(fn);
await l1?; i = l1.get;
while (i > 0) {

if (size > i) incr = i;
else incr = size;
i = i - incr;
l2 = s ! getPacks(fn,incr,i);
await l2?; ps = l2.get;
f = app(ps,f); }

db ! storeFile(fn,f); }
Unit searchFile(FN f) {

Fut〈Catalog〉 c;
Fut〈List〈Node〉〉 f;
Node s;
await admin != null;
f = admin ! getNeighbors(this);
await f?; myNeighbors = f.get;
c = this ! availFiles(myNeighbors);
await c?; catalog = c.get;
s = findServer(f, catalog);
if (s != null)

this ! reqFile(s,f); }
}
class Network {

Node node1, node2, node3;

Network(Node n1, Node n2, Node n3) {. . . }
List〈Node〉 getNeighbors(Node caller){. . . }

}

Figure 3.2: OO Concurrent Part of ABS Implementation of P2P Network

and admin.

Future variables and Synchronization. Process scheduling is by default non-deterministic, but con-
trolled by processor release points and future variables in a cooperative way. After asynchronously calling
f := o ! m(e), the caller may proceed with its execution without blocking on the call. Here f is a future
variable which refers to a return value which has yet to be computed. There are two operations on future
variables, which control external synchronization. First, the guard await f? suspends the active task (al-
lowing other tasks in the object to be scheduled) unless a return to the call associated with f has arrived.
Second, the return value is retrieved using f.get, which blocks all execution in the object until the return
value is available. An unconditional release instruction (not used in the example) suspends the current
task and lets a pending task in.

3.1.2 A Rule-based Intermediate Language

As customary in the formalization of static analyses for realistic languages, we develop our analysis on
an intermediate representation (IR) which removes syntactic sugar and allows a clearer and more concise
presentation. Similar representations are used for Java (and Java bytecode) and .NET, e.g., those in [62, 10,

14

HATS Deliverable D4.2 Report on Resource Guarantees

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

hn1

hn2

hn3

db2

getPack

storeFile

storeFile

reqFile

f2f1 l1

admin

reqFile

Q3

Q2

Q1

n3

n2

n1

db1

Cons(”a”,Cons(”b”,

Cons(”c”,Nil)))))

db = InsAss(Pair(”file0”,

InsAss(Pair(”file1”,

Cons(”d”,Cons(”e”,Nil))),

EmptyMap));

db1 = new DB(EmptyMap);

db2 = new DB(db);

n1 = new Node(db1, 2);

n2 = new Node(db1, 1);

n3 = new Node(db2, 1);

admin = new NetWork(n1, n2, n3);

n1 ! setAdmin(admin);

n2 ! setAdmin(admin);

n3 ! setAdmin(admin);

n2 ! searchFile(”file1”);

n1 ! searchFile(”file0”);

l2

getNeighbors

getNeighbors

Figure 3.3: Main method (left). Overview of Concurrent Activity (right).

60, 37]. Essentially, all these tools work by first building the control flow graph (CFG) from the program
and then representing each block of the CFG in the intermediate language. In our IR, a program consists of
a set of procedures defined by means of rules. Namely, each method in the original program is represented by
one or more procedures in the IR, which in turn are defined by one or more guarded rules. As the translation
is identical to the one for Java programs, we do not go into the technical details (see [62, 10, 60, 37]), but
rather illustrate it by example.

Example 3.1.1. Figure 3.4 shows the CFG (right) and the IR (left) of method reqFile. Loops are extracted
in separate CFGs to enable compositional cost analysis on them. It can be observed that the method is
represented by four procedures, reqFile, loop, if and if c, each of them defined by means of guarded rules.
inp stands for 〈s, fn, f , ps, i , incr , l2 〉 and out for 〈f , ps, l2 , i , incr〉. Guards in rules state the conditions
under which the corresponding blocks in the CFG can be executed. When there is more than one successor
in the CFG, we just create a continuation procedure and a corresponding call in the rule. Blocks in the
continuation will be in turn defined by means of guarded rules (with mutually exclusive conditions). As a
result of the translation, all forms of iteration in the program are represented by means of recursive calls.
The input variables to the entry procedure for reqFile are those of the corresponding method and additionally
the reference to the this object. When calling a block, we pass as arguments all local variables that are needed
in the block. The heap remains as an implicit global variable. Observe that there is almost a one-to-one
correspondence between instructions in the original program and in its IR, except for data type declarations
(which are not needed for the analysis) and the while loop (which has been replaced by a call to the procedure
defining the loop).

15

HATS Deliverable D4.2 Report on Resource Guarantees

reqFile(this, 〈s, fn〉, 〈〉)←
1© f := Nil , 2© ps := Nil , 3© i := 0 ,
4© incr := 0 ,
5© call(method, lengthNode(s, 〈fn〉, 〈l1 〉)),
6© await l1 ?,
7© i := l1 .get,
8© call(block, loop(this, inp, out)),

thisDB = this.db;
9© call(method, storeFile(thisDB , 〈fn, f 〉, 〈〉)).

loop(inp, out)← i ≤ 0.
loop(inp, out)← i > 0, call(block, if (this, inp, out)).

if (inp, out)← this.size > i , incr := i ,
call(block, if c(this, inp, out).)

if (inp, out)← this.size ≤ i , incr := this.size,
call(block, if c(this, inp, out)).

if c(inp, out)←
10© i := i − incr ,
11© call(method, getPacks(s, 〈fn, incr , i〉, 〈l2 〉)),
12© await l2 ?,
13© ps := l2 .get,
14© call(func, app(this, 〈ps, f 〉, 〈f 〉)),

call(block, loop(this, inp, out)).

yes

i > 0

yes no

(11) l2 = s!getPacks(fn, incr , i);
(10) i = i − incr ;

(12) await l2?;

(14) f = app(ps, f);
(13) ps = l2.get;

no

(9) db!storeFile(fn, f);
(8) loop(i , incr , fn, l2 , ps, f);
(7) i = l1.get
(6) await l1?;
(5) l1 = s!lengthNode(fn);
(4) Int incr = 0 ;
(3) Int i = 0 ;
(2) Packet ps = Nil ;
(1) File f = Nil ;

Fut<List<Packet>> l2 ;
(0) Fut<Int> l1 ;

size > i

incr = sizeincr = i

Figure 3.4: The IR and CFG for method reqFile.

3.1.3 The Abstract Syntax

Rules in the IR adhere to this grammar:

rule ::= m(this, x̄, ȳ)← g, b1, . . . , bn.
g ::= true | g ∧ g | x? | exp op exp |match(x, t) | nonmatch(x, t)
b ::= x := exp | this.f := exp | x := new C |

call(callType,m(receiver , x̄ , ȳ)) | await g | release | x := y .get
exp ::= null | aexp | t | this.f
aexp ::= x | n | aexp−aexp | aexp+aexp | aexp∗aexp | aexp/aexp
t ::= x | Co(t̄)
op ::= < | > | = | 6= | ≤ | ≥

where m(this, x̄, ȳ) is the head of the rule, this is the identifier of the object on which the method or function
is executing, g specifies the conditions for the rule to be applicable and b1, . . . , bn is the rule body. Calls are
of the form call(callType,m(receiver , x̄ , ȳ)) where callType ∈ {method, block, func} in order to distinguish
between calls to methods, intermediate blocks and functions; receiver is a variable that refers to the receiver
object; the variables x̄ are the formal parameters; and the variables ȳ the return values. For blocks and
functions, variable receiver is always this. For methods, ȳ is either empty or contains a single output
variable. We assume that future variables are used in await instructions but not in rule guards. Guards of
the form match(x, t) and nonmatch(x, t) in the IR simulate case-expressions used to handle functional data.
We assume x 6∈ vars(t). Note that match(x, t) modifies vars(t) when it succeeds. An instruction new C(̄t)
in ABS is represented in the IR by new C followed by a call to the class constructor with the corresponding
parameters t̄.

A program consists of classes, functions, and a main method from which the execution starts. A class
C consists of a set of methods and a set of fields f̄C . A method C.m is defined by a set of rules such that
there is a single rule named C.m (the method entry). The other rules are intermediate procedures that are

16

HATS Deliverable D4.2 Report on Resource Guarantees

used only within the method, using the block call. A function is a (global) set of rules that is accessible
from any method (using the func call), and therefore it cannot access nor modify fields. The main method
does not belong to any class.

3.1.4 Operational Semantics

An execution state (or configuration S) has the form {|a1, . . . , an|}, where an ai can be either an object, a
future event, or a method invocation. An object is of the form ob(o, C, h, 〈tv ; s〉,Q), where o is the object
identifier, C is its class name, h is its heap, tv a table of local variables, s is a sequence of instructions to be
executed by the current task, and Q is the set of pending tasks. A heap h maps field names (declared in
C) to V = Z ∪ {null} ∪ Objects ∪ Terms, where Objects (resp., Terms) denotes the set of object identifiers
(resp., functional terms). A table of variables tv maps local variables to V. It contains the special entry
destiny to associate the return variable of a method to the corresponding future variable.

Future events have the form fut(fn, v) where v ∈ V∪⊥. The symbol ⊥ indicates that fn does not have
a value yet. A method invocation is of the form invoke(m(o, x̄), tv , fn), where fn is the future variable
in which the return value should be stored. For simplicity, we assume that all methods return a value.
The operational semantics is given in a rewriting-based style, where, at each step, a subset of the state is
rewritten according to the following rules:

(1)
v = eval(exp, h, tv ,Obj), x ∈ dom(tv)

{|ob(o, C, h, 〈tv ;x := exp · s〉,Q)|Obj |}; {|ob(o, C, h, 〈tv [x 7→ v]; s〉,Q)|Obj |}

(2)
v = eval(exp, h, tv ,Obj)

{|ob(o, C, h, 〈tv ; this.f := exp · s〉,Q)|Obj |}; {|ob(o, C, h[f 7→ v], 〈tv ; s〉,Q)|Obj |}

(3)
o′ is fresh, h′ is an empty mapping

{|ob(o, C, h, 〈tv ;x := new D · s〉,Q)|Obj |};
{|ob(o, C, h, 〈tv , x := o′; s〉,Q), ob(o′, D, h′, ε, ∅)|Obj |}

(4)

callType ∈ {block, func}, r ≡ p(o, x̄ , ȳ)← g , b1 , . . . , bn �tv P ,
tv ′ is a default mapping over vars(r) \ (x̄ ∪ ȳ), eval(g, h, tv ∪ tv ′,Obj) = true

{|ob(o, C, h, 〈tv ; call(callType, p(o, x̄ ′, ȳ)) · s〉,Q)|Obj |};
{|ob(o, C, h, 〈tv ∪ tv ′; b1, . . . , bn · s〉,Q)|Obj |}

(5)
o′′ = eval(o′, h, tv ,Obj), v̄ = eval(x̄, h, tv ,Obj), fn is a fresh future name

{|ob(o, C, h, 〈tv ; call(method,m(o′, x̄, y)) · s〉,Q)|Obj |};
{|ob(o, C, h, 〈tv ; y := fn · s〉,Q), invoke(m(o′′, v̄), fn), fut(fn,⊥)|Obj |}

(6)

r ≡ m(this, x̄, y)← g, b1, . . . , bn � P, tv ′ is a default mapping over vars(r),
tv ′′ = tv ′[this 7→ o, x̄ 7→ v̄, destiny 7→ (y, fn)], eval(g, h, tv ′′,Obj) = true

{|ob(o, C, h, 〈tv ; s〉,Q), invoke(m(o, v̄), fn)|Obj |};
{|ob(o, C, a, 〈tv ; s〉, {〈tv′′; b1, . . . , bn〉|Q})|Obj |}

(7)
(y, fn) = tv(destiny), v = tv(y)

{|ob(o, C, h, 〈tv ; ε〉,Q), fut(fn,⊥)|Obj |}; {|ob(o, C, h, ε,Q), fut(fn, v)|Obj |}

(8)
fn = tv(y), v 6= ⊥

{|ob(o, C, h, 〈tv ;x := y.get · s〉,Q), fut(fn, v)|Obj |}; {|ob(o, C, h, 〈tv ;x := v · s〉,Q)|Obj |}

(9)
eval(g, h, tv ,Obj) = true

{|ob(o, C, h, 〈tv ; await g · s〉,Q)|Obj |}; {|ob(o, C, h, 〈tv ; s〉,Q)|Obj |}

(10)
eval(g, h, tv ,Obj) = false

{|ob(o, C, h, 〈tv ; await g · s〉, q)|Obj |}; {|ob(o, C, h, 〈tv ; release · await g · s〉,Q)|Obj |}

(11) {|ob(o, C, h, 〈tv ; release · s〉,Q)|Obj |}; {|ob(o, C, h, idle, {|〈tv ; s〉|Q|})|Obj |}

17

HATS Deliverable D4.2 Report on Resource Guarantees

(12)
b = ε or b = idle

{|ob(o, C, h, b,Q)|Obj |}; {|ob(o, C, h, s,Q− {|s|})|Obj |}

Let us intuitively explain the semantics. Function eval(exp, h, tv ,Obj) evaluates an expression exp using the
heap h and the variables table tv in the standard way. If exp is a future, then it uses Obj to see if it has
a value. If exp is a match instruction, eval modifies the matched variables in the corresponding variables
table. The notation tv [x 7→ v] (resp. h[f 7→ v]) in the first two rules stands for storing v in the local variable
x (resp. field f). In rule 3, it can be observed that an instruction new creates a new object initially empty.
We assume that, after creating the object, the scheduler always picks the task associated to the constructor
before selecting any other task. In rule 4, a call to a block or a function is resolved by finding a matching
rule and add (a renamed apart version of) its body to the sequence of instructions to be executed.

The most important points in the semantics are (a) the treatment of method invocations and future
variables (rules 5-7) and (b) synchronization operations (rules 8-12). As regards (a), when we find an
asynchronous call in rule 5, we create a (fresh) future variable fn on which the result will be returned
and establish the link between the return variable y of the method and fn by means of an assignment
instruction. The fact that the asynchronous call reaches the object occurs in rule 6, where the asynchronous
call is dequeued for execution, and the destiny future variable is stored in the local variables table. Then in
rule 7, when the corresponding method finishes execution, the future variable is updated with the returned
value. As regards (b), the instruction get blocks execution until the future variable has a value in rule 8. If
the evaluation of the guard in an await instruction succeeds, execution continues in rule 9. If it fails, the
processor is released (rule 10) to allow another task to become active. This can be seen in rule 11 in which
the task becomes idle. In rule 12 another task is dequeued (because the current one terminated or released
the processor).

Executions start from a main method. Initial configurations have the form {|ob(main,⊥,⊥, 〈tv ; b̄〉, ∅)|}
where local variables in tv are initialized to default values. The execution ends in a final configuration S
in which all events are either future events or objects of the form ob(o, C, h, ε, ∅). Execution proceeds non-
deterministically by applying the above execution steps. When there is no rule to apply the execution stops.
Executions can be regarded as traces of the form S0 ; S1 ; · · ·; Sn where Sn is a final configuration.

Example 3.1.2. Let us show two states of the execution of the main method in Figure 3.3. After executing
the constructors we reach a configuration with seven objects:

{| ob(main,⊥,⊥, 〈tvmain; b1· · ·b5〉, ∅), ob(odb1 ,DB , hdb1 , ε, ∅), ob(odb2 ,DB , hdb2 , ε, ∅),
ob(on1 ,Node, hn1 , ε, ∅), ob(on2 ,Node, hn2 , ε, ∅), ob(on3 ,Node, hn3 , ε, ∅), ob(oadmin , . . .)|}

After starting the execution of searchFiles in on1 and on2, we might reach this configuration which contains
invoke events and fut events associated to the execution of the asynchronous call to getNeighbors in the
corresponding objects:

{| invoke(getNeighbors(oadmin , on1 , f1), fn1), invoke(getNeighbors(oadmin , on2 , f2), fn2),
fut(fn1,⊥), fut(fn2,⊥), ob(oadmin ,NetWork , hadmin , ε, ∅), . . . |}

The tables of variables of both objects must contain references to the future variables in which the results
will be returned tvn1 (f1) = fn1 and tvn2 (f2) = fn2.

3.2 Cost and Cost Models for Concurrent Programs

In this section, we define the notion of cost that we aim at approximating by static analysis. In the execution
of sequential programs, the cost of an execution trace is obtained by applying a certain cost model to each
step of the trace. A cost model assigns a cost to the different instructions, and the cost of a trace is
defined as the sum of the costs of its execution steps. In our setting, this simple notion of cost has to
be extended because, rather than considering a single machine in which all steps are performed, we have

18

HATS Deliverable D4.2 Report on Resource Guarantees

a potentially distributed setting, with multiple objects possibly running concurrently on different central
processing units (CPUs). Thus, rather than aggregating the cost of all executing steps, it is more useful to
treat execution steps which occur on different computing infrastructures separately. This is important since
different infrastructures might have different configurations, such CPU, memory, etc. Therefore, inferring
the resource consumption for each infrastructure separately helps in identifying those that might exceed
the resource limit (e.g., run out of memory). This information is not deducible from the total resource
consumption. With this aim, we adopt the notion of cost centers [57] proposed for profiling functional
programs. Since the concurrency unit of our language is the object, cost centers are used to charge the cost
of each step to the cost center associated to the object where the step is performed.

In what follows, we consider annotated traces of the form t = S0 ;o1 . . . ;on Sn where the annotation
oi refers to the object identifier that has been selected (from Si−1) for that execution step. For a given set
of objects O, we let t|O = {Si ;oi Si+1 | Si ;oi Si+1 ∈ t, oi ∈ O}, i.e., the set of execution steps that are
performed on objects from O. A cost model M is a function M : Ins 7→ R, which maps instructions built
using the grammar in Section 3.1.3 to real numbers. We assume that cost models map those instructions
introduced by the semantics to zero, i.e., idle, release and await which are not part of the program are
not counted. This means that we consider the cost associated to executing the instructions of the program
but not implementation aspects of concurrency, like how many times an await is checked until it succeeds.
The cost of an execution step Si ;oi Si+1 w.r.t. M, denoted M(Si ;oi Si+1), is defined as M(b) where
ob(oi, C, h, 〈tv ; b · s〉,Q) ∈ Si. Cost centers can be defined at the level of objects, or sets of objects. It is
common that a group of objects becomes a concurrency unit (see [59]). The cost of t w.r.t. a cost modelM
and a set of cost centers O (i.e., set of objects) is defined as C(t, O,M) =

∑
e∈t|OM(e). Observe that in

this setting, it is also possible to apply a different cost model to the different cost centers, e.g., if we want
to take into account the particular features of the machine on which the component will be deployed.

3.2.1 Cost Models

In the concurrent setting, in addition to traditional cost models used in sequential computation (e.g., number
of instructions or memory allocated), we consider cost models specifically tailored to the case of concurrent
applications. The cost models we consider are platform independent (e.g., worst-case execution time is left
out of study). Nonetheless, information inferred by our framework (e.g., size relations) can be useful also
for platform-dependent cost models.

3.2.1.1 Termination.

We consider termination as the simplest cost model, Mtermin , which is used to infer if the resource con-
sumption is bounded, but does not provide actual bounds. Formally, we define it as Mtermin(b) = 0 for all
instructions b. As the accumulated cost is zero, the only thing that cost analysis must do is to infer bounds
on the number of iterations of loops (thus prove loops terminating). Hence, in this cost model, inferring
cost boils down to prove termination.

3.2.1.2 Number of Instructions.

The most traditional model, denoted Mins , assigns cost 1 to all instructions, except to calls to blocks (as
they do not appear in the original program):

Mins(b) =





0 b ≡ call(block,)
Mins(g1) +Mins(g2) b ≡ g1 ∧ g2

1 otherwise

19

HATS Deliverable D4.2 Report on Resource Guarantees

3.2.1.3 Memory Consumption.

Since objects are meant to be the concurrency units while data structures will be constructed using terms,
the cost model that estimates the amount of memory, Mmem , measures the size of functional data:

Mmem(b) =

{
|Co(p1, . . . , pn)| b ≡ x := Co(p1, . . . , pn),
0 otherwise

where |x| = 0 if x is a variable, and |Co(p1, . . . , pn)| = size(Co) + |p1|+ . . .+ |pn| such that size(Co) denotes
the memory required by the data constructor Co.

3.2.1.4 Concurrent Objects.

Since objects represent the concurrency units, an interesting cost model is counting the total number of
objects created along the execution (note that objects can be created inside loops). This provides a useful
indication of the amount of parallelism that might be achieved. This cost model is defined as Mobj (b) = 1
if b ≡ new c and Mobj (b) = 0 otherwise.

3.2.1.5 Spawned Processes & Remote Requests.

By counting call(method,), we can infer the task-level of the program [3], i.e., the number of tasks that are
spawned along an execution. Knowledge on the task-level of the program is useful for both understanding
and debugging parallel programs. Our analysis can infer a task-level which is larger (or smaller) than the
programmer’s expectations. This can help find bugs in the concurrent program, e.g., the analysis results
would be “unbounded” when an instruction which spawns new tasks is (wrongly) placed within a loop
which does not terminate. The task-level is also useful for optimizing and finding optimal deployment
configurations, e.g., when parallelizing the program, it is not profitable to have more processors than the
inferred task-level. This cost model can be specialized to count the number of calls to specific methods or
objects. For instance, if we count call(method, (o, ,)), we obtain UBs on the number of requests to a
remote component o. This can be useful to detect that some components are receiving a large amount of
remote requests while other siblings are idle most of the time.

3.3 The Basic Cost Analysis Framework

There has been a significant development in cost analysis for sequential Java-like languages during the last
years. Before starting HATS, the main focus had been primarily on automatically producing (cost) RRs from
realistic imperative programs. This step is non-trivial since programs typically contain different forms of
iterations (recursion, do-while, while, for, etc.), different types of variables and data, dynamic dispatch, etc.,
which must be converted into mathematical relations. The IR can be seen as a normal form representation
of the program that makes this step feasible (and that we directly borrow from [10]). During the first year of
HATS, we have focused on making cost analysis field-sensitive [2], i.e., being able to approximate data stored
in the heap such that when the resource consumption of the program depends on such data, upper/lower
bounds can still be generated. Therefore, the starting point of our work is a powerful field-sensitive cost
analysis framework for sequential OO programs. When lifting such a framework to the concurrent setting,
the main two difficulties and novelties are:

1. It is widely recognized that, due to the possible interleaving between tasks, tracking values of data
stored in the heap is challenging. In Sec. 3.3.1, we present the basic, novel, field-sensitive size analysis
for the concurrent setting, and in Sec. 3.4 we discuss how to further improve its precision.

2. Standard RRs (in the sequential setting) assume a single cost center which accumulates the cost of
the whole execution. In Sec. 3.3.2, we propose a novel form of RRs which are parametric on the cost
centers to which cost must be assigned.

20

HATS Deliverable D4.2 Report on Resource Guarantees

3.3.1 Field-Sensitive Size Analysis for Concurrent OO Programs

The objective of the size analysis component is to infer precise size relations which allow us to reason on
how the size of data changes along a program’s execution. When the program contains loops, size relations
are fundamental to bound the number of iterations that loops perform. For instance, if a loop traverses
a non-cyclic list, we aim at automatically inferring a size relation that ensures that the length of the list
decreases at each loop iteration. This in turn will allow us to bound the number of iterations by the length
of the list. In what follows, we present the size analysis component in three steps:

• Size measures. We first recall the notion of size measure that maps data structures to numerical values
that represent their sizes.

• Abstract compilation. We present a sound abstraction which compiles each program instruction into
corresponding size constraints (w.r.t. the chosen size measures). Our main challenge is to keep as much
information on global data (i.e., fields) as possible while still being sound in the concurrent execution.

• Input-Output relations. We infer input-output (IO) size relations for increasing precision.

3.3.1.1 Size measures.

When a program manipulates numerical data, its cost often depends on the initial (integer) values of the
corresponding variables, and when it manipulates terms (i.e., data-structures), its cost usually depends on
the size of the concrete input. For example, the cost of traversing a list depends on the length of the
list. Therefore, we first need to define the meaning of size of a term, which is also known as norm [21].
A norm is a function that maps terms to numerical values that represent their sizes. For example, the
term-size norm calculates the number of type constructors in a given term. It can be defined recursively as
follows:

∣∣Co(p1 , . . . , pn)
∣∣
ts

= 1 + Σn
i=1

∣∣pi
∣∣
ts

and
∣∣x
∣∣
ts

= x. Another common norm is the term-depth which

calculates the length of the longest path in the term:
∣∣Co(p1 , . . . , pn)

∣∣
td

= 1 +max(
∣∣p1

∣∣
td
, . . . ,

∣∣pn
∣∣
td

) and∣∣x
∣∣
td

= x. Any norm can be used in the analysis, depending on the nature of data structures used in the
program. In what follows, w.l.o.g., we use the term-size norm.

Example 3.3.1. Given t ≡ Cons(node3,Nil), we have
∣∣ t
∣∣
ts

= 2 + node3 and
∣∣ t
∣∣
td

= 1 + max{node3, 1}.
For the term stored in variable db in Figure 3.3, we have

∣∣db
∣∣
ts

= 19 and
∣∣db

∣∣
td

= 6, assuming that the
size of a string is 1 in both cases.

In addition to terms and numerical values, our language includes reference variables that point to objects
created using new c (and future variables). In OO, objects represent data structures and, therefore, their
sizes should be tracked as we do for terms since they might directly affect the number of iterations a loop
can make. This is usually done using the path-length abstraction [60] (which is the OO version of term-
depth). However, in our context, objects are intended to simulate concurrent computing entities and not
data structures. It is hence not common that they directly affect loop iterations. Therefore, ignoring their
sizes is sound and precise enough in most cases. A slightly more precise abstraction can distinguish between
the case in which a reference variable points to an object (size 1) or to null (size 0). The size of a future
variable is like the size of the value it holds. This is sound because future variables cannot be used directly,
but rather only through the get instruction (which blocks until it gets a value).

3.3.1.2 Abstract Compilation.

One of the main challenges when (statically) analyzing OO programs is to model the shared memory or
heap. Our starting point is the field-sensitive size analysis for Java programs developed during the first
year of HATS [2], where we propose to model fields as local variables whenever doing so is sound. Thus,
one can then rely on a fully field-insensitive analysis to infer information on the fields. Soundness requires
that the field to be tracked meets two conditions: (1) its memory location does not change (this property is

21

HATS Deliverable D4.2 Report on Resource Guarantees

known as reference constancy [2, 1]) and (2) the field is accessed always through the same reference (i.e., not
through aliases). Both conditions can often be proven statically and the transformation of fields into local
variables can then be successfully applied for many fragments of the program. If we ignore concurrency,
this approach could be directly adopted for our language. Even more, since different objects do not share
heaps in ABS, and terms (i.e., data structures) are immutable, the transformation is simpler than in Java
and can be applied locally to classes.

Example 3.3.2. Consider the loop in the reqFile method. By ignoring the await instruction, it is clear
that the two soundness conditions for the field size will hold, i.e., size refers to the same memory location in
all iterations and there are no aliases to it. Hence, for the sake of analysis, we can track size as if it were
a local variable. However, concurrency introduces new challenges. Unlike local variables, different tasks,
say A and B, running on the same object o share the values of variables stored in the heap. Thus, while
A is executing, B may modify the values stored in o’s heap, and therefore affect A’s behavior. Therefore,
A cannot assume that the values (fields) stored in o’s heap are preserved in each execution step. In order
to address this problem, it is essential to identify those program points in which other tasks might modify
the shared memory, and understand how the shared memory is modified. In the context of the considered
concurrent objects model, this happens in the following situations:

1. The execution of a task A is interleaved with the execution of another task B (of the same object)
only when A explicitly executes release or await. Let us add (only for the sake of this example) the
following method to class Node: void p() {size = size− 2; }. The interleaved execution of reqFile and p
might introduce non-termination to the loop of reqFile.

2. Since method invocations are asynchronous, the actual execution of the invoked method does not nec-
essarily start at the point in time when the invocation is made. For instance, given method p above,
the invocation of getPacks in the loop could start after the value of size is decreased by p. Depending
on the pending requests and the scheduler, the invocation can start executing at a later point in time,
in a different configuration. The values of the local variables are preserved, but not those stored in the
heap.

The first point suggests that, if a sequence of instructions does not include release or await, then the
shared memory can be tracked locally, since no other tasks can modify it. Namely, fields behave as local
variables. The second point suggests that, when starting the execution of a method, we cannot assume that
the initial state of the shared memory is identical to that when the method has been invoked. As a first
attempt, we present a safe abstraction for each instruction that loses all information about fields when they
cannot be tracked locally: (1) at release or await points and (2) at method entries.

An abstract state, at a program point, maps each program variable and field to a set of integers that
represent possible sizes for their concrete values at that program point. Abstract states are often represented
by sets of linear constraints whose solutions define the above mappings. This representation allows describing
relations such as (1) the size of x is always smaller than the size of y; and (2) the size of x decreases by
1 in two consecutive states. These relations are essential for infering cost and proving termination. When
representing a state using constraints, the basic building blocks are (simpler) constraints that describe the
effect of each instruction b on a given state. We refer to such constraints as the abstraction of b. Figure 3.5
depicts the abstraction of all instructions.

In order to abstract an instruction b (the first column), we assume a mapping ρ from variables and
field names to constraint variables that represent their sizes in the state before executing b. The result of
abstracting b w.r.t ρ is the set of constraints αρ(b) (second column), and a new mapping ρ′ (third column)
from variables and field names to constraints variables that represent their sizes in the state after executing
b. This is required since we might need to describe a relation like: the size of x after executing b is equal to
its size before the execution plus 1. Therefore, we need one constraint variable (the size of x) for the state
before and one for the state after. ρ′ is obtained from ρ by introducing new constraint variables for those
variables and fields that might change their value when executing b. This is equivalent to a single static
assignment transformation.

22

HATS Deliverable D4.2 Report on Resource Guarantees

b αρ(b) ρ′

1 exp op exp αρ(exp) op αρ(exp) ρ′=ρ
op ∈ {>,≥, <,≤,=,+,−}

2 exp op exp true ρ′=ρ
op ∈ {6=}

3 exp op exp ρ′=ρ
op ∈ {∗, /}

4 t
∣∣ t[x 7→ρ(x)]

∣∣
ts

ρ′=ρ
5 null 0 ρ′=ρ
6 x ρ(x) ρ′=ρ
7 this.f ρ(f) ρ′=ρ
8 x? true ρ′=ρ
9 match(x, t) ρ(x)=αρ(t) ρ′=ρ

10 nonmatch(x, t) true ρ′=ρ
11 g1 ∧ g2 αρ(g1) ∧ αρ(g2) ρ′=ρ
12 g1 ∨ g2 true ρ′=ρ
13 release true ρ′=ρ[f̄C 7→ρ(f̄C)′]
14 await g αρ′(g) ρ′=ρ[f̄C 7→ρ(f̄C)′]
15 x := y.get ρ′(x)=ρ(y) ρ′=ρ[x 7→ρ(x)′]
16 x := exp ρ′(x)=αρ(exp) ρ′=ρ[x 7→ρ(x)′]
17 this.f := exp ρ′(f)=αρ(exp) ρ′=ρ[f 7→ρ(f)′]
18 x := new C ρ(x)=1 ρ′=ρ[x 7→ρ(x)′]
19 call(block, q(receiver , x̄, ȳ)) q(ρ(receiver), ρ(x̄·f̄C), ρ′(ȳ·f̄C)) ρ′=ρ[ȳ·f̄C 7→ρ(ȳ·f̄C)′]
20 call(id, q(receiver , x̄, ȳ)) q(ρ(receiver), ρ(x̄), ρ′(ȳ)) ρ′=ρ[ȳ 7→ρ(ȳ)′]

id ∈ {method, func}

Figure 3.5: Abstract compilation. ABST(bk:i, ρ)=〈αρ(bk:i), ρ
′〉

Let us describe the abstraction of a few selected representative instructions. In line 16, the instruction
x := exp is abstracted into the equality ρ′(x) = αρ(exp) where αρ(exp) is the size of exp w.r.t. ρ. For
example, if exp ≡ Cons(x, y), then line 4 abstracts exp to 1 + ρ(x) + ρ(y). The left hand side of the equality
uses ρ′(x) and not ρ(x) because it refers to the size of x after executing the instruction. Note that the
constraint variable to which x is mapped in ρ′ is different from that of ρ. The abstraction of release at line
13 basically “forgets” sizes of the fields f̄C of the corresponding class. This is because they might be updated
by other methods that take the control when the current task suspends. The abstraction of await at line 14
is similar to that of release, though we can add to our abstract state the information that the guard g is
satisfied upon completion of await g. Note that we use ρ′ in order to abstract g, since the execution might
suspend if g is evaluated to false. When abstracting a call to a block in line 19, the class fields are added
as arguments in order to track their values. However, when abstracting calls to methods and functions the
fields are not added. For methods, they are not added because their values at call time might not be the
same as when the method actually starts to execute. For functions, they are not added since functions
are not class members and cannot access fields. Since we use linear constraints only, non-linear arithmetic
expressions (line 3) are abstracted to a fresh constraint variable “ ” that represents any value. Similarly,
non-linear conditions (line 2) are abstracted to true in order to lose their effect.

By using the abstraction in Figure 3.5, we now transform a given program P into an abstract program Pα

that approximates its behavior w.r.t. the given size measure by applying the abstraction to all instructions
in all program rules.

Definition 3.3.3 (abstract compilation). Given a rule r ≡ m(this, x̄, ȳ) ← g, b1, . . . , bn ∈ P , then its
abstract compilation is rα ≡ m(this, Ī, ρn+1(Ō))← gα, bα1 , . . . , b

α
n, where:

• 〈gα, ρ1〉 = ABST(g, ρ0) and 〈bαi , ρi+1〉 = ABST(bi, ρi) and ρ0 is an identity map over vars(rk) ∪ f̄C ;

23

HATS Deliverable D4.2 Report on Resource Guarantees

reqFile(this, 〈s, fn〉, 〈〉)← ρ0

f ′ = 1, ρ1 = ρ0[f 7→ f ′]
ps ′ = 1, ρ2 = ρ1[ps 7→ ps′]
i ′ = 0, ρ3 = ρ2[i 7→ i′]
incr ′ = 0 ρ4 = ρ3[incr 7→ incr′]

3© lengthNode(s, 〈fn〉, 〈l ′1 〉), ρ5 = ρ4[l1 7→ l′1]
1© true, ρ6 = ρ5[F 7→ F ′]

i ′′ = l ′1 , ρ7 = ρ6[i 7→ i′′]
2© loop(this, 〈s, fn, f ′, ps ′, i ′′, incr ′, l2 ,F

′〉, ρ8 = ρ7[f 7→ f ′′, ps 7→ ps′′, l2 7→ l′2,
〈f ′′, ps′′, l′2, i′′′, incr′′,F

′′〉), i 7→ i′′′, incr 7→ incr′′, F 7→ F
′′
]

thisDB ′ = db′′, ρ9 = ρ8[thisDB 7→ thisDB ′]
4© storeFile(thisDB ′, 〈fn, f ′′〉, 〈〉). ρ10 = ρ9

Figure 3.6: Abstract compilation of instructions of rule reqFile (left) and renamings (right).

• Ī = x̄ and Ō = ρn+1(ȳ) if m is a method or a function; and Ī = x̄·f̄C and Ō = ρn+1(ȳ·f̄C) if m is a
block,

The abstract compilation of all rules in P is denoted by Pα.

Example 3.3.4. Figure 3.6 shows the abstract compilation of rule reqFile in Ex. 3.1.1 (ρ0 stands for the
identity mapping). F denotes the sequence of fields db, file, catalog, myNeighbors, admin, size declared in
class Node. The most relevant points are marked as: 1© the abstraction of the await instruction returns
true and at this point the information on the fields is lost, 2© when abstracting the call to the loop block
in the first rule, we have added the fields of the class in order to keep track of this information. However,
in 3© and 4©, since we are calling methods lengthNode and storeFile, the abstraction has to “forget” this
information, i.e., we cannot pass it in the call.

3.3.1.3 IO Relations.

The constraints in each abstract rule describe the size relations induced by the rule’s instructions. In
addition, there are some relations that cannot be observed by looking locally at each rule. For example, in
reqFile, the relation between the output variable l′1 of lengthNode and the variables before calling lengthNode
is not explicitly there, as it depends on the functionality of lengthNode. These relations are called IO (size)
relations, and they describe post-conditions that hold (upon return) between the sizes of the input and
output variables of a given rule. These relations are essential for cost analysis, as they also describe how
values change when moving from the program point before the call to the one after the call. The abstract
program Pα can be used to infer such relations. Since Pα does not contain any concurrency construct that
appears in P , techniques developed for sequential programs (see [19]) can be safely applied to the concurrent
setting. In what follows, we assume that IP is the set of such relations for all procedures. The elements
of IP are of the form 〈m(this, x̄, ȳ), ψ〉 where ψ is a conjunction of (linear) constraints over the (sizes of)
the variables x̄ ∪ ȳ. As in size relations of sequential programs, if executing m on input of size v̄1 results
in output of size v̄2, then x̄ = v̄1 ∧ ȳ = v̄2 |= ψ. In addition, for the concurrent setting, we require that ψ
does not restrict the input variables x̄, i.e., x̄ = v̄ ∧ψ is satisfiable for any valuation v̄. The latter condition
guarantees that we have IO relations for each non-terminating input since, for such input, ψ is true.

Example 3.3.5. In method lengthDB, we can observe that the output of lookup is an input to length. Thus,
in order to infer the cost of lengthDB (and thus the cost of all methods that invoke it), we need to have IO

24

HATS Deliverable D4.2 Report on Resource Guarantees

relations for lookup. The IR (left) and abstract compilation (right) of lookup are:

lookup(this, 〈ms, k〉, 〈lp〉)→ lookup(this, 〈ms, k〉, 〈lp′〉)→
match(ms, InsAss(Pair(k , y), z)), ms ′ = 2 + k + y + z ,
lp := y . lp′ = y .

lookup(this, 〈ms, k〉, 〈lp〉)→ lookup(this, 〈ms, k〉, 〈lp′〉)→
nonmatch(ms, InsAss(Pair(k , y), z)), true,
match(ms, InsAss(w, tm)), ms′ = 1 + w + tm,
call(func, lookup(this, 〈tm, k〉, 〈lp〉)). lookup(this, 〈tm, k〉, 〈lp′〉).

Using the techniques of [19] we infer lookup(〈this,ms, k〉, 〈lp〉), {2 + lp + k ≤ ms}, which expresses, for
example, that the size of lp is smaller than the size of ms. This piece of information is crucial when
inferring the cost of the call to length.

3.3.2 Cost Relations Based on Cost Centers

After having designed the size abstraction, the next step is to generate a CRS (Cost Relation System,
See Chapter 2) which defines the cost of executing each method in the program as a function of its input
variables and the initial state of the heap when executing the method. As its main novelty, the CRSs used
here include cost centers in order to keep the resource usage assigned to the different components separate.
Given a finite set of cost centers c0, . . . , cn, where c0 denotes the cost center of the main method, we assume
the existence of a function CC(o) which returns statically a set of possible cost centers of object o at a
given program point. This will allow us to instantiate our analysis with different deployment strategies. In
particular, it can happen that a group of objects share the processor, as in full ABS, i.e., several objects
belong to the same cost center. In the examples, we consider an instance of this model in which all objects
of the same class are supposed to share the processor and hence belong to the same cost center, i.e., CC(o)
returns the class of o. For this case, CC is computed automatically using class analysis.

Definition 3.3.6 (CRS with cost centers). Consider a cost model M. Given a rule r ≡ m(this, x̄, ȳ) ←
g, b1, . . . , bn ∈ P and its abstract compilation rα ≡ m(this, Ī, Ō) ← gα, bα1 , . . . , b

α
n ∈ Pα, its corresponding

cost equation w.r.t. M is m(D0, this, Ī) = e+ q1(D1, x̄1) + . . .+ qm(Dm, x̄m), ϕ where:

1. e = c(D0) ∗M(g) + Σn
i=1c(D0) ∗M(bi);

2. ϕ = gα ∧ ϕ1 ∧ · · · ∧ ϕn where ϕi ≡ bαi if bi is not a call, and ϕi = ψ if bαi ≡ q(receiver, x̄, ȳ) and
〈q(receiver, x̄, ȳ), ψ〉 ∈ IP ;

3. each qi(receiver, x̄i, ȳi) in rαk defines qi(Di, x̄i) where Di = D0 if receiver ≡ this, otherwise Di =
CC(receiver);

The CRS of P , denoted P crs , is the set of cost equations of its rules.

The above CRs are like standard RRs for sequential programs in that: (i) they do not have output
arguments, as the cost is a function of the input; (ii) given a rule being analyzed, its cost equation is
obtained by applying the cost model M to each of the instructions in the body (item 1 in Def. 3.3.6); (iii)
the size relations are gathered together to define the applicability constraints ϕ for the equations (item 2);
(iv) a call in the program is substituted by a call to its corresponding cost equation (item 3).

The main differences to standard relations are: (a) the equations contain as first parameter a variable
D0 that represents the set of cost centers to which their cost will be attributed. The cost of calls (item 3)
is assigned to the cost centers of the object on which the call is performed; (b) the cost expressions we
accumulate (item 1) are multiplied by a symbolic expression c(D). Such symbolic expressions allow us to
obtain the cost for a particular cost center ci by setting up c(D) to 1 if ci ∈ D, and to 0 otherwise. In what
follows, given a cost expression e, we let e|D′ denote the cost expression that results from replacing c(D) by
1 if D ∩D′ 6= ∅ and 0 otherwise.

25

HATS Deliverable D4.2 Report on Resource Guarantees

reqFile(Node, s, fn) = c(Node) ∗ 15 + 1©lengthNode(Node, fn)+
loop(Node, fn, i ′′, size) + 1©storeFile(DB) {i′′ ≥ 0}

loop(Node, fn, i , size) = c(Node) ∗ 3 {i ≤ 0}
loop(Node, fn, i , size) = c(Node) ∗ 4 + if (Node, fn, i , size) {i > 0}

if (Node, fn, i , size) = c(Node) ∗ 3+if c(Node, fn, i , incr , size) {i<size, incr=i}
if (Node, fn, i , size) = c(Node) ∗ 3+if c(Node, fn, i , incr , size) {i≥size, incr=size}

if c(Node, fn, i , incr , size) = c(Node) ∗ 10 + 1©getPacks(Node, fn, incr , i)+
1©app(Node, ps, f)+loop(Node, fn, i ′, size ′)
{ ps+f−1 =f ′, i ′=i−incr}

lengthNode(Node, fn) = c(Node) ∗ 4 + 1©lengthDB(DB, db, fn)

getPacks(Node, fn, ps,n) = c(Node) ∗ 10 + 1©getFile(DB, db, fn)+loop1 (Node, ps, f ,n)

loop1 (Node, ps, f ,n) = c(Node) ∗ 3 {ps ≤ 0}
loop1 (Node, ps, f ,n) = c(Node) ∗ 13 + nth(Node, f , k)+loop1 (Node, ps ′, f ,n)

{ps ≥ 1 , k = n + ps − 1 , ps ′ = ps − 1}
storeFile(DB) = c(DB) ∗ 3

2©lengthDB(DB, fn) = c(DB) ∗ 2 + lookup(DB, dbf , fn) + length(DB, lp)
{lp ≥ 1 , 3 + lp + fn ≤ dbf }

3©getFile(DB, fn) = c(DB) ∗ 1 + lookup(DB, dbf , fn)

Figure 3.7: Cost Relation System for Selected Methods in classes Node and DB.

A fundamental feature of the generated CRS is that, since the concurrency constructs have been removed,
they can be solved to closed-form upper/lower bounds using the techniques in Section 4.4. It should be noted
also that, unlike other approaches to cost analysis (e.g., type-based systems [43]), CRS are powerful tools
able to infer all kinds of elementary complexity classes, including exponential, polynomial and logarithmic
bounds.

Example 3.3.7. Let us consider the cost model Mins in Section 3.2.1. Assume that CC(o) returns as cost
center the class of the object o. Figure 3.7 shows the CRS resulting from applying Def. 3.3.6 to reqFile
and to all methods its cost depends upon. For readability, we have removed all arguments and intermediate
constraints that do not affect the cost. Moreover, we assume the implicit constraint x ≥ 1 for any variable
of type Term (i.e., the size of a data structure is always positive). The first parameter in the equations
is instantiated to the cost center to which the cost will be assigned. When a method call on an object is
performed (annotated as 1©), the cost center gets instantiated with the actual class. Let us explain the first
5 equations, which correspond to the reqFile method. The first equation defines the cost reqF ile in terms
of the cost of lengthNode, loop and storeF ile. The expression c(Node) ∗ 15 corresponds to the cost of the
instructions in reqFile which are not inside the loop. Note than when calling loop we start with i′′ ≥ 0,
since it is the only information we can infer about i′′. The second and third equations correspond to the
while loop condition. The first is for the case when i ≤ 0, in which the loop is not executed, and the second
for the case i > 0 in which we continue to the equation if in order to accumulate the loop’s cost. The
equations of if correspond to the then (i < size) and else (i ≤ size) branches where incr is assigned to i
or size and it continues to if c. The equation if c corresponds to the loop’s body, where it accumulates the
cost of getPacks and app, and recursively calls loop for the next iteration. Note that i is decremented by
incr units, and that the value of the field size is lost (we use size′) due to the await . While a CRS can
always be set up, the accuracy of the analysis shows up when trying to solve the CRS into a closed-form
upper/lower bound. None of the equations in Figure 3.7 is solvable. Indeed, using the solver described in
Section 4.4, we can only obtain the following closed-form UBs for the functions:

26

HATS Deliverable D4.2 Report on Resource Guarantees

nth(D0 , list ,n) = c(D0) ∗ 5 + nat(n) ∗ c(D0) ∗ 9

length(D0 , list) = c(D0) ∗ 3 + nat(list−1
2) ∗ c(D0) ∗ 6

lookup(D0 ,ms, k) = c(D0) ∗ 2 + nat(ms−1
2) ∗ c(D0) ∗ 4

app(D0 , l1 , l2) = c(D0) ∗ 2 + nat(l1−1
2) ∗ c(D0) ∗ 5

The reason why it is not possible to solve the equations for any method is related to the loss of information
in the abstract compilation. Let us focus on lengthDB. After replacing the cost of lookup and length by the
above UBs in equation 2©, we get the equation (and the size relation that appears in Figure 3.7):

lengthDB(DB, fn) = c(DB) ∗ 7+nat(dbf−1
2)∗c(DB)∗4+nat(l−12)∗c(DB)∗6

The problem is that we do not have an UB on the size of dbf , since we have lost this information in the
abstraction of the call. Therefore, we cannot find the maximal cost of lengthDB. The same happens in getFile
and, since the other equations depend on them, none is solvable.

The following theorem states the soundness of our analysis by ensuring that the cost of any trace can be
reproduced in the corresponding CRS. Thus, an upper (resp., lower) bound of the CRS is a correct upper
(resp., lower) bound on the actual cost.

Theorem 3.3.8 (soundness). Given a program P , a cost modelM, and a set of cost centers D. Then for any
trace t, that starts from an initial configuration, there exists e ∈ Ans(main({c0})) such that e|D = C(t,D,M).

3.4 Class Invariants in Cost Analysis

In this section, we propose a generalization of class invariants (see, e.g., [52]) which allows to greatly improve
the accuracy of cost analysis of concurrent programs. As discussed in Section 3.3, information about shared
variables is problematic because between the point in time when a method is asynchronously called and
when it is actually executed, and between the moment when a task releases the CPU and it becomes active
again, other task(s) may modify the values of shared variables. However, it is often possible to gather some
useful information about shared variables, in the form of class invariants, which must hold in any sensible
execution of the program. In sequential programs, class invariants have to be established by constructors
and must hold on termination of all (public) methods of the class. They can be assumed at (public) method
entry but may not hold temporarily at intermediate states not visible outside the object. In our context,
we need that such invariants hold on method termination and also that they hold at all release points (if
any) of all methods. This way, since tasks can only start or resume execution after a method terminates or
another release point is executed, we can assume that such invariants hold on task start and resumption.

Class invariants have been used for program verification, since they greatly simplify the task of providing
a formal specification. Then, a formal verification tool can be used for establishing that the formal speci-
fication consisting of class invariants and pre and post conditions for methods is satisfied by the program.
Interestingly, class invariants might provide fundamental information to resource analysis of concurrent pro-
grams, as we will see in the examples below. We now formalize the process of incorporating class invariants
during abstract compilation. Given a program P , we use CIP to denote the set of class invariants for all
classes in P . The elements of CIP are pairs of the form 〈C,ϕ〉 and should be interpreted as ϕ is the class
invariant for class C. As in Section 3.3, we assume that ϕ is a set of linear constraints that involve the class
fields.

Definition 3.4.1 (abstract compilation with class invariants). Let P be a program, and r ≡ m(this, x̄, ȳ)←
g, b1, . . . , bn a rule in P . Let m(this, Ī, Ō) ← ψ be the result of abstract compilation of r according
to Def. 3.3.3. Given a set of class invariants CIP for P , the abstract compilation of r w.r.t. CIP is
m(this, Ī, Ō)← inv, ψ and is obtained as follows:

• inv=true if m is block or a function, and inv=ϕ if m is a method in class C and 〈C,ϕ〉 ∈ CIP ;

27

HATS Deliverable D4.2 Report on Resource Guarantees

lengthDB(DB, fn) = c(DB) ∗ (7 + nat(dbfmax−1
2) ∗ 4 + nat(dbfmax−fn

2 −2) ∗ 6)

getFile(DB, fn) = c(DB) ∗ (3 + nat(dbfmax−1
2) ∗ 4)

lengthNode(Node, fn) = c(Node) ∗ 4 + c(DB) ∗ (7 + nat(dbfmax−1
2) ∗ 4+nat(dbfmax−fn

2 −2) ∗ 6)

getPacks(Node, fn, ps,n) = c(Node) ∗ 13+

c(DB) ∗ (3 + nat(dbfmax−1
2) ∗ 4) + c(Node) ∗ nat(ps) ∗ (18 + nat(ps+n−1) ∗ 9)

reqFile(Node, s, fn) = a© c(Node) ∗ 15+

b© c(Node) ∗ 4 + c(DB) ∗ (7 + nat(dbfmax−1
2) ∗ 4 + nat(dbfmax−fn

2 −2) ∗ 6)+

c© nat(dbfmax−fn
2 − 2) ∗ (

d© 17 ∗ c(Node)+

e©
{

c(Node) ∗ 13 + c(DB) ∗ (3 + nat(dbfmax−1
2) ∗ 4)+

c(Node) ∗ nat(sizeinit) ∗ (18 + nat(dbfmax−fn
2 − 3)) ∗ 9+

f© c(Node) ∗ (2 + 5 ∗ nat(dbfmax−1
2))) + g© c(DB) ∗ 3

Figure 3.8: UBs for Selected Methods using Class Invariants.

• The abstract compilation of all instructions remains the same as in Figure 3.5, except for release

and await, which are now as follows:

13′ release ϕ[f̄C 7→ ρ′(f̄C)] ρ′ = ρ[f̄C 7→ ρ(f̄C)′]
14′ await g αρ(g) ∧ ϕ[f̄C 7→ ρ′(f̄C)] ρ′ = ρ[f̄C 7→ ρ(f̄C)′]

It can be observed in the above definition that the invariants are considered in calls to methods and at
possible release points (13′ and 14′).

Example 3.4.2. The following invariants are required to solve the equations in Figure 3.7:

1. In class DB, we need an invariant 0 ≤ dbf ≤ dbfmax , where dbfmax is a constant symbol which bounds
the value of dbf .

2. In class Node, we need an invariant which establishes that size = sizeinit , i.e., field size is initialized
in the constructor and it is never modified.

By applying Def. 3.4.1 using the first invariant, the equations for getFile and lengthDB are like those
annotated as 2© and 3© in Figure 3.7 but include the additional constraint {0 ≤ dbf ≤ dbfmax}. From them,
we can obtain the UBs in Figure 3.8 for both methods, as well as for lengthNode and getPacks, whose costs
depend on them. The second invariant is essential in order to obtain an UB for reqFile. In particular, it is
needed in the equation if c in Figure 3.7, which corresponds to the cost of the block that contains the await

instruction (and that introduced inaccuracy in the analysis). By applying Def. 3.4.1 using such an invariant,
the solver [9] obtains the UB for reqFile in Figure 3.8. Let us explain the different parts of this UB: a© is
the cost of the instructions of reqFile excluding those of the loop; b© is the cost introduced by lengthNode;
c© is the number of iterations of the loop; d© − f© is the cost of each iteration of the loop, where d© is the

cost of the loop’s instructions, e© is the cost of calls to getPacks, and f© is the cost of calls to app; and
finally g© is the cost of storeFile. As expected, the number of executed instructions has an asymptotic bound
O(dbf 2max ∗ sizeinit). The cost on the cost center Node is O(dbf 2max ∗ sizeinit) while that on DB is O(dbf 2max).
The distribution of the total cost over different cost centers occurs also in the other UBs. For example, in
getPacks the cost on the cost center DB is O(dbfmax) while on Node it is O(ps2).

Our analyzer adds symbolic bounds (like in invariant 1 above) for all fields and in all classes. The second
type of invariants are also automatically generated by syntactically identifying fields which are written only
once in the constructor. Importantly, the UB for a method obtained using invariants may be given, in
addition to its input parameters, in terms of the symbolic bound variables introduced when expressing such
class invariants, as shown above.

28

HATS Deliverable D4.2 Report on Resource Guarantees

Figure 3.9: costabs web interface: Home page

3.5 Implementation and Experimental Evaluation

We have developed an extension for costa, named costabs, that supports the ABS language. The system
uses as external components: the ABS compiler frontend, which parses and compiles ABS source files
producing an abstract syntax tree which is then compiled into our rule-based form, and, the Parma Polyhedra
Library [16], for manipulating linear constraints. The CRS solver of costa is used for finding upper/lower
bounds and proving termination. costabs works with all the cost models described in Section 3.2.1 except
for remote requests, currently under development. The system has two interfaces: a command-line interface
and a web interface. Additionally, we are now in the process of developing an Eclipse plugin which, in the
near future, will be integrated within the ABS Eclipse plugin together with the rest of the tools for ABS.

In the command-line interface the user has to call the “costabs” command followed by the name of the
file with the ABS source code, the list of methods/functions for which the user wants to get an UB, and, an
optional set of parameters, including the cost model, the size abstraction, etc. The costabs web interface
can be accessed at http://costa.ls.fi.upm.es/costabs and allows users to try out the tool without
having to install it.

Figure 3.9 shows a screenshot of the home page. This page just shows some information about the tool
and its underlying technology. On the top of the page there is a menu with the following four links: Home,
that shows this home page; Analyzer, which goes to the actual costabs web-interface; Help, that provides
some links which can be useful to learn more about the ABS language and the underlying technology of
the system; and, About, which shows information about the authors of the tool, associated publications, the
supporting projects, etc.

Let us now go to Analyzer. Figure 3.10 shows the corresponding screenshot. The first step is to provide
the ABS source code, which can be either uploaded in the form of a .abs file, written in the provided text
area, or selected from the set of available examples. This page also allows the user to decide whether the ABS
standard library should be loaded together with the source code or not. Let us select the MyPeerToPeer
file, the “no” option, and press “Continue”. The web interface now brings the user to a second page where:
(1) the set of functions and methods for which the user wants to get an UB has to be selected (by clicking in
the corresponding check-boxes), and, (2) the system default options can be modified. These options include:

29

http://costa.ls.fi.upm.es/costabs

HATS Deliverable D4.2 Report on Resource Guarantees

Figure 3.10: costabs web interface: Analyzer

Bench #F #M #Mt #Mub #It #Iub Tir Tac Tio Tterm Tub

P2P 11 17 14 6 1 2 9 17 69 1494 1886

BookShop 28 11 11 6 0 3 11 18 66 802 1520

BoundedBuffer 4 8 8 4 0 1 1 2 7 70 86

DistHT 7 8 8 1 0 2 3 5 12 82 100

PingPong 0 6 6 6 0 0 3 3 7 22 22

Table 3.1: Statistics about the Analysis Process

the cost model, the possibility of enabling/disabling the cost-centers calculation, the size abstraction used,
and the verbosity level. Figure 3.11 shows the corresponding screenshot. Let us select functions nth and
concatenate, and methods getLength and getPacks (and let the default options). Finally, clicking the Analyze
button makes the web interface gather all the information provided, and build the corresponding call to the
command-line interface. The web interface then jumps directly to another page where the output of the
generated command is shown. Figure 3.12 shows the corresponding screenshot. costabs shows the times
taken by the different steps carried out, and the obtained UBs for the selected functions and methods.

3.5.1 Experimental Evaluation

An experimental evaluation has been carried out using as benchmarks the applications developed in HATS
(available at the costabs website): PeerToPeer, our running example; BookShop, which implements a web
shop client-server application; BBuffer, that implements the classical producer-consumer (or bounded-buffer)
problem; DistHT, which implements a distributed hash-table data structure, and PingPong, that implements
a simple communication protocol.

Table 3.1 shows some statistics about the analysis process. Each program is analyzed twice. Once for
proving termination, i.e., using the Mtermin cost model, and once for obtaining an UB on the number of
instructions, i.e., the cost model Mins . For each benchmark, columns (#F) and (#M) show, resp., the
number of functions and methods that have been analyzed. Regarding functions, we have proved termination

30

HATS Deliverable D4.2 Report on Resource Guarantees

Figure 3.11: costabs web interface: Steps 2 and 3

and found UBs for all of them, without using class invariants. Regarding methods, columns #Mt and #Mub

show, resp., the number of methods for which costabs proves termination, resp., finds UBs, without using
invariants. Column (#It) shows the number of class invariants needed to prove termination. Let us observe
that only one invariant is required (the second invariant of Ex. 3.4.2). Similarly, (#Iub) is the number of
class invariants needed to find UBs, they are all similar to the first invariant of Ex. 3.4.2. Note that the
whole process is fully automatic: the system generates all invariants and, by using them during abstract
compilation, we prove termination and infer UBs for all methods.

The next five columns show the time taken by the different steps of the analysis. Times are in millisec-
onds, and have been computed as the average of 5 runs. Experiments have been performed on an Intel
Core i5 at 3.2GHz with 3.1GB of RAM, running Linux 2.6.32. Columns Tir , Tac , and Tio show, resp.,
the times taken to build the IR, perform abstract compilation and infer IO relations. These times are the
same for Mtermin and Mins , since these steps are the same in both cases. The times to infer the invariants
are negligible and hence are not shown. As expected, Tio is the most expensive step, as it involves a fixed
point computation. Finally, columns Tterm and Tub show, resp., the times taken by [9] to solve the CRS for
proving termination and, resp., for obtaining an UB w.r.t.Mins . Since proving termination requires strictly
less work than finding UBs, times in Tterm are smaller than in Tub .

Overall, we argue that, although our implementation is still prototypical, the experiments show that
our approach is promising and UBs for concurrent programs can be, for the first time, inferred in a fully
automatic way.

31

HATS Deliverable D4.2 Report on Resource Guarantees

Figure 3.12: costabs web interface: Output

32

Chapter 4

Advanced Issues in Cost Analysis

In this chapter, we present a series of advanced issues in cost analysis which are of general interest in the
context of cost analysis of any language, and can be applied in particular to the ABS cost analysis framework
presented in the previous section:

• Component-based approach. First, we present in Section 4.1 the modular extension of the cost analysis
framework where the objective is that different components can be analyzed independently and the
results then composed together.

• Asymptotic UBs. The results of cost analysis are usually precise, non-asymptotic UBs. For most
applications in HATS, their asymptotic variants are of more interest, because they are simpler, allow
to ignore implementation details, and are more efficient to obtain. We have designed an automatic
transformation of non-asymptotic UBs into asymptotic form, summarized in Section 4.2.

• Checking against specifications. The next step is to define a technique, in Section 4.3, to compare the
UBs automatically generated by a cost analyzer against resource specifications provided by the user
(or the system vendor). This will allow us to verify that the software will safely run on the actual
configuration.

• Accurate upper and lower bounds. Clearly, improving the accuracy of the results is crucial for all
applications of cost analysis (verification, certification, optimization, etc). We will summarize in
Section 4.4 a novel technique to infer more precise UBs than [9] and which, furthermore, can be dually
applied to infer LBs.

4.1 Component-Based Approach

Typically, cost analysis requires a global analysis of the program in the sense that all the reachable code
has to be considered. This is known to work well up to medium-sized programs. However, global analyses
can get into scalability problems when trying to analyze larger programs. It is thus required to reach some
degree of compositionality which allows decomposing the analysis of large programs into the analysis of
smaller parts. This section overviews the compositional approach for cost analysis presented in [58]. We
refer to the approach as modular in the sense that it allows reasoning on a method at a time. The approach
provides several advantages: first, it allows the analysis of larger programs, since the analyzer does not
need to have the complete code of the program nor the intermediate results of the analysis in memory.
Second, methods are often called by several other methods. The analysis result of such a shared method
can then be reused. The approach presented is flexible with respect to granularity: it can be used in a
component-based system at the level of components. A specification can be generated for a component C by
analyzing its code, and it can be deployed together with the component and used afterwards for analyzing
other components that depend on this one. When analyzing a component-based application that uses C,
the code of C does not need to be available at analysis time, since the specification generated can be used

33

HATS Deliverable D4.2 Report on Resource Guarantees

instead. In order to evaluate the effectiveness of the approach, we have extended the costa analyzer to
be able to perform modular cost analysis and we have applied the improved system to the analysis of the
phoneME implementation of the core libraries of JavaME. The results are presented in [58].

4.1.1 Abstract Interpretation Fundamentals

Before describing the modular analysis framework, a brief description to abstract interpretation is included.
Abstract interpretation [30] is a technique for static program analysis in which execution of the program
is simulated on a description (or abstract) domain (D) which is simpler than the actual (or concrete)
domain (C). Values in the description domain and sets of values in the actual domain are related via a pair
of monotonic mappings 〈α, γ〉: abstraction α : 2C → D and concretization γ : D→ 2C which form a Galois
connection, i.e.

∀x ∈ 2C : γ(α(x)) ⊇ x and ∀λ ∈ D : α(γ(λ)) = λ

The set of all possible descriptions represents a description domain D which is usually a complete lattice
for which all ascending chains are finite. Note that in general v is induced by ⊆ and α (in such a way that
∀λ, λ′ ∈ D : λ v λ′ ⇔ γ(λ) ⊆ γ(λ′)). Similarly, the operations of least UB (t) and greatest LB (u) mimic
those of 2C in some precise sense that depends on the particular abstract domain. A description λ ∈ D
approximates a set of concrete values x ∈ 2C if α(x) v λ. Correctness of abstract interpretation guarantees
that the descriptions computed approximate all of the actual values which occur during the execution of the
program.

In our cost analysis framework, abstract interpretation is usually performed on an IR, such as the one
introduced in Section 3.1.3. Let us introduce some notation. CP and AP stand for descriptions in the
abstract domain. The expression P :CP denotes a call pattern. This consists of a procedure P together
with an entry pattern for that procedure. Similarly, P 7→ AP denotes an answer pattern, though it will be
referred to as AP when it is associated to a call pattern P :CP for the same procedure. Since a method is
represented in the IR as a set of interconnected procedures that start from a single particular procedure,
the same notation will be used for methods: m:CP denotes a call pattern that corresponds to an invocation
to method m (i.e., the entry procedure for method m), and m 7→ AP denotes the answer pattern obtained
after analyzing method m.

Context-sensitive abstract interpretation takes as input a program R and an initial call pattern P :CP,
where P is a procedure and CP is a restriction of the values of the arguments of P expressed as a description
in the abstract domain D, and computes a set of triples1, denoted analysis(R,P :CP) = {P1:CP1 7→ AP1,
. . . , Pn:CPn 7→ APn}. In each element Pi:CPi 7→ APi, Pi is a procedure and CPi and APi are, respectively,
the abstract call and answer patterns.

An analysis is said to be polyvariant if more than one triple P :CP1 7→ AP1, . . . , P :CPn 7→ APn, n ≥ 0
with CPi 6= CPj for some i, j may be computed for the same procedure P , while a monovariant analysis
computes (at most) a single triple P :CP 7→ AP for each procedure (with a call pattern CP general enough
to cover all possible patterns that appear during the analysis of the program for P).

Although in general context-sensitive, polyvariant analysis algorithms are more precise than those ob-
tained with context-insensitive or monovariant analyses, monovariant algorithms are simpler and have
smaller memory requirements. Context-insensitive analysis does not consider call pattern information, and
therefore obtains as result of the analysis a set of pairs {P1 7→ AP1, . . . , Pn 7→ APn}, valid for any call
pattern.

In order to infer the resource usage, a number of pre-analyses are required. In particular costa includes
the following abstract interpretation-based analyses:

• Nullity and sign analysis. Both of them are context-sensitive and monovariant. The first one detects,
at concrete program points, those objects for which it is ensured to be null or non-null. This allows to
reduce the IR by removing those branches depending on conditions related to the nullity of an object.

1P :CP 7→ AP can be written as 〈P,CP,AP〉.

34

HATS Deliverable D4.2 Report on Resource Guarantees

Sign analysis is similar, but in its case the information inferred is related to the sign of numeric
variables.

• Size analysis. It is context-insensitive. This analysis infers, for each rule in the IR, size relations
among the input variables to the rule and the variables in all calls in the rule.

• Heap properties analysis [39]. It is context-sensitive and polyvariant. This analysis captures the
reachability information among program variables and the acyclicity of data structures.

4.1.2 Modular Cost Analysis

In our framework, the cost analysis we perform is in fact a combination of different processes and analyses
that receive as input a complete program and eventually produce an upper/lower bound. Our goal now is to
obtain a modular analysis framework which is able to produce upper/lower bounds by analyzing programs
one method at a time. I.e., in order to analyze a method m, we analyze the code of m only and (re-)use the
analysis results previously produced for the methods invoked by m.

The communication mechanism used for this work is based on assertions, which store the analysis results
for those methods which have already been analyzed. Assertions are stored in a file per class basis and they
keep information regarding the different analyses performed: nullity, sign, size, heap properties, termination
and UBs.

Same as analysis results, assertions are of the form m:Pre 7→ Post , where Pre is the precondition of
the assertion and Post is the postcondition. The precondition states for which call pattern the method has
been analyzed. It includes information regarding all domains previously mentioned except size, which is
context-insensitive. PreD (resp., PostD) denotes the information of the precondition (resp., postcondition)
related to the analysis domain D. For example, Prenullity corresponds to the information related to nullity
in the precondition Pre. The postcondition of an assertion contains the analysis results for all domains
produced after analyzing method m. Furthermore, the assertion also states if an upper/lower bound has
been computed for that method.

In addition to assertions inferred by the analysis, our cost analysis has been extended to handle assertions
written by the user, namely assumed assertions. These assertions are relevant for the cases in which analysis
is not able to infer some information of interest that we know is correct. This can happen either because
the analyzer is not precise enough or because the code of the method is not available to the analyzer, as
happens with native methods, i.e., those implemented at low-level and for which no bytecode is available.
The user can add assumed assertions with information for any domain. In assumed assertions where only
information about bounds is available, abstract interpretation-based analyses take > as the postcondition
for the corresponding methods.

4.1.2.1 Modular Bottom-up Analysis

The analysis of a Java program using the modular analysis framework consists in analyzing each of the
methods in the program, and eventually computing an UB for a given call pattern. Analyzing a method
separately presents the difficulty that, from the analysis point of view, the code to be analyzed is incomplete
in the sense that the code for methods invoked is not available. More precisely, during analysis of a method
m there may be calls m′:CP and the code for m′ is not available. Following the terminology in [36], we refer
to determining the value of AP to be used for m′:CP 7→ AP as the answer patterns problem.

Several analysis domains existing in our cost analysis framework are context-sensitive, and all of them,
except heap properties analysis, are monovariant. For simplicity, the modular analysis framework we present
is monovariant as well. That means that at most one assertion m:Pre 7→ Post is stored for each method m.
If there is an analysis result for m′, m′:Pre 7→ Post , such that CP is applicable, that is, CP v PreD in the
domain D of interest, then PostD can be used as answer pattern for the call to method m′ in m.

For applying this schema, it is necessary that all methods invoked by m have been analyzed already
when analyzing method m. Therefore, the analysis must perform a bottom-up traversal of the call graph of

35

HATS Deliverable D4.2 Report on Resource Guarantees

the program. In order to obtain analysis information for m′ which is applicable during the analysis of m, it
is necessary to use a call pattern for m′ in its precondition such that it is equal or more general than the
pattern actually inferred during the analysis of m. We refer to this as the call patterns problem.

Solving the call and answer patterns problems. A possibility for solving the call patterns problem
would be to make the modular analysis framework polyvariant: store all possible call patterns to methods
in the program and then analyze those methods for each call pattern. This approach has two main disad-
vantages: on the one hand, it is rather complex and inefficient, because all call patterns are stored and every
method must be analyzed for all call patterns that appear in the program. On the other hand, it requires
performing a fixpoint computation through the methods in the program instead of a single traversal of the
call graph, since different call patterns for a method may generate new call patterns for other methods.
Another alternative is a context-insensitive analysis. All methods are analyzed using > as call pattern for
all domains. In this approach, all assertions are therefore applicable, although in a number of cases > is too
general as call pattern for some domains, and the information obtained is too imprecise.

The solution used in costa tries to find a balance between both approaches. A monovariant modular
analysis framework simplifies a great deal the behavior of the modular analysis, since a single traversal of
the call graph is required. In contrast, it is context-sensitive: instead of >, a default call pattern is used,
and the result of the analysis is obtained based on this pattern. This framework uses different values as
call patterns, depending on the particular analysis being performed. The default call pattern for nullity and
sign is >. For the heap properties analysis, in cyclicity it is the pattern that indicates that no argument of
the method is cyclic. For variable sharing, it is the one that states that no arguments share.

The default call patterns used for analyzing methods are general enough to be applicable to most
invocations used in the libraries and in user programs, solving the call patterns problem. However, there
can be cases in which the call pattern of an invocation from other method is not included in the default
pattern, i. e., CP 6v PreD. If the code of the invoked method is available, we will reanalyze it with respect
to CPtPreD, even though it has been analyzed before for the default pattern. If the code is not available,
> is used as answer pattern.

A potential disadvantage of this approach is that all methods are analyzed with respect to a default
call pattern, instead of the specific call pattern produced by the analysis. This means that the analyses
could produce more precise results when applied non modularly, even though they are monovariant, and it
represents a possible loss of precision in the modular analysis framework.

Cycles in the call graph. Analyzing just a method at a time and (re-)using analysis information while
performing a bottom-up traversal of the call graph only works under the assumption that there are no cyclic
dependencies among methods. In the case where there are strongly connected components (SCCs for short)
consisting of more than one method, we analyze all the methods in the corresponding SCC simultaneously.
This presents no technical difficulties, since we can analyze multiple methods at the same time and is the
only situation in which multiple methods need to be analyzed together in order to obtain correct results.
Therefore, we perform a SCC study first to decide whether there are sets of methods which need to be
handled as a unit.

4.2 Asymptotic UBs

A well-known mechanism for keeping the size of cost functions manageable and, thus, facilitate human
manipulation and comparison of cost functions is asymptotic analysis. The asymptotic point of view is basic
in computer science, where the question is typically how to describe the resource implication of scaling-up
the size of a computational problem, beyond the “toy” level. For instance, the big O notation is used to
define asymptotic UBs, i.e, given two functions f and g which map natural numbers to real numbers, one
writes f ∈ O(g) to express the fact that there is a natural constant m ≥ 1 and a real constant c > 0 s.t. for
any n ≥ m we have that f(n) ≤ c ∗ g(n). Other types of (asymptotic) computational complexity estimates

36

HATS Deliverable D4.2 Report on Resource Guarantees

are LBs (“Big Omega” notation) and asymptotically tight estimates, when the asymptotic upper and LBs
coincide (written using “Big Theta”). The aim of asymptotic resource usage analysis is to obtain a cost
function fa which is syntactically simple s.t. fn ∈ O(fa) (correctness) and ideally also that fa ∈ Θ(fn)
(accuracy), where fn is the non-asymptotic cost function.

The main techniques presented in [5] are applicable to obtain asymptotic versions of the cost functions
produced by any cost analysis, including lower, upper and average cost analyses. The main contributions
are:

1. A new notion of asymptotic complexity to cover the analysis of realistic programs whose limiting
behavior is determined by the limiting behavior of its loops.

2. A novel transformation from non-asymptotic cost functions into asymptotic form. After some syntactic
simplifications, the transformation detects and eliminates subterms which are asymptotically subsumed
by others while preserving the complexity order.

4.2.1 Asymptotic Notation for Cost Expressions

We now present extended versions of the standard definition of the asymptotic notations big O and big
Theta, which handle functions with multiple input arguments, i.e., functions of the form Nn 7→ R+.

Definition 4.2.1 (big O, big Theta). Given two functions f, g : Nn 7→ R+, we say that f ∈ O(g) iff there is
a real constant c > 0 and a natural constant m ≥ 1 such that, for any v̄ ∈ Nn such that vi ≥ m, it holds that
f(v̄) ≤ c ∗ g(v̄). Similarly, f ∈ Θ(g) iff there are real constants c1 > 0 and c2 > 0 and a natural constant
m ≥ 1 such that, for any v̄ ∈ Nn such that vi ≥ m, it holds that c1 ∗ g(v̄) ≤ f(v̄) ≤ c2 ∗ g(v̄).

The big O refers to asymptotic UBs and the big Θ to asymptotically tight estimates, when the asymptotic
upper and lower bounds coincide. The asymptotic notations above assume that the value of the function
increases with the values of the input such that the function, unless it has a constant asymptotic order,
takes the value ∞ when the input is ∞. This assumption does not necessarily hold when the UBs are
obtained from realistic programs. For instance, consider the loop in Figure 2.1. Clearly, the execution cost
of the program increases by increasing the number of iterations of the loop, i.e., n− i. Therefore, in order
to observe the limiting behavior of the program we should study the case when nat(n − i) goes to ∞, i.e.,
when, for example, n goes to ∞ and i stays constant, but not when both n and i go to ∞. In order to
capture this asymptotic behavior, we introduce the notion of nat-free cost expression, where we transform a
cost expression into another one by replacing each nat-expression with a variable. This guarantees that we
can make a consistent usage of the definition of asymptotic notation since, as intended, after some threshold
m, larger values of the input variables result in larger values of the function.

Definition 4.2.2 (nat-free cost expressions). Given a set of cost expression E = {e1, . . . , en}, the nat-free
representation of E, is the set Ẽ = {ẽ1, . . . , ẽn} which is obtained from E in four steps:

1. Each nat-expression nat(a1x1 + · · · + anxn + c) ∈ E which appears as an exponent is replaced by
nat(a1x1 + · · ·+ anxn);

2. The rest of nat-expressions nat(a1x1 + · · · + anxn + c) ∈ E are replaced by nat(a1
b x1 + · · · + an

b xn),
where b is the greatest common divisor (gcd) of |a1|, . . . , |an|, and | · | stands for the absolute value;

3. We introduce a fresh (upper-case) variable per syntactically different nat-expression.

4. We replace each nat-expression by its corresponding variable.

Cases 1 and 2 above have to be handled separately because if nat(a1x1+ · · · +anxn+c) is an exponent, we
can remove the c, but we cannot change the values of any ai. E.g., 2nat(2x+1) 6∈O(2nat(x)). This is because
4x 6∈O(2x). Hence, we cannot simplify 2nat(2x) to 2nat(x). In the case that nat(a1x1+ · · ·+anxn+c) does not

37

HATS Deliverable D4.2 Report on Resource Guarantees

appear as an exponent, we can remove c and normalize all ai by dividing them by the gcd of their absolute
values. This allows reducing the number of variables which are needed for representing the nat-expressions.
It is done by using just one variable for all nat expressions whose linear expressions are parallel and grow
in the same direction. Note that removing the independent term plus dividing all constants by the gcd of
their absolute values provides a canonical representation for linear expressions. They satisfy this property
iff their canonical representation is the same. This allows transforming both nat(2x+3) and nat(3x+5) to
nat(x), and nat(2x+4y) and nat(3x+6y) to nat(x+2y).

Example 4.2.3. Given the following cost function:

5+7∗nat(3x+ 1)∗max({100∗nat(x)2∗nat(y)4, 11∗3nat(y−1)∗nat(x+ 5)2})+
2∗ log(nat(x+ 2))∗2nat(y−3)∗ log(nat(y + 4))∗nat(2x−2y)

Its nat-free representation is 5+7∗A∗max({100∗A2∗B4, 11∗3B∗A2})+2∗ log(A)∗2B∗ log(B)∗C, where A cor-
responds to nat(x), B to nat(y) and C to nat(x−y).

Definition 4.2.4. Given two cost expressions e1, e2 and its nat-free correspondence ẽ1, ẽ2, we say that
e1∈O(e2) (resp. e1∈Θ(e2)) if ẽ1∈O(ẽ2) (resp. ẽ1∈Θ(ẽ2)).

The above definition lifts Definition 4.2.1 to the case of cost expressions. Basically, it states that in order
to decide the asymptotic relations between two cost expressions, we should check the asymptotic relation of
their corresponding nat-free expressions. Note that by obtaining their nat-free expressions simultaneously
we guarantee that the same variables are syntactically used for the same linear expressions.

In some cases, a cost expression might come with a set of constraints which specifies a class of input
values for which the given cost expression is a valid bound. We refer to such a set as context constraint.
For example, the cost expression of Example 4.2.3 might have ϕ={x≥y, x≥0, y≥0} as context constraint,
which specifies that it is valid only for non-negative values which satisfy x≥y. The context constraint can
be provided by the user as an input to cost analysis, or collected from the program during the analysis.

The information in the context constraint ϕ associated to the cost expression can sometimes be used to
check whether some nat-expressions are guaranteed to be asymptotically larger than others. For example,
if the context constraint states that x ≥ y, then when both nat(x) and nat(y) grow to the infinite we
have that nat(x) asymptotically subsumes nat(y), this information might be useful in order to obtain more
precise asymptotic bounds. In what follows, given two nat-expressions (represented by their corresponding
nat-variables A and B), we say that ϕ|=A � B if A asymptotically subsumes B when both go to ∞.

4.2.2 Asymptotic Orders of Cost Expressions

As it is well-known, by using Θ we can partition the set of all functions defined over the same domain into
asymptotic orders. Each of these orders has an infinite number of members. Therefore, to accomplish the
goals stated in the beginning of this subsection it is required to use one of the elements with simpler syntactic
form. Finding a good representative of an asymptotic order becomes a complex problem when we deal with
functions made up of non-linear expressions, exponentials, polynomials, and logarithms, possibly involving
several variables and associated constraints. For example, given the cost expression of Example 4.2.3, we
want to automatically infer the asymptotic order “3nat(y) ∗ nat(x)3”.

Apart from simple optimizations which remove constants and normalize expressions by removing paren-
theses, it is essential to remove redundancies, i.e., subexpressions which are asymptotically subsumed by
others, for the final expression to be as small as possible. This requires effectively comparing subexpres-
sions of different lengths and possibly containing multiple complexity orders. In this section, we present
the basic definitions and a mechanism for transforming non-asymptotic cost expressions into non-redundant
expressions while preserving the asymptotic order. Note that this mechanism can be used to transform the
output of any cost analyzer into a non-redundant, asymptotically equivalent one and, in particular, it can
be applied to the UBs obtained in Chapter 3. To the best of our knowledge, this is the first attempt to do
this process in a fully automatic way. Given a cost expression e, the transformations are applied on its ẽ

38

HATS Deliverable D4.2 Report on Resource Guarantees

representation, and only afterwards we substitute back the nat-expressions, in order to obtain an asymptotic
order of e, as defined in Definition 4.2.4.

4.2.2.1 Syntactic Simplification of Cost Expressions

First, we perform some syntactic simplifications to enable the subsequent steps of the transformation. Given
a nat-free cost expression ẽ, we describe how to simplify it and obtain another nat-free cost expression ẽ ′

such that ẽ ∈ Θ(ẽ ′). In what follows, we assume that ẽ is not simply a constant or an arithmetic expression
that evaluates to a constant, since otherwise we simply have ẽ ∈ O(1). The first step is to transform ẽ by
removing constants and max expressions, as described in the following definition.

Definition 4.2.5. Given a nat-free cost expression ẽ, we denote by τ(ẽ) the cost expression that results from
ẽ by: (1) removing all constants; and (2) replacing each subexpression max({ẽ1, . . . , ẽm}) by (ẽ1 + . . .+ ẽm).

Example 4.2.6. Applying the above transformation on the nat-free cost expression of Example 4.2.3 results
in: τ(ẽ)=A∗(A2∗B4+3B∗A2)+ log(A)∗2B∗ log(B)∗C.

Once the τ transformation has been applied, we aim at a further simplification which safely removes
sub-expressions which are asymptotically subsumed by other sub-expressions. In order to do so, we first
transform a given cost expression into a normal form (i.e., a sum of products) as described in the following
definition, where we use the term basic nat-free cost expression to refer to expressions of the form 2r∗A, Ar,
or log(A), where r is a real number. Observe that, w.l.o.g., we assume that exponentials are always in base
2. This is because an expression nA where n > 2 can be rewritten as 2log(n)∗A.

Definition 4.2.7 (normalized nat-free cost expression). A normalized nat-free cost expression is of the form
Σn
i=1Πmi

j=1bij such that each bij is a basic nat-free cost expression.

Since b1 ∗ b2 and b2 ∗ b1 are equal, it is convenient to view a product as the multiset of its elements (i.e.,
basic nat-free cost expressions). We use the letter M to denote such a multiset. Also, since M1 + M2

and M2 + M1 are equal, it is convenient to view the sum as the multiset of its elements, i.e., products
(represented as multisets). Therefore, a normalized cost expression is a multiset of multisets of basic cost
expressions. In order to normalize a nat-free cost expression τ(ẽ) we apply repeatedly the distributive
property of multiplication over addition in order to get rid of all parenthesis in the expression.

Example 4.2.8. The normalized expression for τ(ẽ) of Example 4.2.6 is:

A3∗B4+2log(3)∗B∗A3+ log(A)∗2B ∗ log(B) ∗ C
and its multiset representation is {{A3, B4}, {2log(3)∗B, A3}, {log(A), 2B, log(B), C}}.

4.2.2.2 Asymptotic Subsumption

Given a normalized nat-free cost expression ẽ = {M1, . . . ,Mn} and a context constraint ϕ, we want to remove
from ẽ any product Mi which is asymptotically subsumed by another product Mj , i.e., if Mj ∈ Θ(Mj +Mi).
Note that this is guaranteed by Mi ∈ O(Mj). The remainder of this section defines a decision procedure
for deciding whether Mi ∈ O(Mj). First, we define several asymptotic subsumption templates for which it is
easy to verify that a single basic nat-free cost expression b subsumes a complete product. In the following
definition, we use the auxiliary functions pow and deg of basic nat-free cost expressions which are defined as:
pow(2r∗A) = r, pow(Ar) = 0, pow(log(A)) = 0, deg(Ar) = r, deg(2r∗A) =∞, and deg(log(A)) = 0. In a first
step, we focus on basic nat-free cost expressions b with a single variable and define when it asymptotically
subsumes a set of basic nat-free cost expressions (i.e., a product). The product might involve several variables
but they must be subsumed by the variable in b.

Lemma 4.2.9 (asymptotic subsumption). Let b be a basic nat-free cost expression, M = {b1, · · · , bm} a
product, ϕ a context constraint, vars(b) = {A} and vars(bi) = {Ai}. We say that M is asymptotically
subsumed by b, i.e., ϕ |= M ∈ O(b) if for all 1 ≤ i ≤ m it holds that ϕ |= A � Ai and one of the following
holds:

39

HATS Deliverable D4.2 Report on Resource Guarantees

1. if b = 2r∗A, then

(a) r > Σm
i=1pow(bi); or

(b) r ≥ Σm
i=1pow(bi) and every bi is of the form 2ri∗Ai;

2. if b = Ar, then

(a) there is no bi of the form log(Ai) and r ≥ Σm
i=1deg(bi); or

(b) there is at least one bi of the form log(Ai) and r ≥ 1 + Σm
i=1deg(bi)

3. if b = log(A), then m = 1 and b1 = log(A1)

Let us intuitively explain the lemma. For exponentials, in point 1a, we capture cases such as 3A =
2log(3)∗A asymptotically subsumes 2A∗A2∗. . .∗log(A) where in “. . .” we might have any number of polynomial
or logarithmic expressions. In 1b, we ensure that 3A does not embed 3A ∗A2 ∗ log(A), i.e., if the power is the
same, then we cannot have additional expressions. For polynomials, 2a captures that the largest degree is
the UB. Note that an exponential would introduce an ∞ degree. In 2b, we express that there can be many
logarithms and still the maximal polynomial is the UB, e.g., A2 subsumes A ∗ log(A) ∗ log(A) ∗ . . . ∗ log(A).
In 3, a logarithm only subsumes another logarithm.

Example 4.2.10. Let b = A3, M = {log(A), log(B), C}, where A, B and C correspond to nat(x), nat(y)
and nat(x−y) respectively. Let us assume that the context constraint is ϕ = {x ≥ y, x ≥ 0, y ≥ 0}. M is
asymptotically subsumed by b since ϕ |= (A � B) ∧ (A � C), and condition 2b in Lemma 4.2.9 holds.

The basic idea now is that, when we want to check the subsumption relation on two expression M1 and
M2 we look for a partition of M2 such that we can prove the subsumption relation of each element in the
partition by a different basic nat-free cost expression in M1. Note that M1 can contain additional basic
nat-free cost expressions which are not needed for subsuming M2.

Example 4.2.11. Let M1 = {2log(3)∗B, A3} and M2 = {log(A), 2B, log(B), C}, with the context constraint
ϕ as defined in Example 4.2.10. If we take b1 = 2log(3)∗A, b2 = A3, and partition M2 into P1 = {2B},
P2 = {log(A), log(B), C} then we have that P1 ∈ O(b1) and P2 ∈ O(b2). Therefore, M2 ∈ O(M1). Also, for
M ′2 = {A3, B4} we can partition it into P ′1 = {B4} and P ′2 = {A3} such that P ′1 ∈ O(b1) and P ′2 ∈ O(b2)
and therefore we also have that M ′2 ∈ O(M1).

4.3 Checking Against Specifications

In all applications of resource analysis, such as resource usage verification, program synthesis and optimiza-
tion, etc., it is necessary to compare cost functions. This allows choosing an implementation with smaller
cost or to guarantee that the given resource usage bounds are preserved. Essentially, given a method m,
a cost function fm and a context (set of linear constraints) φm which impose size restrictions (e.g., that a
variable in m is larger than a certain value or that the size of an array is non zero, etc.), we aim at comparing
it with another cost function bound b and corresponding size constraints φb. Such cost functions can be
automatically inferred by a resource analyzer (e.g., if we want to choose between two implementations), or
one of them can be user-defined (e.g., in resource usage verification one tries to verify, i.e., prove or disprove,
assertions written by the user about the efficiency of the program).

From a mathematical perspective, the problem of cost function comparison is analogous to the problem
of proving that the difference of both functions is non-negative, e.g., b−fm ≥ 0 in the context φb∧φm. This
is undecidable and also non-trivial to approximate, as cost functions involve non-linear subexpressions (e.g.,
exponential, polynomial and logarithmic subexpressions) and they can contain multiple variables possibly
related by means of constraints in φb and φm. In order to develop a practical approach to the comparison of
cost functions, we take advantage of the form that cost functions originating from the analysis of programs
have and of the fact that they evaluate to non-negative values. Essentially, the technique presented in [6]
consists in the following steps:

40

HATS Deliverable D4.2 Report on Resource Guarantees

1. Normalizing cost functions to a form which make them amenable to be syntactically compared, e.g.,
this step includes transforming them to sums of products of basic cost expressions.

2. Defining a series of comparison rules for basic cost expressions and their (approximated) differences,
which then allow us to compare two products.

3. Providing sufficient conditions for comparing two sums of products by relying on the product com-
parison, and enhancing it with a composite comparison schema which establishes when a product is
larger than a sum of products.

We have implemented our technique in the costa system [11]. Our experimental results demonstrate
that our approach works well in practice, it can deal with cost functions obtained from realistic programs
and verifies user-provided UBs efficiently.

4.3.1 Context Constraints

It is customary to analyze programs (or methods) w.r.t. some initial context constraints. Essentially, given
a method m(x̄), the considered context constraints ϕ describe conditions on the (sizes of) initial values of x̄.
With such information, a cost analyzer outputs a cost function fm(x̄s) = 〈e, ϕ〉 where e is a cost expression
and x̄s denotes the data sizes of x̄. Thus, fm is a function of the input data sizes that provides bounds on
the resource consumption of executing m for any concrete value of the input data x̄ such that their sizes
satisfy ϕ. Note that ϕ is basically a set of linear constraints over x̄s. We use CF to denote the set of all
possible cost functions. Let us see an example.

Example 4.3.1. Figure 4.1 shows a Java program which we use as running example. It is interesting
because it shows the different complexity orders that can be obtained by a cost analyzer. We analyze this
program using costa, and selecting the number of executed bytecode instructions as cost model. Each Java
instruction is compiled to possibly several corresponding bytecode instructions but, since this is not a concern
of this work, we will skip explanations about the constants in the UB function and refer to [10] for details.

Given the context constraint {n > 0}, costa outputs the UB cost function for method m which is shown
at the bottom of the figure. Since m contains two recursive calls, the complexity is exponential on n, namely
we have a factor 2nat(n). At each recursive call, the method f is invoked and its cost (plus a constant value) is
multiplied by 2nat(n). In the code of f, we can observe that the while loop has a logarithmic complexity because
the loop counter is divided by 2 at each iteration. This cost is accumulated with the cost of the second nested
loop, which has a quadratic complexity. Finally, the cost introduced by the base cases of m is exponential
since, due to the double recursion, there is an exponential number of computations which correspond to base
cases. Each such computation requires a maximum of 3 instructions.

The most relevant point in the UB is that all variables are wrapped by nat in order to capture that the
corresponding cost becomes zero when the expression inside the nat takes a negative value. In the case of
nat(n), the nat is redundant since thanks to the context constraint we know that n > 0. However, it is required
for variables a and b since, when they take a negative value, the corresponding loops are not executed and
thus their costs have to become zero in the formula. Essentially, the use of nat allows having a compact cost
function instead of one defined by multiple cases. Some cost analyzers generate cost functions which contain
expressions of the form max({Exp, 0}), which as mentioned above is equivalent to nat(Exp). We prefer to
keep the max operator separate from the nat operator since that will simplify their handling later.

4.3.2 Comparison of Cost Functions

In this section, we state the problem of comparing two cost functions represented as cost expressions. As
we have seen in Example 4.3.1, a cost function 〈e, ϕ〉 for a method m is a single cost expression which
approximates the cost of any possible execution of m which is consistent with the context constraints ϕ.
This can be done by means of nat subexpressions which encapsulate conditions on the input data sizes
in a single cost expression. Besides, cost functions often contain max subexpressions, e.g., 〈max({nat(x) ∗

41

HATS Deliverable D4.2 Report on Resource Guarantees

void m(int n, int a, int b) {
if (n > 0) {

m(n - 1, a, b);
m(n - 2, a, b);
f(a, b, n);
}
}

void f(int a, int b, int n) {
int acc = 0;
while (n > 0) {

n = n/2; acc++;
}
for (int i = 0; i < a; i++)

for (int j = 0; j < b; j++) acc++;
}

UB Cost Function

m(n, a, b) = 2nat(n) ∗ (31 + (8 ∗ log(1 + nat(2 ∗ n− 1))︸ ︷︷ ︸
while loop

+ nat(a) ∗ (10 + 6 ∗ nat(b)︸ ︷︷ ︸
nested loop

)))

︸ ︷︷ ︸
cost of f︸ ︷︷ ︸

cost of recursive calls

+ 3 ∗ 2nat(n)
︸ ︷︷ ︸
base cases

Figure 4.1: UB obtained by costa on the number of executed bytecode instructions.

nat(z), nat(y) ∗nat(z)}), true〉 which represent the cost of disjunctive branches in the program (e.g., the first
subexpression might correspond to the cost of a then-branch and the second one the cost of the else-branch
of a conditional statement).

Though nat and max expressions allow building cost expressions in a compact format, when comparing
cost functions it is useful to expand cost expressions into sets of simpler expressions which altogether have
the same semantics. This, on the one hand, allows handling simpler syntactic expressions and, on the other
hand, allows exploiting stronger context constraints. This expansion is performed in two steps. In the first
one we eliminate all max expressions. In the second one we eliminate all nat expressions. The following
definition transforms a cost function into a set of max-free cost functions which cover all possible costs
comprised in the original function. We write e[a 7→ b] to denote the expression obtained from e by replacing
all occurrences of subexpression a with b.

Definition 4.3.2 (max-free operator). Let 〈e, ϕ〉 be a cost function. We define the max-free operator τmax :
2CF 7→ 2CF as follows: τmax(M) = (M − {〈e, ϕ〉}) ∪ {〈e[max(S) 7→ e′], ϕ〉, 〈e[max(S) 7→ max(S′), ϕ〉}, where
〈e, ϕ〉 ∈M contains a subexpression of the form max(S), e′ ∈ S and S′ = S − {e′}.

In the above definition, each application of τmax takes care of taking out one element e′ inside a max
subexpression by creating two non-deterministic cost functions, one with the cost of such an element e′ and
another one with the remaining ones. This process is repeated until a fixed point is reached and there are no
more max subexpressions to be transformed. The result of this operation is a max-free cost function, denoted
by fpmax(M). An important observation is that the constraints ϕ are not modified in this transformation.

Once we have removed all max subexpressions, the following step consists in removing the nat subex-
pressions to make two cases explicit. One case in which the subexpression is positive, hence the nat can be
safely removed, and another one in which it is negative or zero, hence the subexpression becomes zero. As
notation, we use capital letters to denote fresh variables which replace the nat subexpressions.

Definition 4.3.3 (nat-free operator). Let 〈e, ϕ〉 be a max-free cost function. We define the nat-free operator
τnat : 2CF 7→ 2CF as follows: τnat(M) = (M − {〈e, ϕ〉}) ∪ {〈ei, ϕi〉 | ϕ ∧ ϕi is satisfiable , 1 ≤ i ≤ 2}, where
〈e, ϕ〉 ∈ M contains a subexpression nat(l), ϕ1 = ϕ ∪ {A = l, A > 0}, ϕ2 = ϕ ∪ {l ≤ 0}, with A a fresh
variable, and e1 = e[nat(l) 7→ A], e2 = e[nat(l) 7→ 0].

In contrast to the max elimination transformation, the elimination of nat subexpressions modifies the
set of linear constraints by adding the new assignments of fresh variables to linear expressions and the fact
that the subexpression is greater than zero or when it becomes zero. The above operator τnat is applied

42

HATS Deliverable D4.2 Report on Resource Guarantees

iteratively until there are no new terms to transform. The result of this operation is a nat-free cost function,
denoted by fpnat(M). For instance, for the cost function 〈nat(x) ∗ nat(z − 1), {x > 0}〉, fpnat returns the set
composed of the following nat-free cost functions:

〈A ∗B, {A = x,A > 0, B = z − 1, B > 0}〉 and 〈A ∗ 0, {A = x,A > 0, z − 1 ≤ 0}〉
In the following, given a cost function f , we denote by τ(f) the set fpnat(fpmax({f})) and we say that each
element in fpnat(fpmax({f})) is a flat cost function.

Example 4.3.4. Let us consider the cost function in Example 4.3.1. Since this cost function contains the
context constraint n > 0, the subexpressions nat(n) and nat(2 ∗ n−1) are always positive. By assuming that
fpnat replaces nat(n) by A and nat(2 ∗ n−1) by B, only those linear constraints containing ϕ = {n > 0, A =
n,A > 0, B = 2 ∗n−1, B > 0} are satisfiable (the remaining cases are hence not considered). We obtain the
following set of flat functions:

(1) 〈2A ∗ (31 + 8 ∗ log(1 +B) + C ∗ (10 + 6 ∗D)) + 3 ∗ 2A, ϕ1 = ϕ ∪ {C = a,C > 0, D = b,D > 0}〉
(2) 〈2A ∗ (31 + 8 ∗ log(1 +B)) + 3 ∗ 2A, ϕ2 = ϕ ∪ {a ≤ 0, D = b,D > 0}〉
(3) 〈2A ∗ (31 + 8 ∗ log(1 +B) + C ∗ 10 + 3 ∗ 2A, ϕ3 = ϕ ∪ {C = a,C > 0, b ≤ 0}〉
(4) 〈2A ∗ (31 + 8 ∗ log(1 +B)) + 3 ∗ 2A, ϕ4 = ϕ ∪ {a ≤ 0, b ≤ 0}〉
In order to compare cost functions, we start by comparing two flat cost functions in Definition 4.3.5

below. Then, in Definition 4.3.6 we compare a flat function against a general, i.e., non-flat, one. Finally,
Definition 4.3.7 allows comparing two general functions.

Definition 4.3.5 (smaller flat cost function in context). Given two flat cost functions 〈e1, ϕ1〉 and 〈e2, ϕ2〉,
we say that 〈e1, ϕ1〉 is smaller than or equal to 〈e2, ϕ2〉 in the context of ϕ2, written 〈e1, ϕ1〉E〈e2, ϕ2〉, if for
all assignments σ such that σ |= ϕ1 ∪ ϕ2 it holds that σ(e1) ≤ σ(e2).

Observe that the assignments in the above definition must satisfy the conjunction of the constraints in ϕ1

and in ϕ2. Hence, it discards the values for which the constraints become incompatible. An important point
is that Definition 4.3.5 allows comparing pairs of flat functions. However, the result of such a comparison is
weak in the sense that the comparison is only valid in the context of ϕ2. In order to determine that a flat
function is smaller than a general function for any context we need to introduce Definition 4.3.6 below.

Definition 4.3.6 (smaller flat cost function). Given a flat cost function 〈e1, ϕ1〉 and a (possibly non-flat)
cost function 〈e2, ϕ2〉, we say that 〈e1, ϕ1〉 is smaller than or equal to 〈e2, ϕ2〉, written 〈e1, ϕ1〉 � 〈e2, ϕ2〉, if
ϕ1 |= ϕ2 and for all 〈ei, ϕi〉 ∈ τ(〈e2, ϕ2〉) it holds that 〈e1, ϕ1〉E〈ei, ϕi〉.

Note that Definition 4.3.6 above is only valid when the context constraint ϕ2 is more general, i.e., less
restrictive than ϕ1. This is required because in order to prove that a function is smaller than another
one it must be so for all assignments which are satisfiable according to ϕ1. If the context constraint ϕ2 is
more restrictive than ϕ1 then there are valid input values for 〈e1, ϕ1〉 which are undefined for 〈e2, ϕ2〉. For
example, if we want to check whether the flat cost function (1) in Example 4.3.4 is smaller than another f
which has the context constraint {n > 4}, the comparison will fail. This is because function f is undefined
for the input values 0 < n ≤ 4. This condition is also required in Definition 4.3.7 below, which can be used
on two general cost functions.

Definition 4.3.7 (smaller cost function). Consider two cost functions 〈e1, ϕ1〉 and 〈e2, ϕ2〉 such that ϕ1 |=
ϕ2. We say that 〈e1, ϕ1〉 is smaller than or equal to 〈e2, ϕ2〉 iff for all 〈e′1, ϕ′1〉 ∈ τ(〈e1, ϕ1〉) it holds that
〈e′1, ϕ′1〉 � 〈e2, ϕ2〉.

In several applications of resource usage analysis, we are not only interested in knowing that a function
is smaller than or equal to another. Also, if the comparison fails, it is useful to know which are the pairs
of flat functions for which we have not been able to prove them being smaller, together with their context
constraints. This can be useful in order to strengthen the context constraint of the left hand side function
or to weaken that of the right hand side function.

43

HATS Deliverable D4.2 Report on Resource Guarantees

4.3.3 Inclusion of Cost Functions

It is clearly not possible to try all assignments of input variables in order to prove that the comparison holds
as required by Definition 4.3.5 (and transitively by Definitions 4.3.6 and 4.3.7). In this section, we aim at
defining a practical technique to syntactically check that one flat function is smaller or equal than another
one for all valid assignments, i.e., the relation E of Definition 4.3.5. The whole approach is defined over flat
cost functions since from it one can use Definitions 4.3.6 and 4.3.7 to apply our techniques on two general
functions.

The idea is to first normalize cost functions so that they become easier to compare by removing paren-
thesis, grouping identical terms together, etc. Then, we define a series of inclusion schemas which provide
sufficient conditions to syntactically detect that a given expression is smaller or equal than another one.
An important feature of our approach is that when expressions are syntactically compared we compute an
approximated difference (denoted adiff) of the comparison, which is the subexpression that has not been
required in order to prove the comparison and, thus, can still be used for subsequent comparisons. The
whole comparison is presented as a fixed point transformation in which we remove from cost functions those
subexpressions for which the comparison has already been proven until the left hand side expression becomes
zero, in which case we succeed to prove that it is smaller or equal than the other, or no more transformations
can be applied, in which case we fail to prove that it is smaller. Our approach is safe in the sense that
whenever we determine that a function is smaller than another one this is actually the case. However, since
the approach is obviously approximate, as the problem is undecidable, there are cases where one function is
actually smaller than another one, but we fail to prove so.

In the sequel, we use the term basic cost expression to refer to expressions of the form n, loga(A + 1),
An, al. Furthermore, we use the letter b, possibly subscripted, to refer to such cost expressions. Normalized
cost expressions are defined similarly as done in Section 4.2.2.1. The following example recalls this notion
and introduces normalized cost expressions used in the rest of the section.

Example 4.3.8. Let us consider the cost functions in Example 4.3.4. Normalization results in the following
cost functions:

(1)n 〈34 ∗ 2A + 8 ∗ log2(1 +B) ∗ 2A + 10 ∗ C ∗ 2A + 6 ∗ C ∗D ∗ 2A, ϕ1 = {A = n,A > 0, B = 2 ∗ n− 1, B >
0, C = a,C > 0, D = b,D > 0}〉

(2)n 〈34 ∗ 2A + 8 ∗ log2(1 +B) ∗ 2A, ϕ2 = {A = n,A > 0, B = 2 ∗ n− 1, B > 0, a ≤ 0, D = b,D > 0}〉

(3)n 〈34∗2A+8∗log2(1+B)∗2A+10∗C∗2A, ϕ3 = {A = n,A > 0, B = 2∗n−1, B > 0, C = a,C > 0, b ≤ 0}〉

(4)n 〈34 ∗ 2A + 8 ∗ log2(1 +B) ∗ 2A, ϕ4 = {A = n,A > 0, B = 2 ∗ n− 1, B > 0, a ≤ 0, b ≤ 0}〉

As a set representation we obtain:

(1)s 〈{{34, 2A}, {8, log2(1 +B), 2A}, {10, C, 2A}, {6, C,D, 2A}}, ϕ1〉
(2)s 〈{{34, 2A}, {8, log2(1 +B), 2A}}, ϕ2〉
(3)s 〈{{34, 2A}, {8, log2(1 +B), 2A}, {10, C, 2A}}, ϕ3〉
(4)s 〈{{34, 2A}, {8, log2(1 +B), 2A}}, ϕ4〉

4.3.3.1 Product Comparison

We start by providing sufficient conditions which allow proving the E relation on the basic cost expressions
that will be used later to compare products of basic cost expressions. Given two basic cost expressions e1

and e2, the third column in Table 4.1 specifies sufficient, linear conditions under which e1 is smaller or equal
than e2 in the context of ϕ (denoted as e1 ≤ϕ e2). Since the conditions under which ≤ϕ holds are over
linear expressions, we can rely on existing linear constraint solving techniques to automatically prove them.
Let us explain some of entries in the table (recall that n stands for a non-negative integer and l for a linear
expression). E.g., verifying that An ≤ ml is equivalent to verifying logm(An) ≤ logm(ml), which in turn is

44

HATS Deliverable D4.2 Report on Resource Guarantees

e1 e2 e1 ≤ϕ e2 adiff

n n′ n ≤ n′ 1

n loga(A+ 1) ϕ |= {an ≤ A+ 1} 1

n Am m > 1 ∧ ϕ |= {n ≤ A} Am−1

n ml m > 1 ∧ ϕ |= {n ≤ l} ml−n

l1 l2 l2 6∈ N+, ϕ |= {l1 ≤ l2} 1

l An n > 1 ∧ ϕ |= {l ≤ A} An−1

l nl
′

n > 1 ∧ ϕ |= {l ≤ l′} nl
′−l

loga(A+ 1) l l 6∈ N+, ϕ |= {A+ 1 ≤ l} 1

loga(A+ 1) logb(B + 1) a ≥ b ∧ ϕ |= {A ≤ B} 1

loga(A+ 1) Bn n > 1 ∧ ϕ |= {A+ 1 ≤ B} Bn−1

loga(A+ 1) nl n > 1 ∧ ϕ |= {l > 0, A+ 1 ≤ l} nl−(A+1)

An Bm n > 1 ∧m > 1 ∧ n ≤ m ∧ ϕ |= {A ≤ B} Bm−n

An ml m > 1 ∧ ϕ |= {n ∗A ≤ l} ml−n∗A

nl ml′ n ≤ m ∧ ϕ |= {l ≤ l′} ml′−l

Table 4.1: Comparison of basic expressions e1 ≤ϕ e2

equivalent to verifying that n ∗ logm(A) ≤ l when m > 1 (i.e., m ≥ 2 since m is an integer value). Therefore
we can verify a stronger condition n ∗A ≤ l which implies n ∗ logm(A) ≤ l, since logm(A) ≤ A when m ≥ 2.
As another example, in order to verify that l ≤ nl

′
, it is enough to verify that logn(l) ≤ l′ when n > 1,

which can be guaranteed if l ≤ l′.
The “part” of e2 which is not required in order to prove the above relation becomes the approximated

difference of the comparison operation, denoted adiff(e1, e2). An essential idea in our approach is that adiff
is a cost expression in our language and hence we can transitively apply our techniques to it. This requires
having an approximated difference instead of the exact one. For instance, when we compare A ≤ 2B in the
context {A ≤ B}, the approximated difference is 2B−A instead of the exact one 2B − A. The advantage
is that we do not introduce the subtraction of expressions, since that would prevent us from transitively
applying the same techniques.

When we compare two products M1, M2 of basic cost expressions in a context constraint ϕ, the basic
idea is to prove the inclusion relation ≤ϕ for every basic cost expression in M1 w.r.t. a different element in
M2 and at each step accumulate the difference in M2 and use it for future comparisons if needed.

Definition 4.3.9 (product comparison operator). Given 〈M1, ϕ1〉, 〈M2, ϕ2〉 in Pb, we define the prod-
uct comparison operator τ∗ : (Pb,Pb) 7→ (Pb,Pb) as follows: τ∗(M1,M2) = (M1 − {e1},M2 − {e2} ∪
{adiff(e1, e2)}) where e1 ∈M1, e2 ∈M2, and e1 ≤ϕ1∧ϕ2 e2.

In order to compare two products, first we apply the above operator τ∗ iteratively until there are no more
terms to transform. In each iteration we pick e1 and e2 and modify M1 and M2 accordingly, and then
repeat the process on the new sets. The result of this operation is denoted fp∗(M1,M2). This process is
finite because the size of M1 strictly decreases at each iteration.

Example 4.3.10. Let us consider the product {8, log2(1 + B), 2A} which is part of (1)s in Example 4.3.8.
We want to prove that this product is smaller or equal than the following one {7, 23∗B} in the context ϕ =
{A ≤ B − 1, B ≥ 10}. This can be done by applying the τ∗ operator three times. In the first iteration, since
we know by Table 4.1 that log2(1 +B) ≤ϕ 23∗B and the adiff is 22∗B−1, we obtain the new sets {8, 2A} and
{7, 22∗B−1}. In the second iteration, we can prove that 2A ≤ϕ 22∗B−1, and add as adiff 22∗B−A−1. Finally, it
remains to be checked that 8 ≤ϕ 22∗B−A−1. This problem is reduced to checking that ϕ |= 8 ≤ 2 ∗B −A− 1,
which is trivially true.

The following lemma states that if we succeed to transform M1 into the empty set, then the comparison
holds. This is what we have done in the above example.

45

HATS Deliverable D4.2 Report on Resource Guarantees

Lemma 4.3.11. Given 〈M1, ϕ1〉, 〈M2, ϕ2〉 whereM1,M2 ∈ Pb and for all e ∈M1 it holds that ϕ1 |= e ≥ 1.
If fp∗(M1,M2) = (∅,) then 〈M1, ϕ1〉E〈M2, ϕ2〉.
Note that the above operator is non-deterministic due to the (non-deterministic) choice of e1 and e2 in
Definition 4.3.9. Thus, the computation of fp∗(M1,M2) might not lead directly to (∅,). In this case we
can backtrack in order to explore other choices and, in the limit, all of them can be explored until we find
one for which the comparison succeeds.

4.3.3.2 Comparison of Sums of Products

We now aim at comparing two sums of products by relying on the product comparison of Section 4.3.3.1.
As for the case of basic cost expressions, we are interested in having a notion of approximated adiff when
comparing products. The idea is that when we want to prove k1 ∗ A ≤ k2 ∗ B and A ≤ B and k1 and
k2 are constant factors, we can leave as approximated difference of the product comparison the product
(k2 − k1) ∗ B, provided k2 − k1 is greater or equal than zero. As notation, given a product M, we use
constant(M) to denote the constant factor in M, which is equal to n if there is a constant n ∈ M with
n ∈ N+ and, otherwise, it is 1. We use adiff(M1,M2) to denote constant(M2)− constant(M1).

Definition 4.3.12 (sum comparison operator). Given 〈S1, ϕ1〉 and 〈S2, ϕ2〉, where S1,S2 ∈ PM, we define
the sum comparison operator τ+ : (PM,PM) 7→ (PM,PM) as follows: τ+(S1,S2) = (S1 − {M1}, (S2 −
{M2}) ∪ A) iff fp∗(M1,M2) = (∅,) where:

• A = { } if adiff(M1,M2) ≤ 0;

• otherwise, A = (M2 − {constant(M2)}) ∪ {adiff(M1,M2)}.

In order to compare sums of products, we apply the above operator τ+ iteratively until there are no more
elements to transform. As for the case of products, this process is finite because the size of S1 strictly
decreases in each iteration. The result of this operation is denoted by fp+(S1,S2).

Example 4.3.13. Let us consider the sum of products (3)s in Example 4.3.8 together with S = {{50, C, 2B},
{9, D2, 2B}} and the context constraint ϕ = {1 +B ≤ D}. We can prove that (3)s ES by applying τ+ three
times as follows:

1. τ+((3)s,S) = ((3)s − {{34, 2A}},S ′), where S ′ = {{16, C, 2B}, {9, D2, 2B}}. This application of the
operator is feasible since fp∗({34, 2A}, {50, C, 2B}) = (∅,) in the context ϕ3 ∧ ϕ, and the difference
constant part of such comparison is 16.

2. Now, we perform one more iteration of τ+ and obtain as result τ+((3)s − {{34, 2A}},S ′) = ((3)s −
{{34, 2A}, {10, C, 2A}},S ′′), where S ′′ = {{6, C, 2B}, {9, D2, 2B}}. Observe that in this case we have
fp∗({10, C, 2A}, {{16, C, 2B}) = (∅,).

3. Finally, one more iteration of τ+ on the above sum of products, gives (∅,S ′′′) as result, where S ′′′ =
{{6, C, 2B}, {1, D2, 2B}}.

In this last iteration we have used the fact that {1+B ≤ D} ∈ ϕ in order to prove that fp∗({8, log2(1+B), 2A},
{9, D2, 2B}) = (∅,) within the context ϕ3 ∧ ϕ.

Theorem 4.3.14. Let 〈S1, ϕ1〉, 〈S2, ϕ2〉 be two sums of products such that for all M ∈ S1, e ∈ M it holds
that ϕ1 |= e ≥ 1. If fp+(S1,S2) = (∅,) then 〈S1, ϕ1〉E〈S2, ϕ2〉.
Example 4.3.15. For the sum of products in Example 4.3.13, we get fp+((3)s,S) = (∅,S ′′′). Thus, according
to the above theorem, it holds that 〈(3)s, ϕ3〉E〈S, ϕ〉.

We have implemented our technique and it can be used as a back-end of existing non-asymptotic cost
analyzers for average, lower and upper bounds (e.g., [41, 10, 53, 22, 26]), and regardless of whether it is
based on the approach to cost analysis of [63] or any other. Currently, it is integrated within costa, and it
can be tried out through its web interface which is available from http://costa.ls.fi.upm.es.

46

HATS Deliverable D4.2 Report on Resource Guarantees

void f(int n) {

List l = null;

int i=0;

while (i<n) {

int j=0;

while (j<i) {

for(int k=0;k<n+j;k++)

l=new List(i*k*j,l);

j=j+random ()?1:3;

}

i=i+random ()?2:4;

}

}

(a) Running Example

F (n) = A(0, n) {}

A(i, n) = 0 {i≥n}
A(i, n) = B(0, i, n)+A(i′, n) {i+1≤n, i+2≤i′≤i+4}

B(j, i, n) = 0 {j≥i}
B(j, i, n) = C(0, j, n)+B(j′, i, n) {j+1≤i, j+1≤j′≤j+3}

C(k, j, n)= 0 {k≥n+j}
C(k, j, n)= 1+C(k′, j, n) {k′ = k+1, k+1≤n+j}

(b) CRs for Memory Consumption

Figure 4.2: Running Example and its Cost Relation System

4.4 Accurate Upper and Lower Bounds

This section summarizes the work published in [9] and [14] for solving CRSs into closed-form UBs and LBs.
We motivate our work on a contrived example depicted in Figure 4.2a. The example is sufficiently simple
to explain the main technical parts of the techniques, but still interesting to understand the challenges and
precision gains. For this program and the memory consumption cost model, costa generates the CR shown
in Figure 4.2b. This cost model estimates the number of objects allocated in the memory. Observe that the
structure of the Java program and its corresponding CR match. The equations for C correspond to the for

loop, those of B to the inner while loop and those of A to the outer while loop. The recursive equation for
C states that the memory consumption of executing the inner loop with 〈k, j, n〉 such that k + 1 ≤ n+ j is
1 (one object) plus that of executing the loop with 〈k′, j, n〉 where k′ = k+ 1. The recursive equation for B
states that executing the loop with 〈j, i, n〉 costs as executing C(0, j, n) plus executing the same loop with
〈j′, i, n〉 where j + 1 ≤ j′ ≤ j + 3. While, in the Java program, j′ can be either j + 1 or j + 3, due to the
static analysis, the case for j + 2 is added in order to have a convex shape [32].

Since CRs are syntactically quite close to Recurrence Relations (RRs), in most cost analysis frameworks,
it has been assumed that cost relations can be easily converted into RRs. This has led to the belief that
it is possible to use existing Computer Algebra Systems (CAS) for finding closed-forms UBs and LBs in
cost analysis. However, there are fundamental differences between CRs and RRs which make using CAS
for solving CRs impractical. The following features have been identified in [9] as main differences, which in
turn justify the need to develop specific solvers for solving CRs:

1. CRs often have multiple arguments that increase or decrease over the relation (e.g., in A of Figure 4.2b
variable i′ increases). The number of evaluation steps (i.e., recursive calls performed) is often a function
of several such arguments.

2. CRs often contain inexact size relations, e.g., variables range over an interval [a, b] (e.g., variable j′

in B). Thus, given a valuation, we might have several solutions which perform a different number of
evaluation steps.

3. Even if the original programs are deterministic, due to the loss of precision in the first stage of the
static analysis, CRs often involve several non-deterministic equations (see Figure 2.1).

As a consequence of items 2 and 3, an exact solution often does not exist and hence CAS just cannot be
used in such cases. And even if an exact solution exists, due to the three additional features, CAS do not
accept CRs as a valid input.

47

HATS Deliverable D4.2 Report on Resource Guarantees

e1 e2 e3 en

e1 e2 e3 en en′

ê ê ê ê ê ê

u1 ďu2 ďu3 ďun ďun′ ďun̂

`1 ď`2 ď`3 ď`ň

Figure 4.3: Concrete evaluations for one entry (rows 1, 2). UB approximation of [9] (row 3). Upper and
lower bounds of [14] (rows 4 and 5).

In [9] we have developed a technique for solving CRs into closed-form UBs which relies on static program
analysis instead of CAS . The main achievement of this work is its wide applicability when compared to CAS .
Since precision is fundamental in some resource usage analysis, such as worst-case execution time (WCET),
in [14] we have developed a technique which improves the precision of [9] and has similar applicability.
Moreover, it is applicable also for inferring LBs. A main achievement of this work is the seamless integration
of [9] and CAS that gets the best of both worlds: precision as CAS , whenever possible, while applicability
as close to [9] as possible. To the best of our knowledge, this is the first general approach to inferring LBs
from CRs and, as regards UBs, the one that achieves a better precision vs. applicability balance. All above
approaches have been implemented in costa. The next section informally describes these approaches.

4.4.1 An Informal Account of Our Approach

Consider a CR in its simplest form with one base-case equation 〈C(x̄)=0, ϕ0〉 and one recursive equation
with a single recursive call 〈C(x̄)=e+C(x̄′), ϕ1〉. Given a concrete input valuation v̄ for x̄, the first two rows
in Figure 4.3 represent two different possible results obtained for C(v̄), depending on the assignments chosen
in ϕ1, where each ei is the evaluation of e contributed by the i-th application of the recursive equation. In
the first execution (first row), the recursive equation has been applied n times; while in the second execution
(second row) we have applied it n′ times. The shady part of each rectangle denotes the progress di between
each two steps, i.e., di=ei+1 − ei. Note that the progress is in general not constant. The distance might
vary from one application of the equation to the next one and it does not necessarily increase.

The first two rows thus show two possible results of one particular valuation C(v̄). Our challenge is
to accurately estimate the cost of C(x̄) for any input, i.e., we look for a UB (resp., LB) of C(x̄) which is
larger or equal (resp., smaller or equal) than all possible results of evaluating C(x̄) for any valuation of x̄.
As we have explained above, CAS aims at obtaining an exact cost function, which is often not possible for
CRS since, even for a single valuation, it might produce multiple solutions. Instead, we aim at inferring
approximations and provide them as closed-form UBs/LBs for C.

Our first general approximation for UBs [9] has two dimensions: (1) Number of applications of the
recursive case: The first dimension is to infer an UB on the number of times the recursive equations can be
applied (which, for loops, corresponds to the number of loop iterations). This is done by inferring an UB n̂
on the length of chains of calls; and (2) Cost of applications: The second dimension is to infer an UB ê of the
cost of each loop iteration, i.e., ê ≥ ei for all i. Then, for the above CR, n̂ ∗ ê is guaranteed to be an UB for
C. If the relation C had two recursive calls, the solution would be an exponential function of the form 2n̂ ∗ ê.
The third row of Figure 4.3 shows the result of this approximation for the simple CR we are considering. It
can be observed that the cost of all iterations ei is approximated by the same worst-case cost, which is ê.
The number of iterations is approximated by n̂ which is larger or equal than n, n′, etc. In contrast to the
first two rows, which are evaluations for concrete input data, the third row is a safe approximation of C(x̄)
for any input. We have proposed programming-languages techniques of wide applicability in order to solve
those two dimensions:

48

HATS Deliverable D4.2 Report on Resource Guarantees

Ranking functions. A ranking function is a function f such that for any recursive equation 〈C(x̄)=e+
C(x̄1) + · · · + C(x̄k), ϕ〉 in the CR, it holds that ∀1≤i≤k.ϕ |= f(x̄)>f(x̄i)∧f(x̄)>0. This guarantees that
when evaluating C(v̄), the length of any chain of calls to C cannot exceed f(v̄). Thus, f is used to bound
the length of these chains [9, 18, 23].

Maximization. The second dimension is solved by first inferring an invariant 〈C(x̄0) ; C(x̄),Ψ〉, where
Ψ is a set of linear constraints, which describes the relation between the values that x̄ can take in any call
to C and the initial values x̄0. Then, in order to generate ê, each nat(l) ∈ e is replaced by nat(l̂), where
l̂ is a linear expression (over x̄0) which is an UB for any valuation of l. Namely, inferring l̂ is done by
syntactically looking for a constraint ξ ≤ l̂ in ∃̄x̄0 ∪ {ξ}.Ψ ∧ ϕ1 ∧ ξ = l where ξ is a new variable. The
advantage of this approach is that it can be implemented using any tool for manipulating linear constraints
such as [15]. Alternatively, we can also use parametric integer programming [38] in order to maximize ξ
w.r.t. the parameters x̄0.

Example 4.4.1. Let us demonstrate this approach for CRs C and B of Figure 4.2b. A ranking function for
C is nat(n0 + j0−k0), and thus C+(k0, j0, n0) = nat(n0 + j0−k0)∗1 is an UB for C. Replacing C(0, j, n) by
the UB nat(n+j) in the CR B results in 〈B(j, i, n) = nat(n+j)+B(j′, i, n), ϕ1 = {j < i, j+1 ≤ j′ ≤ j+3}〉.
A ranking function for B is nat(i0 − j0), and the maximization of nat(n + j) results in nat(n0 + i0 − j0)
since n + j gets its maximum value when j is maximal (i.e. when j = i0 − 1). Thus, B+(j0, i0, n0) =
nat(i0 − j0) ∗ nat(n0 + i0 − j0) is an UB for B.

Note that when trying to adapt this approach to inferring LBs, we only obtain trivial bounds. This is
because the minimization of the cost expression accumulated along the execution is in most cases zero and,
hence, by assuming it for all executions we would obtain a trivial (zero) LB.

Since precision is fundamental in some resource usage analysis, e.g., in WCET, in a recent work [14], we
try to improve the precision of our first approach [9] in order make it comparable to that of using CAS while
still keeping a similar applicability for UBs and, besides, be able to apply our approach to infer useful LBs.
For UBs (resp., LBs), this approximation corresponds to the approximation shown in the fourth (resp., fifth)
row of Figure 4.3. The fundamental idea is to generate a sequence of (different) elements u1, . . . , un̂ such
that for any concrete evaluation e1, . . . , en of the equation, it holds that the last n elements we generate are
larger or equal than the exact ones, i.e., ∀0 ≤ i ≤ n − 1. un̂−i≥en−i. Then, clearly u1 + · · · + un̂ is an UB
for e1 + · · · + en. This UB is potentially more precise than n̂∗ê (as shown in the third row), since each ei
is approximated more tightly by a corresponding uj . Technically, we compute the approximation shown in
the fourth row by transforming the CR into a (worst-case) RR whose closed-form solution is u1 + · · ·+ un̂.
This RR has the following general from:

P (0) = λ
P (x) = E + P (x− 1) + · · ·+ P (x− 1)

where E is a function on x (and might have constant symbols), and λ is a symbol representing the value of
the base-case. The advantage of this RR is that it is simple enough to be solved by CAS .

When e is a simple linear expression such as e ≡ nat(l), the novel idea is to view u1, · · · , un̂ as an
arithmetic sequence that starts from un̂ ≡ ê (last element of fourth row), and that each time decreases by
ď, where ď is an under-approximation of all di = ei+1 − ei, i.e., ui = ui−1 + ď. Let us observe in the fourth
row of the figure that such a distance is constant in our approximation. When e is a complex non-linear
expression, e.g., nat(l) ∗ nat(l′), it cannot be precisely approximated using sequences. For such cases, our
novel contribution has been a method for approximating e by approximating its nat subexpressions (which
are linear) separately.

Example 4.4.2. Let us demonstrate this approach for CR B of Example 4.4.1 (after replacing the UB of
C). The expression nat(n + j) increases at least by ď. Using this ď, the ranking function nat(i0 − j0), and

49

HATS Deliverable D4.2 Report on Resource Guarantees

the maximization nat(n0 + i0 − 1) of nat(nj), we generate the following RR

PB(0) = 0
PB(x) = nat(n0 + j0−1) + (nat(i0−j0)−x+1)∗1 + PB(x−1)

which is solved by CAS to

PB(x) = nat(n0 + j0 − 1) ∗ x+ nat(i0 − j0) ∗ x+
x

2
− x2

2

Note that variable x refers to the number of applications of the recursive equations, thus, changing it by the
ranking function nat(i0 − j0) results in the following UB for B

B+(j0, i0, n0) = nat(n0 + j0 − 1) ∗ nat(i0 − j0) +
nat(i0 − j0)

2
∗ (nat(i0 − j0) + 1)

which is more precise than the one of Example 4.4.1.

Interestingly, this technique can be applied to cost expressions with any progression behavior that can be
modeled using sequences, and not only to those with a linear progression behavior.

An important advantage of this approach w.r.t. the previous one and other related approaches [41, 45],
is that the problem of inferring LBs is dual. In particular, we can infer a LB ň on the length of chains
of recursive calls, the minimum value ě to which e can be evaluated, and then sum the sequence `1, . . . , `ň
where `i = `i−1 + ď and `1 = ě. The LB approximation is shown graphically in the fifth row of Figure 4.3.
In practice these two subproblems are solved as follows:

LB on the length of chains of calls. Given a CR C, a LB on the length of any chain of calls during
the evaluation of C(x̄0) is computed as follows:

1. Instrumentation: Replace each head C(x̄) by C(x̄, lb), each recursive call C(x̄j) by C(x̄j , lb
′), and add

{lb′ = lb+ 1} to each ϕ1;

2. Invariant : Infer an invariant 〈C(x̄0, 0) ; C(x̄, lb),Ψ〉 for the new CR, such that the linear constraints
Ψ hold between the (variables) of the initial call C(x̄0, 0) and any recursive call C(x̄, lb); and

3. Synthesis: Syntactically look for lb ≥ l in ∃̄x̄0 ∪ {lb}. Ψ ∧ ϕ0.

Then, nat(l) is a LB on the length of the chains of calls for C. Let us give an intuition on the different steps
of the above definition: In step 1, the CR C is instrumented with an extra argument lb which practically
computes the length of the corresponding chain of calls, when starting the evaluation from C(x̄0, 0). This
instrumentation reduces the problem of finding a LB on the length of any chain of calls to the problem of
finding a (symbolic) minimum value for lb for which the base-case equation is applicable (i.e., the chain of
calls terminates). This is exactly what steps 2 and 3 do. In 2, we infer an invariant Ψ on the arguments
of any call C(x̄, lb) encountered during the evaluation of C(x̄0, 0). This is done exactly as for the invariant
when maximizing cost expressions. In 3, from all states described by Ψ, we are interested only in those in
which the base-case equation is applicable, i.e., in Ψ ∧ ϕ0. Then, within this set of states, we look for a
symbolic expression lb ≥ l where l is an expression over x̄0. Such an l is the LB we are interested in. Note
that instead of syntactically looking for lb ≥ l, we can also use parametric integer programming [38] in order
to minimize lb w.r.t. the parameters x̄0.

Example 4.4.3. Adding the loop counter lb to the CR B of Example 4.4.1 results in

〈B(j, i, n, lb) = 0 {j ≥ i}〉
〈B(j, i, n, lb) = nat(n+ j) +B(j′, i, n, lb′) {j < i, j + 1 ≤ j′ ≤ j + 3, lb′ = lb+ 1}〉

The invariant for this CR is Ψ = {j − j0 − lb ≥ 0, j0 + 3 ∗ lb− j ≥ 0, i = i0, n = n0}. Projecting Ψ∧{j ≥ i}
on 〈j0, i0, n0, lb〉 results in {j0 + 3 ∗ lb − i0 ≥ 0} which implies lb ≥ (i0−j0)

3 , from which we can synthesize

f̌B(j0, i0, n0) = nat(i0−j03).

50

HATS Deliverable D4.2 Report on Resource Guarantees

Minimization. Inferring the minimum value to which nat(l) ∈ e can be evaluated is done in a dual way
to that of inferring the maximum value to which it can be evaluated. Namely, using the above invariant
Ψ, we syntactically look for an expression ξ ≥ ľ in ∃̄x̄0 ∪ {ξ}. Ψ ∧ ϕ1 ∧ ξ = l where ξ is a new variable.
As in the case of maximization, the advantage of this approach is that it can be implemented using any
tool for manipulating linear constraints such as [15]. Alternatively, we can also use parametric integer
programming [38] in order to minimize ξ w.r.t. the parameters x̄0.

Example 4.4.4. The minimization of nat(n + j) of the CR B of Example 4.4.1 results in nat(n0 + j0).
Using this expression, the LB on the length of the chains of calls inferred in Example 4.4.3, and ď = 1, we
generate the following (best-case) RR

PB(0) = 0

PB(x)=nat(n0 + j0) + (nat(i0−j03)−x)∗1 + PB(x−1)

which is solved by CAS to

PB(x) = nat(n0 + j0) ∗ x+ nat(
i0 − j0

3
) ∗ x− x2

2
− x

2

Then, replacing x by the minimum length of the chains of calls results in the following LB for B

B−(j0, i0, n0) =
1

2
∗ nat(

i0 − j0
3

) ∗ (nat(
i0 − j0

3
) + 2 ∗ nat(n0 + j0 −

1

2
))

51

Chapter 5

Verification of Resource Guarantees using
KeY + costa

Resource guarantees allow being certain that programs will run within the indicated amount of resources,
which may refer to memory consumption, number of instructions executed, etc. This information can be
very useful, especially in real-time and safety-critical applications. Nowadays, a number of automatic tools
exist, often based on type systems or static analysis, which produce such resource guarantees. For example,
the costa tool described in the previous chapters. In spite of being based on theoretically sound techniques,
the implemented tools may contain bugs which render the resource guarantees thus obtained not completely
trustworthy. Performing full-blown verification of such tools is a daunting task, since they are large and
complex. In this work we investigate an alternative approach whereby, instead of the tools, we formally verify
the results of the tools. We have implemented this idea using costa for producing resource guarantees and
KeY, a state-of-the-art verification tool, for formally verifying the correctness of such resource guarantees.
Our preliminary results show that the proposed tool cooperation can be used for automatically producing
verified resource guarantees.

5.1 Introduction

There is a growing awareness, both in industry and academia, of the crucial role of formally proving the
correctness of systems. Verifying the correctness of modern static analyzers is rather challenging, among
other things, because of the sophisticated algorithms used in them, their evolution over time, and, possibly,
proprietary considerations. A simpler alternative is to construct a validating tool [55] which, after every run
of the analyzer, formally confirms that the results are correct and, optionally, generates correctness proofs.
Such proofs could then be translated to resource certificates, in the proof-carrying code style [33, 54].

In this work, we are interested in resource guarantees obtained by static analysis. An essential aspect of
programs is that resources be used effectively. This is especially true in the context of software families, which
provide us with mechanisms for code reuse by means of components and services: not only functionality,
but also resource consumption (or cost) must be taken into consideration.

The analysis algorithms used in costa for inferring the three main components of the UB generation (i.e.,
ranking functions, loop invariants, and size relations) were proven correct at a theoretical level. However,
there is no guarantee that correctness is preserved in the actual implementation, which is rather involved
and includes translation to an intermediate language.

KeY [17] is a state-of-the-art source code verification tool for the Java programming language. Its cover-
age of Java is comparable to that of costa (nearly full sequential Java, plus a simplified concurrency model).
KeY implements a logic-based setting of symbolic execution that allows deep integration with aggressive
first-order simplification. While the degree of automation of KeY is very high on loop- and recursion-free
programs, the user must in general supply suitable invariants to deal with loops and recursion. In general,
invariants that are sufficient to prove complex functional properties cannot be inferred automatically. How-

52

HATS Deliverable D4.2 Report on Resource Guarantees

ever, simpler invariants that are sufficient to establish UBs can be automatically derived in many cases and
this is exactly costa’s forte. Our work is based on the insight that the static analysis tool costa and the
formal verification tool KeY have complementary strengths: costa is able to derive UBs of Java programs
including the invariants needed to obtain them. This information is enough for KeY to prove the validity of
the bounds and provide a certificate. The main contribution of this work is to show that, using KeY, it is
possible to formally and automatically verify the correctness of the UBs obtained by costa. Realizing the
cooperation between costa and KeY required a number of non-trivial extensions of both systems, which
are described in more detail below.

5.2 Inference of UBs in costa

In this section, we briefly recall the techniques used in costa for automatically inferring UBs, and we
identify the proof obligations that need to be verified using KeY.

5.2.1 Main Components of an UB

Consider the following (JML annotated) program that implements the insert sort algorithm.

1 public class NestedLoops {

2 static void insert_sort(int A[]) {

3 int i, j, v;

4 //@ ghost int i0=i; int j0=j; int a0=a;
5 i=A.length -2;

6 //@ assert (i=i0−2 ∧ j=j0 ∧ a=a0)
7 //@ ghost int i1=i; int j1=j; int a1=a;
8 //@ loop_invariant i≤i1
9 //@ decreases i>0 ? i : 0

10 while (i>=0) {

11 //@ ghost int i2=i; int j2=j; int a2=a;
12 j=i+1;

13 v=A[i];

14 //@ assert j=i2+1 ∧ i2 ≥ 0
15 //@ ghost int i3=i; int j3=j; int a3=a;
16 //@ loop_invariant j≤a3

17 //@ decreases a− j>0 ? a− j : 0
18 while (j<A.length && A[j]<v) {

19 A[j-1]=A[j];

20 j++; }

21 A[j-1]=v;

22 i--;

23 }

24 }

25 }

costa receives a non-annotated version of the above program and, for the cost model that counts the
number of executed bytecode instructions, produces the (asymptotic) UB insert_sort(a)=a2, where a
refers to A.length. The underlying analysis used in costa infers UBs for each iterative and recursive
constructs (loops) and then composes the results in order to obtain an UB for the method of interest.
Intuitively, in order to infer an UB for a single loop, it first infers an UB A on the cost of a single execution
of its body, an UB I on the number of iterations that it can make, and then A ∗ I is an UB for the loop.
To infer A and I costa relies on several program analysis components that provide essential information as

53

HATS Deliverable D4.2 Report on Resource Guarantees

has been explained in the previous chapters. We summarize the essentials here for the convenience of those
who want to read the present chapter stand-alone.

Ranking functions. For each loop, costa infers a linear function from the loop variables to N which is
decreasing at each iteration. For example, for the loop at line 18, it infers function f(a, j) = nat(a−j). This
function can be safely used to bound the number of iterations. In the example, if a3 and j3 are the initial
values of a and j, then it is guaranteed that f(a3, j3) is an UB on the number of iterations of the loop.

Loop invariants. For each loop in the program, costa infers an invariant that involves the loop’s variables
and their initial values (i.e., their values before entering the loop). Let us denote by i1 the initial value of
i when entering the loop at line 10. costa infers the invariant i ≤ i1, which states that i is always smaller
than or equal to its initial value when the program reaches the loop condition. This information, together
with the size relations below, is needed to compute the worst-case cost of executing one loop iteration.

Size relations. Given a fragment of code or a scope (details below), costa infers relations between the
values of the program variables at a certain program point of interest within the scope and their initial
values when entering the scope. For example, at line 14, it infers that j = i2 + 1, where i2 is the value of i
when entering the scope that contains line 14 (i.e., the scope here is the loop body). In this case the relation
is a simple consequence of the instruction at line 12. In general, however, it may not be trivial to infer such
relations nor to prove that they are correct.

UBs. Once the above information has been inferred, it is straightforward to compute an UB for the
method. Let us show this process on the running example:

Inner loop. The process starts from the innermost loops. Thus, we start with the loop at line 18. Assuming
that executing the condition costs (at most) c1 instructions, and that the cost of each iteration (i.e., the
loop body) is c2 instructions, then it is clear that nat(a3 − j3) ∗ (c1 + c2) + c1 is an UB on the cost of this
loop (because c1 and c2 are constant).

Outer loop. Next, we move to the outer loop at line 10. Let us assume that the cost of the comparison
is c3 instructions, the code at lines 12 − −13 are c4 instructions, and the code at lines 21 − −22 are c5

instructions. Then, the cost of each iteration of this loop is c3 + c4 + nat(a3 − j3) ∗ (c1 + c2) + c1 + c5, where
the highlighted subexpression corresponds to the cost of the inner loop computed above. Note that in this
case, each iteration might have a different cost, since a3− j3 is not the same for all iterations. As detailed in
the previous nchapter, simply multiplying the number of iterations nat(i1) by such a cost is unsound. The
solution is to find an expression U in terms of the initial values of a1, i1, j1 which does not change during the
loop such that U ≥ a3 − j3 in all iterations. Then, nat(i1) ∗ [c3 + c4 + nat(U) ∗ (c1 + c2) + c1 + c5] + c3 is an
UB for the loop. In order to find such a U , costa uses the loop invariant (line 8) and the size relations (line
14) as follows: it solves the parametric integer programming (PIP) problem of maximizing the objective
function a3 − j3 w.r.t. the loop invariant and the size relations where i1, a1, j1 are the parameters. This
produces an expression in terms of i1, a1, j1 which is greater than or equal to a3 − j3 in all iterations of the
loop. In our example, it is U = a1 − 1.

Method. We finally can compute the cost of the insert_sort method. Assume that the cost of line 5 is
c6, then the cost of the method is c6 + nat(i1) ∗ [c3 + c4 + nat(a1 − 1) ∗ (c1 + c2) + c1 + c5] + c3. We need to
express this UB in terms of the input parameter a. For this, costa maximizes (using PIP) i1 and a1 − 1
w.r.t. the size relation at line 6 and, respectively, obtains a− 2 and a− 1. Therefore, c6 + nat(a− 2) ∗ [c3 +
c4 + nat(a− 1) ∗ (c1 + c2) + c1 + c5] + c3 is the UB for insert_sort.

5.2.2 costa Claims as JML Annotations

To justify that the UBs obtained by costa are correct, we need to provide formal correctness proofs for
all the claims above. This includes the ranking functions, invariants, size relations, the cost model that

54

HATS Deliverable D4.2 Report on Resource Guarantees

provides all ci, and the underlying PIP solver.

Correctness of the cost model is trivial as it is a simple mapping from each instruction to a number.
Correctness of the underlying PIP solver is also straightforward if we use the maximization procedure defined
in [9], which is based only on the Gaussian elimination algorithm. Therefore, we concentrate on verifying
the correctness of the ranking functions, size relations and invariants. They are inferred by large software
components whose correctness has not been verified. We now briefly describe the translation of the different
pieces of information generated by costa to JML annotations on the Java program, which will allow their
verification in KeY.

Ranking functions. For a given loop, when costa infers a ranking function of the form nat(`), we
translate it to the JML annotation “//@ decreases ` > 0 ? ` : 0”, since nat(`) can be defined as an if-
then-else. costa might provide also ranking functions of the form log(nat(`) + 1), which are handled
similarly.

Invariants. costa infers an invariant ϕ for each loop. This invariant involves the loop variables v̄ and
auxiliary variables w̄ such that each wi represents the initial value of vi. The JML annotation for this
invariant consists of one line defining all w̄ as ghost variables (“//@ ghost int w1 = v1;. . .; int wn = vn”)
and one line for declaring the loop invariant (“//@ loop_invariant ϕ”).

Size relations. Size relations are linear constraints between the values of a set of variables of interest
between two program points. As we have seen, this allows composing the cost of the different program
fragments. For each loop (or method call), costa infers the relation ϕ between the values before the loop
entry (or the call) and the entry of its parent scope. Suppose that the loop (or the call) is at line Ll, its
parent scope starts at line Lp, and that v̄ are the variables of interest at Ll and w̄ represent their values
at Lp. Then we add the JML annotation “//@ ghost int w1 = v1;. . .; int wn = vn;” immediately after
line Lp to capture the values of v̄ at line Lp, and the JML annotation “//@ assert ϕ” immediately before
line Ll to state that the relation ϕ must hold at the program point. Additional size relations inferred by
costa are IO size relations. These are linear constraints that relate the return value of a given method
to its input values. For example, suppose that we replace “i--” in line 22 of the insert_sort program
by “i=decrement(i)” where decrement is defined by “int decrement(int x) {return x-1;}”. Then
costa infers the relation “ϕ ≡\result=x-1” which is used to bound the number of iterations of that loop.
In order to verify this relation in KeY we add the JML annotation “//@ ensures ϕ” to the contract of
decrement.

5.3 Verification of UBs using KeY

We now describe the verification techniques used in KeY to prove program correctness, focusing on those
relevant to UB verification.

5.3.1 Verification by Symbolic Execution

The program logic used by KeY is JavaCard Dynamic Logic (JavaDL) [17], a first-order dynamic logic
with arithmetic. Programs are first-class citizens similar to Hoare logics but, in dynamic logic, correctness
assertions can appear arbitrarily nested. JavaDL extends sorted first-order logic by a program modality
〈·〉· (read “diamond”). Let p denote a sequence of executable Java statements and φ an arbitrary JavaDL
formula, then 〈p〉φ is a JavaDL formula which states that program p terminates and in its final state φ
holds. A typical formula in JavaDL looks like

i
.
= i0 ∧ j

.
= j0 −> 〈

p︷ ︸︸ ︷
i=j-i;j=j-i;i=i+j;〉(i

.
= j0 ∧ j

.
= i0)

55

HATS Deliverable D4.2 Report on Resource Guarantees

where i, j are program variables represented as non-rigid constants. Non-rigid constants and functions are
state-dependent: their value can be changed by programs. The rigid constants i0, j0 are state-independent:
their value cannot be changed. The formula above says that if program p is executed in a state where i and
j have values i0, j0, then p terminates and in its final state the values of the variables are swapped. To
reason about JavaDL formulas, KeY employs a sequent calculus whose rules perform symbolic execution of
the programs in the modalities. Here is a typical rule:

ifSplit
Γ, b =⇒ 〈{p}rest〉φ,∆ Γ,¬b =⇒ 〈{q}rest〉φ,∆

Γ =⇒ 〈if (b) {p} else {q} rest〉φ,∆
As values are symbolic, it is in general necessary to split the proof whenever an implicit or explicit case
distinction is executed. It is also necessary to represent the symbolic values of variables throughout execution.
This becomes apparent when statements with side effects are executed, notably assignments. The assignment
rule in JavaDL looks as follows:

assign
Γ =⇒ {x := val}〈rest〉φ,∆
Γ =⇒ 〈x = val; rest〉φ,∆

The expression in curly braces in the premise is called update and is used in KeY to represent symbolic
state changes. An elementary update loc := val is a pair of a location (program variable, field, array) and a
value. The meaning of updates is the same as that of an assignment, but they can be composed in different
ways to represent complex state changes. Updates u1, u2 can be composed into parallel updates u1‖u2. In
case of clashes (updates u1, u2 assign different values to the same location) a last-wins semantics resolves
the conflict. This reflects left-to-right sequential execution. Apart from that, parallel updates are applied
simultaneously, i.e., they do not depend on each other. Update application to a formula/term e is denoted
by {u}e and forms itself a formula/term. Application of updates is similar to explicit substitutions, but is
aware of aliasing.

Loops and recursive method calls give rise to infinitely long symbolic executions. Invariants are used
in order to deal with unbounded program structures (an example is given below). Exhaustive application
of symbolic execution and invariant rules results in formulas of the form {u}〈〉φ where the program in
the modality has been fully executed. At this stage, symbolic updates are applied to the postcondition φ
resulting in a first-order formula that represents the weakest precondition of the executed program w.r.t φ.

5.3.2 Proof-Obligation for Verifying UBs

To verify UBs in KeY the annotated source code files provided by costa are loaded. For methods where
costa did not generate a contract, KeY provides the following default JML contract:

/*@ public behavior

@ requires true;

@ ensures true;

@ signals_only Exception;

@ signals (Exception) true; @*/

This contract requires to prove termination for any input and ensures that all possible execution paths are
analyzed. Abrupt termination by uncaught exceptions is allowed (signals clauses). To prove that a method
m satisfies its contract, a JavaDL formula is constructed which is valid iff m satisfies its contract. Slightly
simplified, for insert sort from Section 5.2.1 this formula (using the default contract) is:

∀o; ∀a0; {a := a0 ‖ self := o}(¬(a
.
= null) ∧ ¬(self

.
= null)→

〈 try { self.insert sort(a)@NestedLoops; }
catch(Exception e){ exc=e; }〉(exc

.
= null ∨; instanceException(exc))

The above formula states that for any possibly value o of self and any value a0 of the argument a which satisfy
the implicit JML preconditions (self and a are not null), the method invocation self.insert sort(a) terminates
(required by the use of the diamond modality) and in its final state no exception has been thrown or any
thrown exception must be of type Exception.

56

HATS Deliverable D4.2 Report on Resource Guarantees

5.3.3 Verification of Proof-Obligations

The proof obligation formula must be proven valid by executing the method insert sort symbolically starting
with the execution of the variable declarations. Ghost variable declarations and assignments to ghost
variables (//@ set var=val;) are symbolically executed just like Java assignments.

Verifying Size Relations. If a JML assertion assert ϕ; is encountered during symbolic execution, the
proof is split: the first branch must prove that the assertion formula ϕ holds in the current symbolic state;
the second branch continues symbolic execution. In the insert sort example, a proof split occurs exactly
before entering each loop. This verifies the size relations among variables as derived by costa and encoded
in terms of JML assertion statements (see Section 5.2.2). IO size relations encoded in terms of method
contracts are proven correct as outlined in Section 5.3.2.

Verifying Invariants and Ranking Functions. Verification of the loop invariants and ranking functions
obtained from costa is achieved with a tailored loop invariant rule that has a variant term to ensure
termination:

loopInv

(i) Γ =⇒ Inv ∧ dec ≥ 0,∆
(ii) Γ, {UA}(b ∧ Inv ∧ dec .= d0) ⇒

{UA}〈body〉(Inv ∧ dec < d0 ∧ dec ≥ 0),∆
(iii) Γ, {UA}(¬b ∧ Inv) =⇒ {UA}〈rest〉φ,∆

Γ =⇒ 〈while (b) { body } rest〉φ,∆

Inv and dec are obtained, respectively, from the loop invariant and decreases JML annotations generated by
costa. Premise (i) ensures that invariant Inv is valid just before entering the loop and that the variant
dec is non-negative. Premise (ii) ensures that Inv is preserved by the loop body and that the variant term
decreases strictly monotonic while remaining non-negative. Premise (iii) continues symbolic execution upon
loop exit. The integer-typed variant term ensures loop termination as it has a LB (0) and is decreased
by each loop iteration. Using costa’s derived ranking function as variant term obviously verifies that the
ranking function is correct. The update UA assigns to all locations whose values are potentially changed by
the loop a fixed, but unknown value. This allows using the values of locations that are unchanged in the
loop during symbolic execution of its body.

Generated Proofs. A single proof for each method is sufficient to verify the correctness of the derived
loop invariants, ranking functions and size relations. The reason is that the contracts capturing the IO size
relations are not more restrictive w.r.t. the precondition than the default contracts are. Hence, with the
verification of the IO size relation contracts, we analyze all feasible execution paths and prove correctness
of all loop invariants, ranking functions and JML assertion annotations.

5.4 Implementation and Experiments

The implementation of our approach has required the following non-trivial extensions to costa and KeY
(note that costa works on Java bytecode, and KeY on Java source): (1) output the proof obligations us-
ing the original variable names (at the bytecode level, operand stack variables are often used); (2) place
the obligations in the Java source at the precise program points where they must be verified (entry points
of loops); (3) finding a suitable JML format for representing proof obligations on UBs has required a
considerable number of iterations (defining ghost variables, introducing assert constructs, etc.); (4) imple-
ment the JML assert construct in KeY which was not supported hitherto. To express assertions which
have to hold before a method call but after parameter binding support for a second assertion construct
invocAssert has been added. Eclipse plugins for both the extended costa and KeY systems are available
from http://pepm2011.hats-project.eu.

57

http://pepm2011.hats-project.eu

HATS Deliverable D4.2 Report on Resource Guarantees

Bench
costa KeY

Total
Tsize Tinv Trf Tana Tjml Nodes Branches Tver

slm 22 20 26 112 4 3641 36 6700 6816

nlf 30 16 24 106 6 5665 37 2800 2912

bubsort 38 24 144 296 14 14890 230 57800 58110

inssort 30 12 46 142 6 9875 167 29300 29448

selsort 40 20 112 232 8 12564 209 40700 40940

pastri 66 38 138 394 14 29723 337 110100 110508

Table 5.1: Statistics about the Analysis and Verification Process

Table 5.1 shows some preliminary experiments using a set of representative programs, available from
the above website, which include sorting algorithms, namely bubble sort (bubsort), insert sort (inssort),
and selection sort (selsort); a method to generate a Pascal Triangle (pastri); simple (slm) and nested loops
(nlf). Columns Tsize, Tinv, Trf , Tana and Tjml show, respectively, the times taken by costa to obtain
the size relations, loop invariants, ranking functions, the whole analysis (which includes the previous times)
and generate the JML annotations. Column Tver shows the time taken by KeY in order to verify the JML
annotations generated by costa. As time measurements for Java are imprecise we state in addition the
number of nodes and branches of the generated proof to provide some insight on the proof complexity.
Column Total shows the time taken by the whole process. All times are measured in ms and were obtained
using an Intel Core2 Duo P8700 at 2.53GHz with 4Gb of RAM running a Linux 2.6.32 (Ubuntu Desktop).
A notable result of our experiments is that KeY was able to spot a bug in costa, as it failed to prove correct
one invariant which was in fact incorrect. In addition, KeY could provide a concrete counterexample that
helped understand, locate and fix the bug, which was related to a recently added feature of costa.

58

Chapter 6

Related Work

The concurrency primitives in the X10 language [25] are similar to those of ABS, namely asynchronous calls,
future variables and await instructions have the same behavior. This is why the task-level analysis in [3]
has been presented in the context of X10, but it is applicable to ABS programs as well. The RRs in [3] are
specifically tailored for capturing information on the (maximum) number of tasks that can run in parallel
along a program’s execution but cannot be used for capturing the cost of executing each task, as the general
cost analysis framework of Chapter 3 does. Furthermore, the size analysis in [3] is field-insensitive, does
not use class invariants, and the equations do not specify cost centers. Therefore, the whole development
in Chapter 3 is in general more powerful. On the other hand, [3] is not directly an instance of Chapter 3
because the maximum task-level is not accumulative. This requires generating a special form of RRs. We
believe such equations could be generated within our framework in a similar way. It is worth noticing also
that the may-happen-in-parallel analysis [50] is a complementary line of research to ours, in the sense that
we can use their results to obtain tighter class invariants.

Our work is closely related to resource usage analysis frameworks [41, 43]. All such frameworks assume
a sequential execution model. Therefore, they do not deal with the main challenges addressed in Chapter 3
to define the cost analysis framework. A notable exception is [48] that proposes a live heap space analysis
for a concurrent language. The problem in their case is simpler since they do not have shared memory like
we do. Besides, they consider a particular type of resource (memory) while our approach is developed for a
generic type of resource which can then be instantiated to accumulative resources. The use of cost centers
has been proposed in the context of profiling, but to our knowledge, its use in the context of static analysis
is new. Termination of multi-threaded programs has been studied before in [28]. Unlike ours, their solution
is based on inferring conditions that are required by a given thread from its environment (i.e., other threads)
in order to guarantee its termination.

Modular analysis has received considerable attention in different programming paradigms, ranging from,
e.g., logic programming [36, 29, 27] to object-oriented programming [56, 20, 51]. A general theoretical
framework for modular abstract interpretation analysis was defined in [31], but most of the existing works
regarding modular analysis have focused on specific analyses with particular properties and using more or
less ad-hoc techniques.

Previous work from some of the authors of this report presents and empirically tests a modular analysis
framework for logic programs [36, 29]. There are important differences with the present report: in addition
to the programming paradigm, the framework of [36] is designed to handle one abstract domain, while the
framework presented in this paper handles several domains at the same time, and the previous work is
based on ciaoPP, a polyvariant context-sensitive analyzer in which an intermodular fixpoint algorithm was
performed.

In [56] a control-flow analysis-based technique is proposed for call graph construction in the context of
OO languages. Although there have been other works in this area, the novelty of this approach is that it is
context-sensitive. Also, [20] shows a way to perform modular class analysis by translating the OO program
into open DATALOG programs.

59

HATS Deliverable D4.2 Report on Resource Guarantees

In [51] an abstract interpretation based approach to the analysis of class-based, OO languages is pre-
sented. The analysis is split in two separate semantic functions, one for the analysis of an object and another
one for the analysis of the context that uses that object. The interdependence between context and object
is expressed by two mutually recursive equations. In addition, it is context-sensitive and polyvariant.

Regarding the problem of comparing cost functions described in Section 4.3, in [40], an approach for
inferring non-linear invariants using a linear constraints domain (such as polyhedra) has been introduced.
The idea is based on a saturation operator, which lifts linear constraints to non-linear ones. For example,
the constraint Σaixi = a would impose the constraint ΣaiZxiu = au for each variable u. Here Zxiu is a new
variable which corresponds to the multiplication of xi by u. This technique can be used to compare cost
functions, the idea is to start by saturating the constraints and, at the same time, converting the expressions
to linear expressions until we can use a linear domain to perform the comparison. For example, when we
introduce a variable Zxiu, all occurrences of xiu in the expressions are replaced by Zxiu. Let us see an
example where, in the first step, we have the two cost functions to compare; in the second step, we replace
the exponential with a fresh variable and add the corresponding constraints; in the third step, we replace
the product by another fresh variable and saturate the constraints:

w · 2x ≥ 2y {x ≥ 0, x ≥ y, w ≥ 0}
w · Z2x ≥ Z2y {x ≥ 0, x ≥ y, Z2x ≥ Z2y}
Zw·2x ≥ Z2y {x ≥ 0, x ≥ y, Z2x ≥ Z2y , Zw·2x ≥ Z2y}

Now, by using a linear constraint domain, the comparison can be proved. We believe that the saturation
operation is very expensive compared to our technique while it does not seem to add significant precision.

Another approach for checking that e1 � e2 in the context of a given context constraint ϕ is to encode the
comparison e1 � e2 as a Boolean formula that simulates the behavior of the underlying machine architecture.
The unsatisfiability of the Boolean formula can be checked using SAT solvers and implies that e1 � e2. The
drawback of this approach is that it requires fixing a maximum number of bits for representing the value
of each variable in ei and the values of intermediate calculations. Therefore, the result is guaranteed to
be sound only for the range of numbers that can be represented using such bits. On the positive side, the
approach is complete for this range. In the case of variables that correspond to integer program variables, the
maximum number of bits can be easily derived from the one of the underlying architecture. Thus, we expect
the method to be precise. However, in the case of variables that correspond to the size of data-structures,
the maximum number of bits is more difficult to estimate.

Another approach for this problem is based on numerical methods since our problem is analogous to
proving whether 0 � b− fm in the context φb. There are at least two numerical approaches to this problem.
The first one is to find the roots of b− fm, and check whether those roots satisfy the constraints φb. If they
do not, a single point check is enough to solve the problem. This is because, if the equation is verified at
one point, the expressions are continuous, and there is no sign change since the roots are outside the region
defined by φb, then we can ensure that the equation holds for all possible values satisfying φb. However, the
problem of finding the roots with multiple variables is hard in general and often not solvable. The second
approach is based on the observation that there is no need to compute the actual values of the roots. It
is enough to know whether there are roots in the region defined by φb. This can be done by finding the
minimum values of expression b − fm, a problem that is more affordable using numerical methods [49]. If
the minimum values in the region defined by φb are greater than zero, then there are no roots in that region.
Even if those minimum values are out of the region defined by φb or smaller than zero, it is not necessary to
continue trying to find their values. If the algorithm starts to converge to values out of the region of interest,
the comparison can be proven to be false. One of the open issues about using numerical methods to solve
our problem is whether or not they will be able to handle cost functions output from realistic programs and
their performance. We have not explored these issues yet and they remain as subject of future work.

Interestingly, our technique is not restricted to any complexity class or cost analyzer: static cost analyzers
should produce, for any program, cost functions which fall into the syntactic form we handle. On the other
hand, our approach is clearly incomplete and may fail to prove that a cost function is smaller than another
one in some cases where the relation actually holds. It remains as future work to try and combine our

60

HATS Deliverable D4.2 Report on Resource Guarantees

approach with more heavyweight techniques, such as those based on numerical methods, in those cases
where our approach is not sufficiently precise.

Finally, in Section 4.4 we proposed a novel approach to infer precise UBs and LBs of CRs which, as our
experiments show, achieves a very good balance between the accuracy of our analysis and its applicability.
Currently, we have applied it to CRs obtained from Java bytecode programs and also from X10 programs [3].
In the latter case, the language has concurrency primitives to spawn asynchronous tasks and to wait for
termination of tasks. In spite of being a concurrent language, the first phase of cost analysis handles the
concurrency primitives and the generated CRs can be solved directly using our approach.

The work that is most closely related to automatic inference of symbolic UBs includes [44, 43, 45] and
[41]. The techniques of [44, 43, 45] are centered on static inference of resource usage of first-order functional
programs. None of this work can handle programs whose resource usage depends on integer arithmetic
operations, but only on the manipulation of data-structures such as lists and trees. While these techniques
can be adapted to handle CRs with simple integer linear constraints (like those induced by manipulating
data-structures), it is not clear how it can be extended to handle CRs with unrestricted form of integer
linear arithmetic, in particular with negative coefficients. It is also important to note that these techniques
cannot compute logarithmic or exponential UBs. Overall, we believe that our approach is more generic.

The work of [41] in the SPEED project computes worst-case symbolic bounds for C++ code containing
loops and recursion. Since the underlying cost analysis framework is fundamentally different from ours, it
is not possible to formally compare the resulting UBs in all cases. However, by looking at small examples,
we can see why our approach can be more precise. For instance, in [41] the worst-case time usage

∑n
i=1 i is

over-approximated by n2, while our approach is able to obtain the precise solution n2

2 − n
2 .

61

Chapter 7

Conclusion

We have presented the first cost analysis framework for concurrent programs. To develop the analysis, we
have considered ABS, an OO language based on the notion of concurrent objects which live in a distributed
environment with asynchronous communication. Most of our techniques can be applied in a component-
based fashion and are also applicable to other concurrent programming languages. In particular, the idea of
having equations parametric on the cost centers is of general applicability. The size analysis is tailored for
the concurrency primitives of our ABS language, but we believe that similar abstractions could be developed
for other languages by finding correspondences between their concurrency primitives. Besides, the accuracy
improvements for the field-sensitive extension could be directly applied to other languages.

We have also made important contributions in the field of cost analysis, which are not tied to ABS
programs, but rather could be directly used by cost analyzers for other languages. Among them, we would
like to highlight the inference of LBs on the resource consumption. Due in part to the difficulty of inferring
under-approximations, a general framework for inferring LBs from CRs did not exist. Such LBs are typically
useful in granularity analysis to decide whether tasks should be executed in parallel. This is because the
parallel execution of a task incurs various overheads, and therefore the LB cost of the task can be useful
to decide if it is worth executing it concurrently as a separate task. To the best of our knowledge, we have
presented the first general approach to inferring LBs from CRs.

As another general contribution, we have presented a general asymptotic resource usage analysis which
can be combined with existing non-asymptotic analyzers by simply adding our transformation as a back-end
or, interestingly, integrated into the mechanism for obtaining UBs of RRs. This task has been traditionally
done manually in the context of complexity analysis. When it comes to apply it to an automatic analyzer
for a real-life language, there is a need to develop the techniques to infer asymptotic bounds in a precise
and effective way. To the best of our knowledge, our work is the first one which presents a generic and fully
automatic approach. We have also studied the verification problem within cost analysis in which one tries
to verify (i.e., prove or disprove) assertions about the efficiency of the program w.r.t. the cost functions
inferred by the analysis.

Finally, we have demonstrated that automatic verification of the UBs inferred by costa using KeY is
feasible. This approach, though weaker in principle than verification of the analyzer has advantages in the
context of mobile code. Following proof-carrying-code [54] principles, code originating from an untrusted
producer can be bundled together with the proof generated by KeY for its declared resource consumption.
This way, the code consumer can check locally and automatically using KeY whether the claimed resource
guarantees are verified.

62

Bibliography

[1] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking and inferring local non-aliasing. In
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’03), pages
129–140. ACM, 2003.

[2] E. Albert, P. Arenas, S. Genaim, Germán Puebla, and Diana Ramı́rez. From object fields to local
variables: a practical approach to field-sensitive analysis. In Static Analysis Symposium (SAS’10),
volume 6337 of Lecture Notes in Computer Science, pages 100–116. Springer-Verlag, 2010.

[3] E. Albert, P. Arenas, S. Genaim, and D. Zanardini. Task-level analysis for a language with async-
finish parallelism. In Conference on Languages, Compilers, Tools and Theory for Embedded Systems
(LCTES’11). ACM Press, 2011. To Appear.

[4] E. Albert, R. Bubel, S. Genaim, R. Hähnle, G. Puebla, and G. Román-Dı́ez. Verified resource guarantees
using COSTA and KeY. In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based
Program Manipulation (PEPM’11). ACM Press, 2011. To Appear.

[5] Elvira Albert, Diego Alonso, Puri Arenas, Samir Genaim, and Germán Puebla. Asymptotic resource
usage bounds. In Asian Programming Languages and Systems Symposium (APLAS’09), volume 5904
of Lecture Notes in Computer Science, pages 294–310. Springer-Verlag, 2009.

[6] Elvira Albert, Puri Arenas, Samir Genaim, Israel Herraiz, and Germán Puebla. Comparing cost func-
tions in resource analysis. In International Workshop on Foundational and Practical Aspects of Resource
Analysis (FOPARA’09), volume 6324 of Lecture Notes in Computer Science, pages 1–17. Springer-
Verlag, 2009.

[7] Elvira Albert, Puri Arenas, Samir Genaim, and German Puebla. Automatic inference of upper bounds
for recurrence relations in cost analysis. In Static Analysis Symposium (SAS’08), volume 5079 of Lecture
Notes in Computer Science, pages 221–237. Springer-Verlag, 2008.

[8] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Field-sensitive value analysis by field-
insensitive analysis. In Formal Methods (FM’09), volume 5850 of Lecture Notes in Computer Science,
pages 370–386. Springer-Verlag, 2009.

[9] Elvira Albert, Puri Arenas, Samir Genaim, and German Puebla. Closed-form upper bounds in static
cost analysis. Journal of Automated Reasoning, 46(2):161–203, 2011.

[10] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. Cost analysis of
Java bytecode. In European Symposium on Programming (ESOP’07), volume 4421 of Lecture Notes in
Computer Science, pages 157–172. Springer-Verlag, 2007.

[11] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. COSTA: Design
and implementation of a cost and termination analyzer for Java bytecode. In Formal Methods for
Components and Objects (FMCO’07), volume 5382 of Lecture Notes in Computer Science, pages 113–
132. Springer-Verlag, 2008.

63

HATS Deliverable D4.2 Report on Resource Guarantees

[12] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. Resource usage
analysis and its application to resource certification. In Foundations of Security Analysis and Design V,
FOSAD 2007/2008/2009 Tutorial Lectures, volume 5705 of Lecture Notes in Computer Science, pages
258–288. Springer-Verlag, 2009.

[13] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Live heap space analysis for languages with
garbage collection. In International Symposium on Memory Management (ISMM’09), pages 129–138.
ACM Press, 2009.

[14] Elvira Albert, Samir Genaim, and Abu Naser Masud. More precise yet widely applicable cost analysis.
In Verification, Model Checking and Abstract Interpretation (VMCAI’11), Lecture Notes in Computer
Science. Springer-Verlag, 2011. To Appear.

[15] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete set of
numerical abstractions for the analysis and verification of hardware and software systems. Science of
Computer Programming, 72(1–2):3–21, 2008.

[16] R. Bagnara, E. Ricci, E. Zaffanella, and P.M. Hill. Possibly not closed convex polyhedra and the Parma
polyhedra library. In Static Analysis Symposium (SAS’02), volume 2477 of Lecture Notes in Computer
Science, pages 213–229. Springer-Verlag, 2002.

[17] Bernhard Beckert, Reiner Hähnle, and Peter Schmitt, editors. Verification of Object-Oriented Software:
The KeY Approach, volume 4334 of Lecture Notes in Computer Science. Springer-Verlag, 2007.

[18] Amir M. Ben-Amram. Size-change termination, monotonicity constraints and ranking functions. In
Conference on Computer Aided Verification (CAV’09), volume 5643 of Lecture Notes in Computer
Science, pages 109–123. Springer-Verlag, 2009.

[19] F. Benoy and A. King. Inferring argument size relationships with CLP(R). In Logic-Based Program
Synthesis and Transformation (LOPSTR’97), volume 1207 of Lecture Notes in Computer Science, pages
204–223. Springer-Verlag, 1997.

[20] F. Besson and T. Jensen. Modular class analysis with datalog. In Static Analysis Symposium (SAS’03),
number 2694 in Lecture Notes in Computer Science, pages 19–36. Springer-Verlag, 2003.

[21] A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by Exploiting Term
Properties. In Theory and Practice of Software Development (TAPSOFT’91), volume 494 of Lecture
Notes in Computer Science, pages 153–180. Springer-Verlag, 1991.

[22] V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Parametric Prediction of Heap Memory
Requirements. In International Symposium on Memory Management (ISMM’08), pages 141–150. ACM
Press, 2008.

[23] P. Feautrier C. Alias, A. Darte and L. Gonnord. Multi-dimensional rankings, program termination,
and complexity bounds of flowchart programs. In Static Analysis Symposium (SAS’10), volume 6337
of Lecture Notes in Computer Science, pages 117–133. Springer-Verlag, 2010.

[24] D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous and deterministic objects. In Principles of
Programming Languages (POPL’04), pages 123–134. Association of Computing Machinery, 2004.

[25] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: An object-oriented approach to non-uniform cluster computing. In Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’05), pages 519–538.
ACM, 2005.

64

HATS Deliverable D4.2 Report on Resource Guarantees

[26] W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing memory resource bounds for low-level
programs. In International Symposium on Memory Management (ISMM’08), pages 151–160. ACM
Press, 2008.

[27] M. Codish, S. K. Debray, and R. Giacobazzi. Compositional analysis of modular logic programs. In
Principles of Programming Languages (POPL’93), pages 451–464. ACM, 1993.

[28] B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In Programming Languages
Design and Implementation (PLDI’07), pages 320–330. ACM, 2007.

[29] J. Correas, G. Puebla, M. Hermenegildo, and F. Bueno. Experiments in context-sensitive analysis of
modular programs. In Logic-based Program Synthesis and Transformation (LOPSTR’05), number 3901
in Lecture Notes in Computer Science, pages 163–178. Springer-Verlag, 2006.

[30] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Principles of Programming Languages (POPL’77),
pages 238–252. ACM Press, 1977.

[31] P. Cousot and R. Cousot. Modular static program analysis, invited paper. In International Conference
on Compiler Construction (CC’02), number 2304 in Lecture Notes in Computer Science, pages 159–178.
Springer-Verlag, 2002.

[32] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program.
In Principles of Programming Languages (POPL’78), pages 84–97. ACM Press, 1978.

[33] K. Crary and S. Weirich. Resource Bound Certification. In Principles of Programming Languages
(POPL’00), pages 184–198. ACM Press, 2000.

[34] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the future. In European
Symposium on Programming (ESOP’07), volume 4421 of Lecture Notes in Computer Science, pages
316–330. Springer-Verlag, 2007.

[35] Report on the Core ABS Language and Methodology: Part A, March 2010. Part of Deliverable 1.1 of
project FP7-231620 (HATS), available at http://www.hats-project.eu.

[36] G. Puebla et al. A generic framework for context-sensitive analysis of modular programs. In
M. Bruynooghe and K. Lau, editors, Program Development in Computational Logic, A Decade of
Research Advances in Logic-Based Program Development, number 3049 in Lecture Notes in Computer
Science, pages 234–261. Springer-Verlag, 2004.

[37] M. Fähndrich. Static verification for code contracts. In Static Analysis Symposium (SAS’10), volume
6337 of Lecture Notes in Computer Science, pages 2–5. Springer-Verlag, 2010.

[38] P. Feautrier. Parametric Integer Programming. RAIRO Recherche Opérationnelle, 22(3):243–268, 1988.

[39] S. Genaim and D. Zanardini. The acyclicity inference of COSTA. In Workshop on Termination
(WST’10), July 2010.

[40] B. S. Gulavani and S. Gulwani. A numerical abstract domain based on expression abstraction and max
operator with application in timing analysis. In Conference on Computer Aided Verification (CAV’08),
volume 5123 of Lecture Notes in Computer Science, pages 370–384. Springer-Verlag, 2008.

[41] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and efficient static estimation of program
computational complexity. In Principles of Programming Languages (POPL’09), pages 127–139. ACM,
2009.

65

http://www.hats-project.eu

HATS Deliverable D4.2 Report on Resource Guarantees

[42] Reiner Hähnle. HATS: highly adaptable and trustworthy software using formal models. In Tiziana
Margeria and Bernhard Steffen, editors, Proceedings 4th International Symposium On Leveraging Ap-
plications of Formal Methods (ISoLA), Part II, Verification and Validation, Heraclion, Crete, volume
6416 of Lecture Notes in Computer Science, pages 2–7. Springer-Verlag, 2010.

[43] J. Hoffmann and M. Hofmann. Amortized resource analysis with polynomial potential. In European
Symposium on Programming (ESOP’10), volume 6012 of Lecture Notes in Computer Science, pages
287–306. Springer-Verlag, 2010.

[44] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs. In
Principles of Programming Languages (POPL’03), pages 185–197. ACM Press, 2003.

[45] Martin Hofmann Jan Hoffmann, Klaus Aehlig. Multivariate amortized resource analysis. In Principles
of Programming Languages (POPL’11), pages 357–370. ACM, 2011.

[46] Einar Broch Johnsen and Olaf Owe. An asynchronous communication model for distributed concurrent
objects. Software and System Modeling, 6(1):35–58, March 2007.

[47] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice Hall, New York, 1993.

[48] M. Kero, P. Pietrzak, and Nordlander J. Live heap space bounds for real-time systems. In Asian Pro-
gramming Languages and Systems Symposium (APLAS’10), volume 6461 of Lecture Notes in Computer
Science, pages 287–303. Springer-Verlag, 2010.

[49] S. Kirkpatrick, Jr. C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, May 1983.

[50] J. K. Lee and J. Palsberg. Featherweight X10: A core calculus for async-finish parallelism. In ACM
SIGPLAN symposium on Principles and practice of parallel programming (PPoPP’10), pages 25–36.
ACM, 2010.

[51] Francesco Logozzo. Separate compositional analysis of class-based object-oriented languages. In Alge-
braic Methodology and Software Technology (AMAST’04), volume 3116 of Lecture Notes in Computer
Science, pages 332–346. Springer-Verlag, 2004.

[52] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2nd edition, 1997.

[53] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Resource Usage Bounds Analysis
for Java Bytecode. In Proceedings of the Workshop on Bytecode Semantics, Verification, Analysis and
Transformation (BYTECODE’09), volume 253:5 of Electronic Notes in Theoretical Computer Science,
pages 6–86. Elsevier - North Holland, March 2009.

[54] G. Necula. Proof-Carrying Code. In Principles of Programming Languages (POPL’97), pages 106–119.
ACM Press, 1997.

[55] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’98), volume 1384 of Lecture Notes in Computer Science,
pages 151–166. Springer-Verlag, 1998.

[56] Christian W. Probst. Modular control flow analysis for libraries. In Static Analysis Symposium
(SAS’02), volume 2477 of Lecture Notes in Computer Science, pages 165–179. Springer-Verlag, 2002.

[57] S. A. Jarvis R. G. Morgan. Profiling large-scale lazy functional programs. Journal of Functional
Programing, 8(3):201–237, May 1998.

66

HATS Deliverable D4.2 Report on Resource Guarantees

[58] Diana Ramı́rez-Deantes, Jesús Correas, and Germán Puebla. Modular termination analysis of Java
bytecode and its application to phoneme core libraries. In International Workshop on Formal Aspects
of Component Software (FACS’10), Lecture Notes in Computer Science. Springer-Verlag, September
2010. To appear.

[59] Jan Schäfer and Arnd Poetzsch-Heffter. JCoBox: Generalizing active objects to concurrent components.
In European Conference on Object-Oriented Programming (ECOOP’10), volume 6183 of Lecture Notes
in Computer Science, pages 275–299. Springer-Verlag, June 2010.

[60] F. Spoto, F. Mesnard, and É. Payet. A termination analyser for Java bytecode based on path-length.
ACM Transactions on Programming Languages and Systems, 32(3), 2010.

[61] S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Actors for Java. In European Conference on
Object-Oriented Programming (ECOOP’08), volume 5142 of Lecture Notes in Computer Science, pages
104–128. Springer-Verlag, 2008.

[62] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java optimiza-
tion framework. In 1999 conference of the Centre for Advanced Studies on Collaborative Research
(CASCON’99), pages 125–135, 1999.

[63] Ben Wegbreit. Mechanical program analysis. Communications of the ACM, 18(9), 1975.

67

Glossary

ABS Abstract Behavioral Specification language. An executable class-based, concurrent, object-oriented
modeling language based on Creol, created for the HATS project.

CAS Computer Algebra System.

CFG Control Flow Graph.

COSTA Cost and Termination Analyzer.

COSTABS Cost and Termination Analyzer for ABS programs.

CPU Central Processing Unit.

CR Cost Relation.

CRs Cost Relations.

CRS Cost Relation System.

IO Input-Output.

IR Intermediate Representation.

JCoBox A Java extension with an actor-like concurrency model based on the notion of concurrently running
object groups, so-called coboxes.

JML Java Modelling Language.

KeY The KeY System is a formal software development tool that aims to integrate design, implementation,
formal specification, and formal verification of object-oriented software as seamlessly as possible.

LB Lower Bound.

OO Object Oriented.

PIP Parametric Integer Programming.

P2P Peer to Peer.

RR Recurrence Relation.

SCC Strongly Connected Component.

UB Upper Bound.

WCET Worst Cost Execution Time.

68

Appendix A

Task-Level Analysis for a Language with
async-finish Parallelism

The paper “Task-Level Analysis for a Language with async-finish Parallelism” [3] follows.

69

Task-Level Analysis for a Language
with async/finish Parallelism

Elvira Albert Puri Arenas Samir
Genaim

SIC, Complutense University of Madrid, E-28040
Madrid, Spain

{elvira,puri,samir}@clip.dia.fi.upm.es

Damiano Zanardini
Technical University of Madrid, E-28660

Boadilla del Monte, Madrid, Spain
{damiano}@clip.dia.fi.upm.es

Abstract
The task levelof a program is the maximum number of tasks that
can beavailable(i.e., not finished nor suspended) simultaneously
during its execution for any input data. Static knowledge of the task
level is of utmost importance for understanding and debugging par-
allel programs as well as for guiding task schedulers. We present,
to the best of our knowledge, the first static analysis which infers
safe and precise approximations on the task level for a language
with async-finish parallelism. In parallel languages,async and
finish are basic constructs for, respectively, spawning tasks and
waiting until they terminate. They are the core of modern, paral-
lel, distributed languages like X10. Given a (parallel) program, our
analysis returns atask-level upper bound, i.e., a function on the
program’s input arguments that guarantees that the task level of the
program will never exceed its value along any execution. Our anal-
ysis provides a series of useful (over)approximations, going from
the total number of tasks spawned in the execution up to an accurate
estimation of the task level.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: [Concurrent Programming]Distributed programming,
Parallel programming; D.3 [Programming Languages]: [Formal
Definitions and Theory]

General Terms Algorithms, Languages, Theory, Verification

Keywords Parallelism, Static Analysis, Resource Consumption,
X10, Java

1. Introduction
As embedded systems increase in number, complexity, and diver-
sity, there is an increasing need of exploiting new hardware archi-
tectures, and scaling up to multicores and distributed systems built
from multicores. This brings to the embedded-systems area wide
interest in developing techniques that help in understanding, op-
timizing, debugging, finding optimal schedulings for parallel pro-
grams. Two of the key constructs for parallelism areasync and
finish. Theasync{s} statement is a notation for spawning tasks:
the tasks can run in parallel with any statements following it. The

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’11, April 11–14, 2011, Chicago, Illinois, USA.
Copyright c© 2011 ACM 978-1-4503-0555-6/11/04. . . $10.00

finish{s} statement waits for termination ofs and of allasync
statement bodies started while executings. In order to develop our
analysis, we consider a Turing-complete language with a minimal
syntax and a simple formal semantics. A program consists of a col-
lection of methods that all have access to a shared array. The body
of the method is a sequence of statements. Each statement can be
an assignment, conditional, loop,async, finish, or method call.
If we add some boilerplate syntax to a program, the result is an exe-
cutable X10 program. X10 [5] is a modern, parallel, distributed lan-
guage intended to be very easily accessible to Java programmers.
Note that, unlike in languages based onfork andjoin constructs,
async-finish programs are guaranteed to be deadlock-free [16].

Our objective is to present a clear and concise formalization
of the analysis on a simple imperative language that captures the
essence of standard parallelism constructs.

As our main contribution, we present a novel static analysis
which infers thetask levelof a parallel program, i.e., the maxi-
mum number ofavailable tasks (i.e., not finished nor suspended)
which can be run simultaneously along any execution of the pro-
gram (provided that sufficient computing resources are available).
A starting point for our work is the observation that spawning par-
allel tasks can be regarded as aresourceconsumed by a program.
This leads to the idea of adapting powerful techniques developed in
resource analysis frameworks forsequentialprograms [2, 9, 10, 21]
in order to obtain sound task-level Upper Bounds (UBs) onpar-
allel programs. Such adaptation is far from trivial since, among
other things, the task level of a program is not anaccumulativere-
source, but rather it can increase and/or decrease along the execu-
tion. This renders direct application of cost analysis frameworks for
accumulative resources (such as time, total memory consumption,
etc.) unsuitable. We present our novel analysis to accurately (over)-
approximate the task level of a program in the following steps,
which are the main contributions of this work.

1. We first produce over-approximations of thetotal number of
tasks spawned along any execution of the program. This can be
done by lifting existing accumulative cost analyses developed
for sequential programs to the parallel setting. The results of
such analysis are sound w.r.t. any particular scheduling of tasks.

2. Secondly, we present a novel approach to approximate thepeak
(or maximum) ofalive tasks, a resource which is not accumu-
lative. The challenge here is to come up with a technique which
over-approximates the peak of alive tasks among all possible
states that might occur in any execution of the program.

3. As a further step, we refine the previous approach and approx-
imate the peak ofavailable tasks, i.e., we exclude those tasks
which are alive but suspended, thus resulting in smaller UBs.

4. Then, we show how our task-level analysis can be improved by
first inferring the tasksescapedfrom a methodm, i.e., those
tasks that have been created during the execution ofm and can
be available on return fromm. This improvement requires a
more complex analysis but, when doable, leads to strictly more
precise bounds than those in points 2 and 3.

5. We report on a prototype implementation and experimentally
evaluate it on a set of simplified versions of applications from
the X10 website that contain interesting parallelism patterns.

2. Motivating Examples
In this section, we introduce by means of examples the main no-
tions that our task-level analysis over-approximates, and show the
results it can produce. These examples will also illustrate the fol-
lowing applications of our analysis: (1) It is useful for both under-
standing and debugging parallel programs. For instance, our anal-
ysis can infer a task-level upper bound which is larger (or smaller)
than the programmer’s expectations. This can clearly help finding
bugs in the program. Even more, the analysis results would be “un-
bounded” when an instruction which spawns new tasks is (wrongly)
placed within a loop which does not terminate. (2) The results are
also useful for optimizing and finding optimal deployment configu-
rations. For example, when parallelizing the program, it is not prof-
itable to have more processors than the inferred task level.

2.1 Total Tasks versus Alive Tasks

The first example implements a parallel version of the Gauss elim-
ination algorithm. An invocationgaussian(n) applies the algorithm
on the matrix defined by the elements(i, j) where0 ≤ i, j ≤ n−1.
It assumes that the two-dimensional arrayA is initialized with in-
teger values.

1 i n t A [] [] ;
2

3 vo id gau s s i a n (i n t n) {
4 f o r (i n t k=0;k<n ; k++) {
5

6 f i n i s h f o r (i n t j=k+1; j<n ; j++) async {
7 A[k , j]=A[k , j] /A[k , k] ;
8 }
9

10 f i n i s h f o r (i n t i=k+1; i<n ; i++) async {
11 f o r (i n t j=k+1; j<n ; j++)
12 A[i , j] :=A[i , j]−A[i , k]∗A[k , j]
13 }
14 }
15 }

The total number of tasks spawned by this method is quadratic on
n, since at each iteration of the outer loop, each of the inner loops
spawn (in the worst case)n− 1 tasks. Note that the loop at line 11
does not spawn any task. Our analysis accurately infers that at most
1 + 2n(n− 1) tasks will be spawned along an execution.

Due to the use offinish at line 6, it is ensured that before
entering the loop at line 10, all asynchronous tasks spawned at line
6 are finished. Likewise, all asynchronous tasks spawned by the
loop at line 10 must be finished before starting the next iteration
of the outer loop. Hence, in any execution of this program, the
maximum number of tasks that can be alive simultaneously (or
peak of alive tasks) corresponds to the maximum of the tasks
spawned by the loops at lines 6 and 10. Our analysis precisely infers
that the peak of alive tasks isn.

Observe that both the total and the peak number of alive tasks
are useful pieces of information for the programmer. E.g., by com-
paring the inferred upper bounds with the programmer’s expecta-
tions we might detect bugs, as explained above.

2.2 Alive Tasks versus Available Tasks

The following method implements the merge-sort algorithm. It
sorts the elements of the arrayA between the indexesfrom andto.
We omit the code ofmerge and only assume that it does not spawn
further tasks.

1 i n t A [] ;
2

3 vo id msort (i n t from , i n t to) {
4 i f (from < to) {
5 mid=(from+to) /2 ;
6 f i n i s h {
7 async msort (from , mid) ;
8 async msort (mid+1, to) ;
9 }

10 merge (from , to , mid) ;
11 }
12 }

The total number of tasks spawned by a callmsort(from,to) is
bounded by2 ∗ (to− from +1)− 2. This upper bound is obtained
by proving that, in both recursive calls, the number of elements to
be sorted is decreased by half and, at each recursive call, two new
tasks are spawned.

For this example, we infer that the peak of alive tasks and the to-
tal number of tasks are identical. This is because the recursive calls
are performed within the scope of thefinish construct. Thus, in
the worst case, all tasks can be alive simultaneously (though the
current task always blocks after launching the asynchronous calls).
We can improve the analysis result by proving that, at each re-
cursive call, after spawning the two asynchronous tasks, the cur-
rent process becomesinactiveby suspending its execution until the
spawned tasks terminate. By taking advantage of this knowledge,
our analysis accurately infers that the peak ofavailabletasks is at
mostto − from + 1, which is almost half of the one we obtained
for alive tasks.

2.3 Improving Available Tasks with Escape Information

Next example is a pre-order traversal of a binary tree where, for
each nodei, we spawn two tasks:activity a (i) and activity b (i).
We omit the code ofactivity a and activity b and only assume
that they do not spawn further tasks. The binary tree is represented
using the arrayA, such that the nodes at positions2∗i+1 and2∗i+2
, respectively, are the left and right children of the node at position
i . The first argumentn is the depth of the tree. The method is
supposed to be called withf(n,0).

1 i n t A [] ;
2

3 vo id f (i n t n , i n t i) {
4 i f (n > 0) {
5 f i n i s h {
6 async a c t i v i t y a (i) ;
7 async a c t i v i t y b (i) ;
8 }
9 f (n−1 ,2∗ i +1) ;

10 f (n−1 ,2∗ i +2) ;
11 }
12 }

By accumulating all asynchronous calls spawned along the execu-
tion, our analysis generates the upper bound2 ∗ (2n − 1) + 1. As
expected, the obtained bound is exponential on the depth of the
tree due to the two recursive calls which traverse all nodes in the
tree. For the peak of available tasks, we can greatly improve the
task-level bound. In particular, we can see that the asynchronous
calls in lines 6 and 7 will be finished at line 8 before the recur-
sive calls. This means that, given a call tof, there are no tasks that
escapefrom its scope, i.e., all tasks created during a call tof (di-

rectly or transitively) are terminated before the execution of the call
finishes. The use of escape information during our analysis allows
proving that there cannot be more than2 processes simultaneously
available. From the above examples, it should become clear that an
upper bound on the available tasks can be of utmost importance for
finding an optimal deployment configuration. For instance, in the
above example, it is not worth having more than2 processors when
executing the code.

3. A Simplified X10-like Language
We develop our analysis on a representative subset of X10 [5], a
parallel language which is similar to Java in its sequential part, and
relies on theasync/finish mechanism for parallelism. From X10,
we take:

• a Turing-complete core consisting of conditionals, loops, as-
signments and a single one-dimensional array;

• methods and method calls;

• theasync andfinish statements.

We omit many features from X10, including places, distributions
and clocks. Indeed, our simplified language is very similar to Feath-
erweight X10 [13] (FX10 for short), a subset of X10 which has
been proposed to develop formal analyses on X10. For the sake of
expressiveness, our language is richer than FX10 in that it allows
input parameters in method calls (in order to handle recursion), has
no restriction on conditional statements and has local variables. The
treatment of object fields is similar to (and simpler than) the treat-
ment of array accesses; details are omitted for simplicity.

3.1 The Recursive Intermediate Representation

As customary in the formalization of static analyses for realistic
languages, we develop our analysis on an intermediate represen-
tation (IR) of the language which allows us to provide a clearer
and more concise formalization. Similar representations are used
by other static analysis tools for Java (and Java bytecode) and .NET
[2, 7, 8, 18, 22]. Essentially, all these tools work by first building
the control flow graph (CFG) from the program, and then repre-
senting each block of the CFG in the intermediate language (in our
IR, by means of rules).

Methods in the original program are represented by one or
more proceduresin the IR. A procedure is defined by one or
moreguarded rules. The translation is as follows. Given a method,
each block in its CFG is represented by means of a guarded rule.
Guards state the conditions under which the corresponding block
can be executed (they contain the conditions in the edges of the
CFG). Each rule contains as arguments those variables that are
input values to the block. When the block has more than one
successor in the CFG, we just create acontinuation procedure
and a corresponding call in the rule. Blocks in the continuation
will be in turn defined by means of guarded rules (with mutually
exclusive conditions). As a result, all forms of iteration in the
program are represented by means ofrecursivecalls. The array
remains as a global variable in the IR. The process of obtaining the
intermediate representation from X10-like programs is completely
automatic. Since it is identical as for Java programs, we will not go
into the technical details of the transformation (we refer to any of
[2, 7, 8, 18, 22]) but just show the intuition by means of an example.

EXAMPLE 3.1. Fig. 1 shows the intermediate representation for
the example in Sec. 2.1. This example shows an interesting aspect of
the IR: loops are detected and extracted in separate procedures as
described in [19]. It can be observed that within the rulegaussian
we invoke procedurefor , which corresponds to the for-loop in line
4. Similarly, when entering the remaining for-loops in the program,

gaussian(n)←k :=0 , for(k ,n) for2 (k ,n, i)← i ≥ n
for(k ,n)← k ≥ n for2 (k ,n, i)← i < n,
for(k ,n)←k < n, j :=k + 1
j :=k + 1 , async{for2 .1 (k ,n, j , i)},
finish{for1 (k ,n, j)},i :=k+1 , i ′:=i + 1 ,
finish{for2 (k ,n, i)}, for2 (k ,n, i

′)
k ′:=k + 1 ,for(k ′,n) for2 .1 (k ,n, j , i)← j ≥ n

for1 (k ,n, j)← j ≥ n for2 .1 (k ,n, j , i)← j ≤ n,
for1 (k ,n, j)← j < n, op2 (k , j , i),
async{op1 (k , j)} j ′:=j + 1 ,
j ′:=j + 1 ,for1 (k ,n, j

′) for2 .1 (k ,n, j
′, i)

Figure 1. Recursive Intermediate Representation of Ex. in Sec. 2.1

we have calls in the IR to corresponding procedures defining them.
By looking at the two rules defining procedurefor , we observe the
more interesting aspects of our IR: (1) rules contain as arguments
those variables that are input values to the scope of the loop;
(2) by means of guards, we distinguish the case of exiting the
loop (first rule) and entering the loop (second rule); (3) iteration
is transformed into recursion. Note that, in the IR, thefinish
construct is applied on a single instruction. If there are several
instructions within the scope offinish in the original program,
we just create an auxiliary procedure which contains them all.

3.2 Syntax

A program in our intermediate representation consists of a set of
procedures, each of them defined by one or moreguarded rules. In
the following, given any entitya, we usēa to denote the sequence
a1, . . . , an, n ≥ 1. A procedurep with k input arguments̄x is
defined by rules which adhere to this grammar:
rule ::= p(x̄) ← g, b, . . . , b

g ::= true | exp op exp
b ::= y:=exp | A[y]:=exp | q(x̄) | async{q(x̄)} | finish{q(x̄)}

exp ::= y | d | A[y] | exp−exp | exp+exp | exp∗exp | exp/exp
op ::= > | < | ≤ | ≥ | = | 6=

wherep(x̄) is theheadof the rule;g is its guard, which specifies
conditions for the rule to be applicable; the sequenceb, . . . , b is
the body of the rule;d is an integer;y is a variable name;q(x̄) is
a procedure call,async{q(x̄)} is an asynchronous procedure call,
andfinish{q(x̄)} is a synchronized call. All variables are of type
integer. Computations work on a single shared memory given by
a one-dimensional array of integer values namedA with indexes
0 . . . N−1. When the execution begins, input values are loaded into
all elements of the array. Thus, the arrayA is fully initialized for all
indices0 . . . N − 1. In the examples, to simplify the presentation,
we use several (possibly multidimensional) arrays.

3.3 Semantics

Fig. 2 shows theoperational semanticsfor X10-like programs in
the IR. It adapts the small-step operational semantics of FX10 [13]
to our syntax and extends it to handle the additional language
features discussed in the beginning of the section. It uses the binary
operator‖ in the semantics ofasync and ⊲ in finish. A state
is a pair, consisting of the state of the array and a tree which
describes the code executing. Namely, it is of the form(A ; T)
whereA : {0, . . . , N − 1} 7→ Z is an array of integers andT is an
execution tree defined by the following grammar:

T ::= T ⊲ T | T ‖ T | 〈id, instr , tv〉
whereid ∈ N is a unique task identifier,instr is a sequence of in-
structions (as in Sec. 3.2) andtv :V7→Z is a partial map from the set
of variable namesV to integers. The symbolǫ denotes an empty se-
quence of instructions. We refer to the tuple〈id, b̄, tv〉 as a record.

(1)
(A ; 〈id, ǫ, tv〉 ⊲ T)→ (A ; T)

(2)
(A ; T1)→ (A′ ; T ′

1)
(A ; T1 ⊲ T2)→ (A′ ; T ′

1 ⊲ T2)

(3)
(A ; 〈id, ǫ, tv〉 ‖ T)→ (A ; T)

(4)
(A ; T ‖ 〈id, ǫ, tv〉)→ (A ; T)

(5)
(A ; T1)→ (A′ ; T ′

1)
(A ; T1 ‖ T2)→ (A′ ; T ′

1 ‖ T2)

(6)
(A ; T2)→ (A′ ; T ′

2)
(A ; T1 ‖ T2)→ (A′ ; T1 ‖ T ′

2)

(7)
b ≡ x:=exp, v = eval(exp, tv , A)

(A ; 〈id, b · instr , tv〉)→ (A ; 〈id, instr , tv [x 7→ v]〉)

(8)
b ≡ A[x]:=exp, v = eval(exp, tv , A), n = tv(x), 0 ≤ n ≤ N− 1

(A ; 〈id, b · instr , tv〉)→ (A[n 7→ v] ; 〈id, instr , tv〉)

(9)
b ≡ q(x̄), r ≡ q(x̄′)← g, b1, · · · , bk ≪tv P, eval(g, tv ′, A) ≡ true
tv ′=tv ∪ {x′

i 7→ tv(xi) | ∀x′
i ∈ x̄′} ∪ {y 7→ 0 | ∀y ∈ vars(r) \ x̄′}

(A ; 〈id, b · instr , tv〉)→ (A ; 〈id, b1 · · · bk · instr , tv ′〉)
(10)

b ≡ async{q(x̄)}, id′ is a new identifier not used before
(A ; 〈id, b · instr , tv〉)→ (A ; 〈id′, q(x̄), tv〉 ‖ 〈id, instr , tv〉)

(11)
b ≡ finish{q(x̄)}

(A ; 〈id, b · instr , tv〉)→ (A ; 〈id, q(x̄), tv〉 ⊲ 〈id, instr , tv〉)

Figure 2. Operational semantics

Executions start from aninitial stateof the form(A ; 〈1, p(x̄), tv〉),
wherep is the entry procedure name, and the elements of the array
A andtv(xi) for all xi ∈ x̄ are initialized to some initial values. We
often viewtv as a set{x1 7→ v1, · · · , xn 7→ vn} where eachxi

is a variable name and eachvi is an integer value. Executions are
regarded astracesof the form(A0 ; T0) → (A1 ; T1) → · · · →
(An ; Tn), sometimes denoted as(A0 ; T0) →∗ (An ; Tn). Infi-
nite traces correspond to non-terminating executions. We say that a
call to a procedurelocally terminates if the execution of its proce-
dure’s body terminates, and we say that itglobally terminates if, in
addition, all tasks it spawns terminate.

The left side of Fig. 2 contains the rules for dealing with paral-
lelism and synchronization. A treeT1 ⊲ T2 gives the semantics of
thefinish statement. As shown in rule (2),T1 must complete ex-
ecution before moving on to executingT2, i.e.,T1 must be reduced
to 〈id, ǫ, tv〉 in order to apply rule (1). Rules (3) and (4) remove
trees whose evaluation is completely finished whereas (5) and (6)
allow choosing treesT1 or T2 non-deterministically (i.e., there is
no assumption on the task scheduler).

The right side of Fig. 2 contains the rules for executing instruc-
tions. Intuitively, rule(7) accounts for all instructions in the se-
mantics which perform arithmetic and assignment operations. We
assume thateval(exp, tv , A) returns the evaluation of the arith-
metic expressionexp using the values of the corresponding vari-
ables fromtv andA in the standard way. Moreover, we assume that
it fails when trying to accessA with an index which is not in the
range0 . . . N−1. Rule(8) deals with assignments onA. After eval-
uatingexp, the resulting value is stored in the positiontv(x) of A.
Rule(9) corresponds to invoking a procedureq(x̄). It first takes a
rule r for q. The notation≪tv means that we rename the rule vari-
ables so they will not clash with names already in the domain oftv .
Then, we generate a new variable mappingtv ′ which extendstv by
initializing the formal parameters̄x′ with the values of the actual
parameters̄x, and the remaining variables not inx̄ (i.e.,vars(r)\x̄)
to 0. We require that the guardg of rule r is evaluated totrue (as
usual, the valuestrue andfalse can be simulated with0 and non-0
integers). Rule(10) takes care of theasync statement by spawning
a new task to be executed in parallel. Finally, rule(11) introduces
the operator⊲ to wait for the termination of the task, when we
have afinish instruction.

EXAMPLE 3.2. As an example of how the semantics works, con-
sider the following simple program. For brevity, we ignore the code
of proceduresq1, . . . , q5 and assume that they neither make directly
or indirectly any asynchronous call, nor modify the array.

p← async{q1}, finish{q}, 1©async{q2}, q3
q← async{q4}, async{q5}

The following derivation starts from the entry procedurep:
(A ; 〈1, p, tv〉)→
(A ; 〈1, async{q1} · finish{q} · async{q2} · q3, tv〉)→

∗1 (A ; 〈2, q1, tv〉 ‖ 〈1, finish{q} · async{q2} · q3, tv〉)→
∗2 (A ; 〈2, q1, tv〉 ‖ 〈1, q, tv〉 ⊲ 〈1, async{q2} · q3, tv〉)→

(A ; 〈2, q1, tv〉 ‖
〈1, async{q4} · async{q5}, tv〉 ⊲ 〈1, async{q2} · q3, tv〉)→
(A ; 〈2, q1, tv〉 ‖
(〈3, q4, tv〉 ‖ 〈1, async{q5}, tv〉) ⊲ 〈1, async{q2} · q3, tv〉)→

3 (A ; 〈2, q1, tv〉 ‖
(〈3, q4, tv〉 ‖ 〈4, q5, tv〉 ‖ 〈1, ǫ, tv〉) ⊲ 〈1, async{q2} · q3, tv〉)→∗

(A ; 〈2, q1, tv〉 ‖ 〈1, ǫ, tv〉 ⊲ 〈1, async{q2} · q3, tv〉)→
∗3 (A ; 〈2, q1, tv〉 ‖ 〈1, async{q2} · q3, tv〉)→

(A ; 〈2, q1, tv〉 ‖ 〈5, q2, tv〉 ‖ 〈1, q3, tv〉)→
(A ; 〈2, q1, tv〉 ‖ 〈5, q2, tv〉 ‖ 〈1, ǫ, tv〉)→∗ (A ; 〈2, ǫ, tv〉)

Note that sinceq1 is invoked asynchronously,p can continue to the
next statement at∗1. However, when executingfinish{q} at ∗2,
the execution ofp blocks untilq and its asynchronous sub-tasksq4
andq5 terminate, then resumes from the program point1© (step∗3).

4. Concrete Definitions in Task Parallelism
We first introduce basic notions related to the task parallelism of a
program. They define the notions that later we want to approximate
by means of static analysis. First, we introduce two auxiliary defini-
tions to count the number of tasks that can be simultaneously alive
at some program point by means of the following functionalive(T)
which goes from the set of trees to the set of task identifiers℘(N):

alive(T1 ‖ T2) = alive(T1) ∪ alive(T2)
alive(T1 ⊲ T2) = alive(T1) ∪ alive(T2)
alive(〈id, ǫ, tv〉) = ∅
alive(〈id, instr , tv〉) = {id}

Note that when a task does not have any further instruction to exe-
cute (third equation) it is not counted as alive. The above definition
includes tasks which areblocked, i.e., are not available in the cur-
rent state. For instance, for(S1 ‖ S2) ⊲ S3 such that eachSi has
alive(Si) = 1, the functionalive returns3. However, the semantics
of ⊲ ensures thatS3 is blocked, i.e., it remains suspended until the
execution ofS1 ‖ S2 finishes. The functionavailable counts only
the available tasks, i.e., alive tasks which are not suspended. It is
defined asalive except foravailable(T1 ⊲ T2) = available(T1).
Given a tracet ≡ T0→T1→· · ·→Tn, by relying on the above two
functions, we can define the following three important notions that
our analysis approximates:

• total(t). First, we define thetotal number of spawned tasks
along an execution, which corresponds to the total number of
tasks that have been started, as:total(t) = | ∪n

i=0 alive(Ti)|
(here,|X| is the size of the setX). Note that this resource is ac-
cumulative, i.e., it always increases as the execution proceeds.

• peakAlive(t). Another interesting notion is the peak ofalive
tasks, i.e., the maximum number of tasks that are simultane-
ously started and not finished. The functionpeakAlive(t) is de-
fined asmax({|alive(T0)|, . . . , |alive(Tn)}|). Note that this re-
source is not accumulative: instead, the number of alive tasks
can increase or decrease at any state. Thus, in order to approxi-
mate it, we need to observe all states and capture the maximum.

• peakAvailable(t). Similarly, we can define the peak ofavail-
able tasks along the execution, i.e., the maximum number of
tasks that are simultaneously started and not blocked. Thus,
peakAvailable(t)=max({|available(T0)|, .., |available(Tn)|}.
We also refer to this notion as thetask levelof the execution,
the two definitions above being over-approximations of it.

EXAMPLE 4.1. By applying the above definitions to the deriva-
tion of Ex. 3.2, we have:total(t) = 5, peakAlive(t) = 4 and
peakAvailable(t) = 3. Note that the difference betweenpeakAlive
andpeakAvailable occurs in the state labeled3. This is because,
after creating the new tasks, the task on whichq is executing is alive
but blocked (hence not available).

5. Static Inference of Spawned Tasks
In the previous section, our definitions assume a trace. Thus, the
program must be executed on a specific input in order to compute
them. Now, we want to approximate these notionsstatically, i.e.,
without executing the program and the results must be valid for
any input. In particular, by concentrating on the total number of
spawned tasks first, given a methodp(x̄), the goal of our analysis
is to infer pub(x̄), calledtask-level UB forp, which is a function
on the input data ofp which guarantees that, given any concrete
valuesv̄ for x̄, the total number of tasks spawned along the trace
t resulting from executingp(v̄) (i.e., total(t)) is smaller than or
equal topub(v̄) plus one for the main task.

Since the total number of tasks is an accumulative resource,
in principle, any of the existing resource analysis frameworks that
count a particular form of accumulative resource (e.g., instructions
[9], total memory [10, 21], etc.) can be adapted to the total number
of spawned tasks by counting the instructionsasync that spawn
tasks and ignoring the rest. However, all above approaches assume
sequential programs and must be lifted to the parallel setting. This
is because, as we will see later, the resulting UB can be affected by
the fact that tasks can run in parallel. Among all possible resource
analysis frameworks, we rely on the most traditional one, proposed
by Wegbreit [24] in 1975. As our first contribution, we adapt such
approach to infer sound results on the task level in a parallel setting.
The next three subsections present the main steps of the analysis:

• First, we discuss in Sec. 5.1 the value abstraction component
which is used to infer inter-relations between the program vari-
ables. Interestingly, by losing information about the global data
during the value abstraction, we are able to ensure soundness of
the overall UBs in the parallel setting.

• Given the value relations, we proceed in Sec. 5.2 to define,
for our intermediate language, how to generate the recurrence
equations which define the spawned tasks.

• Finally, in Sec. 5.3, we briefly describe the process of obtaining
safe over-approximations from the generated equations by rely-
ing on existing solvers of recurrence equations (e.g., computer
algebra systems like MAXIMA).

5.1 Value Abstraction

Given a rule, we describe how to generate a conjunction of (linear)
constraints (sometimes written as a set) that describes the relations
between the values of the rule’s variables at the different program
points. This information is later used, for example, to understand
how values change when moving from one procedure to another.
In particular, it is essential for bounding the number of recursive
calls (i.e., iterations of loops). The following definition presents the
notion ofvalue abstractionfor a given rule. In order to distinguish
between the values of a variable at different program points (inside
a single rule), rules are given in static single assignment (SSA)
form [3] (array accesses remain the same). The rules in Fig. 1
and in all remaining examples are in SSA. This transformation is
straightforward for a single rule, as rules do not have branching.

DEFINITION 5.1. Give a ruler≡p(x̄)←g, b1 . . . , bn in SSA form,
its value abstraction isϕr = α(g) ∧ α(b1) ∧ · · · ∧ α(bn) where:

• α(y:=exp) = (y=exp) if exp is a linear expression which
does not involve arrays;
• α(exp1 op exp2)=(exp1 op exp2) if op ∈ {>,≥, <,≤,=}

andexp1 andexp2 are linear expressions not involving arrays;
• α(b) = true, otherwise.

For simplicity, the above abstraction ignores non-linear arithmetic
expressions by abstracting the corresponding instructions toun-
known(true). Non-linear arithmetic can be handled at the price of
performance using non-linear constraints manipulation techniques.

EXAMPLE 5.2. Applying Def. 5.1 on the second rule for “for ” of
Fig. 1, we obtain as value abstraction{k<n, k′=k+1, j=k′, i=k′}.
An important point in the above abstraction is that we ignore data
which resides in the global arrayA. This provides us correctness
in the context of parallel execution without requiring any other
sophisticated heap analysis for ensuring theindependence[23]
between tasks. Let us see an example.

EXAMPLE 5.3. Consider the following program and observe that
whenm invokes the two asynchronous calls, proceduresp and q
might run in parallel depending on the underlying task scheduler.

m(n) ← async{p(0, n)}, async{q(n)}
p(i, n)← i ≥ A[n]
p(i, n)← i < A[n], async{q1}, i′:=i+ 1, p(i′, n)
q(n) ← A[n]:=A[n] + 1, q(n)

By looking at a complete execution ofp in isolation (i.e., if it does
not interleave with that ofq), we can see that a sound upper bound
on the number of tasks spawned byp is A[n] (the value of then-the
element of the array). However, if the execution ofq interleaves
with that of p, the execution ofp might not terminate sinceq
increases the value ofA[n]. Hence, the previous UB is not correct.

Our practical solution to avoid the above problem is to abstract in-
structions that involve global data (i.e., array elements) to unknown
(i.e., true). In the above case, the guardi < A[n] is abstracted to
true and thus the value ofA[n] is lost. Hence, we will fail to infer an
UB for the method. This does not mean that we cannot analyze pro-
grams that use the array but rather that, when the UB is a function
of an array element, we cannot find it. In Sec. 11, we discuss how to
improve the accuracy by relying on a may-happen-in-parallel anal-
ysis [13] in combination with a field-sensitive value analysis [14].
It should be noted that the value abstraction is an independent com-
ponent in our analysis and we can improve it regardless of the next
components that we will introduce in what follows. Also, when
improving it, we can integrate advanced value abstractions for data
structures such as path-length [18] or term value [15], without any
modification to the rest of our analysis.

5.2 Generation of Recurrence Equations

Given a programP and the value abstractions of its rules, a re-
currence relation (RR) system forP is generated by applying the
following definition to all rules inP .

DEFINITION 5.4 (total number of spawned tasks).Let r be a rule
of the formp(x̄)← g, b1, . . . , bn andϕr its corresponding value
relations as computed in Def. 5.1. Then, itstotal tasks equationis
defined asp(x̄) = Σn

i=1T (bi), ϕr, where
T (b) = 1 + q(x̄) if b = async{q(x̄)}
T (b) = q(x̄) if b = finish{q(x̄)}
T (b) = q(x̄) if b = q(x̄)
T (b) = 0 otherwise

The set of equations generated for a program P is denoted bySP .

EXAMPLE 5.5. By applying the above definition to the rules of
Fig. 1, we obtain the following set of total tasks equations:
gaussian(n) = for(k ,n) {k=0}
for(k ,n) = 0 {k ≥ n}
for(k ,n) = {k < n, k′ = k + 1,

for1 (n, j)+for2 (k ,n, i)+for(k ′,n) j = k′, i = k′}
for1 (n, j) = 0 {j ≥ n}
for1 (n, j) = 1 + for1 (n, j

′) {j < n, j′ = j + 1}
for2 (k ,n, i) = 0 {i ≥ n}
for2 (k ,n, i) = {i < n, i′ = i+ 1,

1 + for2 .1 (n, j) + for2 (k ,n, i
′) j = k + 1}

for2 .1 (n, j) = 0 {j ≥ n}
for2 .1 (n, j) = for2 .1 (n, j

′) {j < n, j′ = j + 1}
It can be observed that the only two rules in Fig. 1 that contain
async constructs are the second ones infor1 andfor2 . Their cor-
responding equations accumulate “1” for such instruction. Note
that the value relations of the variables in the original are trans-
formed into linear constraints attached to the equations. They con-
tain the applicability conditions for the rules and how the values of
variables change when moving from one procedure to another.

5.3 Closed-form Upper Bounds

Once the RR are generated, a worst-case cost analyzer uses a
solver in order to obtain closed-form UBs, i.e.,cost expressions
without recurrences. Traditionally, cost analyzers rely on computer
algebra systems (e.g., MAXIMA, MAPLE) to solve the obtained
recurrences. Advanced systems develop their own solvers [2, 20]
in order to be able to handle more types of RR. The technical
details of the process of obtaining a cost expression from the RR
are not explained in the paper as our analysis does not require any
modification to this part. Given a RRp(x̄), we denote bypub(x̄) its
closed-form UB, which is a cost expression of the following form
(and could be obtained by any of the above solvers):

e ≡ q|nat(l)| log(nat(l) + 1)|e ∗ e|e+ e|2nat(l)|max(e, . . . , e)

whereq is positive rational number,l is a linear expression, and
functionnat is defined asnat(v)=max({v, 0}).
EXAMPLE 5.6. As usual, UBs are obtained by first computing UBs
for cost relations which do not depend on any other relation and
continuing by replacing the computed UBs on the equations which
call such relations. The solutions for the equations in Ex. 5.5 are:

for2 .1 (n, j) = 0 ∈ O(1)
for2 (k ,n, i) = n−i ∈ O(n−i)
for1 (n, j) = n−j ∈ O(n−j)
for(k ,n) = 2 (n−k)(n−k−1) ∈ O((n−k)2)
gaussian(n) = 2n(n−1) ∈ O(n2)

As intuitively explained in Sec. 2.1, the UB we obtain for the method
gaussian is quadratic onn. We will add1 to this UB in order to
count the task in which the initial callgaussian(n) is executing.

The following theorem states the soundness of our total tasks anal-
ysis. Proofs of all technical results are available from the program
chair. Intuitively, the main issue is to prove that derivations in the
equations of Def. 5.4 capture all possible paths in a parallel execu-
tion of the program (and due to the overapproximation in the value
abstraction possibly more). We then assume soundness of the UBs
solver. In what follows, in all theorems we add one to the UB in
order to count the current task on which the initial call is executing.

THEOREM 5.7. Let P be a program with an entry procedurep,
and letpub(x̄) be a closed-form UB function forp(x̄) ∈ SP . Then,
for any tracet ≡ (A0 ; 〈1, p(x̄), tv〉) →∗ (An ; Tn), it holds that
pub(v̄) + 1 ≥ total(t), wherev = tv(x̄).

6. Inference of Peak of Alive Tasks
In the previous section, we have (over)approximatedtotal, an ac-
cumulative resource, as defined in Sec. 4. In this section, our goal is
to (over)approximatealive, a non-accumulative resource that might
increase and/or decrease along execution. The main difference is
that in accumulative resources one can reason by overapproximat-
ing the resource consumption in the final state of execution. This
is what traditional RR (like those in Def. 5.4) do. However, in
the case of non-accumulative resources, one aims at observing and
(over)approximating all those states of the execution in which the
consumption can be maximal and not only the final one. For our
particular task-level resource, an important observation is that it
is enough to approximate the behavior of the program around the
program points in which the number of tasks can decrease, i.e.,
when reaching afinish construct. Such points can be detected
syntactically from the program. The key idea of our analysis is to
introduce adisjunctionbetween the task level just before executing
eachfinish and the task level reached after thefinish resumes
execution. The peak is the maximum of both disjuncts.

EXAMPLE 6.1. Consider again the simple program of Ex. 3.2. The
peak of alive tasks can be defined as the maximum of the following
two scenarios:

1. the peak beforefinish{q} (globally) terminates:one task for
async{q1}, plus the peak of alive tasks ofq (which is2); and

2. the peak afterfinish is executed:one task forasync{q1},
since it might still be alive at program point1©, plus 1 task
for async{q2} and0 tasks forq3.

Note that, in scenario 2, we do not count the tasks created during
the execution ofq sincefinish guarantees that they are not alive
when we reach program point1©. In summary, the peak of alive
tasks when executingp is 3. Additionally, we add1 for the task in
whichp is running. This coincides what we have obtained in Ex. 4.1
for a particular trace.

The next definition presents a novel form of RR, calledpeak alive
equations, which overapproximates the peak of alive tasks along
any execution of the program, according to the above intuition.

DEFINITION 6.2 (peak alive equations).Let r be a rulep(x̄) ←
g, b1, . . . , bn in SSA form andϕr its corresponding value abstrac-
tion. Then, its equation for the peak of alive tasks isp̂(x̄) =
P(b1, . . . , bn), ϕr, whereP is defined recursively as follows:

P(ǫ) = 0
P(b · instr) = 1 + q̂(z̄) + P(instr) if b=async{q(z̄)}
P(b · instr) = max(q̂(z̄),P(instr)) if b=finish{q(z̄)}
P(b · instr) = q̂(z̄) + P(instr) if b=q(z̄)
P(b · instr) = P(instr) otherwise

The set of equations generated for a program P is denoted byŜP .

Intuitively, in the above definition, we transform the peak of tasks
for a given (non-empty) sequence of instructions by transforming
each instruction as follows: (i) when we find anasync{q(x̄)} state-
ment, we accumulate one new task plus the peak of tasks created
along the execution ofq(x̄); (ii) in the case offinish{q(x̄)}, since
it is ensured that all tasks created during the execution ofq(x̄) are
terminated, we introduce a disjunction between the peak reached
during the execution ofq(x̄) and the peak reached after execut-
ing thefinish{q(x̄)}, and we then take the maximum of both;
(iii) when we find a method call, we accumulate the peak reached
during its execution with the continuation; and (iv) the remaining
instructions are ignored.

EXAMPLE 6.3. Let us first see the equations generated for the
simple program of Ex. 6.1. Note that, as there are no variables,
all ϕr are simplytrue and we ignore them.

p̂ = 1 + q̂1 +max(q̂, 1 + q̂2 + q̂3)
q̂ = 1 + q̂4 + 1 + q̂5

In order to solve the above recurrence equations, themax oper-
ator can be eliminated by transforming the equation into several
non-deterministic equations, e.g.,p̂(x̄) = A + max(B,C), ϕ is
translated into the two equationŝp(x̄) = A + B,ϕ and p̂(x̄) =
A+ C,ϕ. Solving the above equations, under the assumption that
q̂i = 0 for all 1 ≤ i ≤ 5, results inq̂ = 2 and p̂ = 3. In this
example, the accuracy gain ofalive w.r.t. total is just constant but,
in general, it can be much larger. For instance, the peak alive equa-
tions for the example in Sec. 2.1 are:

ˆgaussian(n) = ˆfor(k ,n) {k = 0}
ˆfor(k ,n) = 0 {k ≥ n}
ˆfor(k ,n) =max{ ˆfor1 (n, j),max{ ˆfor2 (k ,n, i),

ˆfor(k ′,n)}}
{k < n, k ′ = k + 1 , j = k ′, i = k ′}
ˆfor1 (n, j) = 0 {j ≥ n}
ˆfor1 (n, j) = 1 + ˆfor1 (n, j

′) {j < n, j ′ = j + 1}
ˆfor2 (k ,n, i) = 0 {i ≥ n}
ˆfor2 (k ,n, i) = 1 + ˆfor2 (k ,n, i

′)
{i < n, i ′ = i + 1 , j = k + 1}

The solution ofˆfor1 and ˆfor2 is like in Ex. 5.6. After replacing them
in the second equation of̂for and eliminating the max operator, we
obtain as peak alive UB is ˆgaussian(n) = n − 1 ∈ O(n). Note
that the total UB was quadratic onn. Again, we should add1 to
count the task in which the initial call is being executed.

The following theorem states that the solutions of the equations
generated in Def. 6.2 is a sound approximation ofpeakAlive.

THEOREM 6.4. Let P be a program with an entry procedurep,
and let p̂ub(x̄) be a closed-form UB function̂p(x̄) ∈ ŜP . Then,
for any tracet ≡ (A0 ; 〈1, p(x̄), tv〉) →∗ (An ; Tn) it holds that
p̂ub(v̄) + 1 ≥ peakAlive(t) wherev̄ = tv(v̄).

7. Inference of Peak of Available Tasks
The goal of this section is to accurately approximatepeakAvailable,
or the task level. Note that, when inferringpeakAlive in the pre-
vious section, we have possibly included tasks which are alive but
suspended. For the applications discussed in Sec. 2, it is clearly
useful to exclude suspended tasks from the peak, e.g., it is not
worth allocating suspended tasks in a separate processor.

EXAMPLE 7.1. Consider again the program of Ex. 6.1, and recall
that in 6.3 we have inferred that the peak of alive tasks isp̂ = 3
plus 1 for the task in whichp is running. However, during the
execution ofp the maximum number of tasks which are available
(not suspended) is only3. This is because the task in whichp is
executing is available until it reaches the callasync{q5} since, as

soon asq5 is invoked asynchronously,p suspends and has to wait
for q4 andq5 to terminate before proceeding to program point1©.

In general, it is not easy to detect when tasks are blocked, since
often the execution offinish{p(x̄)} spawns asynchronous calls
but it also executes other instructions. Therefore, the task in which
finish{p(x̄)} is executed does not always block. However, in all
cases where the last instruction ofp(x̄) (directly or indirectly) is
an asynchronous call, we have a behavior similar to the above
example, i.e, at the same time the task in whichfinish{p(x̄)}
is executing suspends and another task starts. Many of these cases
can be syntactically detected and treated in a special way. In what
follows, we explain how to handle a common pattern in which
p(x̄) consists of only asynchronous calls, as in the above example.
In order to keep the task-level analysis as simple as possible, we
introduce an auxiliary construct in the language, calledfinish-
-async, by means of the following program transformation.

DEFINITION 7.2 (finish-async). Given an instruction of the
form finish{p(x̄)}, if p is defined by a single rule of the form
p(x̄) ← async{q1(x̄1)}, . . . , async{qn(x̄n)}, then we replace
the original instruction byfinish−async{q1(x̄1), . . . , qn(x̄n)}.
The use of well-known transformations such asunfoldingcan be
useful to detect the above pattern in the presence of intermediate
rules and be able to apply the transformation more often. For
instance, if we have,p ← q, . . . , async{qn} whereq is defined
asq ← async{q1}, we need to unfold the body ofq in order to
be able to introduce thefinish-async construct. Luckily, this is
a well-studied problem in the field of partial evaluation [12] and
existing unfolding strategies can be directly applied in our context.

DEFINITION 7.3 (peak available equations).The peak available
equations extend those of Def. 6.2 with the additional case
P(b · instr) = max(n−1 + q̂1(z̄1)+ · · ·+q̂n(z̄n),P(instr))

which is applied whenb = finish−async{q1(z̄1), . . . , qn(z̄n)}.
EXAMPLE 7.4. Applying thefinish-async transformation on
the program of Ex. 3.2 results in the following rule forp

p← async{q1}, finish−async{q4, q5}, async{q2}, q3
Applying Def. 7.3, we obtain the following peak available equation:
p̂ = 1 + q̂1 +max(1 + q̂4 + q̂5, 1 + q̂2 + q̂3). Solving the above
equation, under the assumption thatq̂i = 0 for all 1 ≤ i ≤ 5,
results in p̂ = 2. Therefore, at most̂p + 1 = 3 tasks might be
available at the same time during the execution ofp. The accuracy
achieved by the peak available equations w.r.t. the alive ones can
be large. For instance, consider the (intermediate representation
for the) program in Sec. 2.2:
msort(from, to)← from ≥ to.
msort(from, to)← from < to,mid :=(from + to)/2 ,

finish−async{msort(from,mid),msort(mid + 1 , to)}
merge(from, to,mid).

We show at the top (resp. bottom) the equations obtained by apply-
ing Def. 6.2 (resp. Defs. 7.2 and 7.3) to the above rules:

ˆmsort(f , t) = 0 {f ≥ t}
ˆmsort(f , t) = max(ˆaux(f , t ,m ′), ˆmerge(f , t ,m ′))
{f < t , 2m ′ = f + t}

ˆaux(f , t ,m) = 2 + ˆmsort(f ,m) + ˆmsort(m ′, t) {m ′ = m + 1}
ˆmsort(f , t) = 0 {f ≥ t}
ˆmsort(f , t) = max(1 + ˆmsort(f ,m ′) + ˆmsort(m ′′, t),

ˆmerge(f , t ,m ′))
{f < t , 2m ′ = f + t ,m ′′ = m ′ + 1}

As pointed out in Sec. 2.2, the solution for the equations at the top
is 2∗(t−f+1)−2, while for the ones at the bottom is(t−f+1).

Clearly, the available tasks are a more useful piece of information
when deciding how to distribute execution.

The following theorem states the soundness of Def. 7.3 when rules
are transformed using Def. 7.2.

THEOREM 7.5. Let P be a program with an entry procedurep,
and letp̂ub(x̄) be a closed-form UB function for̂p(x̄) ∈ ŜP where
ŜP is the cost relation generated after applying thefinish-
-async transformation of Def. 7.2. Then, for any tracet ≡
(A0 ; 〈1, p(x̄), tv〉) →∗ (An ; Tn) it holds that p̂ub(v̄) + 1 ≥
peakAvailable(t), wherev̄ = tv(x̄).

8. Combining Escaped and Peak
In this section, our goal is to improve the accuracy of the UBs we
have obtained in the previous sections by exploiting knowledge on
which tasksescapefrom the scope of a method call. The number
of escaped tasks from a (normal) method callq(x̄), refers to the
number of tasks created during the execution of the method call
q(x̄) which are alive after its local termination. Such escaped tasks
could start their execution even after the local termination ofq(x̄).
For an asynchronous callasync{p(x̄)}, in principle, the number
of tasks that can escape from it is bounded by its peak, and for
finish{q(x̄)} is 0 by definition. In this section, we use this infor-
mation in order to improve the peak of alive and available tasks.
We use the term peak of tasks to refer to any of the former, alive or
available. Let us see the idea on a simple example.

EXAMPLE 8.1. Consider the following program:

m← p, 1©async{q}
p← async{q}, finish{h}, async{q}
h← async{q}, async{q}, async{q}

and assume that procedureq does not make any asynchronous call.
By applying Def. 7.3, we generate the following equations for the
peak of available tasks:

m̂ = p̂+ 1 + q̂
p̂ = 1 + q̂ +max(2 + q̂ + q̂ + q̂, 1 + q̂)

which, sincêq = 0, are solved tom̂ = 4. Let us explain how we
can refine this peak usingescapeinformation. While the peak of
available tasks when executingp is 3, only 2 tasks canescapefrom
p, i.e., they can be available after program point1©. The idea is that
the peak of available tasks form (ignoring the task in whichm is
being executed) can be defined as the maximum of the following
two scenarios: (a) the peak of the tasks while executingp or (b)
those that escape fromp plus1 for the last asynchronous call inm.
This will lead to3, which improves the previous peak by one.

Let us first specify the notion of escaped tasks from a given call
more precisely in the concrete setting.

DEFINITION 8.2 (escaped tasks).Consider a programP with
an entry procedurep and a tracet = (A ; 〈1, p(x̄), tv〉) →∗

(An ; Tn) such thatp locally terminates before reachingTn.
The number of escaped tasks fromp in t can be defined as
escape(p) = |available(Tn)|.

The following definition presents a novel form of equations, called
combined peak/escapeequations, which allows us to take advan-
tage of static knowledge on the escaped tasks in order to approxi-
mate the peak of tasks more accurately. Given a procedurep(x̄), the
main idea is to set up two kinds of relations: (1)the peak equations
p̂(x̄): which define the peak of tasks reached during the execution
of p and (2)the escaped equationšp(x̄): which define the escaped
tasks from a call top(x̄). The definition for both relations is mutu-
ally recursive, as the next definition shows.

DEFINITION 8.3 (combined peak/escape equations).Let r be a
rule andϕr its corresponding value abstraction as in Def. 6.2. The
combined peak and escapedequations forr consist of itsescape
equationp̌(x̄) =

∑n
i=1 E(bi), ϕr, where:

E(b) = 1 + q̂(z̄) if b = async{q(z̄)}
E(b) = q̌(z̄) if b = q(z̄)
E(b) = 0 otherwise

and its peak equationwhich is obtained like the peak equations
of Def. 7.3, but changing the definition ofP whenb = q(z̄) by:
P(b · instr) = max(q̂(z̄), q̌(z̄) + P(instr))

In the above definition, it can be observed that the peak equation
modifies that in Def. 6.2 in the case of a synchronous call in order to
take advantage of the escape information, as intuitively explained
in Ex. 8.1. In the escape equation, we distinguish three cases: (i)
when we find an asynchronous call, then such new task can escape
plus thepeakof tasks created along the execution of such call; (ii)
for synchronous calls, we count those that escape from such call;
(iii) the remaining instructions map to zero, e.g., when we have a
finish{s}, we are sure that nothing escapes from it.

EXAMPLE 8.4. The solution of the following combined equations,
obtained by applying Def. 8.3 to the rules of the program of Ex. 8.1,
corresponds to the improved peak UB, as explained in Ex. 8.1:

m̂ =max(p̂, p̌+ 1 + q̂) m̌ = p̌+ 1 + q̂
p̂ = 1 + q̂ +max(2 + q̂ + q̂ + q̂, 1 + q̂) p̌ = 1 + q̂ + 1 + q̂

In the above example, the accuracy gain is constant. In general, it
can be much larger (even in complexity order). Let us consider the
program in Sec. 2.3 whose intermediate representation is:

f (n, i)← n ≤ 0
f (n, i)← n > 0 , finish−async{activity a(i), activity b(i)},

n ′:=n − 1 , i ′:=2 ∗ i + 1 , i ′′:=2i + 2 ,
f (n ′, i ′), f (n ′, i ′′)

By applying Def. 8.3, we obtain the equations:

f̌ (n, i) = 0 {n ≤ 0}
f̌ (n, i) = f̌ (n ′, i ′) + f̌ (n ′, i ′′) ϕ

f̂ (n, i) = 0 {n ≤ 0}
f̂ (n, i) = max(1 + ˆactivity a(i) + ˆactivity b(i),

max(f̂ (n ′, i ′), f̌ (n ′, i ′) + max(f̂ (n ′, i ′′), f̌ (n ′, i ′′))) ϕ

whereϕ = {n > 0 ,n ′ = n − 1 , i ′ = 2i + 1 , i ′′ = 2i + 2} and
ˆactivity a(i) = ˆactivity b(i) = 0. Sincef̌ (n, i) is solved to

0, the solution to the combined equations is the constant1. Note
that, applying Def. 5.4, we obtain the exponential bound shown
in Sec. 2.3. Applying either Def. 6.2 or Def. 7.3, we obtain an
exponential bound as well. Hence, the solution of the combined
equations is much more accurate than all previous solutions.

Soundness of our analysis guarantees thatp̂ and p̌ correctly ap-
proximate the peak of available tasks and the escaped tasks, respec-
tively. The proof relies on an auxiliary notion of escaped tasks from
a given state and derivation that appears in the technical report.

THEOREM 8.5. Let P be a program with an entry procedurep.
Let q be a procedure defined inP . Let p̂ub(x̄) be a closed-form
UB function for its combined peak/escape equations. Given a trace
t ≡ (A0 ; 〈1, p(x̄), tv〉)→∗ (An ; Tn). Then, it holds that

1. p̂ub(v̄) + 1 ≥ peakAvailable(t); and
2. p̌ub(v̄) + 1 ≥ escape(t).

wherev̄ = tv(x̄)

Note that if we use the peak equations as in Def. 6.2 instead of point
1 above it holds that̂pub(v̄) + 1 ≥ peakAlive(t).

UT/ UA/ UE ms # UT/ UA/ UE ms
1 (N−1)(logN) 500 2 61441N+61441 310

(N−1)(logN) 310 61441N+61441 270
N−1 450 61569 460

3 2048N+48 240 4 2N−1−1 200
2048N+48 260 2N−1−1 210
1024N+16 390 2N−1−1 240

5 kN3+3kN2+kN 830 6 50 ∗ (2N+2000) 170
(k+1)N3+(k+2) 760 max(N, 2000) 170
N2+(k+1)N

(k+1)N3+(2k+3) 1340 max(N, 2000) 210
N2+(k+3)N+1

7 10N1N2 2680 8 N 100
10N1N2 1780 1 90

N1N2 +N1 2850 1 140

Table 1. Benchmarks: 1ArraySum (1044 Kb); 2CUDABlackSc-
holes (1071); 3FRASimpleDist (1134); 4Fib (717); 5HeatTrans-
fer v1 (1913); 6KMeansDist (1124); 7PLU 2 C (8520); 8 method
print()V of SparseMat (706).

As final remarks, we note that the further accuracy of the com-
bined equations might come at the price of efficiency and effec-
tiveness of the analysis. As regards efficiency, the fact that for each
procedure in the program, we generate two sets of equations, in-
creases the analysis time. In particular, the time required to infer
closed-form UBs for the combined relations almost doubles. As re-
gards effectiveness, the fact that the definition of both relations are
mutually recursive, can make their solving process more complex.
Nonetheless, the mutual recursion disappears in many cases, e.g.,
when the number of escaped tasks is constant. Also, certain solvers
(e.g., MAXIMA) have support to solve such mutual recursions. Af-
ter solving the equations, it is guaranteed that the obtained UBs are
strictly more precise than those obtained in the previous sections.

9. Experimental Results
We have implemented our technique within the XYZ1 system
which can be tried out online at: XYZ2. The experimental eval-
uation has been performed on a set of small but representative X10
programs (available at the X10 websitehttp://x10-lang.org/)
containing interesting parallelism patterns. In the implementation,
we are using existing tools developed for Java to translate the origi-
nal program into the IR. Hence, the examples have been first (man-
ually) translated from X10 to Java, preserving the structure of the
parallelism. From that point on, the analysis is fully automatic.
In some cases, purely numerical computations have been omitted
(e.g., most of the methoddoBlackScholes inCUDABlackScholes),
and pieces of code which manipulate data structures in a way which
is specific to X10 have been simplified.Placeshave been ignored.
Also, to avoid virtual invocations that often complicates the analy-
sis, we sometimes translate callso.m() to m(o) and definem as a
static method. Finally,async andfinish statements have been sim-
ulated (only for the sake of the analysis, not for actual execution
in the JVM) by means of special method calls. Overall, the trans-
lation is done in such a way that the Java code arguably preserves
the properties of interest.

The results are shown in Table 1. For each benchmark, the total
numberUT of spawned tasks (first row), the peakUA of alive tasks
(second row), and the refined peakUE of alive tasks using escape

1 the system name is withheld
2 the actual link is withheld

information (third row) are inferred. We do not add1 for the initial
task. Most examples take as input a numerical parameter, which is
a measure of the size of the problem. Such parameter is usually
taken to be the length of the array ofString which is the argument
of themain method, and appears asN in the table (N1 andN2 if
the input consists of two parameters). In two cases,UA is better
thanUT, meaning that the analysis was able to infer that some
tasks cannot be alive at the same time. Moreover,UE improves on
UA in four examples, thus showing the usefulness of considering
escape information. The table also shows (next to the name of the
benchmark) the size in Kbytes of the (transformed).class file, and
the total analysis timems in milliseconds.

Let us explain the results in more detail.ArraySum is interesting
because the sum is executed many times under different assump-
tions about the number of tasks which are going to be spawned:
at each iteration, this number is multiplied by 2 (starting from 1)
until a thresholdN is reached (note that the X10 code uses a con-
stant threshold 4, so that our version is more general). The result
is that at mostN − 1 tasks are spawned at each one of thelogN
iterations, thus giving a total of(logN) ∗ (N − 1) tasks. On the
other hand, due to thefinish statement which wraps each iteration,
only N − 1 tasks can be alive at the same time, thus giving such
number asUE. Note that the analysis of alive tasks needs escape
information in order to get the linear upper bound.

In CUDABlackScholes, N is the number of iterations which is
the constant 512 in the original program. It can be seen thatUT is
bigger since every iteration is performed inside afinish statement,
so that tasks created during different iterations cannot be alive at
the same time. The UB ofFib is exponential due to the structure of
the recursive calls. The total number and the peak number of tasks
are equal and indeed all spawned tasks can be alive at the same
time.

In HeatTransfer v1, the UB is cubic in all cases, since the op-
erations on the data structures spawn a cubic number of tasks, and
all tasks are alive at the same time since a singlefinish statement
wraps this part of the code. The difference (not in the order of mag-
nitude) between the UBs is due to the different loss of precision
when solving the equations. The number of iterations of the loop
in run() depends on the guarddelta<epsilon on double numbers.
This bound is unpredictable by most state-of-the-art static analyz-
ers, so that the program has been modified in order to iterate a fixed
number of timesk. In KMeansDist, the constants 2000 and 50 ap-
pearing in the UBs are constants in the X10 code, whileN is a
measure of the size of the data structure. In the biggest example
PLU 2 C, considering escape information allows to remove a con-
stant factor 10 which is a constant in the program code.

Overall, we argue that, although our implementation is still a
prototype, the experiments show that our approach is promising
and leads to reasonably accurate task-level UBs in a fully automatic
way.

10. Related Work
As regards the language, several subsets of X10 ([1, 13, 17]) have
been defined in the literature. For the parallel part of the language,
the subset we consider is like [13]. The sequential part is richer
than [13], as not handling recursion would be an important restric-
tion for the task-level analysis. The majority of related work around
the X10 language is on may-happen-in-parallel analysis [13] and
determinism [23]. This is a complementary line of research to ours,
in the sense that we can use the results of such analyses to improve
ours, as we will discuss in Sec. 11.

Due to our interpretation of the task level of a program as
a resource consumed along its execution, our work is more di-
rectly related to cost analysis (or resource usage analysis) frame-
works [2, 9, 10, 21]. All such frameworks assume a sequential ex-

ecution model. Moreover, they often are applied to measure accu-
mulative resources. Another non-accumulative resource is memory
consumption in the presence of garbage collection. There has been
a respectable development in heap space analysis for Java-like and
functional languages [2, 4, 6, 11, 21] during the last years. Among
them, our work is more related to those that rely on RR [2, 21].
Still, heap space bounds are fundamentally different from task-level
bounds, as in the case of memory, the challenge is to model the be-
haviour of the garbage collector at the level of the cost equations.
In our case, the challenge is to handle concurrency and be able to
capture in the equations the states in which tasks terminate.

11. Conclusions and Future Work
We have presented a novel static analysis to approximate the task
level of parallel X10-like programs. Our approach is based by
the view that the task level of a program is a particular (non-
accumulative) resource consumed along its (parallel) execution.
Existing cost analysis frameworks assume a standardsequential
programming model on resources which are typicallyaccumula-
tive. It is clear that both these deviations from existing frameworks
add significant complexity to the problem of inferring task-level
bounds. Our key contribution is the generation of task-levelrecur-
rence relationsthat soundly and accurately approximate the task
level of the program in the parallel setting. An important obser-
vation (and a side-effect contribution of our work, and due to the
characteristics of X10) is that obtaining an UB from the RR implies
bounding the number of iterations of loops in the original X10 pro-
gram. Therefore, our work indirectly provides aglobal termination
analysisfor X10 programs. In other words, if the analysis finds a
task-level UB, it is guaranteed that the original X10 program ter-
minates for any input data.

The abstraction performed by the value analysis component,
though simple, ensures that the UBs obtained are sound for any
particular task scheduler. One direction for future work is to im-
prove the precision of the analysis by enriching the value analysis
assuming a particular scheduling. To do this, we first need to make
some assumption on the policy which establishes which tasks run in
parallel. Then, we can reuse existing may-happen-in-parallel anal-
yses as those in [13], which specifically treat theasync-finish
constructs of X10. The output of such analysis annotates each in-
struction with the set of instructions that can be executed in parallel
with it. One could then prove that the fragments of code which
might be executed in parallel are independent [23] (i.e., they do not
read/write on the same global data). In such case, we can then use
existing field-sensitive value analyses [14] developed for similar
languages in order to improve the precision of our UBs.

As another direction for future work, we plan to extend our
analysis to the full X10 language. In particular, we believe handling
places can give us some interesting results. This requires enhancing
the async construct asasync{s, id}, with the identifier id of
the server encharged of running the tasks asynchronously. An
interesting application of our analysis in this setting is to infer the
throughput of the different servers of the system, which could be
very useful to balance the workload in distributed applications.

Our approach can be easily adapted to count the peak at a
program point, i.e., the maximum number of tasks that can be alive
(or available) in parallel at that specific program point. Suppose that
the program point of interest isa©, then we can modify Def. 6.2 as
follows: we addP(a© · instr) = 1 + P(instr) and remove the
constant1 from the equation ofasync. Such information is useful,
for example, when at the program point of interest, we query a
server. The obtained UB indicates the load of the server.

References
[1] M. Abadi and G. D. Plotkin. A model of cooperative threads.In Proc.

of POPL’09, pages 29–40. ACM, 2009.

[2] E. Albert, S. Genaim, and M. Ǵomez-Zamalloa. Parametric Inference
of Memory Requirements for Garbage Collected Languages. In9th
International Symposium on Memory Management (ISMM’10), pages
121–130, New York, NY, USA, June 2010. ACM Press.

[3] Andrew W. Appel. Ssa is Functional Programming.SIGPLAN No-
tices, 33(4):17–20, 1998.

[4] V. Braberman, F. Ferńandez, D. Garbervetsky, and S. Yovine. Para-
metric Prediction of Heap Memory Requirements. InISMM. ACM
Press, 2008.

[5] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An Object-Oriented
Approach to Non-Uniform Cluster computing. InOOPSLA, pages
519–538. ACM, 2005.

[6] W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory
Resource Bounds for Low-Level Programs. InISMM. ACM Press,
2008.

[7] R. DeLine and K.R.M. Leino. BoogiePL: A typed procedurallanguage
for checking object-oriented programs. Technical Report MSR-TR-
2005-70, Microsoft Research, 2005.

[8] M. Fähndrich. Static Verification for Code Contracts. InSAS, volume
6337 ofLNCS, pages 2–5. Springer, 2010.

[9] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Preciseand
Efficient Static Estimation of Program Computational Complexity. In
POPL, pages 127–139. ACM, 2009.

[10] J. Hoffmann and M. Hofmann. Amortized Resource Analysis with
Polynomial Potential. InESOP, volume 6012 ofLNCS, pages 287–
306. Springer, 2010.

[11] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space Anal-
ysis. In 15th European Symposium on Programming, ESOP 2006,
volume 3924 ofLecture Notes in Computer Science, pages 22–37.
Springer, 2006.

[12] N.D. Jones, C.K. Gomard, and P. Sestoft.Partial Evaluation and
Automatic Program Generation. Prentice Hall, New York, 1993.

[13] Jonathan K. Lee and Jens Palsberg. Featherweight X10: ACore Cal-
culus for Async-Finish Parallelism. InProc. of the 15th ACM SIG-
PLAN symposium on Principles and practice of parallel programming
(PPoPP’10), pages 25–36, New York, NY, USA, 2010. ACM.

[14] A. Miné. Field-Sensitive Value Analysis of Embedded C Pro-
grams with Union Types and Pointer Arithmetics. InACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Toolsfor
Embedded Systems (LCTES’06), 2006.

[15] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated
Termination Analysis of Java Bytecode by Term Rewriting. InProc.
of RTA’10, volume 6 ofLIPIcs, pages 259–276, 2010.

[16] R. Raman, J. Zhao, V. Sarkar, M. T. Vechev, and E. Yahav. Efficient
data race detection for async-finish parallelism. InProc. of RV, pages
368–383, 2010.

[17] V. A. Saraswat and R. Jagadeesan. Concurrent ClusteredProgram-
ming. In Proc. of CONCUR’05, volume 3653 ofLecture Notes in
Computer Science. Springer, 2005.

[18] F. Spoto, F. Mesnard, and́E. Payet. A Termination Analyser for Java
Bytecode based on Path-Length.ACM TOPLAS, 32(3), 2010.

[19] W. Zou T. Wei, J. Mao and Y. Chen. A new algorithm for identifying
loops in decompilation. InSAS’07, LNCS 4634, pages 170–183, 2007.

[20] L. Unnikrishnan and S. Stoller. Parametric heap usage analysis for
functional programs. InProc. of ISMM’09. ACM Press, 2009.

[21] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized Live Heap
Bound Analysis. InProc. of VMCAI’03, volume 2575 ofLNCS, pages
70–85, 2003.

[22] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and
P. Co. Soot - a Java Optimization Framework. In1999 conference

of the Centre for Advanced Studies on Collaborative Research (CAS-
CON’99), 1999.

[23] M. T. Vechev, E. Yahav, R. Raman, and V. Sarkar. Automatic Verifi-
cation of Determinism for Structured Parallel Programs. InProc. of
SAS’10, volume 6337 ofLecture Notes in Computer Science, pages
455–471. Springer, 2010.

[24] B. Wegbreit. Mechanical Program Analysis.Communications of the
ACM, 18(9), 1975.

Appendix B

Modular Termination Analysis of Java
Bytecode and its Application to
phomeME Core Libraries

The paper “Modular Termination Analysis of Java Bytecode and its Application to phomeME Core Li-
braries” [58] follows.

81

Modular Termination Analysis of Java Bytecode
and its Application to phoneME Core Libraries

D. Ramı́rez-Deantes1, J. Correas2, and G. Puebla1

1 DLSIIS, Technical University of Madrid (UPM), Spain
2 DSIC, Complutense University of Madrid (UCM), Spain

Abstract. Termination analysis has received considerable attention, tra-
ditionally in the context of declarative programming and, recently, also
for imperative and Object Oriented (OO) languages. In fact, there exist
termination analyzers for OO which are capable of proving termination
of medium size applications by means of global analysis, in the sense that
all the code used by such applications has to be proved terminating. How-
ever, global analysis has important weaknesses, such as its high memory
requirements and its lack of efficiency, since often some parts of the code
have to be analyzed over and over again, libraries being a paramount
example of this. In this work we present how to extend the termination
analysis in the COSTA system in order to make it modular by allowing
separate analysis of individual methods. The proposed approach has been
implemented. We report on its application to the termination analysis
of the core libraries of the phoneME project, a well-known open source
implementation of Java Micro Edition (JavaME), a realistic but reduced
version of Java to be run on mobile phones and PDAs. We argue that
such experiments are relevant, since handling libraries is known to be
one of the most relevant open problems in analysis and verification of
real-life applications. Our experimental results show that our proposal
dramatically reduces the amount of code which needs to be handled in
each analysis and that this allows proving termination of a good number
of methods for which global analysis is unfeasible.

1 Introduction

It has been known since the pre-computer era that it is not possible to write a
program which correctly decides, in all cases, if another program will terminate.
However, termination analysis tools strive to find proofs of termination for as
wide a class of (terminating) programs as possible. Automated techniques are
typically based on analyses which track size information, such as the value of
numeric data or array indexes, or the size of data structures. This information is
used for specifying a ranking function which strictly decreases on a well-founded
domain on each computation step, thus guaranteeing termination.

In the last two decades, a variety of sophisticated termination analysis tools
have been developed, primarily for less-widely used programming languages.
These include analyzers for term rewrite systems [16], and logic and functional

languages [18, 9, 17]. Termination-proving techniques are also emerging in the
imperative paradigm [7, 10, 16] and the object oriented (OO for short) paradigm,
where static analysis tools such as Julia [25], AProVE [21], and costa [1] are
able to prove termination of non-trivial medium-size programs.

In the context of OO languages, we focus on the problem of proving whether
the execution of a method m terminates for any possible input value which
satisfies m’s precondition, if any. Solving this problem requires, at least in prin-
ciple, a global analysis, since proving that the execution of m terminates requires
proving termination of all methods transitively invoked during m’s execution.
In fact, the three analysis tools for OO code mentioned above require the code
of all methods reachable from m to be available to the analyzer and aim at
proving termination of all the code involved. Though this approach is valid for
medium-size programs, we quickly get into scalability problems when trying to
analyze larger programs. It is thus required to reach some degree of composition-
ality which allows decomposing the analysis of large programs into the analysis
of smaller parts.

In this work we propose an approach to the termination analysis of large OO
programs which is compositional and we (mostly) apply it by analyzing a method
at a time. We refer to the latter as modular, i.e., which allows reasoning on a
method at a time. Our approach provides several advantages: first, it allows
the analysis of larger programs, since the analyzer does not need to have the
complete code of the program nor the intermediate results of the analysis in
memory. Second, methods are often used by several other methods. The analysis
results of a shared method can be reused for multiple uses of the method.

The approach presented is flexible in the level of granularity: it can be used
in a component-based system at the level of components. A specification can be
generated for a component C by analyzing its code, and it can be deployed to-
gether with the component and used afterwards for analyzing other components
that depend on this one. When analyzing a component-based application that
uses C, the code of C does not need to be available at analysis time, since the
specification generated can be used instead.

In order to evaluate the effectiveness of our approach, we have extended the
costa analyzer to be able to perform modular termination analysis and we have
applied the improved system to the analysis of the phoneME implementation
of the core libraries of JavaME. Note that analysis of API libraries is quite
challenging and a significant stress test for the analyzer for a number of reasons
which are discussed in more detail in Section 5 below.

The main contribution of this paper is that it provides a practical framework
for the modular analysis of Java bytecode, illustrating its applicability to real
programs by analyzing phoneME librares. These contributions are detailed from
Section 4 onwards.

2 Non-Modular Termination Analysis in costa

costa (see [4] and its references) is a cost [2] and termination [1] analyzer for
Java bytecode. costa receives as input the signature of the method m whose

2

JBC

class
analysis

CFG RBR

Terminates

BC SIZE

Unknown

nullity
sign

CFG
build

RBR
build

BC
build

size
analysis

PUBS
solver

heap
analysis

Fig. 1. Architecture of costa

termination (or cost) we want to infer. Method m is assumed to be available
in the classpath or default Java run-time environment (jre for short) libraries,
together with all other methods and classes transitively invoked by m. Since
there can be many more classes and methods in the classpath and jre than
those reachable from m, a first step during analysis consists in identifying a
set M of methods which includes all methods reachable from m. This phase
is sometimes referred to as program extraction or application extraction. Then,
costa performs a global analysis since, not only m, but all methods in the
program M are analyzed.

We now briefly describe the overall architecture of costa, which is graph-
ically represented in Figure 1. More details can be found in [3]. The dashed
frames represent the two main phases of the analysis: (i) consists of extracting a
program M from the method m plus the transformation of the bytecode for all
methods in M into a suitable internal representation; and (ii) the actual static
analysis. Input and output of the system are depicted on the left: by JBC we
denote the bytecode of all classes in the classpath and jre plus the signature of
a method and yields information about termination, indicated by Terminates
(the analyzer has proved that the program terminates for all valid inputs) or
Unknown (otherwise). Ellipses (e.g. CFG) represent what the system produces
at each intermediate stage of the analysis; rounded boxes (e.g. “CFG build”)
indicate the main steps of the analysis process; square boxes (e.g. class analy-
sis), which are connected to the main steps by dashed arrows, denote auxiliary
analyses which allow obtaining more precise results.

During the first phase, depicted in the upper half of the figure, the incom-
ing JBC is transformed into a rule-based representation (RBR). In the second
phase, depicted in the lower half of the figure, the system performs the actual
termination analysis on the RBR.

2.1 From the Bytecode to the Rule-based Representation

Generation of Control Flow Graphs guided by Class Analysis costa
transforms the bytecode of a method into Control Flow Graphs (CFGs) by using
techniques from compiler theory. As regards Virtual invocation, computing a
precise approximation of the methods which can be executed at a given program
point is not trivial. As customary in the analysis of OO languages, costa uses
class analysis [24] (or points-to analysis) in order to precisely approximate this

3

information. First, the CFG of the initial method is built, and class analysis is
applied in order to approximate the possible runtime classes at each program
point. This information is used to resolve virtual invocations. Methods which can
be called at runtime are loaded, and their corresponding CFGs are constructed.
Class analysis is applied to their body to include possibly more classes, and the
process continues iteratively. Once a fixpoint is reached, it is guaranteed that all
reachable methods have been loaded, and the corresponding CFGs have been
generated.

As regards exceptions, costa handles internal exceptions (i.e., those asso-
ciated to bytecodes as stated in the JVM specification), exceptions which are
thrown (bytecode athrow) and possibly propagated back in methods, as well as
finally clauses. Exceptions are handled by adding edges to the corresponding
handlers. costa provides the options of ignoring only internal exceptions, all
possible exceptions or considering them all.

Rule-based Representation Given a method m and its CFGs, a RBR for m
is obtained by producing, for each basic block mj in its CFGs, a rule which:

(1) contains the set of bytecode instructions within the basic block;
(2) if there is a method invocation within the instructions, includes a call to the

corresponding rule; and
(3) at the end, contains a call to a continuation rule mc

j which includes mutually
exclusive rules to cover all possible continuations from the block.

Note that several rules may be produced with the same name. A procedure
P is the set of all rules with name P .

2.2 Context-Sensitive (Pre-)Analyses to Improve Accuracy

costa performs three context-sensitive analyses on the RBR based on abstract
interpretation [12]: nullity, sign and heap analysis. These analyses improve the
accuracy (and efficiency) of subsequent steps inferring information from individ-
ual bytecodes, and propagating it via a standard, top-down fixpoint computation.

Nullity Analysis aims at keeping track of reference variables which are defi-
nitely null or are definitely non-null. For instance, the bytecode new(si) allows
assigning the abstract value non-null to si. The results of nullity analysis often
allow removing rules corresponding to NullPointerException.

Sign Analysis aims at keeping track of the sign of variables. The abstract
domain contains the elements ≥, ≤, >, <, = 0, 6= 0, ⊤ and ⊥, partially ordered
in a lattice. For instance, sign analysis of const(si, V) evaluates the integer value
V and assigns the corresponding abstract value = 0, > or < to si, depending,
resp., on if V is zero, positive or negative [12]. Knowing the sign of data allows
removing RBR rules for arithmetic exceptions which are never thrown.

Heap Analysis obtains information related to variables and arguments located
in the heap, a global data structure which contains objects (and arrays) allo-
cated by the program. Infers properties like constancy and cyclicity of variables
and arguments, and sharing, reachability and aliasing between variables and ar-
guments in the heap [15]. They are used for inferring sound size relations on
objects.

4

2.3 Size Analysis of Java Bytecode

From the RBR, size analysis takes care of inferring the relations between the
values of variables at different points in the execution. To this end, the notion
of size measure is crucial. The size of a piece of data at a given program point
is an abstraction of the information it contains, which may be fundamental to
prove termination. The costa system uses several size measures:

– Integer-value maps an integer value to its value (i.e., the size of an integer
is the value itself). It is typically used in loops with an integer counter.

– Path-length [23] maps an object to the length of the maximum path reachable
from it by dereferencing. This measure can be used to predict the behavior
of loops which traverse linked data structures, such as lists and trees.

– Array-length maps an array to its length and is used to predict the behavior
of loops which traverse arrays.

Size analysis works in two phases. In the first one, called abstract compilation,
each bytecode, call or guard is abstracted by linear constraints on the size of
its variables: for example, iadd(s0, s1, s

′
0) will be abstracted by the constraint

s′0=s1+s0, meaning that the size of s0 after executing the instruction is the sum
of the size of s0 and s1 before.

In the second phase, linear constraints replacing parts of the program can be
propagated via a standard, bottom-up fixpoint computation, in order to combine
the information about single rules. The goal of this global analysis is to have size
relations on variables between the input of a rule (i.e., a block in the CFG) and
another one which can be (directly or indirectly) called by the first one.

2.4 Inferring Termination

From the RBR and the results of size analysis, a set of binary clauses (BC in Fig-
ure 1) is produced, which capture calls among blocks together with information
on how the values of variables change from one call to another. On such binary
clauses, standard termination analysis techniques developed for i.e., termination
of logic program can be applied. In particular, costa proves termination by using
semantic-based techniques, relying on binary unfolding combined with ranking
functions, as those in [9]. This is performed by means of the PUBS solver. More
details on how termination proofs are performed in costa can be found in [1].

3 Abstract Interpretation Fundamentals

Before describing the modular analysis framework, a brief description to ab-
stract interpretation is in order. Abstract interpretation [12] is a technique for
static program analysis in which execution of the program is simulated on a
description (or abstract) domain (D) which is simpler than the actual (or con-
crete) domain (C). Values in the description domain and sets of values in the
actual domain are related via a pair of monotonic mappings 〈α, γ〉: abstraction
α : 2C → D and concretization γ : D→ 2C which form a Galois connection, i.e.

∀x ∈ 2C : γ(α(x)) ⊇ x and ∀λ ∈ D : α(γ(λ)) = λ.

5

The set of all possible descriptions represents a description domain D which is
usually a complete lattice for which all ascending chains are finite. Note that in
general ⊑ is induced by ⊆ and α (in such a way that ∀λ, λ′ ∈ D : λ ⊑ λ′ ⇔
γ(λ) ⊆ γ(λ′)). Similarly, the operations of least upper bound (⊔) and greatest

lower bound (⊓) mimic those of 2C in some precise sense that depends on the
particular abstract domain. A description λ ∈ D approximates a set of concrete

values x ∈ 2C if α(x) ⊑ λ. Correctness of abstract interpretation guarantees
that the descriptions computed approximate all of the actual values which occur
during the execution of the program.

In costa, abstract interpretation is performed on the rule based represen-
tation introduced in Section 2. We first introduce some notation. CP and AP
stand for descriptions in the abstract domain. The expression P :CP denotes a
call pattern. This consists of a procedure P together with an entry pattern for
that procedure. Similarly, P 7→ AP denotes an answer pattern, though it will
be referred to as AP when it is associated to a call pattern P :CP for the same
procedure. Since a method is represented in the RBR as a set of interconnected
procedures that start from a single particular procedure, the same notation will
be used for methods: m:CP denotes a call pattern that corresponds to an in-
vocation to method m (i.e., the entry procedure for method m), and m 7→ AP
denotes the answer pattern obtained after analyzing method m.

Context-sensitive abstract interpretation takes as input a program R and an
initial call pattern P :CP, where P is a procedure and CP is a restriction of the
values of arguments of P expressed as a description in the abstract domain D
and computes a set of triples, denoted analysis(R,P :CP) = {P1:CP1 7→ AP1,
. . . , Pn:CPn 7→ APn}. In each element Pi:CPi 7→ APi, Pi is a procedure and
CPi and APi are, respectively, the abstract call and answer patterns.

An analysis is said to be polyvariant if more than one triple P :CP1 7→ AP1,
. . . , P :CPn 7→ APn n ≥ 0 with CPi 6= CPj for some i, j may be computed for
the same procedure P , while a monovariant analysis computes (at most) a single
triple P :CP 7→ AP for each procedure (with a call pattern CP general enough
to cover all possible patterns that appear during the analysis of the program for
P).

Although in general context-sensitive, polyvariant analysis algorithms are
more precise than those obtained with context-insensitive or monovariant anal-
yses, monovariant algorithms are simpler and have smaller memory require-
ments. Context-insensitive analysis does not consider call pattern information,
and therefore obtains as result of the analysis a set of pairs {P1 7→ AP1, . . . ,
Pn 7→ APn}, valid for any call pattern.

costa includes several abstract interpretation based analyses: nullity and
sign are context-sensitive and monovariant, size is context-insensitive, and heap
properties analysis [15] is context-sensitive and polyvariant.

4 Extending costa to Modular Termination Analysis

As described in Section 2, the termination analysis performed by costa is in
fact a combination of different processes and analyses that receive as input a

6

complete program and eventually produce a termination result. Our goal now
is to obtain a modular analysis framework for costa which is able to produce
termination proofs by analyzing programs one method at a time. I.e., in order
to analyze a method m, we analyze the code of m only and (re-)use the analysis
results previously produced for the methods invoked by m.

The communication mechanism used for this work is based on assertions,
which store the analysis results for those methods which have already been
analyzed. Assertions are stored by costa in a file per class basis and they keep
information regarding the different analyses performed by costa: nullity, sign,
size, heap properties, and termination.

Same as analysis results, assertions are of the form m:Pre 7→ Post, where
Pre is the precondition of the assertion and Post is the postcondition. The
precondition states for which call pattern the method has been analyzed. It
includes information regarding all domains previously mentioned except size,
which is context-insensitive. PreD (resp., PostD) denotes the information of the
precondition (resp., postcondition) related to analysis domain D. For example,
Prenullity corresponds to the information related to nullity in the precondition
Pre. The postcondition of an assertion contains the analysis results for all do-
mains produced after analyzing methodm. Furthermore, the assertion also states
whether costa has proved termination for that method.

In addition to assertions inferred by the analysis, costa has been extended
to handle assertions written by the user, namely assumed assertions. These as-
sertions are relevant for the cases in which analysis is not able to infer some
information of interest that we know is correct. This can happen either because
the analyzer is not precise enough or because the code of the method is not avail-
able to the analyzer, as happens with native methods, i.e., those implemented
at low-level and for which no bytecode is available.

The user can add assumed assertions with information for any domain. How-
ever, for the experiments described in Section 6 assumed assertions have been
added manually for providing information about termination only, after checking
that the library specification provided by Sun is consistent with the assertion.
In assumed assertions where only termination information is available, abstract
interpretation-based analyses take ⊤ as the postcondition for the corresponding
methods.

4.1 Modular Bottom-up Analysis

The analysis of a Java program using the modular analysis framework consists
in analyzing each of the methods in the program, and eventually determining if
the program will terminate or not for a given call pattern. Analyzing a method
separately presents the difficulty that, from the analysis point of view, the code
to be analyzed is incomplete in the sense that the code for methods invoked is
not available. More precisely, during analysis of a method m there may be calls
m′:CP and the code for m′ is not available. Following the terminology in [14], we
refer to determining the value of AP to be used for m′:CP 7→ AP as the answer
patterns problem.

7

Several analysis domains existing in costa are context-sensitive, and all of
them, except heap properties analysis, are monovariant. For simplicity, the mod-
ular analysis framework we present is monovariant as well. That means that at
most one assertion m:Pre 7→ Post is stored for each method m. If there is
an analysis result for m′, m′:Pre 7→ Post, such that CP is applicable, that is,
CP ⊑ PreD in the domain D of interest, then PostD can be used as answer
pattern for the call to method m′ in m.

For applying this schema, it is necessary that all methods invoked by m have
been analyzed already when analyzing method m. Therefore, the analysis must
perform a bottom-up traversal of the call graph of the program. In order to
obtain analysis information for m′ which is applicable during the analysis of m,
it is necessary to use a call pattern for m′ in its precondition such that it is equal
or more general than the pattern actually inferred during the analysis of m. We
refer to this as the call patterns problem.

Solving the call and answer patterns problems. A possibility for solving
the call patterns problem would be to make the modular analysis framework
polyvariant: store all possible call patterns to methods in the program and then
analyze those methods for each call pattern. This approach has two main dis-
advantages: on one hand, it is rather complex and inefficient, because all call
patterns are stored and every method must be analyzed for all call patterns that
appear in the program. On the other hand, it requires performing a fixpoint
computation through the methods in the program instead of a single traversal
of the call graph, since different call patterns for a method may generate new
call patterns for other methods.

Another alternative is a context-insensitive analysis. All methods are ana-
lyzed using ⊤ as call pattern for all domains. In this approach, all assertions
are therefore applicable, although in a number of cases ⊤ is too general as call
pattern for some domains, and the information obtained is too imprecise.

The approach finally used in this work tries to find a balance between both
approaches. A monovariant modular analysis framework simplifies a great deal
the behavior of the modular analysis, since a single traversal of the call graph is
required. In contrast, it is context-sensitive: instead of ⊤, a default call pattern
is used, and the result of the analysis is obtained based on this pattern. This
framework uses different values as call patterns, depending on the particular
analysis being performed. The default call pattern for nullity and sign is ⊤. For
Heap properties analysis, in cyclicity it is the pattern that indicates that no
argument of the method is cyclic. For variable sharing, it is the one that states
that no arguments share.

The default call patterns used for analyzing methods are general enough to be
applicable to most invocations used in the libraries and in user programs, solving
the call patterns problem. However, there can be cases in which the call pattern
of an invocation from other method is not included in the default pattern, i. e.,
CP 6⊑ PreD. If the code of the invoked method is available, costa will reanalyze
it with respect to CP ⊔ PreD, even though it has been analyzed before for the
default pattern. If the code is not available, ⊤ is used as answer pattern.

8

A potential disadvantage of this approach is that all methods are analyzed
with respect to a default call pattern, instead of the specific call pattern produced
by the analysis. This means that the analyses in costa could produce more
precise results when applied non modularly, even though they are monovariant,
and it represents a possible loss of precision in the modular analysis framework.
Nonetheless, in the experiments performed in Section 6 no method has been
found for which it was not possible to prove termination using modular analysis,
but it was proved in the non-modular model.

Cycles in the call graph. Analyzing just a method at a time and (re-)using
analysis information while performing a bottom-up traversal of the call graph
only works under the assumption that there are no cyclic dependencies among
methods. In the case where there are strongly connected components (SCCs for
short) consisting of more than one method, we can analyze all the methods in the
corresponding SCC simultaneously. This presents no technical difficulties, since
costa can analyze multiple methods at the same time. In some cases, we have
found large cycles in the call graph that require analyzing many methods at the
same time. In that case a different approach has been followed, as explained in
Section 6. Therefore, in costa we perform a SCC study first to decide whether
there are sets of methods which need to be handled as a unit.

Field-Sensitive Analysis. In some cases, termination of a method depends
on the values of variables stored in the heap, i.e., fields. costa integrates a
field-sensitive analysis [5] which, at least in principle, is a global analysis and
requires that the source code of all the program be available to the analyzer.
Nevertheless, in order to be able to use this analysis in the modular setting, a
preliminary adaptation of that analysis has been performed.

The field-sensitive analysis in costa is based on the analysis of program
fragments named scopes, and modelling those fields whose behaviour can be
reproducible using local variables. Fields must satisfy certain conditions in order
to be handled as local variables. As a first step of the analysis, related scopes are
analyzed in order to determine the fields that are consulted or modified in each
scope. Given a method for which performing field-sensitive analysis is required in
order to prove termination, an initial approximation to the set of methods that
need to be analyzed together is provided by grouping those methods that use
the same fields. We have precomputed these sets of methods by means of a non-
modular analysis. Since the implementation of this preanalysis is preliminary
and can be highly optimized, the corresponding time has not been included in
the experiments in Section 6.

5 Application of Modular Analysis to phoneME libraries

We have extended the implementation of costa for the modular analysis frame-
work. In order to test its applicability, we have analyzed the core libraries of the
phoneME project, a well-known open-source implementation of Java Micro Edi-
tion (JavaME). We now discuss the main difficulties associated to the analysis
of libraries:

9

– Entry points. Whereas a self contained program has a single entry method
(main(String[])), a library has many entry points that must be taken into
account during the analysis.

– It is designed to be used in many applications. Each entry point must be
analyzed with respect to a call pattern that represents any valid call from
any program that might use it. By valid we mean that the call satisfies the
precondition of the corresponding method.

– Large code base. A system library, especially in the case of Java, usually
is a large set of classes that implement most of the features in the source
language, leaving only a few specific functionalities to the underlying vir-
tual machine, mainly for efficiency reasons or because they require low-level
processing.

– With many interdependencies. It is usual that library classes are extensively
used from within library code. As a result of this, library code contains a
great number of interdependencies among the classes in the library. Thus,
non-modular analysis of a library method often results in analyzing a large
portion of the library code.

– Implemented with efficiency in mind. Another important feature of library
code is that it is designed to be as efficient as possible. This means that
readability and structured control flow is often sacrified for relatively small
efficiency gains. Section 6 shows some examples in phoneME libraries.

– Classes can be extended and methods overridden. Using a library in a user
program usually not only involves object creation and method invocation,
but also library classes can be extended and library methods overridden.

– Use of native code. Finally, it is usual that a library contains calls to native
methods, implemented in C or inside the virtual machine, and not available
to the analyzer.

5.1 Some Further Improvements to costa

While trying to apply costa to the phoneME libraries, we have identified some
problems which we discuss below, together with the solutions we have imple-
mented.

As mentioned above, our approach requires analyzing methods in reverse
topological order of the call graph. For this purpose, we extended costa in
order to produce the call graph of the program after transforming the bytecode
to a CFG. The call graph shows the complex structure of the classes in phoneME
libraries. Furthermore, apparently, some cycles among methods existed in some
of the call graphs, mainly caused by virtual invocations. However, we observed
that some potential cycles did not occur in practice. In these cases, either nullity
and sign analyses remove some branches if they detect that are unreachable,
or costa proves termination when solving the binary clauses system. A few
cases include a large cycle that involves many methods. Those cycles are formed
by small cycles focused in few methods (basically from Object, String and
StringBuffer classes), and a large cycle caused by virtual invocations from
those methods. In order to speed up analysis, methods in small cycles have been

10

analyzed at the same time, as mentioned above, and large cycles have been
analyzed considering the modular, method at a time bottom up approach.

In addition, costa has been extended for a more refined control of which
pieces of code we want to include or exclude from analysis. Now there are several
visibility levels: method, class, package, application, and all. When all is
selected, all related code is loaded and included in the RBR. In the other extreme,
when method is selected only the current method is included in the RBR and
only the corresponding assertions are available for other methods.

5.2 An Example of Modular Analysis of phoneME libraries

As an example of the modular analysis framework presented in this paper, let us
consider the method Class.getResourceAsStream in the phoneME libraries. It
takes a string with the name of a resource in the application jar file and returns an
object of type InputStream for reading from this resource, or null if no resource
is found with that name in the jar file. Though costa analyzes bytecode, we
show below the corresponding Java source for clarity of the presentation:

public java.io.InputStream getResourceAsStream(String name) {

try {

if (name.length() > 0 && name.charAt(0) == ’/’) {

name = name.substring(1);

} else {

String clName = this.getName();

int idx = clName.lastIndexOf(’.’);

if (idx >= 0)

name = clName.substring(0, idx+1).replace(’.’, ’/’) + name;

}

return new com.sun.cldc.io.ResourceInputStream(name);

} catch (java.io.IOException x) { return null; }

}

In the source code of this method there are invocations to eleven methods
of different classes (in addition to the eight methods explicitly invoked in the
method code, the string concatenation operator in line 9 is translated to a cre-
ation of a fresh StringBuffer object and invocations to some of its methods.)

If the standard, non-modular approach of analysis is used, the analyzer would
load the code of this method and all related methods invoked. In this case, there
are 65 methods related to getResourceAsStream, from which 10 are native
methods. In fact, using this approach costa is unable to prove termination.

Using modular analysis, the call graph is traversed bottom-up, analyzing each
method related to getResourceAsStream one by one. For example, the analysis
of the methods invoked by getResourceAsStream has obtained the following
information related to the nullity domain1:

1 These analysis results have been obtained ignoring possible exceptions thrown by
the Java virtual machine (e.g., no method found, unable to create object, etc.) for
clarity of the presentation.

11

Method call result

StringBuffer.toString() n/a nonnull

StringBuffer.append(String) ⊤ nonnull

StringBuffer.<init>()V n/a n/a

String.replace(char,char) (⊤,⊤) nonnull

com.sun.cldc.io.ResourceInputStream.<init>(String) nonnull n/a

String.substring(int) ⊤ nonnull

String.length() n/a ⊤
String.substring(int,int) (⊤,⊤) nonnull

String.charAt(int) ⊤ ⊤

In this table, the call pattern refers to nullity information regarding the
values of arguments and the result is related to the method return value. De-
spite of the call patterns generated by the analysis of getResourceAsStream

shown above, when the bottom-up modular analysis computation is performed,
all methods are analyzed with respect to the default call pattern ⊤. The analysis
of getResourceAsStream uses the results obtained for those methods to gener-
ate the nullity analysis results for getResourceAsStream. The same mechanism
is used for other domains: sign, size and heap related properties.

Finally, two native methods are invoked from getResourceAsStream

(lastIndexOf and getName) that require assumed assertions. In this case, ⊤ is
assumed as the answer pattern for those invocations.

5.3 Contracts for Method Overriding

As mentioned above, one of the most important features of libraries in OO
languages is that classes can be extended by users at any point in time, including
the possibility of overriding methods. This poses significant problems to modular
static analysis, since classes and methods which have already been analyzed
may be extended and overridden, thus possibly rendering the previous analysis
information incorrect. Let us illustrate this issue with an example:

class A {

void m(){/* code for A.m() */};

void caller_m(){this.m();};

};

class B extends A {

void m(){/* code for B.m() */};

};

class Example {

void method_main(A a){

a.caller_m();

};

};

Here, there are three different classes: A, B, and Example. But for now, let
us concentrate on classes A and Example only. If A is analyzed, the result ob-
tained for caller m depends directly on the result obtained for A.m (for instance,
caller m could be guaranteed to terminate under the condition that A.m termi-
nates). Then, the class Example is analyzed, using the analysis results obtained
for A. Let us suppose that analysis concludes that method main terminates.

Now, let us suppose that B is added to the program. As shown in the example,
B extends A and overrides m. Imagine now that the analysis concludes that the

12

new implementation of m is not guaranteed to terminate. The important point
now is that the termination behavior of some of the methods we have already
analyzed can be altered, and we have to make sure that analysis results can
correctly handle this situation. In particular, caller m is no longer guaranteed
to terminate, and the same applies to method main.

Note, however, that class inheritance is correctly handled by the analyzer if
all the code (in this case the code of B) is available from the beginning. This
is done by considering, at the invocation program point, the information about
both implementations of m.

However, in general, the analyzer does not know, during the analysis of A,
that the class will be extended by B. Such a situation is very common in the
analysis of libraries, since they must be analyzed without knowing which user-
defined classes will override their methods. In this example, corresponds to A

and Example being library classes and B being defined by the user.
In order to avoid this kind of problems, the concept of contract can be used

(in the sense of subcontracting of [20]). This means that the analysis result for
a given method m is taken as the contract for m, i.e., information about how m

and any redefinition of it is supposed to behave with respect to the analysis of
interest.

A contract, same as an assertion, has two parts: the calling preconditions
which must hold in order the contract can be applicable; and the postcondition,
the result of the analysis with respect to that preconditions. For example, a
contract for A.m() may say that it terminates under the condition that the this
object of type A is an acyclic data structure.

In the example above, when B is added to the program, we have to ana-
lyze B.m taking as call pattern the precondition (Pre) in the contract for A.m.
This guarantees that the result obtained for B.m will be valid in the same set of
input states as the contract for A.m. Then, we need to compare the postcondi-
tions. If mB :Pre 7→ PostB and mA:Pre 7→ PostA are the assertions generated
for B.m and A.m, respectively, and Pre is the default calling pattern for both
implementations, there are two possible cases:

1. If PostB ⊑ PostA then B.m satisfies the contract for A.m.
2. Otherwise, the contract cannot be applied. The user can manually inspect

the code of B.m and if the analyzer loses precision, add an assumed assertion
for B.m. Otherwise, B.m is considered incorrect.

Interfaces and abstract methods are similar to overriding methods of a su-
perclass, with the difference that there is no code to analyze in order to generate
the contract. In this case, assumed assertions written by the user can be used as
contracts.

6 Experiments

After obtaining the call graph for the classes of phoneME’s java.lang package, a
bottom-up traversal of the call graphs has been performed. In a few particular
cases, it was required to enable other analyses included in costa (e.g., field

13

Class
Modular Non Modular Assumed Related

#Bc #T Tcg Timea #Bc #T Timea Nat NNat 1st All
Boolean 56 6 0.02 0.19 67 6 0.22 0 0 1 1
Byte 59 7 0.40 0.22 1545 7 21.10 0 0 4 22
Character 64 11 0.16 0.27 513 11 1.03 0 0 6 11
Class 110 4 1.17 1.10 4119 3 842.70 11 1 20 58
Double 107 17 3.66 1.12 107 13 0.36 2 0 8 57
Error 7 2 0.02 0.04 60 2 0.12 0 0 2 4
FDBigInt 1117 14 0.80 16.10 2513 12 158.39 0 2 23 47
Float 106 18 3.74 1.16 3105 15 5674.96 2 0 9 60
FloatingDecimal 3028 12 4.32 1201.10 3402 9 4983.88 0 8 49 64
Integer 469 21 1.35 18.76 4519 21 62.51 0 0 7 20
Long 268 11 0.64 10.99 2164 11 36.08 0 0 7 20
Math 207 16 0.14 0.67 212 16 0.69 6 0 3 3
NoClassDefFoundError 7 2 0.02 0.04 108 2 0.13 0 0 2 6
Object 737 3 0.21 46.21 891 3 129.31 5 0 7 28
OutOfMemoryError 7 2 0.02 0.03 170 2 0.18 0 0 2 8
Runtime 14 3 0.02 0.08 27 3 0.08 4 0 1 1
Short 59 7 0.39 0.24 1545 7 20.83 0 0 4 22
String 1784 39 5.88 21.11 8709 32 7217.43 6 3 34 120
StringBuffer 1509 37 6.74 11.01 14206 33 12103.35 0 0 37 86
System 45 7 0.38 0.31 2778 6 4864.33 5 0 11 62
Throwable 615 4 0.16 1.23 628 4 60.54 2 0 6 22
VirtualMachineError 7 2 0.02 0.04 108 2 0.14 0 0 2 6
Exception Classes (18) 136 38 0.61 0.74 3961 38 21.27 0 0 11 18

com/sun/* (7) 1584 26 5.55 22.36 11293 16 5161.29 0 0
java/io/* (8) 106 11 1.47 0.65 2337 9 4983.35 0 0
java/util/* (3) 265 13 0.88 3.33 2171 12 51.93 0 0

Total 12473 333 38.77 1359.10 71258 295 46396.17 43 14 256 746

Table 1. Termination Analysis for java.lang package in costa (execution times are in
seconds).

sensitive analysis [5], as mentioned above) for proving termination, or disabling
some features such as handling jvm exceptions.

Table 1 shows the results of termination analysis of java.lang package, plus
some other packages used by java.lang. This table compares the analysis using
the modular analysis described in this paper with the non-modular analysis
previously performed by costa.

The columns under Modular show the modular analysis results, while under
the Non Modular heading non-modular results are shown. #Bc shows the
number of bytecode instructions analyzed for all methods in the corresponding
class,#T shows the number of methods of each class for which costa has proved
termination and Timea shows the analysis time of all the methods in each class.
In the modular case, the total analysis time is Timea plus Tcg, the time spent
building the call graph of each class. The two columns under Assumed show
the number of methods for which assumed assertions were required: Nat is the
number of native methods in each class, and NNat contains the number of
non-native methods that could not be proved terminating. Finally, the last two
columns under Related contain the number of methods from other classes that
are invoked by the methods in the class, either directly, shown in 1st or the total
number of methods transitively invoked, shown in All. Some rows in the table
contain results accumulated for a number of classes (in parenthesis). The last
three rows in the table contain accumulated information for methods directly or
transitively invoked by the java.lang package which belong to phoneME packages

14

other than java.lang. These rows do not include information about Related
methods, since they are already taken into account in the corresponding columns
for java.lang classes. The last row in the table, Total, shows the addition for all
classes of all figures in each column. A number of interesting conclusions can be
obtained from this table. Probably, the most relevant result is the large difference
between the number of bytecode instructions which need to be analyzed in the
modular and non-modular cases: 12,473 vs 71,258 instructions, i.e. nearly 7 times
more code needs to be analyzed in the non-modular approach. The reason for
this is that though in the modular approach methods are (at least in principle)
analyzed just once, in the non-modular approach methods which are required for
the analysis of different initial methods are analyzed multiple times. Obviously,
this difference in code size to be analyzed has a great impact on the analysis
times: the Total row shows that the modular analysis of all classes in java.lang
is more than 30 times faster than the non-modular case.

Another crucial observation is that by using the modular approach we have
been able to prove termination of 38 methods for which the non-modular ap-
proach is not able, either because the analysis runs out memory or because it fails
to produce results within a reasonable time. Furthermore, the modular approach
in this setting has turned out to be strictly more precise than the non-modular
approach, since for all cases where the non-modular approach has proved ter-
mination, it has also been proved by the modular approach. This results in 333
methods for which termination has been proved in the modular approach, versus
295 in the non-modular approach.

Altogether, in our experiments we have tried to prove termination of 389
methods. In the studied implementation of JavaME, 43 of those methods are
native. Therefore, costa could not analyze them, and assumed assertions have
been added for them. In addition, costa was not able to prove termination of
14 methods, neither in the modular nor non-modular approaches, as shown in
the NNat column. For these methods, assumed assertions have also been added,
and have not been taken into account in the other columns except in the last two
ones. These two columns provide another view on the difference between using
modular and non-modular analyses with respect to the number of transitively
invoked methods (746) that required analysis, w.r.t. those directly invoked (256).
In the modular case, only directly invoked methods need to be considered, and
only for loading their assertions, whereas the non-modular approach requires
loading (and analyzing) all related methods.

We now describe in more detail the methods whose termination has not been
proved by costa and the reasons for this.

Bitwise operations. The size analysis currently available in costa is not
capable of tracking numeric values after performing bitwise operations on them.
Therefore, we cannot prove termination of some library methods which perform
bitwise operations (in most cases, right or left shift operations) on variables
which affect a loop termination condition.

Arrays issues. During size analysis, arrays are abstracted to their size. Though
this is sufficient for proving termination of many loops which traverse arrays,

15

termination cannot be proved for loops whose termination depends on the value
of specific elements in the array, since such values are lost by size abstraction.

Concurrency. Though it is the subject of ongoing work, costa does not cur-
rently handle concurrent programs. Nonetheless, it can handle Java code in which
synchronized constructs are used for preventing thread interferences and mem-
ory inconsistencies. In particular, few java.lang phoneME classes make real use
of concurrency. For this reason, Thread class has not been included in the test,
neither Table 1 does include information regarding Class.initialize nor wait
methods defined in Object.

Unstructured control flow. There are some library methods in which the
control flow is unstructured, apparently for efficiency reasons. For example,
String.indexOf uses a continue statement wrapping several nested loops, the
outer most of them being an endless loop as in the following code (on the left):

indexOf(String str, int i){

...

searchForFChar:

while (true) {

...

if (i > max) return -1;

while (j < end) {

if (v1[j++] != v2[k++]){

i++; continue searchForFChar;}}

return i - offset;} }

fixResourceName(String n){

int stI = 0;

int e = 0;

while((e=n.indexOf(’/’,stI))!= -1){

if (e == stI) {

stI++; continue;}

.... } } }

Other Cases. ResourceInputStream.fixResourceName involves a call to a
native method in the loop condition (see code above on the right). A termi-
nation assertion is not enough to find a ranking function of the loop to prove
termination.

7 Discussion

Modular analysis has received considerable attention in different programming
paradigms, ranging from, e.g., logic programming [14, 11, 8] to object-oriented
programming [22, 6, 19]. A general theoretical framework for modular abstract
interpretation analysis was defined in [13], but most of the existing works regard-
ing modular analysis have focused on specific analyses with particular properties
and using more or less ad-hoc techniques.

A previous work from some of the authors of this paper presents and empir-
ically tests a modular analysis framework for logic programs [14, 11]. There are
important differences with this paper: in addition to the programming paradigm,
the framework of [14] is designed to handle one abstract domain, while the frame-
work presented in this paper handles several domains at the same time, and the
previous work is based on CiaoPP, a polyvariant context-sensitive analyzer in
which an intermodular fixpoint algorithm was performed.

In [22] a control-flow analysis-based technique is proposed for call graph con-
struction in the context of OO languages. Although there have been other works

16

in this area, the novelty of this approach is that it is context-sensitive. Also, [6]
shows a way to perform modular class analysis by translating the OO program
into open DATALOG programs. In [19] an abstract interpretation based ap-
proach to the analysis of class-based, OO languages is presented. The analysis
is split in two separate semantic functions, one for the analysis of an object and
another one for the analysis of the context that uses that object. The interde-
pendence between context and object is expressed by two mutually recursive
equations. In addition, it is context-sensitive and polyvariant.

As conclusion, in this work we have presented an approach which is, to the
best of our knowledge, the first modular termination analysis for OO languages.
Our approach is based on the use of assertions as communication mechanism
between the analysis of different methods. The experimental results show that
the approach increases the applicability of termination analysis. The flexibility
of this approach allows a higher level of scalability and makes it applicable to
component-based systems, since is not required that all code be available to the
analyzer. Furthermore, the specification obtained for a component can be reused
for any other component that uses it.

It remains as future work to extend the approach to other intermediate cases
between modular and global analysis, i.e., by allowing analysis of several methods
as one unit, even if they are not in the same cycle. This can be done without
technical difficulties and it should be empirically determined what granularity
level results in more efficient analysis.

Acknowledgments

The authors would like to thank Damiano Zanardini for interesting discussions
and for his help with the heap analysis in costa. This work was funded in part
by the Information & Communication Technologies program of the European
Commission, Future and Emerging Technologies (FET), under the ICT-231620
HATS project, by the Spanish Ministry of Science and Innovation (MICINN)
under the TIN-2008-05624 DOVES project, the TIN2008-04473-E (Acción Es-
pecial) project, the HI2008-0153 (Acción Integrada) project, the UCM-BSCH-
GR58/08-910502 Research Group and by the Madrid Regional Government un-
der the S2009TIC-1465 PROMETIDOS project.

References

1. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termi-
nation Analysis of Java Bytecode. In FMOODS, LNCS 5051, pages 2–18, 2008.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of
java bytecode. In ESOP’07, LNCS, 2007.

3. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In
FMCO’07, number 5382 in LNCS, pages 113–133. Springer, 2008.

4. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Resource Usage
Analysis and its Application to Resource Certification. In FOSAD 2007/2008/2009
Tutorial Lectures, LNCS 5705, pages 258–288. Springer, 2009.

17

5. Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Diana Ramı́rez.
From Object Fields to Local Variables: A Practical Approach to Field-Sensitive
Analysis. In SAS 2010 Proceedings, LNCS. Springer, 2010.

6. F. Besson and T. Jensen. Modular class analysis with datalog. In 10th International
Symposium on Static Analysis, SAS 2003, number 2694 in LNCS. Springer, 2003.

7. A.R. Bradley, Z. Manna, and H.B. Sipma. Termination of polynomial programs.
In VMCAI, 2005.

8. M. Codish, S. K. Debray, and R. Giacobazzi. Compositional analysis of modular
logic programs. In Proc. POPL’93, 1993.

9. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. J. Log. Program., 41(1):103–123, 1999.

10. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI, 2006.

11. J. Correas, G. Puebla, M. Hermenegildo, and F. Bueno. Experiments in Context-
Sensitive Analysis of Modular Programs. In LOPSTR’05, number 3901 in LNCS,
pages 163–178. Springer-Verlag, April 2006.

12. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL’77, pages 238–252. ACM, 1977.

13. P. Cousot and R. Cousot. Modular Static Program Analysis, invited paper. In
Compiler Construction, 2002.

14. G. Puebla et al. A Generic Framework for Context-Sensitive Analysis of Modu-
lar Programs. In M. Bruynooghe and K. Lau, editors, Program Development in
Computational Logic, A Decade of Research Advances in Logic-Based Program De-
velopment, number 3049 in LNCS, pages 234–261. Springer-Verlag, August 2004.

15. Samir Genaim and Damiano Zanardini. The acyclicity inference of COSTA. In
11th International Workshop on Termination, July 2010.

16. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termi-
nation Proofs in the Dependency Pair Framework. In IJCAR, 2006.

17. C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The size-change principle for program
termination. In POPL’01, pages 81–92. ACM, 2001.

18. N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.
In ICLP, 1997.

19. Francesco Logozzo. Separate Compositional Analysis of Class-based Object-
oriented Languages. In AMAST’2004, volume 3116 of LNCS, pages 332–346.
Springer-Verlag, July 2004.

20. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 2nd edition, 1997.

21. C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Termination Analysis
of Java Bytecode by Term Rewriting. In Johannes Waldmann, editor, WST’09,
Leipzig, Germany, June 2009.

22. Christian W. Probst. Modular Control Flow Analysis for Libraries. In Static
Analysis Symposium, SAS’02, volume 2477 of LNCS, pages 165–179. Springer-
Verlag, 2002.

23. F. Spoto, P.M. Hill, and E. Payet. Path-length analysis of object-oriented pro-
grams. In EAAI’06, ENTCS. Elsevier, 2006.

24. F. Spoto and T. Jensen. Class analyses as abstract interpretations of trace seman-
tics. ACM Trans. Program. Lang. Syst., 25(5):578–630, 2003.

25. F. Spoto, F. Mesnard, and É. Payet. A Termination Analyser for Java Bytecode
based on Path-Length. ACM TOPLAS, 32(3), 2010.

18

Appendix C

Asymptotic Resource Usage Bounds

The paper “Asymptotic Resource Usage Bounds” [5] follows.

100

Asymptotic Resource Usage Bounds

E. Albert1, D. Alonso1, P. Arenas1, S. Genaim1, and G. Puebla2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. When describing the resource usage of a program, it is usual
to talk in asymptotic terms, such as the well-known “big O” notation,
whereby we focus on the behaviour of the program for large input data
and make a rough approximation by considering as equivalent programs
whose resource usage grows at the same rate. Motivated by the existence
of non-asymptotic resource usage analyzers, in this paper, we develop a
novel transformation from a non-asymptotic cost function (which can be
produced by multiple resource analyzers) into its asymptotic form. Our
transformation aims at producing tight asymptotic forms which do not
contain redundant subexpressions (i.e., expressions asymptotically sub-
sumed by others). Interestingly, we integrate our transformation at the
heart of a cost analyzer to generate asymptotic upper bounds without
having to first compute their non-asymptotic counterparts. Our exper-
imental results show that, while non-asymptotic cost functions become
very complex, their asymptotic forms are much more compact and man-
ageable. This is essential to improve scalability and to enable the appli-
cation of cost analysis in resource-aware verification/certification.

1 Introduction

A fundamental characteristics of a program is the amount of resources that
its execution will require, i.e., its resource usage. Typical examples of resources
include execution time, memory watermark, amount of data transmitted over the
net, etc. Resource usage analysis [15,14,8,2,9] aims at automatically estimating
the resource usage of programs. Static resource analyzers often produce cost
bound functions, which have as input the size of the input arguments and return
bounds on the resource usage (or cost) of running the program on such input.

A well-known mechanism for keeping the size of cost functions manageable
and, thus, facilitate human manipulation and comparison of cost functions is
asymptotic analysis, whereby we focus on the behaviour of functions for large
input data and make a rough approximation by considering as equivalent func-
tions which grow at the same rate w.r.t. the size of the input date. The asymp-
totic point of view is basic in computer science, where the question is typically
how to describe the resource implication of scaling-up the size of a computa-
tional problem, beyond the “toy” level. For instance, the big O notation is used
to define asymptotic upper bounds, i.e, given two functions f and g which map

natural numbers to real numbers, one writes f ∈ O(g) to express the fact that
there is a natural constant m ≥ 1 and a real constant c > 0 s.t. for any n ≥ m
we have that f(n) ≤ c ∗ g(n). Other types of (asymptotic) computational com-
plexity estimates are lower bounds (“Big Omega” notation) and asymptotically
tight estimates, when the asymptotic upper and lower bounds coincide (written
using “Big Theta”). The aim of asymptotic resource usage analysis is to obtain
a cost function fa which is syntactically simple s.t. fn ∈ O(fa) (correctness) and
ideally also that fa ∈ Θ(fn) (accuracy), where fn is the non-asymptotic cost
function.

The scopes of non-asymptotic and asymptotic analysis are complementary.
Non-asymptotic bounds are required for the estimation of precise execution time
(like in WCET) or to predict accurate memory requirements [4]. The motiva-
tions for inferring asymptotic bounds are twofold: (1) They are essential during
program development, when the programmer tries to reason about the efficiency
of a program, especially when comparing alternative implementations for a given
functionality. (2) Non-asymptotic bounds can become unmanageably large ex-
pressions, imposing huge memory requirements. We will show that asymptotic
bounds are syntactically much simpler, can be produced at a smaller cost, and,
interestingly, in cases where their non-asymptotic forms cannot be computed.

The main techniques presented in this paper are applicable to obtain asymp-
totic versions of the cost functions produced by any cost analysis, including lower,
upper and average cost analyses. Besides, we will also study how to perform a
tighter integration with an upper bound solver which follows the classical ap-
proach to static cost analysis by Wegbreit [15]. In this approach, the analysis is
parametric w.r.t. a cost model, which is just a description of the resources whose
usage we should measure, e.g., time, memory, calls to a specific function, etc.
and analysis consists of two phases. (1) First, given a program and a cost model,
the analysis produces cost relations (CRs for short), i.e., a system of recursive
equations which capture the resource usage of the program for the given cost
model in terms of the sizes of its input data. (2) In a second step, closed-form,
i.e., non-recursive, upper bounds are inferred for the CRs. How the first phase is
performed is heavily determined by the programming language under study and
nowadays there exist analyses for a relatively wide range of languages (see, e.g.,
[2,8,14] and their references). Importantly, such first phase remains the same for
both asymptotic and non-asymptotic analyses and thus we will not describe it.
The second phase is language-independent, i.e., once the CRs are produced, the
same techniques can be used to transform them to closed-form upper bounds,
regardless of the programming language used in the first phase. The important
point is that this second phase can be modified in order to produce asymptotic
upper bounds directly. Our main contributions can be summarized as follows:

1. We adapt the notion of asymptotic complexity to cover the analysis of re-
alistic programs whose limiting behaviour is determined by the limiting be-
haviour of its loops.

2. We present a novel transformation from non-asymptotic cost functions into
asymptotic form. After some syntactic simplifications, our transformation

2

detects and eliminates subterms which are asymptotically subsumed by oth-
ers while preserving the complexity order.

3. In order to achieve motivation (2), we need to integrate the above transfor-
mation within the process of obtaining the cost functions. We present a tight
integration into (the second phase of) a resource usage analyzer to gener-
ate directly asymptotic upper bounds without having to first compute their
non-asymptotic counterparts.

4. We report on a prototype implementation within the COSTA system [3]
which shows that we are able to achieve motivations (1) and (2) in practice.

2 Background: Non-Asymptotic Upper Bounds

In this section, we recall some preliminary definitions and briefly describe the
method of [1] for converting cost relations (CRs) into upper bounds in closed-
form, i.e., without recurrences.

2.1 Cost Relations

Let us introduce some notation. The sets of natural, integer, real, non-zero natu-
ral and non-negative real values are denoted respectively by N, Z, R, N+ and R+.
We write x, y, and z, to denote variables which range over Z. A linear expression
has the form v0 + v1x1 + . . .+ vnxn, where vi ∈ Z, 0 ≤ i ≤ n. Similarly, a linear
constraint (over Z) has the form l1 ≤ l2, where l1 and l2 are linear expressions.
For simplicity we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1, and l1 < l2 instead
of l1 + 1 ≤ l2. The notation t̄ stands for a sequence of entities t1, . . . , tn, for
some n>0. We write ϕ, φ or ψ, to denote sets of linear constraints which should
be interpreted as the conjunction of each element in the set and ϕ1 |= ϕ2 to
indicate that the linear constraint ϕ1 implies the linear constraint ϕ2. Now, the
basic building blocks of cost relations are the so-called cost expressions e which
can be generated using this grammar:

e::= r | nat(l) | e+ e | e ∗ e | er | log(nat(l)) | nnat(l) | max(S)

where r ∈ R+, n ∈ N+, l is a linear expression, S is a non empty set of cost
expressions, nat : Z → N is defined as nat(v)=max({v, 0}), and the base of
the log is 2 (since any other base can be rewritten to 2). Observe that linear
expressions are always wrapped by nat as we explain below.

Example 1. Consider the simple Java method m shown in Fig. 1, which invokes
the auxiliary method g, where x is a linked list of boolean values implemented
in the standard way. For this method, the COSTA analyzer outputs the cost
expression C+

m=6+nat(n−i)∗max({21+5∗nat(n−1), 19+5∗nat(n−i)}) as an up-
per bound on the number of bytecode instructions that m executes. Each Java
instruction is compiled to possibly several bytecode instructions, but this is not
relevant to this work. We are assuming that an upper bound on the number of
executed instructions in g is C+

g (a, b)=4+5∗nat(b−a). Observe that the use of

3

static void m(List x, int i, int n){
while (i<n){

if (x.data) {g(i,n); i++;}
else {g(0,i); n=n-1;}
x=x.next;

}}

(1) 〈Cm(i, n) = 3
, ϕ1 = {i ≥ n}〉

(2) 〈Cm(i, n) = 15 + Cg(i, n) + Cm(i′, n)
, ϕ2 = {i < n, i′ = i+ 1}〉

(3) 〈Cm(i, n) = 17 + Cg(0, i) + Cm(i, n′)
, ϕ3 = {i < n, , n′ = n− 1}〉

Fig. 1. Java method and CR.

nat is required in order to avoid incorrectly evaluating upper bounds to negative
values. When i ≥ n, the cost associated to the recursive cases has to be nulled
out, this effect is achieved with nat(n−i) since it will evaluate to 0. 2

W.l.o.g., we formalize our mechanism by assuming that all recursions are direct
(i.e., all cycles are of length one). Direct recursion can be automatically achieved
by applying Partial Evaluation [11] (see [1] for the technical details).

Definition 1 (Cost Relation). A cost relation system S is a set of equations

of the form 〈C(x̄) = e +
∑k

i=1Di(ȳi), ϕ〉 with k ≥ 0, where C and Di are
cost relation symbols, all variables x̄ and ȳi are distinct variables; e is a cost
expression; and ϕ is a set of linear constraints over x̄ ∪ vars(e)

⋃k
i=1 ȳi.

Example 2. The cost relation (CR for short) associated to method m is shown
in Fig. 1 (right). The relations Cm and Cg capture, respectively, the costs of
the methods m and g. Intuitively, in CRs, variables represent the sizes of the
corresponding data structures in the program and in the case of integer variables
they represent their integer value. Eq. 1 is a base case and captures the case where
the loop body is not executed. It can be observed that we have two recursive
equations (Eq. 2 and Eq. 3) which capture the respective costs of the then and
else branches within the while loop. As the list x has been abstracted to its
length, the values of x.data are not visible in the CR and the two equations have
the same (incomplete) guard, which results in a non-deterministic CR. Also,
variables which do not affect the cost (e.g., x) do not appear in the CR. How to
automatically obtain a CR from a program is the subject of the first phase of
cost analysis as described in Sec. 1. More details can be found in [2,8,14,15]. 2

2.2 Non-Asymptotic Upper-Bounds

We now describe the approach of [1] to infer the upper bound of Ex. 1 from
the equations in Ex. 2. It starts by computing upper bounds for CRs which
do not depend on any other CRs, referred to as standalone cost relations, and
continues by replacing the computed upper bounds on the equations which call
such relations. For instance, after computing the upper bound for g shown in
Ex. 1, the cost relation in Ex. 2 becomes standalone:

(1) 〈Cm(i, n) = 3 , ϕ1 = {i ≥ n}〉
(2) 〈Cm(i, n) = 15 + nat(n− i) +Cm(i′, n) , ϕ2 = {i < n, i′ = i+ 1}〉

4

(3) 〈Cm(i, n) = 17 + nat(i) +Cm(i, n′) , ϕ3 = {i < n, n′ = n− 1}〉
Given a standalone CR made up of nb base cases of the form 〈C(x̄)=basej , ϕj〉,
1≤j≤nb and nr recursive equations of the form, 〈C(x̄)=recj+

∑kj

i=1 C(ȳi), ϕj〉,
1≤j≤nr , an upper bound can be computed as:

(∗) C(x̄)+ = Ib ∗worst({base1 , . . . , basenb}) + Ir ∗ worst({rec1 , . . . , recnr})
where Ib and Ir are, respectively, upper bounds of the number of visits to the
base cases and recursive equations and worst({Set}) denotes the worst-case (the
maximum) value that the expressions in Set can take. Below, we describe the
method in [1] to approximate the above upper bound.

Bounds on the Number of Application of Equations. The first dimension
of the problem is to bound the maximum number of times an equation can be
applied. This can be done by examining the structure of the CR (i.e., the number
of explicit recursive calls in the equations), together with how the values of the
arguments change when calling recursively (i.e., the linear constraints).

We first explain the problem for equations that have at most one recursive
call in their bodies. In the above CR, when calling Cm recursively in (2), the first
argument i of Cm increases by 1 and in (3) the second argument n decreases by
1. Now suppose that we define a function f(a, b) = b− a. Then, we can observe
that ϕ2 |= f(i, n) > f(i′, n)∧f(i, n) ≥ 0 and ϕ3 |= f(i, n) > f(i, n′)∧f(i, n) ≥ 0,
i.e, for both equations we can guarantee that they will not be applied more than
nat(f(i0, n0)) = nat(n0 − i0) times, where i0 and n0 are the initial values for
the two variables. Functions such as f are usually called ranking functions [13].
Given a cost relation C(x̄), we denote by fC(x̄) a ranking function for all loops
in C. Now, consider that we add an equation that contains two recursive calls:

(4) 〈Cm(i, n) = Cm(i, n′) + Cm(i, n′) , ϕ4 = {i < n, n′ = n− 1}〉
then the recursive equations would be applied in the worst-case Ir = 2nat(n−i)−1
times, which in this paper, we simplify to Ir = 2nat(n−i) to avoid having negative
constants that do not add any technical problem to asymptotic analysis. This
is because each call generates 2 recursive calls, and in each call the argument
n decreases at least by 1. In addition, unlike the above examples, the base-
case equation would be applied in the worst-case an exponential number of
times. In general, a CR may include several base-case and recursive equations
whose guards, as shown in the example, are not necessarily mutually exclusive,
which means that at each evaluation step there are several equations that can
be applied. Thus, the worst-case of applications is determined by the fourth
equation, which has two recursive calls, while the worst cost of each application
will be determined by the first equation, which contributes the largest direct
cost. In summary, the bounds on the number of application of equations are
computed as follows:

Ir =

{
nrnat(fC(x̄)) if nr > 1
nat(fC(x̄)) otherwise

Ib =

{
nrnat(fC(x̄)) if nr > 1
1 otherwise

where nr is the maximum number of recursive calls which appear in a single
equation. A fundamental point to note is that the (linear) combination of vari-
ables which approximates the number of iterations of loops is wrapped by nat.

5

This will influence our definition of asymptotic complexity. In logarithmic cases,
we can further refine the ranking function and obtain a tighter upper bound. If
each recursive equation satisfies ϕj |=fC(x̄)≥k∗fC(ȳi), 1≤i≤nr , where k>1 is a
constant, then we can infer that Ir is bounded by ⌈logk(nat(fC(x̄))+1)⌉, as each
time the value of the ranking function decreases by k. For instance, if we replace
ϕ2 by ϕ′

2={i<n, i′=i∗2} and ϕ3 by ϕ′
3={i<n, n′=n/2} (and remove equation 4)

then the method of [1] would infer that Ir is bound by ⌈logk(nat(n−i)+1)⌉.
Bounds on the Worst Cost of Equations. As it can be observed in the above
example, in each application the corresponding equation might contribute a non-
constant number of cost units. Therefore, it is not trivial to compute the worst-
case (the maximum) value of all of them. In order to infer the maximum value
of such expressions automatically, [1] proposes to first infer invariants (linear
relations) between the equation’s variables and the initial values. For example,
the cost relation Cm(i, n) admits as invariant for the recursive equations the
formula I defined as I((i0, n0), (i, n)) ≡ i ≥ i0 ∧ n ≤ n0 ∧ i < n, which captures
that the values of i (resp. n) are greater (resp. smaller) or equal than the initial
value and that i is smaller than n at all iterations. Once we have the invariant,
we can maximize the expressions w.r.t. these values and take the maximal:

worst({rec1 , . . . , recnr}) = max(maximize(I, {rec1 , . . . , recnr}))
The operator maximize receives an invariant I and a set of expressions to be
maximized and computes the maximal value of each expression independently
and returns the corresponding set of maximized expressions in terms of the initial
values (see [1] for the technical details). For instance, in the original CR (without
Eq. (4)), we compute worst({rec1 , rec2})=max(maximize(I, {nat(n−i), nat(i)}))
which results in worst({rec1 , rec2}) = max({nat(n0 − i0), nat(n0−1)}). The same
procedure can be applied to the expressions in the base cases. However, it is un-
necessary in our example, because the base case is a constant and therefore re-
quires no maximization. Altogether, by applying Equation (*) to the standalone
CR above we obtain the upper bounds shown in Ex. 1.

Inter-Procedural. In the above examples, all CRs are standalone and do not
call any other equations. In the general case, a cost relation can contain k calls to
external relations and n recursive calls: 〈C(x̄) = e+

∑k
i=1Di(ȳi)+

∑n
j=1 C(z̄j), ϕ〉

with k ≥ 0. After computing the upper bounds D+
i (ȳi) for the standalone CRs,

we replace the computed upper bounds on the equations which call such rela-
tions, i.e., 〈C(x̄) = e+

∑k
i=1D

+
i (ȳi) +

∑n
j=1 C(z̄j), ϕ〉.

3 Asymptotic Notation for Cost Expressions

We now present extended versions of the standard definition of the asymptotic
notations big O and big Theta, which handle functions with multiple input ar-
guments, i.e., functions of the form Nn 7→ R+.

Definition 2 (big O, big Theta). Given two functions f, g : Nn 7→ R+, we
say that f ∈ O(g) iff there is a real constant c > 0 and a natural constant m ≥ 1

6

such that, for any v̄ ∈ Nn such that vi ≥ m, it holds that f(v̄) ≤ c ∗ g(v̄).
Similarly, f ∈ Θ(g) iff there are real constants c1 > 0 and c2 > 0 and a natural
constant m ≥ 1 such that, for any v̄ ∈ Nn such that vi ≥ m, it holds that
c1 ∗ g(v̄) ≤ f(v̄) ≤ c2 ∗ g(v̄).
The big O refers to asymptotic upper bounds and the big Θ to asymptotically
tight estimates, when the asymptotic upper and lower bounds coincide. The
asymptotic notations above assume that the value of the function increases with
the values of the input such that the function, unless it has a constant asymp-
totic order, takes the value ∞ when the input is ∞. This assumption does not
necessarily hold when CRs are obtained from realistic programs. For instance,
consider the loop in Fig. 1. Clearly, the execution cost of the program increases
by increasing the number of iterations of the loop, i.e., n−i, the ranking function.
Therefore, in order to observe the limiting behavior of the program we should
study the case when nat(n− i) goes to ∞, i.e., when, for example, n goes to ∞
and i stays constant, but not when both n and i go to ∞. In order to capture
this asymptotic behaviour, we introduce the notion of nat-free cost expression,
where we transform a cost expression into another one by replacing each nat-
expression with a variable. This guarantees that we can make a consistent usage
of the definition of asymptotic notation since, as intended, after some threshold
m, larger values of the input variables result in larger values of the function.

Definition 3 (nat-free cost expressions). Given a set of cost expression E =
{e1, . . . , en}, the nat-free representation of E, is the set Ẽ = {ẽ1, . . . , ẽn} which
is obtained from E in four steps:

1. Each nat-expression nat(a1x1 + · · · + anxn + c) ∈ E which appears as an
exponent is replaced by nat(a1x1 + · · ·+ anxn);

2. The rest of nat-expressions nat(a1x1 + · · · + anxn + c) ∈ E are replaced by
nat(a1

b x1 + · · · + an

b xn), where b is the greatest common divisor (gcd) of
|a1|, . . . , |an|, and | · | stands for the absolute value;

3. We introduce a fresh (upper-case) variable per syntactically different nat-
expression.

4. We replace each nat-expression by its corresponding variable.

Cases 1 and 2 above have to be handled separately because if nat(a1x1+ · · ·
+anxn+c) is an exponent, we can remove the c, but we cannot change the
values of any ai. E.g., 2

nat(2x+1) 6∈O(2nat(x)). This is because 4x 6∈O(2x). Hence, we
cannot simplify 2nat(2x) to 2nat(x). In the case that nat(a1x1+ · · ·+anxn+c) does
not appear as an exponent, we can remove c and normalize all ai by dividing them
by the gcd of their absolute values. This allows reducing the number of variables
which are needed for representing the nat-expressions. It is done by using just
one variable for all nat expressions whose linear expressions are parallel and grow
in the same direction. Note that removing the independent term plus dividing all
constants by the gcd of their absolute values provides a canonical representation
for linear expressions. They satisfy this property iff their canonical representation
is the same. This allows transforming both nat(2x+3) and nat(3x+5) to nat(x),
and nat(2x+4y) and nat(3x+6y) to nat(x+2y).

7

Example 3. Given the following cost function:
5+7∗nat(3x+ 1)∗max({100∗nat(x)2∗nat(y)4, 11∗3nat(y−1)∗nat(x+ 5)2})+
2∗ log(nat(x+ 2))∗2nat(y−3)∗ log(nat(y + 4))∗nat(2x−2y)

Its nat-free representation is:
5+7 ∗A∗max({100 ∗A2∗B4, 11 ∗ 3B∗A2})+2∗ log(A)∗2B∗ log(B)∗C

where A corresponds to nat(x), B to nat(y) and C to nat(x−y). 2

Definition 4. Given two cost expressions e1, e2 and its nat-free correspondence
ẽ1, ẽ2, we say that e1∈O(e2) (resp. e1∈Θ(e2)) if ẽ1∈O(ẽ2) (resp. ẽ1∈Θ(ẽ2)).

The above definition lifts Def. 2 to the case of cost expressions. Basically, it states
that in order to decide the asymptotic relations between two cost expressions, we
should check the asymptotic relation of their corresponding nat-free expressions.
Note that by obtaining their nat-free expressions simultaneously we guarantee
that the same variables are syntactically used for the same linear expressions.

In some cases, a cost expression might come with a set of constraints which
specifies a class of input values for which the given cost expression is a valid
bound. We refer to such set as context constraint. For example, the cost ex-
pression of Ex. 3 might have ϕ={x≥y, x≥0, y≥0} as context constraint, which
specifies that it is valid only for non-negative values which satisfy x≥y. The
context constraint can be provided by the user as an input to cost analysis, or
collected from the program during the analysis.

The information in the context constraint ϕ associated to the cost expression
can sometimes be used to check whether some nat-expressions are guaranteed
to be asymptotically larger than others. For example, if the context constraint
states that x ≥ y, then when both nat(x) and nat(y) grow to the infinite we have
that nat(x) asymptotically subsumes nat(y), this information might be useful
in order to obtain more precise asymptotic bounds. In what follows, given two
nat-expressions (represented by their corresponding nat-variables A and B), we
say that ϕ|=A � B if A asymptotically subsumes B when both go to ∞.

4 Asymptotic Orders of Cost Expressions

As it is well-known, by using Θ we can partition the set of all functions defined
over the same domain into asymptotic orders. Each of these orders has an infinite
number of members. Therefore, to accomplish the motivations in Sect. 1 it is
required to use one of the elements with simpler syntactic form. Finding a good
representative of an asymptotic order becomes a complex problem when we deal
with functions made up of non-linear expressions, exponentials, polynomials, and
logarithms, possibly involving several variables and associated constraints. For
example, given the cost expression of Ex. 3, we want to automatically infer the
asymptotic order “3nat(y) ∗ nat(x)3”.

Apart from simple optimizations which remove constants and normalize ex-
pressions by removing parenthesis, it is essential to remove redundancies, i.e.,
subexpressions which are asymptotically subsumed by others, for the final ex-
pression to be as small as possible. This requires effectively comparing subexpres-
sions of different lengths and possible containing multiple complexity orders. In

8

this section, we present the basic definitions and a mechanism for transforming
non-asymptotic cost expressions into non-redundant expressions while preserv-
ing the asymptotic order. Note that this mechanism can be used to transform
the output of any cost analyzer into an non-redundant, asymptotically equiv-
alent one. To the best of our knowledge, this is the first attempt to do this
process in a fully automatic way. Given a cost expression e, the transformations
are applied on its ẽ representation, and only afterwards we substitute back the
nat-expressions, in order to obtain an asymptotic order of e, as defined in Def. 4.

4.1 Syntactic Simplifications on Cost Expressions

First, we perform some syntactic simplifications to enable the subsequent steps
of the transformation. Given a nat-free cost expression ẽ, we describe how to
simplify it and obtain another nat-free cost expression ẽ ′ such that ẽ ∈ Θ(ẽ ′).
In what follows, we assume that ẽ is not simply a constant or an arithmetic
expression that evaluates to a constant, since otherwise we simply have ẽ ∈ O(1).
The first step is to transform ẽ by removing constants and max expressions, as
described in the following definition.

Definition 5. Given a nat-free cost expression ẽ, we denote by τ(ẽ) the cost
expression that results from ẽ by: (1) removing all constants; and (2) replacing
each subexpression max({ẽ1, . . . , ẽm}) by (ẽ1 + . . .+ ẽm).

Example 4. Applying the above transformation on the nat-free cost expression
of Ex. 3 results in: τ(ẽ)=A∗(A2∗B4 + 3B∗A2)+ log(A)∗2B∗ log(B)∗C. 2

Lemma 1. ẽ ∈ Θ(τ(ẽ))

Once the τ transformation has been applied, we aim at a further simplification
which safely removes sub-expressions which are asymptotically subsumed by
other sub-expressions. In order to do so, we first transform a given cost expres-
sion into a normal form (i.e., a sum of products) as described in the following
definition, where we use basic nat-free cost expression to refer to expressions of
the form 2r∗A, Ar, or log(A), where r is a real number. Observe that, w.l.o.g.,
we assume that exponentials are always in base 2. This is because an expression
nA where n > 2 can be rewritten as 2log(n)∗A.

Definition 6 (normalized nat-free cost expression). A normalized nat-free
cost expression is of the form Σn

i=1Π
mi
j=1bij such that each bij is a basic nat-free

cost expression.

Since b1 ∗b2 and b2 ∗b1 are equal, it is convenient to view a product as the multi-
set of its elements (i.e., basic nat-free cost expressions). We use the letter M to
denote such multi-set. Also, sinceM1+M2 andM2+M1 are equal, it is convenient
to view the sum as the multi-set of its elements, i.e., products (represented as
multi-sets). Therefore, a normalized cost expression is a multi-set of multi-sets
of basic cost expressions. In order to normalize a nat-free cost expression τ(ẽ) we
will repeatedly apply the distributive property of multiplication over addition in
order to get rid of all parenthesis in the expression.

9

Example 5. The normalized expression for τ(ẽ) of Ex. 4 isA3∗B4+2log(3)∗B∗A3+
log(A)∗2B∗ log(B)∗C and its multi-set representation is {{A3, B4}, {2log(3)∗B , A3},
{log(A), 2B , log(B), C}} 2

4.2 Asymptotic Subsumption

Given a normalized nat-free cost expression ẽ = {M1, . . . ,Mn} and a context
constraint ϕ, we want to remove from ẽ any product Mi which is asymptoti-
cally subsumed by another product Mj , i.e., if Mj ∈ Θ(Mj +Mi). Note that
this is guaranteed by Mi ∈ O(Mj). The remaining of this section defines a deci-
sion procedure for deciding if Mi ∈ O(Mj). First, we define several asymptotic
subsumption templates for which it is easy to verify that a single basic nat-free
cost expression b subsumes a complete product. In the following definition, we
use the auxiliary functions pow and deg of basic nat-free cost expressions which
are defined as: pow(2r∗A) = r, pow(Ar) = 0, pow(log(A)) = 0, deg(Ar) = r,
deg(2r∗A) = ∞, and deg(log(A)) = 0. In a first step, we focus on basic nat-free
cost expression b with one variable and define when it asymptotically subsumes a
set of basic nat-free cost expressions (i.e., a product). The product might involve
several variables but they must be subsumed by the variable in b.

Lemma 2 (asymptotic subsumption). Let b be a basic nat-free cost expres-
sion, M = {b1, · · · , bm} a product, ϕ a context constraint, vars(b) = {A}
and vars(bi) = {Ai}. We say that M is asymptotically subsumed by b, i.e.,
ϕ |= M ∈ O(b) if for all 1 ≤ i ≤ m it holds that ϕ |= A � Ai and one of the
following holds:

1. if b = 2r∗A, then
(a) r > Σm

i=1pow(bi); or
(b) r ≥ Σm

i=1pow(bi) and every bi is of the form 2ri∗Ai ;
2. if b = Ar, then

(a) there is no bi of the form log(Ai), then r ≥ Σm
i=1deg(bi); or

(b) there is at least one bi of the form log(Ai), and r ≥ 1 +Σm
i=1deg(bi)

3. if b = log(A), then m = 1 and b1 = log(A1)

Let us intuitively explain the lemma. For exponentials, in point 1a, we capture
cases such as 3A = 2log(3)∗A asymptotically subsumes 2A ∗A2 ∗ . . .∗ log(A) where
in “. . .” we might have any number of polynomial or logarithmic expressions. In
1b, we ensure that 3A does not embed 3A ∗ A2 ∗ log(A), i.e., if the power is the
same, then we cannot have additional expressions. For polynomials, 2a captures
that the largest degree is the upper bound. Note that an exponential would
introduce an ∞ degree. In 2b, we express that there can be many logarithms
and still the maximal polynomial is the upper bound, e.g., A2 subsumes A ∗
log(A)∗ log(A)∗ . . .∗ log(A). In 3, a logarithm only subsumes another logarithm.

Example 6. Let b = A3, M = {log(A), log(B), C}, where A, B and C corre-
sponds to nat(x), nat(y) and nat(x−y) respectively. Let us assume that the con-
text constraint is ϕ = {x ≥ y, x ≥ 0, y ≥ 0}. M is asymptotically subsumed by
b since ϕ |= (A � B) ∧ (A � C), and condition 2b in Lemma 2 holds. 2

10

The basic idea now is that, when we want to check the subsumption relation
on two expression M1 and M2 we look for a partition of M2 such that we can
prove the subsumption relation of each element in the partition by a different
basic nat-free cost expression in M1. Note that M1 can contain additional basic
nat-free cost expressions which are not needed for subsuming M2.

Lemma 3. Let M1 and M2 be two products, and ϕ a context constraint. If there
exists a partition of M2 into k sets P1, . . . , Pk, and k distinct basic nat-free cost
expressions b1, . . . , bk ∈M1 such that Pi ∈ O(bi), then M2 ∈ O(M1).

Example 7. Let M1 = {2log(3)∗B , A3} and M2 = {log(A), 2B , log(B), C}, with
the context constraint ϕ as defined in Ex. 6. If we take b1 = 2log(3)∗A, b2 = A3,
and partition M2 into P1 = {2B}, P2 = {log(A), log(B), C} then we have that
P1 ∈ O(b1) and P2 ∈ O(b2). Therefore, by Lemma 3, M2 ∈ O(M1). Also, for
M ′

2 = {A3, B4} we can partition it into P ′
1 = {B4} and P ′

2 = {A3} such that
P ′
1 ∈ O(b1) and P

′
2 ∈ O(b2) and therefore we also have that M ′

2 ∈ O(M1). 2

Definition 7 (asymp). Given a cost expression e, the overall transformation
asymp takes e and returns the cost expression that results from removing all
subsumed products from the normalized expression of τ(ẽ), and then replace each
nat-variable by the corresponding nat-expression.

Example 8. Consider the normalized cost expression of Ex. 5. The first and
third products can be removed, since they are subsumed by the second one, as
explained in Ex. 7. Then asymp(e) would be 2log(3)∗nat(y) ∗ nat(x)3 = 3nat(y) ∗
nat(x)3, and it holds that e ∈ Θ(asymp(e)). 2

In the following theorem, we ensure that after eliminating the asymptotically
subsumed products, we preserve the asymptotic order.

Theorem 1 (soundness). Given a cost expression e and a context constraint
ϕ, then ϕ |= e ∈ Θ(asymp(e)).

4.3 Implementation in COSTA

We have implemented our transformation and it can be used as a back-end
of existing non-asymptotic cost analyzers for average, lower and upper bounds
(e.g., [9,2,12,5,7]), and regardless of whether it is based on the approach to
cost analysis of [15] or any other. We plan to distribute it as free software soon.
Currently, it can be tried out through a web interface available from the COSTA
web site: http://costa.ls.fi.upm.es. COSTA is an abstract interpretation-
based COSt and Termination Analyzer for Java bytecode which receives as input
a bytecode program and (a choice of) a resource of interest, and tries to obtain
an upper bound of the resource consumption of the program.

In our first experiment, we use our implementation to obtain asymptotic
forms of the upper bounds on the memory consumption obtained by [4] for the
JOlden suite [10]. This benchmark suite was first used by [6] in the context of

11

memory usage verification and is becoming a standard to evaluate memory usage
analysis [5,4]. None of the previous approaches computes asymptotic bounds. We
are able to obtain accurate asymptotic forms for all benchmarks in the suite and
the transformation time is negligible (less than 0.1 milliseconds in all cases). As
a simple example, for the benchmark em3d, the non-asymptotic upper bound
is 8∗nat(d−1)∗nat(b)+8∗nat(d)+8∗nat(b) +56∗nat(d−1)+16∗nat(c) +73 and we
transform it to nat(d)∗nat(b)+nat(c). The remaining examples can be tried online
in the above url.

5 Generation of Asymptotic Upper Bounds

In this section we study how to perform a tighter integration of the asymptotic
transformation presented Sec. 4 within resource usage analyses which follow the
classical approach to static cost analysis by Wegbreit [15]. To do this, we reformu-
late the process of inferring upper bounds sketched in Sect. 2.2 to work directly
with asymptotic functions at all possible (intermediate) stages. The motivation
for doing so is to reduce the huge amount of memory required for constructing
non-asymptotic bounds and, in the limit, to be able to infer asymptotic bounds
in cases where their non-asymptotic forms cannot be computed.

Asymptotic CRS. The first step in this process is to transform cost relations
into asymptotic form before proceeding to infer upper bounds for them. As be-
fore, we start by considering standalone cost relations. Given an equation of the
form 〈C(x̄)=e+∑k

i=1 C(ȳi), ϕ〉 with k ≥ 0, its associated asymptotic equation

is 〈CA(x̄)=asymp(e)+
∑k

i=1 CA(ȳi), ϕ〉. Given a cost relation C, its asymptotic
cost relation CA is obtained by applying the above transformation to all its equa-
tions. Applying the transformation at this level is interesting in order to simplify
both the process of computing the worst case cost of the recursive equations and
the base cases when computing Eq. (∗) as defined in Sect. 2.2.

Example 9. Consider the following CR:
〈C(a, b) = nat(a+ 1)2 , {a≥0, b≥0}〉
〈C(a, b) = nat(a−b)+ log(nat(a−b))+C(a′, b′) , {a≥0, b≥0, a′=a−2, b′=b+1}〉
〈C(a, b) = 2nat(a+b)+nat(a)∗ log(nat(a))+C(a′, b′) , {a≥0, b≥0, a′=a+1, b′=b−1}〉

By replacing the underlined expressions by their corresponding asymp expres-
sions as explained in Theorem 1, we obtain the asymptotic relation:

〈CA(a, b) = nat(a)2 , {a≥0, b≥0}〉
〈CA(a, b) = nat(a−b)+CA(a

′, b′) , {a≥0, b≥0, a′=a−2, b′=b+1}〉
〈CA(a, b) = 2nat(a+b)+CA(a

′, b′) , {a≥0, b≥0, a′=a+1, b′=b−1}〉
In addition to reducing their sizes, the process of maximizing the nat expressions
is more efficient since there are fewer nat expressions in the asymptotic CR. 2

An important point to note is that, while we can remove all constants from e, it
is essential that we keep the constants in the size relations ϕ to ensure soundness.
This is because they are used to infer the ranking functions and to compute the

12

invariants, and removing such constants might introduce imprecision and more
important soundness problems as we explain in the following examples.

Example 10. The above relation admits a ranking function f(a, b)=nat(2a +
3b+1) which is used to bound the number of applications of the recursive equa-
tions. Clearly, if we remove the constants in the size relations, e.g., transform
a′=a−2 into a′=a, the resulting relation is non-terminating and we cannot find
a ranking function. Besides, removing constants from constraints which are not
necessarily related to the ranking function also might result in incorrect invari-
ants. For example, changing n′=n+1 to n′=n in the following equation:

〈C(m,n) = nat(n) + C(m′, n′) , {m>0,m′<m,n′=n+1}〉
would result in an invariant which states that the value of n is always equal to the
initial value n0, which in turn leads to the upper-bound nat(m0)∗nat(n0) which
is clearly incorrect. A possible correct upper-bound is nat(m0)∗nat(n0 + m0)
which captures that the value of nat(n) increases up to nat(n0+m0). 2

Asymptotic Upper Bounds. Once the standalone CR is put into asymptotic
form, we proceed to infer an upper bound for it as in the case of non-asymptotic
CRs and then we apply the transformation to the result. Let CA(x̄) be an asymp-
totic cost relation. Let C+

A (x̄) be its upper bound computed as defined in Eq. (∗).
Its asymptotic upper bound is C+

asymp(x̄) = asymp(C+
A (x̄)). Observe that we are

computing C+
A (x̄) in a non-asymptotic fashion, i.e., we do not apply asymp to

each Ib, Ir, worst in (∗), but only to the result of combining all elements. We
could apply asymp to the individual elements and then to the result of their
combination again. In practice, it almost makes no difference as this operation
is really inexpensive.

Example 11. Consider the second CR of Ex. 9. The analyzer infers the invariant
I = {0≤a≤a0, 0≤b≤b0, a≥0, b≥0}, from which we maximize nat(a)2 to nat(a0)

2,
nat(a−b) to nat(a0) (since the maximal value occurs when b becomes 0), and
2nat(a+b) to 2nat(a0+b0). The number of applications of the recursive equations is
nat(2a0+3b0+1) (see Ex. 10). By applying Eq. (∗), we obtain the upper bound:
C+

A (a, b) = nat(2a+3b+1) ∗ max({nat(a), 2nat(a+b)}) + nat(a)2. Applying asymp

to the above upper bound results in: C+
asymp(a, b) = 2nat(a+b) ∗ nat(2a+ 3b). 2

Inter-procedural. The practical impact of integrating the asymptotic trans-
formation within the solving method comes when we consider relations with
calls to external relations and compose their asymptotic results. This is because,
when the number of calls and equations grow, the fact that we manipulate more
compact asymptotic expressions is fundamental to enable the scalability of the
system. Consider a cost relation with k calls to external relations and n recursive
calls: 〈C(x̄)=e+∑k

i=1Di(ȳi)+
∑n

j=1 C(z̄j), ϕ〉 with k ≥ 0. Let D+
iasymp

(ȳi) be the

asymptotic upper bound for Di(ȳi). C
+
asymp(x̄) is the asymptotic upper bound

of the standalone relation 〈C(x̄)=e+∑k
i=1D

+
iasymp

(ȳi)+
∑n

j=1 C(z̄j), ϕ〉.

Theorem 2 (soundness). C+(x̄) ∈ O(C+
asymp(x̄)).

13

Bench. Tub Taub Sizeub Sizeaub #Eq Sizeub
#Eq

Sizeaub
#Eq

Sizeub
Sizeaub

BST 0 0 23 4 31 0.74 0.13 5.75

Fibonacci 0 0 47 9 39 1.21 0.23 5.22

Hanoi 0 0 67 14 48 1.39 0.29 4.78

MatMult 0 0 152 38 67 2.27 0.56 4.00

Delete 0 4 320 65 100 3.20 0.65 4.92

FactSum 4 4 717 95 117 6.12 0.81 7.54

SelectOrd 0 4 1447 155 136 10.63 1.14 9.33

ListInter 4 16 3804 257 173 21.98 1.48 14.80

EvenDigits 4 20 7631 400 191 39.95 2.09 19.07

Cons 12 32 15268 585 214 71.34 2.73 26.09

Power 24 40 24265 588 223 108.81 2.63 41.26

MergeList 96 60 48536 828 245 198.10 3.37 58.61

ListRev 140 76 48545 829 254 191.12 3.26 58.55

Incr × 112 × 1126 282 × 3.99 ×
Concat × 164 × 1538 296 × 5.19 ×
ArrayRev × 232 × 2127 305 × 6.97 ×
Factorial × 284 × 2130 314 × 6.78 ×
DivByTwo × 328 × 2135 323 × 6.60 ×
Polynomial × 436 × 2971 346 × 8.58 ×
MergeSort × 440 × 3234 385 × 8.40 ×

Table 1. Scalability of asymptotic cost expressions

Note that the soundness theorem, unlike Th. 1, guarantees only that the asymp-
totic expression is O and not Θ. Let us show an example.

Example 12. Consider ub=nat(a−b+1)∗2nat(c)+5 and asymp(ub)=nat(a−b)∗2nat(c).
Plugging ub in a context where b=a+1 results in 5 (since then nat(a−b+1)=0).
Plugging asymp(ub) in the same context results in 2nat(c) which is clearly less
precise. 2

Intuitively, the source of the loss of precision is that, when we compute the
asymptotic upper bound, we are looking at the cost in the limiting behavior
only and we might miss a particular point in which such cost becomes zero. In
our experience, this does not happen often and it could be easily checked before
plugging in the asymptotic result, replacing the upper bound by zero.

5.1 Experimental Results on Scalability

In this section, we aim at studying how the size of cost expressions (non-
asymptotic vs. asymptotic) increases when larger CRs are used, i.e., the scal-
ability of our approach. To do so, we have used the benchmarks of [1] shown
in Table 1. These benchmarks are interesting because they cover the different
complexity order classes, as it can be seen, the benchmarks range from constant

14

to exponential complexity, including polynomial and divide and conquer. The
source code of such programs is also available at the COSTA web site.

As in [1], in order to assess the scalability of the approach, we have connected
together the CRs for the different benchmarks by introducing a call from each
CR to the one appearing immediately above it in the table. Such call is always
introduced in a recursive equation. Column #Eq shows the number of equations
in the corresponding benchmarks. Reading this column top-down, we can see that
when we analyze BST we have 31 equations. Then, for Fibonacci, the number
of equations is 39, i.e., its 8 equations plus the 31 which have been previously
accumulated. Progressively, each benchmark adds its own number of equations
to the one above. Thus, in the last row we have a CR with all the equations
connected, i.e., we compute an upper bound of a CR with at least 20 nested
loops and 385 equations.

Columns Tub and Taub show, respectively, the times of composing the non-
asymptotic and asymptotic bounds, after discarding the time common part for
both, i.e., computing the ranking functions and the invariants. It can be observed
that the times are negligible from BST to EvenDigits, which are the simplest
benchmarks and also have few equations. The interesting point is that when cost
expressions start to be considerably large, Tub grows significantly, while Taub

remains small. This is explained by the sizes of the expressions they handle, as
we describe below. For the columns that contain “×”, COSTA has not been
able to compute a non-asymptotic upper bound because the underlying Prolog
process has run out of memory.

Columns Sizeub and Sizeaub show, respectively, the sizes of the computed
non-asymptotic and asymptotic upper bounds. This is done by regarding the
upper bound expression as a tree and counting its number of nodes, i.e., each
operator and each operand is counted as one. As for the time, the sizes are quite
small for the simplest benchmarks, and they start to increase from SelectOrd.
Note that for these examples, the size of the non-asymptotic upper bounds is sig-
nificantly larger than the asymptotic. Columns Sizeub

#Eq and Sizeaub

#Eq show, resp., the
size of the non-asymptotic and asymptotic bounds per equation. The important
point is that while this ratio seems to grow exponentially for non-asymptotic up-
per bounds, Sizeaub

#Eq grows much more slowly. We believe that this demonstrates
that our approach is scalable, even if the implementation is still preliminary.

6 Conclusions and Future Work

We have presented a general asymptotic resource usage analysis which can be
combined with existing non-asymptotic analyzers by simply adding our trans-
formation as a back-end or, interestingly, integrated into the mechanism for
obtaining upper bounds of recurrence relations. This task has been traditionally
done manually in the context of complexity analysis. When it comes to apply it
to an automatic analyzer for a real-life language, there is a need to develop the
techniques to infer asymptotic bounds in a precise and effective way. To the best
of our knowledge, our work is the first one which presents a generic and fully

15

automatic approach. In future work, we plan to adapt our general framework to
infer asymptotic lower-bounds on the cost and also to integrate our work into a
proof-carrying code infrastructure.

Acknowledgments. This work was funded in part by the Information Soci-
ety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-231620 HATS project, by the MEC under the TIN-
2008-05624 DOVES and HI2008-0153 (Acción Integrada) projects, by the UCM-
BSCH-GR58/08-910502 (GPD-UCM) , and the CAM under the S-0505/TIC/0407
PROMESAS project.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper
Bounds for Recurrence Relations in Cost Analysis. In 15th International Sym-
posium on Static Analysis (SAS’08), volume 5079 of Lecture Notes in Computer
Science. Springer, 2008.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In ESOP, volume 4421 of LNCS, pages 157–172. Springer, 2007.

3. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In
FMCO’07, number 5382 in LNCS, pages 113–133. Springer, 2008.

4. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis for
Languages with Garbage Collection. In ISMM. ACM Press, 2009.

5. V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Parametric Predic-
tion of Heap Memory Requirements. In ISMM. ACM Press, 2008.

6. W.-N. Chin, H. H. Nguyen, S. Qin, and M. C. Rinard. Memory Usage Verification
for OO Programs. In Proc. of SAS’05, volume 3672 of LNCS, pages 70–86, 2005.

7. W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory Resource
Bounds for Low-Level Programs. In ISMM. ACM Press, 2008.

8. S. K. Debray and N. W. Lin. Cost analysis of logic programs. ACM TOPLAS,
15(5):826–875, November 1993.

9. S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and Efficient Static
Estimation of Program Computational Complexity. In POPL, pages 127–139.
ACM, 2009.

10. JOlden Suite Collection. http://www-ali.cs.umass.edu/DaCapo/benchmarks.html.
11. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-

gram Generation. Prentice Hall, New York, 1993.
12. J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Resource Usage

Bounds Analysis for Java Bytecode. In BYTECODE. Elsevier, 2009.
13. A. Podelski and A. Rybalchenko. A Complete Method for the Synthesis of Linear

Ranking Functions. In 5th International Conference on Verification, Model Check-
ing and Abstract Interpretation (VMCAI’04), Lecture Notes in Computer Science,
pages 239–251. Springer, 2004.

14. D. Sands. Complexity Analysis for a Lazy Higher-Order Language. In ESOP’00,
volume 432 of LNCS, pages 361–376. Springer, 1990.

15. B. Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9),
1975.

16

Appendix D

Comparing Cost Functions in Resource
Analysis

The paper “Comparing Cost Functions in Resource Analysis” [6] follows.

117

Comparing Cost Functions in Resource Analysis

E. Albert1, P. Arenas1, S. Genaim1, I. Herraiz1 and G. Puebla2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. Cost functions provide information about the amount of re-
sources required to execute a program in terms of the sizes of input
arguments. They can provide an upper-bound, a lower-bound, or the
average-case cost. Motivated by the existence of a number of automatic
cost analyzers which produce cost functions, we propose an approach for
automatically proving that a cost function is smaller than another one.
In all applications of resource analysis, such as resource-usage verifica-
tion, program synthesis and optimization, etc., it is essential to compare
cost functions. This allows choosing an implementation with smaller cost
or guaranteeing that the given resource-usage bounds are preserved. Un-
fortunately, automatically generated cost functions for realistic programs
tend to be rather intricate, defined by multiple cases, involving non-linear
subexpressions (e.g., exponential, polynomial and logarithmic) and they
can contain multiple variables, possibly related by means of constraints.
Thus, comparing cost functions is far from trivial. Our approach first
syntactically transforms functions into simpler forms and then applies a
number of sufficient conditions which guarantee that a set of expressions
is smaller than another expression. Our preliminary implementation in
the COSTA system indicates that the approach can be useful in practice.

1 Introduction

Cost analysis [12,6] aims at statically predicting the resource consumption of
programs. Given a program, cost analysis produces a cost function which ap-
proximates the resource consumption of the program in terms of the input data
sizes. This approximation can be in the form of an upper-bound, a lower-bound,
or the average-case resource consumption, depending on the particular analysis
and the target application. For instance, upper bounds are required to ensure
that a program can run within the resources available; lower bounds are useful
for scheduling distributed computations. The seminal cost analysis framework
by Wegbreit [12] was already generic on the notion of cost model, e.g., it can be
used to measure different resources, such as the number of instructions executed,
the memory allocated, the number of calls to a certain method, etc. Thus, cost
functions can be used to predict any of such resources.

In all applications of resource analysis, such as resource-usage verification,
program synthesis and optimization, etc., it is necessary to compare cost func-
tions. This allows choosing an implementation with smaller cost or to guarantee
that the given resource-usage bounds are preserved. Essentially, given a method

m, a cost function fm and a set of linear constraints φm which impose size re-
strictions (e.g., that a variable in m is larger than a certain value or that the size
of an array is non zero, etc.), we aim at comparing it with another cost function
bound b and corresponding size constraints φb. Depending on the application,
such functions can be automatically inferred by a resource analyzer (e.g., if we
want to choose between two implementations), one of them can be user-defined
(e.g., in resource usage verification one tries to verify, i.e., prove or disprove,
assertions written by the user about the efficiency of the program).

From a mathematical perspective, the problem of cost function comparison
is analogous to the problem of proving that the difference of both functions is
a decreasing or increasing function, e.g., b − fm ≥ 0 in the context φb ∧ φm.
This is undecidable and also non-trivial, as cost functions involve non-linear
subexpressions (e.g., exponential, polynomial and logarithmic subexpressions)
and they can contain multiple variables possibly related by means of constraints
in φb and φm. In order to develop a practical approach to the comparison of cost
functions, we take advantage of the form that cost functions originating from
the analysis of programs have and of the fact that they evaluate to non-negative
values. Essentially, our technique consists in the following steps:

1. Normalizing cost functions to a form which make them amenable to be syn-
tactically compared, e.g., this step includes transforming them to sums of
products of basic cost expressions.

2. Defining a series of comparison rules for basic cost expressions and their
(approximated) differences, which then allow us to compare two products.

3. Providing sufficient conditions for comparing two sums of products by relying
on the product comparison, and enhancing it with a composite comparison
schema which establishes when a product is larger than a sum of products.

We have implemented our technique in the COSTA system [3], a COSt and
Termination Analyzer for Java bytecode. Our experimental results demonstrate
that our approach works well in practice, it can deal with cost functions obtained
from realistic programs and verifies user-provided upper bounds efficiently.

The rest of the paper is organized as follows. The next section introduces the
notion of cost bound function in a generic way. Sect. 3 presents the problem of
comparing cost functions and relates it to the problem of checking the inclusion
of functions. In Sect. 4, we introduce our approach to prove the inclusion of one
cost function into another. Section 5 describes our implementation and how it
can be used online. In Sect. 6, we conclude by overviewing other approaches and
related work.

2 Cost Functions

Let us introduce some notation. The sets of natural, integer, real, non-zero nat-
ural and non-negative real values are denoted by N, Z, R, N+, and R+, respec-
tively. We write x, y, and z, to denote variables which range over Z. A linear

2

expression has the form v0 + v1x1 + . . . + vnxn, where vi ∈ Z, 0 ≤ i ≤ n. Simi-
larly, a linear constraint (over Z) has the form l1 ≤ l2, where l1 and l2 are linear
expressions. For simplicity we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1, and
l1 < l2 instead of l1+1 ≤ l2. Note that constraints with rational coefficients can
be always transformed into equivalent constraints with integer coefficients, e.g.,
1
2x > y is equivalent to x > 2y. The notation t̄ stands for a sequence of entities
t1, . . . , tn, for some n>0. We write ϕ, φ or ψ, to denote sets of linear constraints
which should be interpreted as the conjunction of each element in the set. An
assignment σ over a tuple of variables x̄ is a mapping from x̄ to Z. We write
σ |= ϕ to denote that σ(ϕ) is satisfiable.

The following definition presents our notion of cost expression, which char-
acterizes syntactically the kind of expressions we deal with.

Definition 1 (cost expression). Cost expressions are symbolic expressions
which can be generated using this grammar:

e::= n | nat(l) | e+ e | e ∗ e | loga(nat(l) + 1) | nat(l)n | anat(l) | max(S)
where n, a ∈ N+ and a ≥ 2, l is a linear expression, S is a non empty set of cost
expressions, nat : Z → N is defined as nat(v)=max({v, 0}). Given an assignment
σ and a basic cost expression e, σ(e) is the result of evaluating e w.r.t. σ.

Observe that linear expressions are always wrapped by nat, as we will explain
below in the example. Logarithmic expressions contain a linear subexpression
plus “1” which ensures that they cannot be evaluated to loga(0). By ignoring
syntactic differences, cost analyzers produce cost expressions in the above form.

It is customary to analyze programs (or methods) w.r.t. some initial context
constraints. Essentially, given a methodm(x̄), the considered context constraints
ϕ describe conditions on the (sizes of) initial values of x̄. With such information, a
cost analyzer outputs a cost function fm(x̄s) = 〈e, ϕ〉 where e is a cost expression
and x̄s denotes the data sizes of x̄. Thus, fm is a function of the input data
sizes that provides bounds on the resource consumption of executing m for any
concrete value of the input data x̄ such that their sizes satisfy ϕ. Note that ϕ is
basically a set of linear constraints over x̄s. We use CF to denote the set of all
possible cost functions. Let us see an example.

Example 1. Figure 1 shows a Java program which we use as running example.
It is interesting because it shows the different complexity orders that can be
obtained by a cost analyzer. We analyze this program using the COSTA system,
and selecting the number of executed bytecode instructions as cost model. Each
Java instruction is compiled to possibly several corresponding bytecode instruc-
tions but, since this is not a concern of this paper, we will skip explanations
about the constants in the upper bound function and refer to [2] for details.

Given the context constraint {n > 0}, the COSTA system outputs the upper
bound cost function for method m which is shown at the bottom of the figure.
Since m contains two recursive calls, the complexity is exponential on n, namely
we have a factor 2nat(n). At each recursive call, the method f is invoked and
its cost (plus a constant value) is multiplied by 2nat(n). In the code of f, we
can observe that the while loop has a logarithmic complexity because the loop

3

void m(int n, int a, int b) {
if (n > 0) {

m(n - 1, a, b);
m(n - 2, a, b);
f(a, b, n);

}
}

void f(int a, int b, int n) {
int acc = 0;
while (n > 0) {

n = n/2; acc++;
}
for (int i = 0; i < a; i++)

for (int j = 0; j < b; j++) acc++;
}

Upper Bound Cost Function

m(n, a, b) = 2nat(n)∗(31+ (8∗ log(1+nat(2∗n−1))︸ ︷︷ ︸
while loop

+ nat(a)∗(10+6∗nat(b)︸ ︷︷ ︸
nested loop

)))

︸ ︷︷ ︸
cost of f︸ ︷︷ ︸

cost of recursive calls

+ 3∗2nat(n)

︸ ︷︷ ︸
base cases

Fig. 1. Running example and upper bound obtained by COSTA on the number
of executed bytecode instructions.

counter is divided by 2 at each iteration. This cost is accumulated with the
cost of the second nested loop, which has a quadratic complexity Finally, the
cost introduced by the base cases of m is exponential since, due to the double
recursion, there is an exponential number of computations which correspond to
base cases. Each such computation requires a maximum of 3 instructions.

The most relevant point in the upper bound is that all variables are wrapped
by nat in order to capture that the corresponding cost becomes zero when the
expression inside the nat takes a negative value. In the case of nat(n), the nat is
redundant since thanks to the context constraint we know that n > 0. However,
it is required for variables a and b since, when they take a negative value, the
corresponding loops are not executed and thus their costs have to become zero
in the formula. Essentially, the use of nat allows having a compact cost function
instead of one defined by multiple cases. Some cost analyzers generate cost func-
tions which contain expressions of the form max({Exp, 0}), which as mentioned
above is equivalent to nat(Exp). We prefer to keep the max operator separate
from the nat operator since that will simplify their handling later. 2

3 Comparison of Cost Functions

In this section, we state the problem of comparing two cost functions represented
as cost expressions. As we have seen in Ex. 1, a cost function 〈e, ϕ〉 for a method
m is a single cost expression which approximates the cost of any possible execu-
tion of m which is consistent with the context constraints ϕ. This can be done
by means of nat subexpressions which encapsulate conditions on the input data
sizes in a single cost expression. Besides, cost functions often contain max sub-

4

expressions, e.g., 〈max({nat(x) ∗ nat(z), nat(y) ∗ nat(z)}), true〉 which represent
the cost of disjunctive branches in the program (e.g., the first sub-expression
might correspond to the cost of a then-branch and the second one the cost of
the else-branch of a conditional statement).

Though nat and max expressions allow building cost expressions in a compact
format, when comparing cost functions it is useful to expand cost expressions into
sets of simpler expressions which altogether have the same semantics. This, on
one hand, allows handling simpler syntactic expressions and, on the other hand,
allows exploiting stronger context constraints. This expansion is performed in
two steps. In the first one we eliminate all max expressions. In the second one we
eliminate all nat expressions. The following definition transforms a cost function
into a set of max-free cost functions which cover all possible costs comprised in
the original function. We write e[a 7→ b] to denote the expression obtained from
e by replacing all occurrences of subexpression a with b.

Definition 2 (max-free operator). Let 〈e, ϕ〉 be a cost function. We define
the max-free operator τmax : 2

CF 7→ 2CF as follows: τmax(M) = (M − {〈e, ϕ〉}) ∪
{〈e[max(S) 7→ e′], ϕ〉, 〈e[max(S) 7→ max(S′), ϕ〉}, where 〈e, ϕ〉 ∈ M contains a
subexpression of the form max(S), e′ ∈ S and S′ = S − {e′}.
In the above definition, each application of τmax takes care of taking out one
element e′ inside a max subexpression by creating two non-deterministic cost
functions, one with the cost of such element e′ and another one with the re-
maining ones. This process is iteratively repeated until the fixed point is reached
and there are no more max subexpressions to be transformed. The result of
this operation is a max-free cost function, denoted by fpmax(M). An important
observation is that the constraints ϕ are not modified in this transformation.

Once we have removed all max-subexpressions, the following step consists in
removing the nat-subexpressions to make two cases explicit. One case in which
the subexpression is positive, hence the nat can be safely removed, and another
one in which it is negative or zero, hence the subexpression becomes zero. As
notation, we use capital letters to denote fresh variables which replace the nat
subexpressions.

Definition 3 (nat-free operator). Let 〈e, ϕ〉 be a max-free cost function. We
define the nat-free operator τnat : 2CF 7→ 2CF as follows: τnat(M) = (M −
{〈e, ϕ〉})∪{〈ei, ϕi〉 | ϕ∧ϕi is satisfiable , 1 ≤ i ≤ 2}, where 〈e, ϕ〉 ∈M contains
a subexpression nat(l), ϕ1 = ϕ ∪ {A = l, A > 0}, ϕ2 = ϕ ∪ {l ≤ 0}, with A a
fresh variable, and e1 = e[nat(l) 7→ A], e2 = e[nat(l) 7→ 0].

In contrast to the max elimination transformation, the elimination of nat subex-
pressions modifies the set of linear constraints by adding the new assignments
of fresh variables to linear expressions and the fact that the subexpression is
greater than zero or when it becomes zero. The above operator τnat is applied
iteratively until there are new terms to transform. The result of this operation
is a nat-free cost function, denoted by fpnat(M). For instance, for the cost func-
tion 〈nat(x) ∗ nat(z−1), {x > 0}〉, fpnat returns the set composed of the following
nat-free cost functions:

5

〈A ∗B, {A = x,A > 0, B = z−1, B > 0}〉 and 〈A ∗ 0, {A = x,A > 0, z−1 ≤ 0}〉
In the following, given a cost function f , we denote by τ(f) the set fpnat(fpmax({f}))
and we say that each element in fpnat(fpmax({f})) is a flat cost function.

Example 2. Let us consider the cost function in Ex. 1. Since such cost func-
tion contains the context constraint n>0, then the subexpressions nat(n) and
nat(2∗n−1) are always positive. By assuming that fpnat replaces nat(n) by A
and nat(2∗n−1) by B, only those linear constraints containing ϕ = {n > 0, A =
n,A > 0, B = 2∗n−1, B > 0} are satisfiable (the remaining cases are hence not
considered). We obtain the following set of flat functions:

(1) 〈2A∗(31+8∗ log(1+B)+C∗(10+6∗D))+3∗2A, ϕ1 = ϕ ∪ {C=a, C > 0, D=b,D>0}〉
(2) 〈2A∗(31+8∗ log(1+B))+3∗2A, ϕ2 = ϕ ∪ {a≤0, D=b,D>0}〉
(3) 〈2A∗(31+8∗ log(1+B)+C∗10+3∗2A, ϕ3 = ϕ ∪ {C=a,C > 0, b≤0}〉
(4) 〈2A∗(31+8∗ log(1+B))+3∗2A, ϕ4 = ϕ ∪ {a≤0, b≤0}〉 2

In order to compare cost functions, we start by comparing two flat cost functions
in Def. 4 below. Then, in Def. 5 we compare a flat function against a general,
i.e., non-flat, one. Finally, Def. 6 allows comparing two general functions.

Definition 4 (smaller flat cost function in context). Given two flat cost
functions 〈e1, ϕ1〉 and 〈e2, ϕ2〉, we say that 〈e1, ϕ1〉 is smaller than or equal to
〈e2, ϕ2〉 in the context of ϕ2, written 〈e1, ϕ1〉E〈e2, ϕ2〉, if for all assignments σ
such that σ |= ϕ1 ∪ ϕ2 it holds that σ(e1) ≤ σ(e2).

Observe that the assignments in the above definition must satisfy the conjunc-
tion of the constraints in ϕ1 and in ϕ2. Hence, it discards the values for which
the constraints become incompatible. An important point is that Def. 4 allows
comparing pairs of flat functions. However, the result of such comparison is weak
in the sense that the comparison is only valid in the context of ϕ2. In order to
determine that a flat function is smaller than a general function for any context
we need to introduce Def. 5 below.

Definition 5 (smaller flat cost function). Given a flat cost function 〈e1, ϕ1〉
and a (possibly non-flat) cost function 〈e2, ϕ2〉, we say that 〈e1, ϕ1〉 is smaller
than or equal to 〈e2, ϕ2〉, written 〈e1, ϕ1〉 � 〈e2, ϕ2〉, if ϕ1 |= ϕ2 and for all
〈ei, ϕi〉 ∈ τ(〈e2, ϕ2〉) it holds that 〈e1, ϕ1〉E〈ei, ϕi〉.

Note that Def. 5 above is only valid when the context constraint ϕ2 is more
general, i.e., less restrictive than ϕ1. This is required because in order to prove
that a function is smaller than another one it must be so for all assignments which
are satisfiable according to ϕ1. If the context constraint ϕ2 is more restrictive
than ϕ1 then there are valid input values for 〈e1, ϕ1〉 which are undefined for
〈e2, ϕ2〉. For example, if we want to check whether the flat cost function (1) in
Ex. 2 is smaller than another one f which has the context constraint {n > 4},
the comparison will fail. This is because function f is undefined for the input
values 0 < n ≤ 4. This condition is also required in Def. 6 below, which can be
used on two general cost functions.

6

Definition 6 (smaller cost function). Consider two cost functions 〈e1, ϕ1〉
and 〈e2, ϕ2〉 such that ϕ1 |= ϕ2. We say that 〈e1, ϕ1〉 is smaller than or equal to
〈e2, ϕ2〉 iff for all 〈e′1, ϕ′

1〉 ∈ τ(〈e1, ϕ1〉) it holds that 〈e′1, ϕ′
1〉 � 〈e2, ϕ2〉.

In several applications of resource usage analysis, we are not only interested
in knowing that a function is smaller than or equal than another. Also, if the
comparison fails, it is useful to know which are the pairs of flat functions for which
we have not been able to prove them being smaller, together with their context
constraints. This can be useful in order to strengthen the context constraint of
the left hand side function or to weaken that of the right hand side function.

4 Inclusion of Cost Functions

It is clearly not possible to try all assignments of input variables in order to prove
that the comparison holds as required by Def. 4 (and transitively by Defs. 5 and
6). In this section, we aim at defining a practical technique to syntactically
check that one flat function is smaller or equal than another one for all valid
assignments, i.e., the relation E of Def. 4. The whole approach is defined over
flat cost functions since from it one can use Defs. 5 and 6 to apply our techniques
on two general functions.

The idea is to first normalize cost functions so that they become easier to
compare by removing parenthesis, grouping identical terms together, etc. Then,
we define a series of inclusion schemas which provide sufficient conditions to
syntactically detect that a given expression is smaller or equal than another one.
An important feature of our approach is that when expressions are syntacti-
cally compared we compute an approximated difference (denoted adiff) of the
comparison, which is the subexpression that has not been required in order to
prove the comparison and, thus, can still be used for subsequent comparisons.
The whole comparison is presented as a fixed point transformation in which we
remove from cost functions those subexpressions for which the comparison has
already been proven until the left hand side expression becomes zero, in which
case we succeed to prove that it is smaller or equal than the other, or no more
transformations can be applied, in which case we fail to prove that it is smaller.
Our approach is safe in the sense that whenever we determine that a function is
smaller than another one this is actually the case. However, since the approach
is obviously approximate, as the problem is undecidable, there are cases where
one function is actually smaller than another one, but we fail to prove so.

4.1 Normalization Step

In the sequel, we use the term basic cost expression to refer to expressions of the
form n, loga(A+1), An, al. Furthermore, we use the letter b, possibly subscripted,
to refer to such cost expressions.

Definition 7 (normalized cost expression). A normalized cost expression
is of the form Σn

i=1ei such that each ei is a product of basic cost expressions.

7

Note that each cost expression as defined above can be normalized by repeatedly
applying the distributive property of multiplication over addition in order to get
rid of all parentheses in the expression. We also assume that products which are
composed of the same basic expressions (modulo constants) are grouped together
in a single expression which adds all constants.

Example 3. Let us consider the cost functions in Ex. 2. Normalization results in
the following cost functions:

(1)n 〈34∗2A+8∗ log2(1+B)∗2A+10∗C∗2A+6∗C∗D∗2A,
ϕ1 = {A=n,A>0, B=2∗n−1, B>0, C=a,C > 0, D=b,D>0}〉

(2)n 〈34∗2A+8∗ log2(1+B)∗2A,
ϕ2 = {A=n,A>0, B=2∗n−1, B>0, a≤0, D=b,D>0}〉

(3)n 〈34∗2A+8∗ log2(1+B)∗2A+10∗C∗2A,
ϕ3 = {A=n,A>0, B=2∗n−1, B>0, C=a,C > 0, b≤0}〉

(4)n 〈34∗2A+8∗ log2(1+B)∗2A,
ϕ4 = {A=n,A>0, B=2∗n−1, B>0, a≤0, b≤0}〉

2

Since e1 ∗ e2 and e2 ∗ e1 are equal, it is convenient to view a product as the set
of its elements (i.e., basic cost expressions). We use Pb to denote the set of all
products (i.e., sets of basic cost expressions) and M to refer to one product of
Pb. Also, since M1 +M2 and M2 +M1 are equal, it is convenient to view the
sum of products as the set of its elements (its products). We use PM to denote
the set of all sums of products and S to refer to one sum of products of PM.
Therefore, a normalized cost expression is a set of sets of basic cost expressions.

Example 4. For the normalized cost expressions in Ex. 3, we obtain the following
set representation:

(1)s 〈{{34, 2A}, {8, log2(1+B), 2A}, {10, C, 2A}, {6, C,D, 2A}},
ϕ1 = {A=n,A>0, B=2∗n−1, B>0, C=a, C > 0, D=b,D>0}〉

(2)s 〈{{34, 2A}, {8, log2(1+B), 2A}},
ϕ2 = {A=n,A>0, B=2∗n−1, B>0, a≤0, D=b,D>0}〉

(3)s 〈{{34, 2A}, {8, log2(1+B), 2A}, {10, C, 2A}},
ϕ3 = {A=n,A>0, B=2∗n−1, B>0, C=a, C > 0, b≤0}〉

(4)s 〈{{34, 2A}, {8, log2(1+B), 2A}},
ϕ4 = {A=n,A>0, B=2∗n−1, B>0, a≤0, b≤0}〉

2

4.2 Product Comparison

We start by providing sufficient conditions which allow proving the E relation
on the basic cost expressions that will be used later to compare products of
basic cost expressions. Given two basic cost expressions e1 and e2, the third
column in Table 1 specifies sufficient, linear conditions under which e1 is smaller
or equal than e2 in the context of ϕ (denoted as e1 ≤ϕ e2). Since the conditions
under which ≤ϕ holds are over linear expressions, we can rely on existing linear
constraint solving techniques to automatically prove them. Let us explain some
of entries in the table. E.g., verifying that An ≤ ml is equivalent to verifying

8

e1 e2 e1 ≤ϕ e2 adiff

n n′ n ≤ n′ 1

n loga(A+ 1) ϕ |= {an ≤ A+ 1} 1

n Am m > 1 ∧ ϕ |= {n ≤ A} Am−1

n ml m > 1 ∧ ϕ |= {n ≤ l} ml−n

l1 l2 l2 6∈ N+, ϕ |= {l1≤l2} 1

l An n > 1 ∧ ϕ |= {l ≤ A} An−1

l nl′ n > 1 ∧ ϕ |= {l ≤ l′} nl′−l

loga(A+1) l l 6∈ N+, ϕ |= {A+ 1 ≤ l} 1

loga(A+1) logb(B+1) a ≥ b ∧ ϕ |= {A ≤ B} 1

loga(A+1) Bn n > 1 ∧ ϕ |= {A+ 1 ≤ B} Bn−1

loga(A+1) nl n > 1 ∧ ϕ |= {l > 0, A+ 1 ≤ l} nl−(A+1)

An Bm n > 1 ∧m > 1 ∧ n ≤ m ∧ ϕ |= {A ≤ B} Bm−n

An ml m > 1 ∧ ϕ |= {n ∗A ≤ l} ml−n∗A

nl ml′ n ≤ m ∧ ϕ |= {l ≤ l′} ml′−l

Table 1. Comparison of basic expressions e1 ≤ϕ e2

logm(An) ≤ logm(ml), which in turn is equivalent to verifying that n∗logm(A) ≤
l when m > 1 (i.e., m ≥ 2 since m is an integer value). Therefore we can verify
a stronger condition n ∗A ≤ l which implies n ∗ logm(A) ≤ l, since logm(A) ≤ A
when m ≥ 2. As another example, in order to verify that l ≤ nl

′
, it is enough to

verify that logn(l) ≤ l′ when n > 1, which can be guaranteed if l ≤ l′.
The “part” of e2 which is not required in order to prove the above rela-

tion becomes the approximated difference of the comparison operation, denoted
adiff(e1, e2). An essential idea in our approach is that adiff is a cost expression
in our language and hence we can transitively apply our techniques to it. This
requires having an approximated difference instead of the exact one. For in-
stance, when we compare A ≤ 2B in the context {A ≤ B}, the approximated
difference is 2B−A instead of the exact one 2B −A. The advantage is that we do
not introduce the subtraction of expressions, since that would prevent us from
transitively applying the same techniques.

When we compare two products M1, M2 of basic cost expressions in a
context constraint ϕ, the basic idea is to prove the inclusion relation ≤ϕ for
every basic cost expression in M1 w.r.t. a different element in M2 and at each
step accumulate the difference in M2 and use it for future comparisons if needed.

Definition 8 (product comparison operator). Given 〈M1, ϕ1〉, 〈M2, ϕ2〉
in Pb we define the product comparison operator τ∗ : (Pb,Pb) 7→ (Pb,Pb) as
follows: τ∗(M1,M2) = (M1−{e1},M2−{e2}∪{adiff(e1, e2)}) where e1 ∈ M1,
e2 ∈ M2, and e1 ≤ϕ1∧ϕ2

e2.

In order to compare two products, first we apply the above operator τ∗ iteratively
until there are no more terms to transform. In each iteration we pick e1 and e2
and modify M1 and M2 accordingly, and then repeat the process on the new

9

sets. The result of this operation is denoted fp∗(M1,M2). This process is finite
because the size of M1 strictly decreases at each iteration.

Example 5. Let us consider the product {8, log2(1+B), 2A} which is part of (1)s
in Ex. 4. We want to prove that this product is smaller or equal than the following
one {7, 23∗B} in the context ϕ = {A ≤ B−1, B≥10}. This can be done by
applying the τ∗ operator three times. In the first iteration, since we know by
Table 1 that log2(1+B) ≤ϕ 23∗B and the adiff is 22∗B−1, we obtain the new
sets {8, 2A} and {7, 22∗B−1}. In the second iteration, we can prove that 2A ≤ϕ

22∗B−1, and add as adiff 22∗B−A−1. Finally, it remains to be checked that 8 ≤ϕ

22∗B−A−1. This problem is reduced to checking that ϕ |= 8 ≤ 2∗B−A−1, which
it trivially true. 2

The following lemma states that if we succeed to transform M1 into the empty
set, then the comparison holds. This is what we have done in the above example.

Lemma 1. Given 〈M1, ϕ1〉, 〈M2, ϕ2〉 where M1,M2 ∈ Pb and for all e ∈ M1

it holds that ϕ1 |= e ≥ 1. If fp∗(M1,M2) = (∅,) then 〈M1, ϕ1〉E〈M2, ϕ2〉.

Note that the above operator is non-deterministic due to the (non-deterministic)
choice of e1 and e2 in Def. 8. Thus, the computation of fp∗(M1,M2) might not
lead directly to (∅,). In such case, we can backtrack in order to explore other
choices and, in the limit, all of them can be explored until we find one for which
the comparison succeeds.

4.3 Comparison of Sums of Products

We now aim at comparing two sums of products by relying on the product
comparison of Sec. 4.2. As for the case of basic cost expressions, we are interested
in having a notion of approximated adiff when comparing products. The idea is
that when we want to prove k1∗A ≤ k2∗B and A ≤ B and k1 and k2 are constant
factors, we can leave as approximated difference of the product comparison the
product (k2−k1)∗B, provided k2−k1 is greater or equal than zero. As notation,
given a product M, we use constant(M) to denote the constant factor in M,
which is equals to n if there is a constant n ∈ M with n ∈ N+ and, otherwise,
it is 1. We use adiff(M1,M2) to denote constant(M2)− constant(M1).

Definition 9 (sum comparison operator). Given 〈S1, ϕ1〉 and 〈S2, ϕ2〉, where
S1,S2 ∈ PM, we define the sum comparison operator τ+ : (PM,PM) 7→ (PM,PM)
as follows: τ+(S1,S2) = (S1−{M1}, (S2−{M2})∪A) iff fp∗(M1,M2) = (∅,)
where:

- A = { } if adiff(M1,M2) ≤ 0;
- otherwise, A = (M2 − {constant(M2)}) ∪ {adiff(M1,M2)}.

In order to compare sums of products, we apply the above operator τ+ iteratively
until there are no more elements to transform. As for the case of products, this
process is finite because the size of S1 strictly decreases in each iteration. The
result of this operation is denoted by fp+(S1,S2).

10

Example 6. Let us consider the sum of products (3)s in Ex. 4 together with
S = {{50, C, 2B}, {9, D2, 2B}} and the context constraint ϕ = {1+B≤D}. We
can prove that (3)s ES by applying τ+ three times as follows:

1. τ+((3)s,S) = ((3)s − {{34, 2A}},S ′), where S ′ = {{16, C, 2B}, {9, D2, 2B}}.
This application of the operator is feasible since fp∗({34, 2A}, {50, C, 2B}) =
(∅,) in the context ϕ3∧ϕ, and the difference constant part of such compar-
ison is 16.

2. Now, we perform one more iteration of τ+ and obtain as result τ+((3)s −
{{34, 2A}},S ′) = ((3)s−{{34, 2A}, {10, C, 2A}},S ′′), where S ′′ = {{6, C, 2B},
{9, D2, 2B}}. Observe that in this case fp∗({10, C, 2A}, {{16, C, 2B}) = (∅,).

3. Finally, one more iteration of τ+ on the above sum of products, gives (∅,S ′′′)
as result, where S ′′′ = {{6, C, 2B}, {1, D2, 2B}}.

In this last iteration we have used the fact that {1+B≤D} ∈ ϕ in order to prove
that fp∗({8, log2(1+B), 2A}, {9, D2, 2B}) = (∅,) within the context ϕ3 ∧ ϕ. 2

Theorem 1. Let 〈S1, ϕ1〉, 〈S2, ϕ2〉 be two sum of products such that for all
M ∈ S1, e ∈ M it holds that ϕ1 |= e ≥ 1. If fp+(S1,S2) = (∅,) then
〈S1, ϕ1〉E〈S2, ϕ2〉.
Example 7. For the sum of products in Ex. 6, we get fp+((3)s,S) = (∅,S ′′′).
Thus, according to the above theorem, it holds that 〈(3)s, ϕ3〉E〈S, ϕ〉. 2

4.4 Composite Comparison of Sums of Products

Clearly the previous schema for comparing sums of products is not complete.
There are cases like the comparison of {{A3}, {A2}, {A}} w.r.t. {{A6}} within
the context constraint A > 1 which cannot be proven by using a one-to-one
comparison of products. This is because a single product comparison would
consume the whole expression A6. We try to cover more cases by providing a
composite comparison schema which establishes when a single product is greater
than the addition of several products.

Definition 10 (sum-product comparison operator). Consider 〈S1, ϕ1〉 and
〈M2, ϕ2〉, where S1 ∈ PM, M2 ∈ Pb and for all M ∈ S1 it holds that ϕ1 |= M >
1. Then, we define the sum-product comparison operator τ(+,∗) : (PM,Pb) 7→
(PM,Pb) as follows: τ(+,∗)(S1,M2) = (S1−{M′

2},M′′
2), where fp∗(M′

2,M2) =
(∅,M′′

2).

The above operator τ(+,∗) is applied while there are new terms to transform. Note
that the process is finite since the size of S1 is always decreasing. We denote by
fp(+,∗)(S1,M2) the result of iteratively applying τ(+,∗).

Example 8. By using the sum-product operator we can transform the pair ({{A3},
{A2}, {A}}, {A6}) into (∅, ∅) in the context constraint ϕ = {A > 1}. To this end,
we apply τ(+,∗) three times. In the first iteration, fp∗({A3}, {A6}) = (∅, {A3}).
In the second iteration, fp∗({A2}, {A3}) = (∅, {A}). Finally in the third iteration
fp∗({A}, {A}) = (∅, ∅). 2

11

When using the sum-product comparison operator to compare sums of prod-
ucts, we can take advantage of having an approximated difference similar to the
one defined in Sec. 4.3. In particular, we define the approximated difference of
comparing S and M, written adiff(S,M), as constant(M)−constant(S), where
constant(S)=∑

M′∈S constant(M′). Thus, if we compare {{A3}, {A2}, {A}} is
smaller or equal than {4, A6}, we can have as approximated difference {A6},
which is useful to continue comparing further summands. As notation, we use
PS to denote the set of all sums of products and Ss to refer one element.

Definition 11 (general sum comparison operator). Let us consider 〈Ss, ϕ〉
and 〈S2, ϕ

′〉, where Ss ∈ PS and S2 ∈ PM. We define the general sum com-
parison operator µ+ : (PS ,PM) 7→ (PS ,PM) as follows: µ+(Ss,S2) = (Ss −
{S1}, (S2−{M})∪A), where fp(+,∗)(S1,M) = (∅,) and A = { } if adiff(S1,M) ≤
0; otherwise A = (M−{constant(M)}) ∪ {adiff(S1,M)}.

Similarly as we have done in definitions above, the above operator µ+ is applied
iteratively while there are new terms to transform. Since the cardinality of Ss

decreases in each step the process is finite. We denote by fpg
+(Ss,S2) to the result

of applying the above iterator until there are no sets to transform.
Observe that the above operator does not replace the previous sum compara-

tor operator in Def. 9 since it sometimes can be of less applicability since fp(+,∗)
requires that all elements in the addition are strictly greater than one. Instead,
it is used in combination with Def. 9 so that when we fail to prove the com-
parison by using the one-to-one comparison we attempt with the sum-product
comparison operator above.

In order to apply the general sum comparison operator, we seek for partitions
in the original S which meet the conditions in the definition above.

Theorem 2 (composite inclusion). Let 〈S1, ϕ1〉, 〈S2, ϕ2〉 be two sum of prod-
ucts such that for all M′ ∈ S1, e ∈ M′ it holds ϕ1 |= e>1. Let Ss be a partition
of S1. If fp

g
+(Ss,S2) = (∅,) then 〈S1, ϕ1〉E〈S2, ϕ2〉.

5 Implementation and Experimental Evaluation

We have implemented our technique and it can be used as a back-end of ex-
isting non-asymptotic cost analyzers for average, lower and upper bounds (e.g.,
[8,2,10,4,5]), and regardless of whether it is based on the approach to cost anal-
ysis of [12] or any other. Currently, it is integrated within the COSTA Sys-
tem, and it can be tried out through its web interface which is available from
http://costa.ls.fi.upm.es.

We first illustrate the application of our method in resource usage verification
by showing the working mode of COSTA through its Eclipse plugin. Figure 2
shows a method which has been annotated to be analyzed (indicated by the an-
notation @costaAnalyze true) and its resulting upper bound compared against
the cost function written in the assertion @costaCheck. The output of COSTA
is shown in the Costa view (bottom side of the Figure). There, the upper bound

12

Fig. 2. Screenshot of the COSTA plugin for Eclipse, showing how annotations
are used to interact with COSTA

inferred by COSTA is displayed, together with the result of the comparison with
the user’s assertion. Besides, the verification of the upper bound is shown in the
same line where the annotation is as a marker in the left side of the editor. If
the verification fails, a warning marker is shown, instead of the star-like marker
of Figure 2. Thus, by annotating the methods of interest with candidate upper
bounds, it is possible to verify the resource usage of such methods, and to mark
those methods that do not meet their resource usage specification.

In Table 2, we have performed some experiments which aim at providing
some information about the accuracy and the efficiency of our technique. The
first seven benchmark programs correspond to examples taken from the JOlden
benchmark suite [11], the next two ones from the experiments in [1] and the last
one is our running example. COSTA infers the upper bound cost functions for
them which are shown in the second column of the table. All execution times
shown are in milliseconds and have been computed as the average time of ten
executions. The environment were the experiments were run was Intel Core2
Duo 1.20 GHz with 2 processors, and 4 GB of RAM.

The first column is the name of the benchmark. The second column is the
expresion of the cost function. The next two columns show the time taken by
our implementation of the comparison approach presented in the paper in two
different experiments which we describe below. The next two columns include the
term size of the cost function inferred by COSTA and normalized as explained
in Section 4, and the term size of the product of the cost function by itself. The
next two columns include the ratio between size and time; those are estimations
of the number of terms processed by milisecond in the comparison. We use CF
to refer to the cost function computed by COSTA.

13

Bench. Cost Function T1 T2 Size1 Size2 Size/T1 Size/T2

bH 128 + 96 ∗ nat(x) 0 0.2 6 11 N/A N/A

treeAdd 4 + (4 ∗ nat(x) + 1) + 40 ∗ 2nat(y−1) 8 18 11 41 1.40 2.28
biSort 16 + (4 ∗ nat(x) + 1) ∗ nat(y − 1) 15 39 9 33 0.60 0.85

health 28 ∗ (4nat(x−1) − 1)/3 + 28 ∗ 4nat(x−1) 7 23 21 115 3.00 5.00
voronoi 20 ∗ nat(2 ∗ x − 1) 2 5 3 5 1.50 1.00
mst max(12 + 4 ∗ nat(1 + x) 96 222 49 241 0.51 1.09

+nat(1 + x) ∗ (20 + 4 ∗ nat(1/4 ∗ x))
+16 ∗ nat(1 + x) ∗ nat(1 + x) + 8 ∗ nat(1 + x),
4 + max(16 + 4 ∗ nat(1 + x)
+nat(1 + x) ∗ (20 + 4 ∗ nat(1/4 ∗ x))
+16 ∗ nat(1 + x) ∗ nat(1 + x) + 16 ∗ nat(1 + x),
20 + 4 ∗ nat(1 + x)+
+nat(1 + x) ∗ (20 + 4 ∗ nat(1/4 ∗ x))+
4 ∗ nat(1/4 ∗ x)))

em3d 93 + 4 ∗ nat(t) + 4 ∗ nat(y)+ 54 113 19 117 0.35 1.04
nat(t − 1) ∗ (28 + 4 ∗ nat(y)) + 4 ∗ nat(t)+
4 ∗ nat(y) + nat(t − 1) ∗ (28 + 4 ∗ nat(y))+
4 ∗ nat(y)

multiply 9 + nat(x) ∗ (16 + 8 ∗ log2(1 + nat(2 ∗ x − 3))) 10 24 14 55 1.40 2.29
evenDigits 49 + (nat(z) ∗ (37 + (nat(y) ∗ (32 + 27 ∗ nat(y)) 36 94 29 195 0.81 2.07

+27 ∗ nat(y))) + nat(y) ∗ (32 + 27 ∗ nat(y))
+27 ∗ nat(y))

running 2nat(x) ∗ (31 + (8 ∗ log2(1 + nat(2 ∗ x − 1))+ 40 165 34 212 0.85 1.28

+nat(y) ∗ (10 + 6 ∗ nat(z)))) + 3 ∗ 2nat(x)

Table 2. Experiments in Cost Function Comparison

T1 Time taken by the comparison CF � rev(CF), where rev(CF) is just the
reversed version of CF . I.e., rev(x + y + 1) = 1 + x + y. The size of the
expressions involved in the comparison is shown in the fifth column of the
table (Size1).

T2 Time taken by the comparison CF + CF � CF ∗ CF , assuming that CF
takes at least the value 2 for all input values. In this case, the size of the
expression grows considerably and hence the comparison takes a longer time
than the previous case. The size of the largest expression in this case is shown
in the sixth column of the table (Size2).

In all cases, we have succeeded to prove that the comparison holds. Ignoring the
first benchmark, that took a negligible time, the ratio between size and time and
falls in a narrow interval (1 or 2 terms processed by milisecond). Interestingly,
for each one of the benchmarks (except voronoi), that ratio increases with term
size, implying that the number of terms processed by milisecond is higher in
more complex expressions. However, these performance measurements should
be verified with a larger number of case studies, to verify how it varies with the
size of the input. We leave that task as further work. In any case, we believe that
our preliminary experiments indicate that our approach is sufficiently precise in
practice and that the comparison times are acceptable.

6 Other Approaches and Related Work

In this section, we discuss other possible approaches to handle the problem of
comparing cost functions. In [7], an approach for inferring non-linear invariants

14

using a linear constraints domain (such as polyhedra) has been introduced. The
idea is based on a saturation operator, which lifts linear constraints to non-
linear ones. For example, the constraint Σaixi = a would impose the constraint
ΣaiZxiu = au for each variable u. Here Zxiu is a new variable which corresponds
to the multiplication of xi by u. This technique can be used to compare cost
functions, the idea is to start by saturating the constraints and, at the same
time, converting the expressions to linear expressions until we can use a linear
domain to perform the comparison. For example, when we introduce a variable
Zxiu, all occurrences of xiu in the expressions are replaced by Zxiu. Let us see
an example where: in the first step we have the two cost functions to compare;
in the second step, we replace the exponential with a fresh variable and add the
corresponding constraints; in the third step, we replace the product by another
fresh variable and saturate the constraints:

w · 2x ≥ 2y {x ≥ 0, x ≥ y, w ≥ 0}
w · Z2x ≥ Z2y {x ≥ 0, x ≥ y, Z2x ≥ Z2y}
Zw·2x ≥ Z2y {x ≥ 0, x ≥ y, Z2x ≥ Z2y , Zw·2x ≥ Z2y}

Now, by using a linear constraint domain, the comparison can be proved.
We believe that the saturation operation is very expensive compared to our
technique while it does not seem to add significant precision.

Another approach for checking that e1 � e2 in the context of a given context
constraint ϕ is to encode the comparison e1 � e2 as a Boolean formula that
simulates the behavior of the underlying machine architecture. The unsatisfia-
bility of the Boolean formula can be checked using SAT solvers and implies that
e1 � e2. The drawback of this approach is that it requires fixing a maximum
number of bits for representing the value of each variable in ei and the values of
intermediate calculations. Therefore, the result is guaranteed to be sound only
for the range of numbers that can be represented using such bits. On the positive
side, the approach is complete for this range. In the case of variables that corre-
spond to integer program variables, the maximum number of bits can be easily
derived from the one of the underlying architecture. Thus, we expect the method
to be precise. However, in the case of variables that correspond to the size of
data-structures, the maximum number of bits is more difficult to estimate.

Another approach for this problem is based on numerical methods since our
problem is analogous to proving whether 0 � b − fm in the context φb. There
are at least two numerical approaches to this problem. The first one is to find
the roots of b − fm, and check whether those roots satisfy the constraints φb.
If they do not, a single point check is enough to solve the problem. This is
because, if the equation is verified at one point, the expressions are continuous,
and there is no sign change since the roots are outside the region defined by
φb, then we can ensure that the equation holds for all possible values satisfying
φb. However, the problem of finding the roots with multiple variables is hard in
general and often not solvable. The second approach is based on the observation
that there is no need to compute the actual values of the roots. It is enough
to know whether there are roots in the region defined by φb. This can be done
by finding the minimum values of expression b − fm, a problem that is more
affordable using numerical methods [9] . If the minimum values in the region

15

defined by φb are greater than zero, then there are no roots in that region. Even
if those minimum values are out of the region defined by φb or smaller than zero,
it is not necessary to continue trying to find their values. If the algorithm starts
to converge to values out of the region of interest, the comparison can be proven
to be false. One of the open issues about using numerical methods to solve our
problem is whether or not they will be able to handle cost functions output from
realistic programs and their performance. We have not explored these issues yet
and they remain as subject of future work.

7 Conclusions

In conclusion, we have proposed a novel approach to comparing cost functions
which is relatively efficient and powerful enough for performing useful compar-
isons of cost functions. Making such comparisons automatically and efficiently is
essential for any application of automatic cost analysis. Our approach could be
combined with more heavyweight techniques, such as those based on numerical
methods, in those cases where our approach is not sufficiently precise.

Acknowledgments. This work was funded in part by the Information Soci-
ety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-231620 HATS project, by the MEC under the TIN-
2008-05624 DOVES and HI2008-0153 (Acción Integrada) projects, by the UCM-
BSCH-GR58/08-910502 (GPD-UCM) , and the CAM under the S-0505/TIC/0407
PROMESAS project.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper
Bounds for Recurrence Relations in Cost Analysis. In 15th International Sym-
posium on Static Analysis (SAS’08), volume 5079 of Lecture Notes in Computer
Science. Springer, 2008.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In ESOP, volume 4421 of LNCS, pages 157–172. Springer, 2007.

3. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In
6th International Symposioum on Formal Methods for Components and Objects
(FMCO’08), number 5382 in Lecture Notes in Computer Science, pages 113–133.
Springer, 2007.

4. V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Parametric Predic-
tion of Heap Memory Requirements. In ISMM. ACM Press, 2008.

5. W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory Resource
Bounds for Low-Level Programs. In ISMM. ACM Press, 2008.

6. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL’77, pages 238–252. ACM, 1977.

7. B. S. Gulavani and S. Gulwani. A Numerical Abstract Domain Based on Expression
Abstraction and Max Operator with Application in Timing Analysis. In CAV,
LNCS 5123, pages 370–384. Springer, 2008.

16

8. S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and Efficient Static
Estimation of Program Computational Complexity. In POPL, pages 127–139.
ACM, 2009.

9. S. Kirkpatrick, Jr. C.D. Gelatt, and M.P. Vecchi. Optimization by simulated an-
nealing. Science, 220(4598):671–680, May 1983.

10. J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Resource Usage
Bounds Analysis for Java Bytecode. In BYTECODE. Elsevier, 2009.

11. JOlden Suite. http://www-ali.cs.umass.edu/DaCapo/benchmarks.html.
12. B. Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9),

1975.

17

Appendix E

More Precise yet Widely Applicable Cost
Analysis

The paper “More Precise yet Widely Applicable Cost Analysis” [14] follows.

135

More Precise yet Widely Applicable

Cost Analysis

Elvira Albert1, Samir Genaim1, and Abu Naser Masud2

1 DSIC, Complutense University of Madrid (UCM), Spain
2 DLSIIS, Technical University of Madrid (UPM), Spain

Abstract. Cost analysis aims at determining the amount of resources
required to run a program in terms of its input data sizes. Automatically
inferring precise bounds, while at the same time being able to handle a
wide class of programs, is a main challenge in cost analysis. (1) Existing
methods which rely on computer algebra systems (CAS) to solve the ob-
tained cost recurrence equations (CR) are very precise when applicable,
but handle a very restricted class of CR. (2) Specific solvers developed
for CR tend to sacrifice accuracy for wider applicability. In this paper, we
present a novel approach to inferring precise upper and lower bounds on
CR which, when compared to (1), is strictly more widely applicable while
precision is kept and when compared to (2), is in practice more precise
(obtaining even tighter complexity orders), keeps wide applicability and,
besides, can be applied to obtain useful lower bounds as well. The main
novelty is that we are able to accurately bound the worst-case/best-case
cost of each iteration of the program loops and, then, by summing the
resulting sequences, we achieve very precise upper/lower bounds.

1 Introduction

Static cost analysis [13] aims at automatically inferring the resource consumption
(or cost) of executing a program as a function of its input data sizes. The classical
approach to cost analysis consists of two phases. First, given a program and a
cost model, the analysis produces cost relations (CRs), i.e., a system of recursive
equations which capture the cost of the program in terms of the size of its input
data. Let us motivate our work on the contrived example depicted in Fig. 1a.
The example is sufficiently simple to explain the main technical parts of the
paper, but still interesting to understand the challenges and precision gains. For
this program and the memory consumption cost model, the cost analysis of [3]
generates the CR which appears in Fig. 1b. This cost model estimates the number
of objects allocated in the memory. Cost analyzers are usually parametric on the
cost model, e.g., cost models widely used are the number of executed bytecode
instructions, number of calls to methods, etc. Observe that the structure of the
Java program and its corresponding CR match. The equations for C correspond
to the for loop, those of B to the inner while loop and those of A to the outer
while loop. The recursive equation for C states that the memory consumption
of executing the inner loop with 〈k, j, n〉 such that k<n+j is 1 (one object) plus

vo id f (i n t n) {
L i s t l = nu l l ;
i n t i =0;
whi le (i<n) {

i n t j =0;
whi le (j< i) {

f o r (i n t k=0;k<n+j ; k++)
l=new L i s t (i ∗k∗ j , l) ;

j=j+random () ? 1 : 3 ; }
i=i+random () ? 2 : 4 ;

} }
(a) Running Example

F (n) = A(0, n) {}
A(i, n) = 0 {i ≥ n}
A(i, n) = B(0, i, n) +A(i′, n)

{ i < n, i+ 2 ≤ i′ ≤ i+ 4}
B(j, i, n) = 0 {j ≥ i}
B(j, i, n) = C(0, j, n) +B(j′, i, n)

{j < i, j + 1 ≤ j′ ≤ j + 3}
C(k, j, n) = 0 {k ≥ n+ j}
C(k, j, n) = 1 + C(k′, j, n)

{k′ = k + 1, k < n+ j}

(b) CRs for Memory Consumption

Fig. 1: Running Example and its Cost Relation System

that of executing the loop with 〈k′, j, n〉 where k′=k+1. The recursive equation
for B states that executing the loop with 〈j, i, n〉 costs as executing C(0, j, n)
plus executing the same loop with 〈j′, i, n〉 where j+1≤j′≤j+3. While, in the
Java program, j′ can be either j+1 or j+3, due to the static analysis, the case
for j+2 is added in order to have a convex shape [7]. The process of generating
CRs heavily depends on the programming language and, thus, multiple analyses
have been developed for different paradigms. However, the resulting CRs are a
common target of cost analyzers.

Our work focuses on the second phase of cost analysis: once CRs are gener-
ated, analyzers try to compute closed-forms for them, i.e., cost expressions which
are not in recursive form. Two main approaches exist: (1) Since cost relations are
syntactically quite close to recurrence relations, most cost analysis frameworks
rely on existing Computer Algebra Systems (CAS) for finding closed-forms. Un-
fortunately, only a restricted class of CRs can be solved using CAS , namely only
some of those which have an exact solution. In practice, this seldom happens.
For instance, in the cost relation B, variable j′ can increase by one, by two or
by three at each iteration, so an exact cost function which captures the cost of
any possible execution does not exist. (2) Instead, specific upper-bound solvers
developed for CRs try to reason on the worst-case cost and obtain sound upper-
bounds (UBs) of the resource consumption. As regards lower-bounds (LBs), due
in part to the difficulty of inferring under-approximations, general solvers for
CRs able to obtain useful approximations of the best-case cost have not been
developed yet. As regards the number of iterations, for B, the worst-case (resp.
best-case) cost must assume that j′ increases by one (resp. three) at each itera-
tion. Besides, there is the problem of bounding the cost of each of the iterations.
For UBs, the approach of [2] assumes the worst-case cost for all loop iterations.
E.g., an UB on the cost of any iteration of B is n0+i0−1, where n0 and i0 are
respectively the initial values for n and i. This corresponds to the memory allo-
cation of the last iteration of the corresponding while loop. This approximation,
though often imprecise, makes it possible to obtain UBs for most CRs (and thus

programs). Observe that it is not useful to obtain LBs since by assuming the
best-case cost for all iterations, the obtained LB would be in most cases zero.

Needless to say, precision is fundamental for most applications of cost anal-
ysis. For instance, UBs are widely used to estimate the space and time require-
ments of programs execution and provide resource guarantees [8]. Lack of preci-
sion can make the system fail to prove the resource usage requirements imposed
by the software client. LBs are used to scheduling the distribution of tasks in
parallel execution. Likewise, precision will be essential to achieve a satisfactory
scheduling. A main achievement in this paper is the seamless integration of both
approaches so that we get the best of both worlds: precision as (1), whenever
possible, while applicability as close to (2) as possible. Intuitively, the precision
gain stems from the fact that, instead of assuming the worst-case cost for all
iterations, we infer tighter bounds on each of them in an automatic way and
then approximate the summation of the sequence. For UBs, we do so by taking
advantage of existing automatic techniques, which are able to infer UBs on the
number of loop iterations and the worst-case cost of all of them, in order to
generate a novel form of (worst-case) recurrence relations which can be solved
by CAS . The exact solution of such recurrence relation (RR) is guaranteed to
be a precise UB of the original CR. As another contribution, we present a new
technique for inferring LBs on the number of iterations. Then, the problem of
inferring LBs on the cost becomes dual to the UBs.

To the best of our knowledge, this is the first general approach to inferring
LBs from CRs and, as regards UBs, the one that achieves a better precision
vs. applicability balance. Importantly, when CRs originate from nested loops
in which the cost of the inner loop depends on the outer loop, our approach
obtains more precise bounds than [9, 2]. Moreover, as our experiments show, we
are able to produce upper bounds with a tighter complexity order than those
inferred by [9, 2], e.g., improving from O(n ∗ log(n)) to O(n). On the other
hand, when compared to [10], our approach is of wider applicability in the sense
that it can infer general polynomial, exponential and logarithmic bounds, not
only univariate polynomial bounds as [10]. Since CRs obtained from different
programming languages have the same features, our work is applicable to cost
analysis of any language. Preliminary experiments on Java (bytecode) programs
confirm the good balance between the accuracy and applicability of our analysis.

2 Preliminaries

The sets of natural, integer, real, non-zero natural and non-negative real values
are denoted respectively by N, Z, R, N+ and R+. We write x, y, z to denote vari-
ables which range over Z. A linear expression has the form v0+v1x1+ . . .+vnxn,
where vi∈Z. A linear constraint (over Z) has the form l1≤l2, where l1 and l2 are
linear expressions. We write l1=l2 instead of l1≤l2 ∧ l2≤l1, and l1<l2 instead of
l1+1≤l2. We use t̄ to denote a sequence of entities t1, . . . , tn. We use ϕ or Ψ to
denote a set (conjunction) of linear constraints and ϕ1 |= ϕ2 to indicate that ϕ1

implies ϕ2. A mapping from a set of variables to integers is denoted by σ.

2.1 Cost Relations: The Common Target of Cost Analyzers

Let us now recall the general notion of cost relation (CR) as defined in [2] which
generalizes the CRs yield by most analyzers. The basic building blocks of CRs
are the so-called cost expressions e which are generated using this grammar:

e::= r | nat(ℓ) | e+ e | e ∗ e | er | log(nat(ℓ)) | nnat(l) | max(S)

where r ∈ R+, n ∈ N+, l is a linear expression, S is a non empty set of cost ex-
pressions and nat : Z → N is defined as nat(v)=max({v, 0}). Importantly, linear
expressions are always wrapped by nat in order to avoid negative evaluations.
For instance, as we will see later, an UB for C(k, j, n) is nat(n+ j− k). Without
the use of nat, the evaluation of C(5, 5, 11) results in the negative cost −1 which
must be evaluated to zero, since they correspond to executions in which the for
loop is not entered (i.e., k ≥ n+ j).

Definition 1 (Cost Relation). A cost relation C is defined by a set of equa-

tions of the form E≡〈C(x̄)=e+
∑k

i=1 Di(ȳi)+
∑n

j=1 C(z̄j), ϕ〉 with k, n≥0, where
C and Di are cost relation symbols with Di 6=C; all variables x̄, ȳi and z̄j are
distinct; e is a cost expression; and ϕ is a set of linear constraints over vars(E).

The evaluation of a CR C for a given valuation v̄, denoted C(v̄), is like a con-
straint logic program [11] and consists of the next steps: (1) first a matching

equation of the form 〈C(x̄) = e +
∑k

i=1 Di(ȳi) +
∑n

j=1 C(z̄j), ϕ〉 is chosen; (2)
then, we need to choose an assignment σ s.t. σ |= v̄ = x̄ ∧ ϕ; (3) then, evalu-
ate e w.r.t. σ and accumulate it to the result; and (4) evaluate each call Di(v̄i)
where v̄i = σ(ȳi) and C(v̄j) where v̄j = σ(z̄j) . The result (i.e., the cost of the
execution) of the evaluation is the sum of all cost expressions accumulated in
step (3). Even if the original program is deterministic, due to the abstractions
performed during the generation of the CR, it might happen that several results
can be obtained for a given C(v̄). Correctness of the underlying analysis used to
obtain the CR must ensure that the actual cost is one of such solutions (see [2]).
This makes it possible to use CR to infer both UBs and LBs from them.

Example 1. Let us evaluate B(0, 3, 3). The only matching equation is the sec-
ond one for B. In step (2), we choose an assignment σ. Here we have a non-
deterministic choice for selecting the value of j′ which can be 1, 2 or 3. In
step (4), we evaluate the cost of C(0, 0, 3). Finally, one of the recursive calls of
B(1, 3, 3), B(2, 3, 3) or B(3, 3, 3) will be made, depending on the chosen value
for j′. If we continue executing all possible derivations until reaching the base
cases, the final result for B(0, 3, 3) is any of {9, 10, 13, 14, 15, 18}. The actual cost
is guaranteed to be one of such values.

W.l.o.g., we formalize our method by making two simplifications: (1) Direct
recursion: we assume that all recursions are direct (i.e., cycles in the call graph
are of length one). Direct recursion can be automatically achieved by applying
partial evaluation as described in [2]. (2) Standalone cost relations: we assume
that CRs do not depend on any other CR, i.e., the equations do not contain
external calls and thus have this simplified form 〈C(x̄) = e+

∑n
j=1 C(z̄j), ϕ〉. This

can be assumed because our approach is compositional. We start by computing
bounds for the CRs which do not depend on any other CRs , e.g., C in Fig. 1b
is solved by providing the UB nat(n + j − k). Then, we continue by replacing
the computed bounds on the equations which call such relation, which in turn
become standalone. For instance, replacing the above solution in the relation B
results in the equation B(j, i, n) = nat(n + j) + B(j′, i, n), {j < i, j + 1 ≤ j′ ≤
j + 3}. This operation is repeated until no more CR need to be solved. In what
follows, CR refers to standalone CRs in direct recursive form.

2.2 Single-Argument Recurrence Relations

It is fundamental for this paper to understand the differences between CRs and
RRs. The following features have been identified in [2] as main differences, which
in turn justify the need to develop specific solvers to bound CRs :

1. CRs often have multiple arguments that increase or decrease over the rela-
tion (e.g., in A variable i′ increases). The number of evaluation steps (i.e.,
recursive calls performed) is often a function of such several arguments.

2. CRs often contain inexact size relations, e.g., variables range over an interval
[a, b] (e.g., variable j′ in B). Thus, given a valuation, we might have several
solutions which perform a different number of evaluation steps.

3. Even if the original programs are deterministic, due to the loss of preci-
sion in the first stage of the static analysis, CRs often involve several non-
deterministic equations. This will be further explained in Sec. 4.3.

As a consequence of 2 and 3, an exact solution often does not exist and hence
CAS just cannot be used in such cases. But, even if a solution exists, due to
such three additional features, CAS do not accept CRs as a valid input. Below,
we define a class of recurrence equations that CAS can handle.

Definition 2 (single-argument RR). A single-argument recurrence relation
C is defined by at most one recursive equation 〈C(x) = E +

∑n
i=1 C(x − 1)〉

where E is a function on x (and might have constant symbols), and a base case
〈C(0) = κ〉 where κ is a symbol representing the value of the base case.

Depending on the number of recursive calls in the recursive equation and the
expression E, such solution can be of different complexity classes (exponential,
polynomial, etc.). A closed-form solution for C(x), if exists, is an arithmetic
expression that depends only on the variable x, the base-case symbol κ, and
might include constant symbols that appear in E. W.l.o.g., in what follows, we
assume that κ = 0. In the implementation, we replace κ in the closed-form UB
(resp. LB) by the maximum (resp. minimum) value that it can take, as done
in [2].

3 An Informal Account of Our Approach

This section informally explains the approximation we want to achieve and com-
pares it to the actual cost and the approximation of [2]. Consider a CR in its

simplest form with a base case 〈C(x̄)=0, ϕ0〉 and a recursive case with a single
recursive call 〈C(x̄)=e+C(x̄′), ϕ1〉. The challenge is to accurately estimate the
cost of C(x̄) for any input. CAS aim at obtaining the exact cost function. As
we have discussed in Sec. 2.2, this is often not possible since even a single eval-
uation has multiple solutions. Thus, the goal of static cost analysis is to infer
closed-form UBs/LBs for C. Our starting point is the general approximation
for UBs proposed by [2] which has two dimensions. (1) Number of applications
of the recursive case: The first dimension is to infer an UB on the number of
times the recursive equations can be applied (which, for loops, corresponds to
the number of iterations). This is done by inferring an UB n̂ on the length of
chains of recursive calls; (2) Cost of applications: The second dimension is to
infer an UB ê for all ei. Then, for a relation with a single recursive call, n̂ ∗ ê is
guaranteed to be an UB for C. If the relation C had two recursive calls, the solu-
tion would be an exponential function of the form 2n̂∗ê. Programming-languages
techniques of wide applicability have been proposed by [2] in order to solve the
two dimensions, as detailed below.

Ranking functions. A ranking function is a function f such that for any
recursive equation 〈C(x̄)=e+C(x̄1)+ · · ·+C(x̄k), ϕ〉 in the CR, it holds that
∀1≤i≤k.ϕ |= f(x̄)>f(x̄i)∧f(x̄)>0. This guarantees that when evaluating C(v̄),
the length of any chain of recursive calls to C cannot exceed f(v̄). Thus, f is
used to bound the length of these chains [2, 5, 6]. We rely on [2] for automatically

inferring a ranking function f̂C(x̄0) for C (variables x̄0 denote the initial values).

Maximization. In [2] the second dimension is solved by first inferring an invari-
ant 〈C(x̄0) ; C(x̄), Ψ〉, where Ψ is a set of linear constraints, which describes
the relation between the values that x̄ can take in any recursive call and the
initial values x̄0. Then in order to generate ê each nat(l) ∈ e is replaced by nat(l̂)

where l̂ is a linear expression (over x̄0) which is an UB for any valuation of l. We

rely on the techniques of [2] in order to automatically obtain nat(l̂) for nat(l).

Our challenge is to improve precision of [2] while keeping a similar applicabil-
ity for UBs and, besides, be able to apply our approach to infer useful LBs. The
fundamental idea is to generate a sequence of (different) elements u1, . . . , un̂ such
that for any concrete evaluation e1, . . . , en it holds ∀0 ≤ i ≤ n−1. un̂−i≥en−i.
Note that it is ensured that the last n elements of the u sequence are larger than
(or equal to) the n elements of the e sequence, but it is not guaranteed that
ui≥ei. This guarantees that u1+ · · ·+un̂ is an UB for e1+ · · ·+en. Our UB is
potentially more precise than n̂∗ê, since each ei is approximated more tightly
by a corresponding uj . Technically, we do this by transforming the CR into
a (worst-case) RR (as in Def. 2) whose closed-form solution is u1 + · · · + un̂.
The novel idea is to view u1, · · · , un̂ as an arithmetic sequence that starts from
un̂≡ê and each time decreases by ď where ď is an under approximation of all
di=ei+1−ei, i.e., ui=ui−1+ď. In our approach the problem of inferring LBs is
dual, namely we can infer a LB ň on the length of chains of recursive calls,
the minimum value ě to which ei can be evaluated, and then sum the sequence
ℓ1, . . . , ℓň where ℓi=ℓi−1+ď and ℓ1=ě.

4 Inference of Precise Upper Bounds

In this section, we present our approach to accurately infer UBs on the resource
consumption in three steps: first in Sec. 4.1, we handle a subclass of CRs which
accumulate a constant cost, then we handle CRs which accumulate non-constant
costs in Sec. 4.2 and CRs with multiple overlapping equations in Sec. 4.3.

4.1 Constant Cost Relations

We consider CRs defined by a single recursive equation with constant cost:

〈C(x̄) = 0, ϕ1〉 | 〈C(x̄) = e+C(x̄1)+· · ·+C(x̄k), ϕ2〉 (1)

where e contributes a constant cost, i.e., it is a constant number or an expression
that always evaluates to the same value. As explained in Sec. 3, any chain of
recursive calls in C is at most of length f̂C(x̄0) (when starting from C(x̄0)). We
aim at obtaining an UB for C by solving a RR PC in which all chains of recursive
calls are of length f̂C(x̄0). Intuitively, PC(x) can be seen as a special case of a
RR with the same number of recursive calls as in C, where all chains of recursive
calls are of length x, and each application accumulates the constant cost e. Its
solution can be then instantiated for the case of C by replacing x by f̂C(x̄0).

Definition 3. The worst-case RR of C is 〈PC(x)=e+PC(x−1)+ · · ·+PC(x−1)〉.

The main achievement of the above transformation is that, for constant CRs ,
we get rid of their problematic features described in Sec. 2.2 which prevented us
from relying on CAS to obtain a precise solution. The following theorem explains
how the closed-form solution of the RR PC can be transformed into an UB for
the CR C.

Theorem 1. If E is a solution for PC(x) then E[x/f̂C(x̄0)] is an UB for C(x̄0).

Example 2. The worst-case RR of the CR C of Fig. 1b is 〈PC(x)=1+PC(x−1)〉,
which is solved using CAS to PC(x)=x for any x≥0. The UB for C is obtained

by replacing x by f̂C(k0, j0, n0)=nat(j0+n0−k0).

4.2 Non-constant Cost Relations

During cost analysis, in many cases we obtain CRs like the one of Eq. 1, but
with a non-constant expression e which is evaluated to different values ei in
different applications of the recursive equation. The transformation in Def. 3
would not be correct since in these cases e must be appropriately related to x.
In particular, the main difficulty is to simulate the accumulation of the non-
constant expressions ei at the level of the RR. As we have illustrated in Sec. 3,
the novel idea is to simulate this behavior with an arithmetic sequence that
starts from the maximum value that e can take, and in each step decreases by
the minimum distance ď between two consecutive expressions ei and ei+1. Since
the expression e might have a complex form (e.g., exponential, polynomial, etc),

inferring a precise LB on the distance ď is usually impractical. A key observation
in our approach is that, since variables are wrapped by nat, it is enough to reason
on the behavior of its nat sub-expressions, i.e., we only need to understand how
each nat(l) of e (denoted nat(l) ∈ e) changes along a sequence of recursive calls.

Definition 4 (nat with linear behaviour). Consider the CR C of Eq. 1 with
e a (possibly) non-constant expression. We say that a given nat(l) ∈ e is linearly
increasing (resp. decreasing) if there exists a non-negative integer ď, such that
for a given renamed apart instance of the recursive equation 〈C(ȳ) = e′+C(ȳ1)+
· · ·+C(ȳk), ϕ′

2〉, it holds that ϕ2 ∧ϕ′
2 ∧ x̄i = ȳ |= l′− l ≥ ď (resp. ϕ2 ∧ϕ′

2 ∧ x̄i =
ȳ |= l− l′ ≥ ď) for any x̄i, where nat(l′) ∈ e′ is the renaming of nat(l).

In practice, computing ď for a given nat(l) ∈ e can be done using integer pro-
gramming tools. In what follows, when the conditions of Def. 4 hold for a given
nat(l) ∈ e, we say that it has a linear behavior. Moreover, when all nat(l) ∈ e
have the same linear behavior (i.e., all increasing or all decreasing), we say that
e has a linear behavior.

Example 3. ForB, replacing C(0, j, n) by the UB nat(n+j) computed in Ex. 2 re-
sults in 〈B(j, i, n)=nat(n+j)+B(j′, i, n), ϕ1〉, where ϕ1 = {j<i, j+1≤j′≤j+3}.
Its renamed apart instance is 〈B(jr, ir, nr) = nat(nr+jr) + B(j′r, ir, nr), ϕ2〉
where ϕ2={jr<ir, jr+1≤j′r≤jr+3}. Then, the formula ϕ1∧ϕ2∧{j′=jr, i=ir, n =
nr} |= (nr+jr)−(n+j) ≥ ď holds for ď=1. Therefore, nat(n+j) increases linearly.

Let us intuitively explain how our method works by focusing on a single nat(l) ∈ e
within the relation C. Assume that during the evaluation of an initial query
C(x̄0), nat(l) is evaluated to nat(l1), . . . , nat(ln) in n consecutive recursive calls,
and suppose that it is linearly increasing at least by ď, i.e., li+1 − li ≥ ď for all
1 ≤ i ≤ n− 1. As explained in Sec. 3, we can infer an expression nat(l̂) which is

an UB for all nat(li), and a ranking function f̂C such that n ≤ f̂C(x̄0). A tight

approximation is the arithmetic sequence which starts from nat(l̂) and each time
decreases by ď. Clearly, the first element of this sequence is greater than nat(ln),
the second is greater than nat(ln−1), and so on.

However, a main problem is that, since f̂C provides an over-approximation of
the actual number of iterations, the sequence might go to negative values. This is
because an imprecise (too large) f̂C would lead to a too large decrease ď∗ f̂C(x̄0)

and the smallest element nat(l̂)− ď∗ f̂C(x̄0) (and possibly other subsequent ones)
could be negative. Hence, the approximation would be unsound since the actual
evaluations of such negative values are zero. We avoid this problem by viewing
this sequence in a dual way: we start from the smallest value and in each step
increase it by ď. Since still the smallest values could be negative, we start from
nat(l̂−ď ∗ f̂C(x̄0)) which is guaranteed to be positive and greater than or equal

to nat(l̂)−ď ∗ f̂C(x̄0). The next definition uses this intuition to replace each nat
by an expression that generates its corresponding sequence at the level of RR.

Definition 5. Consider the CR C of Eq. 1 where e has a linear behavior. Let
f̂C(x̄0) = nat(l′) be its corresponding ranking function. We define its associated

worst-case RR as 〈PC(x) = Ee + PC(x − 1) + · · · + PC(x − 1)〉 where Ee is

obtained from e by replacing each nat(l) ∈ e by nat(l̂ − ď ∗ l′) + x ∗ ď.

Definition 5 generalizes Def. 3 and an equivalent theorem to Theorem 1 holds.

Theorem 2. If E is a solution for PC(x) then E[x/f̂C(x̄0)] is an UB for C(x̄0).

Example 4. Following Ex. 3, we have that ď=1. Since nat(n0+i0−1) is an UB of

the cost nat(n+j) accumulated in B, and f̂B(j0, i0, n0)=nat(i0−j0), according to
Def. 5, we have 〈PB(x)=nat(n0+i0−1−(i0 − j0) ∗ 1)+x ∗ 1+PB(x− 1)〉 which is
solved by CAS to PB(x)=nat(n0+ j0−1)∗x+x∗ (x+1)/2. Thus, B(j0, i0, n0) =
PB(x)[x/nat(i0− j0)]. Similarly, for A we obtain the RR PA(x) = (q+2x)(q/2+
x)+r(q+2x)+q/2+x+PA(x−1) where q = nat(i0−2) and r = nat(n0−1), which
is solved to PA(x) = qx2+qrx+rx+2/3x3+rx2+3/2x2+5/6x+1/2q2x+3/2qx.
Thus, A(i0, n0) = PA(x)[x/nat((n0 − i0)/2)]. Finally, for F , we obtain the UB
F (n0) = y(4y2+6zy+9y+6z+5)/6, whereas [2] provides 2∗nat(n0/2+1/2)∗z2,
where y = nat(n0/2) and z = nat(n0 − 1), which is much less precise.

Our approach can be also applied when nat expressions are increasing or decreas-
ing geometrically, i.e., when nat(li+1) ≤ k ∗ nat(li) for some positive rational k
called common ratio. This is the case in a CR like 〈C(n)=nat(n)+C(n/2), {n ≥
1}〉, which is similar to what we obtain when analyzing the recursive imple-
mentation of merge-sort algorithm (mergesort has two recursive calls). In such
geometric case, the counterpart condition to Def. 4 checks if there exists a min-
imum ratio ǩ such that ϕ2 ∧ ϕ′

2 ∧ x̄i = ȳ |= l ≥ ǩ ∗ l′. Then, in a counterpart

definition to Def. 5, we replace such nat(l) ∈ e by nat(l̂) ∗ ǩm−x ∈ Ee where

m = f̂C(x̄0). Intuitively, we accumulate nat(l̂) when x = f̂C(x̄0), and, at each
subsequent step, the expression is geometrically reduced by the ratio. For the
above CR, we obtain a linear UB C(n0) = 2 ∗ nat(n0), whereas techniques de-
scribed in [2, 9] would obtain C(n0) = nat(n0) ∗ log2(nat(n0 + 1)). Note that
here our approach improves even the complexity order. Using a similar con-
struction, for merge-sort (see experiments), we are able to infer the upper bound
63nat(a+1)log2(nat(2a− 1) + 1)+ 50nat(2a− 1) on the number of executed in-
structions. For conciseness, rest of the paper formalizes the arithmetic case, but
all results are directly applicable to geometric progressions as described above.

4.3 Non-deterministic Non-constant Cost Relations

Any approach for solving CRs that aims at being practical has to consider CRs
with several recursive equations as shown in equation 2. This kind of CRs is
very common during cost analysis and they mainly originate from conditional
statements inside loops.

〈C(x̄) = e0, ϕ0〉
〈C(x̄) = e1 + C(x̄1) + · · ·+ C(x̄k1), ϕ1〉...
〈C(x̄) = eh + C(x̄1) + · · ·+ C(x̄kh

), ϕh〉
(2)

For instance, the instruction if (x[i]>0) {A;} else {B;}, may lead to two

non-deterministic equations which accumulate the costs of A and B. This is
because arrays are typically abstracted to their length and, hence, the guard
x[i]>0 is abstracted to true, i.e., we do not keep this information on the CR.
Thus, ϕ0, . . . , ϕh are not necessarily mutually exclusive. W.l.o.g., we assume
that k1 ≥ · · · ≥ kh, i.e., the first (resp. last) recursive equation has the maxi-
mum (resp. minimum) number of recursive calls among all equations. We also

assume that f̂C(x̄0) = nat(l′) is a global ranking function for this CR, i.e., a
ranking function for all equations.

In non-deterministic CRs , the costs contributed by a chain of recursive calls
might not be instances of the same cost expression, but rather of different ex-
pressions e1, . . . , eh, i.e., the equations might interleave. Namely, we might apply
one equation and for another call another different equation. The worst-case cost
might originate from such interleaving sequences (see [2]). Thus, when inferring
how a given nat(l) ∈ ei changes, we have to consider subsequent instances of
nat(l) which are not necessarily consecutive. For this, we infer an invariant that
holds between two subsequent (not necessarily consecutive) applications of the
same equation, similar to what [2] does, and then we compute the distance ď
between its subsequent instances as in Def. 4 but considering this invariant.

As a first solution, similarly to Def. 5, for each expression ei, we can gen-
erate a corresponding Ei by replacing each nat(l) by nat(l̂−ď∗l′)+x∗ď where
ď is the distance for nat(l). Clearly, if e is a closed-form solution for the RR
PC(x)=max(E1, . . . , Eh)+PC(x−1)+ . . .+PC(x−1) with k1 recursive calls, then

e[x/f̂C(x̄0)] is an UB for C (because in each application we take the worst-case).
Unfortunately, CAS fail to solve RRs which involve (non-constant) max expres-
sions. Therefore, this approach is not practical. Clearly, in the case that one of
e1, . . . , eh is provable to be the maximum, this approach works since we can elim-
inate the max operator. Unfortunately, even comparing simple cost expressions
is difficult and in many cases not feasible [1]. In what follows, we describe a prac-
tical solution to this problem, which is based on finding an expression E which
does not include max and is always larger than or equal to max(E1, . . . , Eh).
This way, we can replace the max by E and still get an UB for C.

First, observe that any cost expression (which does not include max) can be
normalized to the form Σn

i=1Π
mi

j=1bij (i.e., sum of multiplications) where each bij

is a basic element of the following form {r, nat(l), nnat(l), log(nat(l))}. We assume
that all e1, . . . , eh of Eq. 2 are given in this form. For simplicity, we assume that
all expressions have the same number of multiplicands, and all multiplicands have
the same number of basic expressions (if not, we just add 1 in multiplication and
0 for sum). Now since ei is in a normal form, the corresponding Ei will be also
in a corresponding normal form. Given two cost expressions e1 and e2, and their
corresponding E1 and E2, the following definition describes how to generate an
expression E such that it is larger than (or equal to) both E1 and E2.

Definition 6. Given two expressions Ei = a11 · · · a1m1 + · · ·+ an1 · · · a1mn and
Ej = b11 · · · b1m1 + · · ·+ bn1 · · · b1mn. We define the generalization of Ei and Ej

as Ei ⊔Ej = c11 · · · c1m1 + · · ·+ cn1 · · · c1mn where cij = bij if we can prove that
bij ≥ aij, cij = aij if we can prove that aij ≥ bij , otherwise cij = aij + bij.

Although we need to compare expressions when constructing Ei ⊔ Ej (namely
bij to aij), this comparison is on the basic elements rather than on the whole
expression and hence it is far simpler. By construction, we guarantee that Ei⊔Ej

is always greater than or equal to both Ei and Ej . Clearly, the quality of Ei⊔Ej

(i.e., how tight it is) depends on the ordering of the summands and the elements
of each summand (i.e., multiplicands) in both Ei and Ej . In order to obtain
tighter bounds, we use some heuristics like ordering the elements inside each
multiplication in increasing complexity in such a way that we always try to
compare basic elements of the same complexity order. Besides, we try to compare
basic elements that involve the same variable.

Definition 7. Let C be the CR of Eq. 2, f̂C(x̄0)=nat(l′) its corresponding rank-

ing function, and Ei generated from ei by replacing each nat(l)∈ei by nat(l̂−d ∗
l′)+x∗ď where ď is the distance of nat(l). The corresponding worst-case RR is
〈PC(x) = E1⊔ · · · ⊔Eh + PC(x− 1)+ · · ·+PC(x− 1)〉 with k1 recursive calls.

Theorem 3. If E is a solution for PC(x) then E[x/f̂C(x̄0)] is an UB for C(x̄0).

Example 5. Let us add the contrived recursive equationB(j, i, n) = nat(n+15)+
B(j′, i, n)+B(j′′, i, n) {j<i, j′=j+1, j′′=j+2} to the CR B. It has two recursive
calls and a non-deterministic choice for accumulating either e1 = nat(n + j) or
e2 = nat(n+15). The function fB(j0, i0, n0) = nat(i0 − j0) is a ranking function
for all equations. Next, we compute E1 ⊔E2 where E1 = nat(n0 + i0 − 1− (i0 −
j0)) + x and E2 = nat(n0 + 15− (i0 − j0)) + x. A naive generalization results in
nat(n0+i0−1−(i0−j0))+nat(n0+15−(i0−j0))+x, but syntactically analyzing
the expressions and employing the above heuristics, we automatically obtain a
tighter bound nat(n0+j0+15)+x. Now we generate 〈PB(x)=nat(n0+j0+15)+
x+ PB(x− 1) + PB(x− 1)〉 which can be solved to 〈PB(x)=2x(q + 2)−q−x−2〉
for q = nat(n0 + j0 + 15) and therefore B(j0, i0, n0)=PB(x)[x/nat(i0−j0)].

5 The Dual Problem: Lower Bounds

We now aim at applying the approach from Sec. 4 in order to infer lower bounds,
i.e., under-approximations of the best-case cost. Such LBs are typically useful
in granularity analysis to decide if tasks should be executed in parallel. This
is because the parallel execution of a task incurs various overheads, and there-
fore the LB cost of the task can be useful to decide if it is worth executing it
concurrently as a separate task. Due in part to the difficulty of inferring under-
approximations, a general framework for inferring LBs from CR does not exist.
When trying to adapt the UB framework of [2] to LB, we only obtain trivial
bounds. This is because the minimization of the cost expression accumulated
along the execution is in most cases zero and, hence, by assuming it for all
executions we would obtain a trivial (zero) LB. In our framework, even if the
minimal cost could be zero, since we do not assume it for all iterations, but
rather only for the first one, the resulting LB is non-trivial.

Existing approaches typically assume that the length of chains of recursive
calls depends on a single decreasing argument. We first propose a new technique
to inferring LBs on the length of such chains, which does not have this restriction.
Essentially, we add a counter to the equations in the CR and infer an invariant
which involves this counter. The invariant is indeed the same one used later to
obtain ľ. The minimum value of this counter when we enter a non-recursive case
is a LB on the length of those chains.

Definition 8. Given the CR of Eq. 2, we compute f̌C(x̄0) = nat(l) which is a
lower bound on the length of any chain of recursive calls when starting from
C(x̄0) in three steps: (1) Replace each head C(x̄) by C(x̄, lb) and each recursive
call C(x̄j) by C(x̄j , lb+1); (2) Infer an invariant 〈C(x̄0, 0) ; C(x̄, lb), Ψ〉 for
the new CR; (3) Syntactically look for lb ≥ l in Ψ ∧ϕ0 (projected on x̄0 and lb).

Example 6. Applying step (1) on the CR B results in 〈B(j, i, n, lb) = 0, {j ≤
i}〉 and 〈B(j, i, n, lb) = nat(n+j)+B(j′, i, n, lb+1), {j<i, j+1≤j′≤j+3}〉. The
invariant Ψ for this CR is {j−j0−lb≥0, j0+3lb−j≥0, i=i0, n=n0}. Projecting
Ψ∧{j≥i} on 〈j0, i0, n0, lb〉 results in {lb≥0, j0+3lb−i0≥0} which implies lb ≥
(i0 − j0)/3. Similarly f̌C(k0, j0, n0)=nat(n0+j0 − k0) and A(i0, n0)=nat(n0−i0

4).

We present the approach directly for the non-deterministic CR of Eq. 2. As
in Def. 6, we can reduce the expressions E1, . . . , Eh in order to get an expression
which is guaranteed to be smaller than or equal to min(E1, . . . , Eh).

Definition 9. Given the expressions Ei and Ej in Def. 6, we define their re-
duction as Ei ⊓ Ej = c11 · · · c1m1 + · · · + cn1 · · · c1mn where cij = bij if we can
prove that bij ≤ aij , cij = aij if we can prove that aij ≤ bij, otherwise cij = 0.

The case of cij = 0 can be improved to obtain a tighter LB by relying on heuris-
tics, similarly to what we have discussed in Sec. 4.3. As intuitively explained in
Sec. 3, the main idea is to simulate each nat(l) by a sequence that starts from
nat(ľ) and increases in each iteration by the minimal distance ď.

Definition 10. Let C be the CR of Eq. 2 such that for each nat(l) ∈ ei it
holds that ľ ≥ 0, and let Ei be the expression generated from ei by replacing
each nat(l) by nat(ľ) + (x− 1) ∗ ď. The corresponding best-case RR is 〈PC(x) =
E1 ⊓ · · · ⊓ Eh + PC(x− 1) + · · ·+ PC(x− 1)〉 with kh recursive calls.

In the above definition, it can be observed that, for the sake of soundness, we
require that for each nat(l) it holds that ľ ≥ 0. Intuitively, when such expres-
sions take negative values, by definition of nat, they evaluate to zero and there
can be a sequence of zeros until the evaluation becomes positive. Our under-
approximation would be unsound in this case, because it assumes as minimum
value zero and then starts to increase it by the minimum distance. Thus, for
some values, the approximation could be actually bigger than the actual value.

Theorem 4. If E is a solution for PC(x), then E[x/f̌C(x̄0)] is a LB for C(x̄0).

UBs and LBs T

1
24η(a−1)3+36η(a−1)2+27η(a)2+39η(a)η(a−1)+35η(a−1)+72η(a)+54 1240
8η(a−1)3+27η(a)2+ 99

2 η(a−1)2+ 231
2 η(a−1)+72η(a)+54 1395

8η(a−2)3+46η(a−2)2+105η(a−2)+55η(a−1)+54 204

2
24η(c−1)3+36η(c−1)2+28η(c)2+η(c−1)(40η(c)+35)+25η(c)+48η(b−1)2+46η(b−1)+74 1270
8η(c−1)3+28η(c)2+50η(c−1)2+25η(c)+117η(c−1)+24η(b−1)2+70η(b−1)+74 1425
8η(c−2)3+48η(c−2)2+25η(c−1)+111η(c−2)+24η(b−2)2+70η(b−2)+74 247

3
24η(a−1)3+56η(a)η(a−1)2+27η(a)2+46η(a−1)2+75η(a)+77η(a)η(a−1)+49η(a−1)+62 3617
8η(a−1)3+28η(a)η(a−1)2+27η(a)2+ 109

2 η(a−1)2+75η(a)+66η(a)η(a−1)+ 269
2 η(a−1)+62 3890

18η(a−2)3+81η(a−2)2+75η(a−1)+144η(a−2)+62 415

4
25η(b)η(c)η(c−1)+30η(b)η(c)+16η(b)+6 130
25/2η(b)η(c−b)2+25η(b)2η(c−b)+25/2η(b)3+40η(b)2+135/2η(b)η(c−b)+87/2η(b)+6 200
21/2η(b−1)2+21η(b−1)η(c−b)+53/2η(b−1)+6 60

UBs and LBs T

5
19η(a−1)2+25η(a−1)+7 44
19/2η(a−1)2+69/2η(a−1)+7 63
18η(a−2)+7 10

7
27η(a−1)2+16η(a−1)+9 103
27/2η(a−1)2+59/2η(a−1)+9 120
13/2η(a−2)2+45/2η(a−2)+9 25

9
34η(a)η(a−1)+12η(a)+8 174
17η(a)2+29η(a)+8 197
8η(a−1)2+20η(a−1)+8 24

UBs and LBs T

6
43η(a)η(2a−3)+53η(2a−3)+17 2127
63η(a+1)log2(η(2a−1)+1)+50η(2a−1) 2100
0 40

8
16η(a)2+27η(a−1)2+31η(a)+10η(a−1)+25 200
27/2η(a)2+27η(a−1)2+10η(a−1)+67/2η(a)+25 247
5/2η(a−1)2+10η(a−2) + 67/2η(a−1)+25 60

10
2η(a−1)(5η(a−1)+21)+5η(a)−5η(a−1)−7 104
31∗2η(a−1)+5η(a)−5η(a−1)−17 144
31∗2η(a−2)+5η(a − 1)−5η(a−2)−17 34

Table 1: 1. DetEval(a) 2. LinEqSolve(a,b,c) 3. MatrixInv(a) 4. MatrixSort(a,b,c) 5. InsertSort(a)
6. MergeSort(a) 7. SelectSort(a) 8. PascalTriangle(a) 9. BubbleSort(a) 10. NestedRecIter(a).

Example 7. Consider the LBs on iterations of Ex. 6. Since C(k0, j0, n0) accu-
mulates a constant cost 1, its LB cost is nat(n0+j0−k0). We now replace the
call C(0, j, n) in B by its LB nat(n+j) and obtain the equation: B(j, i, n) =
nat(n+j) + B(j′, i, n) {j<i, j+1≤j′≤j+3}. Notice the need of the soundness
requirement in Th. 3, i.e., ˇnat(n+j)≥0. E.g., when evaluating B(−5, 5, 0) the first
4 instances of nat(n+ j) are zero since they correspond to nat(−5), . . . , nat(−1).
Therefore, it would be incorrect to start accumulating from 0 with a difference
1 at each iteration. After solving A and B in the same way, the computed final
LB for F (n) is: 1

3nat(n)nat(
n
4−1)+ 1

18nat(
n
4−1)nat(n4−1)+ 1

6nat(
n
4−1).

6 Experiments and Conclusions

We have implemented our approach in COSTA, a COSt and Termination An-
alyzer for Java bytecode. The obtained RRs are solved using MAXIMA [12] or
PURRS [4]. As benchmarks, we use classical examples from complexity analysis
and numerical methods: DetEval evaluates the determinant of a matrix; LinEq-
Solve solves a set of linear equations; MatrixInverse computes the inverse of an
input matrix; MatrixSort sorts the rows in the upper triangle of a matrix; In-
sertSort, SelectSort, BubbleSort, and MergeSort implement sorting algorithms;
PascalTriangle computes and prints Pascal’s Triangle; NestedRecIter is an inter-
esting programming pattern we found in the Java libraries with a spacial form

of nested loops that uses recursion and a simple iteration for loop. Our imple-
mentation (and examples) can be tried out at http://costa.ls.fi.upm.es by
enabling the option series in the manual configuration.

Table 1 illustrates the accuracy and efficiency on the above benchmarks us-
ing the cost model “number of executed (bytecode) instructions”. We abbreviate
nat(x) as η(x). The second column shows: in the top row the UB obtained by [2],
next the UB obtained by us and at the bottom our LB. Unfortunately, there are
no other cost analysis tools for imperative languages available to compare exper-
imentally to (e.g., SPEED [9]). As regards UBs, we improve the precision over [2]
in all benchmarks. This improvement, in all benchmarks except MergeSort and
NestedRecIter, is due to nested loops were the inner loops bounds depend on the
outer loops counters. In these cases, we accurately bound the cost of each itera-
tion of the inner loops, rather than assuming the worst-case cost. For MergeSort,
we obtain a tight bound in the order of a∗log(a). Note that [2] could obtain
a∗log(a) only for simple cost models that count the visits to a specific program
point but not for number of instructions, while ours works with any cost model.
For NestedRecIter, we improve the complexity order over [2] from a∗2a to 2a. As
regards LBs, it can be observed from the last row of each benchmark that we
have been able to prove the positive nat condition and obtain non-trivial LBs in
all cases except MergeSort. For MergeSort, the lower bound on loop iterations is a
logarithmic which cannot be inferred by our linear invariant generation tool and
hence we get trivial bound 0. Note that for InsertSort we infer a linear LB which
happens when the array is sorted. Column T shows the time (in milliseconds)
to compute the bounds from the generated CR. Our approach is slightly slower
than [2] mainly due to the overhead of connecting COSTA to the external CAS .

7 Conclusions

When comparing our approach (for UBs) to [9], since the underlying cost analysis
framework is fundamentally different from ours, it is not possible to formally
compare the resulting upper bounds in all cases. However, by looking at small
examples, we can see why our approach can be more precise. For instance, in [9]
the worst-case time usage

∑n
i=1 i is over-approximated by n2, while our series-

based approach is able to obtain the precise solution. For such polynomial cases,
the approach of [10] can compute also the exact solution. However, this approach
is restricted to univariate polynomial bounds, while ours can be applied to obtain
general polynomial, exponential and logarithmic bounds as well.

Finally, to conclude, we have proposed a novel approach to infer precise up-
per/lower bounds of CRs which, as our experiments show, achieves a very good
balance between the accuracy of our analysis and its applicability. The main
idea is to automatically transform CRs into a simple form of worst-case/best-
case RRs that CAS can accurately solve to obtain upper/lower bounds on the
resource consumption. The required transformation is far from trivial since it
requires transforming non-deterministic equations involving multiple increas-

ing/decreasing arguments into deterministic equations with a single decreasing
argument.

Acknowledgements. This work was funded in part by the Information &
Communication Technologies program of the European Commission, Future and
Emerging Technologies (FET), under the ICT-231620 HATS project, by the
Spanish Ministry of Science and Innovation (MICINN) under the TIN-2008-
05624 DOVES project, the HI2008-0153 (Acción Integrada) project, the UCM-
BSCH-GR58/08-910502 Research Group and by the Madrid Regional Govern-
ment under the S2009TIC-1465 PROMETIDOS project.

References

1. E. Albert, P. Arenas, S. Genaim, I. Herraiz, and G. Puebla. Comparing cost
functions in resource analysis. In FOPARA’09, volume 6234 of LNCS. Springer,
2010.

2. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 2010. To appear.

3. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In ESOP, LNCS 4421, pages 157–172. Springer, 2007.

4. R. Bagnara, A. Pescetti, A. Zaccagnini, and E. Zaffanella. PURRS: Towards
Computer Algebra Support for Fully Automatic Worst-Case Complexity Anal-
ysis. Technical report, 2005. arXiv:cs/0512056 available from http://arxiv.org/.

5. Amir M. Ben-Amram. Size-change termination, monotonicity constraints and
ranking functions. In CAV, volume 5643 of Lecture Notes in Computer Science,
pages 109–123. Springer, 2009.

6. P. Feautrier C. Alias, A. Darte and L. Gonnord. Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In SAS, Lecture
Notes in Computer Science. Springer, 2010.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. POPL. ACM, 1978.

8. K. Crary and S. Weirich. Resource bound certification. In POPL’00. ACM Press,
2000.

9. S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: precise and efficient static
estimation of program computational complexity. In POPL, pages 127–139. ACM,
2009.

10. J. Hoffmann and M. Hofmann. Amortized Resource Analysis with Polynomial
Potential. In Proc. of ESOP, volume 6012 of Lecture Notes in Computer Science,
pages 287–306. Springer, 2010.

11. Kim Marriot and Peter Stuckey. Programming with Constraints: An Introduction.
The MIT Press, 1998.

12. Maxima.sourceforge.net. Maxima, a Computer Algebra System. Version 5.21.1
(2009). http://maxima.sourceforge.net/.

13. B. Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9),
1975.

Appendix F

Verified Resource Guarantees using
costa and KeY

The paper “Verified Resource Guarantees using costa and KeY” [4] follows.

151

Verified Resource Guarantees using COSTA and KeY

Elvira Albert
Complutense University of Madrid

elvira@sip.ucm.es

Richard Bubel
Chalmers University of Technology

bubel@chalmers.se

Samir Genaim
Complutense University of Madrid

samir.genaim@fdi.ucm.es

Reiner Ḧahnle
Chalmers University of Technology

reiner@chalmers.se

Gerḿan Puebla
Technical University of Madrid

german@fi.upm.es

Guillermo Roḿan-D́ıez
Technical University of Madrid

groman@fi.upm.es

Abstract
Resource guaranteesallow being certain that programs will run
within the indicated amount of resources, which may refer to mem-
ory consumption, number of instructions executed, etc. This infor-
mation can be very useful, especially in real-time and safety-critical
applications. Nowadays, a number of automatic tools exist, often
based on type systems or static analysis, which produce such re-
source guarantees. In spite of being based on theoretically sound
techniques, the implemented tools may contain bugs which render
the resource guarantees thus obtained not completely trustworthy.
Performing full-blown verification of such tools is a daunting task,
since they are large and complex. In this work we investigate an al-
ternative approach whereby, instead of thetools, we formally ver-
ify the resultsof the tools. We have implemented this idea using
COSTA, a state-of-the-art static analysis system, for producing re-
source guarantees and KeY, a state-of-the-art verification tool, for
formally verifying the correctness of such resource guarantees. Our
preliminary results show that the proposed tool cooperation can be
used for automatically producing verified resource guarantees.

Categories and Subject Descriptors F3.2 [Logics and Meaning
of Programs]: Program Analysis; F2.9 [Analysis of Algorithms
and Problem Complexity]; D3.2 [Programming Languages]

General Terms Languages, Theory, Verification, Reliability

Keywords Static Analysis, Resource Guarantees, Java

1. Introduction
There is a growing awareness, both in industry and academia, of the
crucial role of formally proving the correctness of systems. Verify-
ing the correctness of modern static analyzers is rather challenging,
among other things, because of the sophisticated algorithms used in
them, their evolution over time, and, possibly, proprietary consid-
erations. A simpler alternative is to construct a validating tool [7]
which, after every run of the analyzer, formally confirms that the re-
sults are correct and, optionally, generates correctness proofs. Such
proofs could then be translated toresource certificates[5, 6].

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’11 January 24–25, 2011, Austin, Texas, U.S.A.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

In this work, we are interested inresource guaranteesobtained
by static analysis. An essential aspect of programs is that resources
be used effectively. This is especially true in the current program-
ming trends, which provide us with mechanisms for code reuse by
means of components and services: not only functionality, but also
resource consumption (orcost) must be taken into consideration.

COSTA is a state-of-the-artCOSt andTerminationAnalyzer for
Java bytecode (and hence Java). It receives as input the bytecode
of a Java program, the signature of the method whose cost is to
be inferred, a choice of one among several available cost models
(termination [1], number of bytecode instructions [3], memory
consumption, or calls to certain method) and automatically infers
an upper bound(UB for short) on the cost as a function of the
method’s input arguments. The most challenging step is to infer
UBs for the loops in the program [2]. Intuitively, this requires
(1) bounding the number of iterations of each loop and (2) finding
the worst-case cost among all iterations.Ranking functions[8] give
us safe approximations for requirement (1). To infer the maximal
cost in requirement (2), we need to track how the values of variables
change in the loop iterations and the inter-relations between (the
values of) variables. As we will see, this information is obtained in
COSTAby means ofloop invariantsandsize relations. The analysis
algorithms used inCOSTA for inferring the main components of the
UB generation were proven correct at a theoretical level. However,
there is no guarantee that correctness is preserved in the actual
implementation which is rather involved.

KeY [4] is a state-of-the-art source code verification tool for the
Java programming language. Its coverage of Java is comparable to
that ofCOSTA (nearly full sequential Java, plus a simplified concur-
rency model). KeY implements a logic-based setting of symbolic
execution that allows deep integration with aggressive first-order
simplification. While the degree of automation of KeY is very high
on loop- and recursion-free programs, the user must in general sup-
ply suitable invariants to deal with loops and recursion. In general,
invariants that are sufficient to prove complex functional proper-
ties cannot be inferred automatically. However, simpler invariants
that are sufficient to establish UBscanbe automatically derived in
many cases and this is exactlyCOSTA’s forte. Our work is based on
the insight that the static analysis toolCOSTA and the formal veri-
fication tool KeY have complementary strengths:COSTA is able to
derive UBs of Java programs including the invariants needed to ob-
tain them. This information is enough for KeY toprovethe validity
of the bounds and provide a certificate. The main contribution of
this work is to show that, using KeY, it is possible to formally and
automatically verify the correctness of the UBs obtained byCOSTA.

2. Inference of Upper Bounds inCOSTA

In this section, we briefly describe the techniques used inCOSTAfor
automatically inferring UBs, and we identify the proof obligations
that need to be verified using KeY.

2.1 Main Components of an Upper Bound

Consider the following (JML annotated) program that implements
the insert sort algorithm.

1void insert sort (int A[]) {
2 int i , j , v;
3 //@ ghost int i0=i; int j0=j; int a0=a;
4 i =A.length−2;
5 //@ assert (i=i0−2 ∧ j=j0 ∧ a=a0)
6 //@ ghost int i1=i; int j1=j; int a1=a;
7 //@ loop invariant i≤i1
8 //@ decreases i>0 ? i : 0
9 while (i>=0) {

10 //@ ghost int i2=i; int j2=j; int a2=a;
11 j =i+1;
12 v=A[i];
13 //@ assert j=i2+1 ∧ i2 ≥ 0
14 //@ ghost int i3=i; int j3=j; int a3=a;
15 //@ loop invariant j≤a3
16 //@ decreases a− j>0 ? a− j : 0
17 while (j<A.length && A[j]<v) {
18 A[j−1]=A[j];
19 j ++; }
20 A[j−1]=v;
21 i−−; } }

COSTA receives a non-annotated version of the above program and,
for the cost model that counts the number of executed bytecode in-
structions, produces the (asymptotic) UBinsert sort(a)=a2, where
a refers toA.length. The underlying analysis used inCOSTA infers
UBs for each iterative and recursive constructs (loops) and then
composes the results in order to obtain an UB for the method of
interest. Intuitively, in order to infer an UB for a single loop, it first
infers an UBA on the cost of a single execution of its body, an UB
I on the number of iterations that it can make, and thenA ∗ I is an
UB for the loop. In order to inferA andI COSTA relies on several
program analysis components that provide essential information:

Ranking functions. For each loop,COSTA infers a linear function
from the loop variables toN which is decreasing at each iteration.
For example, for the loop at line17, it infers functionf(a, j) =
nat(a− j) wherenat(ℓ) = max(0, ℓ). This function can be safely
used to bound the number of iterations. In the example, ifa3 andj3
are the initial values ofa andj, then it is guaranteed thatf(a3, j3)
is an UB on the number of iterations of the loop.

Loop invariants. For each loop in the program,COSTA infers an
invariant that involves the loop’s variables and their initial values
(i.e., their values before entering the loop). Let us denote byi1 the
initial value ofi when entering the loop at line9. COSTA infers the
invarianti ≤ i1, which states thati is always smaller than or equal
to its initial value when the program reaches the loop condition.
This information, together with the size relations below, is needed
to compute the worst-case cost of executing one loop iteration.

Size relations. Given a fragment of code or a scope (details be-
low), COSTA infers relations between the values of the program
variables at a certain program point of interest within the scope and
their initial values when entering the scope. For example, at pro-
gram point13, it infers thatj = i2 + 1, wherei2 is the value ofi
when entering the scope that contains line13 (i.e., the scope here is
the loop body). In this case the relation is a simple consequence of
the instruction at line11. In general, however, it may not be trivial
to infer such relations nor to prove that they are correct.

Upper Bounds. Once the above information has been inferred, it
is straightforward to compute an UB for the method. Let us show
this process on the running example:

Inner loop.The process starts from the innermost loops. Thus, we
start with the loop at line17. Assuming that executing the con-
dition costs (at most)c1 instructions, and that the cost of each
iteration (i.e., the loop body) isc2 instructions, then it is clear that
nat(a3 − j3) ∗ (c1 + c2) + c1 is an UB on the cost of this loop
(becausec1 andc2 are constant).

Outer loop.Next, we move to the outer loop at line9. Let us
assume that the cost of the comparison isc3 instructions, the
code at lines11–12 arec4 instructions, and the code at lines20–
21 are c5 instructions. Then, the cost of each iteration of this
loop is c3 + c4 + nat(a3 − j3) ∗ (c1 + c2) + c1 + c5, where
the highlighted subexpression corresponds to the cost of the in-
ner loop computed above. Note that in this case, each iteration
might have a different cost, sincea3 − j3 is not the same for all
iterations. Simply multiplying the number of iterationsnat(i1) by
such a cost is unsound. The solution is to find an expressionU
in terms of the initial values ofa1, i1, j1 which does not change
during the loop such thatU ≥ a3 − j3 in all iterations. Then,
nat(i1) ∗ [c3 + c4 + nat(U) ∗ (c1 + c2) + c1 + c5] + c3 is an UB
for the loop. In order to find such aU , COSTA uses the loop in-
variant (line7) and the size relations (line13) as follows: it solves
the parametric integer programming (PIP) problem of maximiz-
ing the objective functiona3 − j3 w.r.t. the loop invariant and the
size relations wherei1, a1, j1 are the parameters. This produces an
expression in terms ofi1, a1, j1 which is greater than or equal to
a3−j3 in all iterations of the loop. In our example, it isU = a1−1.

Method.We finally can compute the cost of theinsert sort method.
Assume that the cost of line4 is c6, then the cost of the method is
c6+nat(i1) ∗ [c3 + c4 + nat(a1 − 1) ∗ (c1 + c2) + c1 + c5] + c3.
We need to express this UB in terms of the input parametera. For
this, COSTA maximizes (using PIP)i1 anda1 − 1 w.r.t. the size re-
lation at line5 and, respectively, obtainsa−2 anda−1. Therefore,
c6+nat(a−2)∗ [c3+c4+nat(a− 1) ∗ (c1 + c2) + c1+c5]+c3
is the UB forinsert sort.

2.2 COSTA Claims as JML Annotations

To justify that the UBs obtained byCOSTA are correct, we need
to provide formal correctness proofs for all the claims above. This
includes the ranking functions, invariants, size relations, the cost
model that provides allci, and the underlying PIP solver.

Correctness of the cost model is trivial as it is a simple mapping
from each instruction to a number. Correctness of the underlying
PIP solver is also straightforward if we use the maximization pro-
cedure defined in [2], which is based only on the Gaussian elimina-
tion algorithm. Therefore, we concentrate on verifying the correct-
ness of the ranking functions, size relations and invariants. They are
inferred by large software components whose correctness has not
been verified. We now briefly describe the translation of the differ-
ent pieces of information generated byCOSTA to JML annotations
on the Java program, which will allow their verification in KeY.

Ranking functions. For a given loop, whenCOSTA infers a rank-
ing function of the formnat(ℓ), we translate it to the JML annota-
tion “//@ decreasing ℓ > 0 ? ℓ : 0”, sincenat(ℓ) can be defined as
an if-then-else.COSTA might provide also ranking functions of the
form log(nat(ℓ) + 1), which are handled similarly.

Invariants. COSTA infers an invariantϕ for each loop. This in-
variant involves the loop variables̄v and auxiliary variables̄w such
that eachwi represents the initial value ofvi. The JML annotation

for this invariant consists of one line defining allw̄ as ghost vari-
ables (“//@ ghost int w1 = v1;. . .; int wn = vn”) and one line for
declaring the loop invariant (“//@ loop invariant ϕ”).

Size relations. Size relations are linear constraints between the
values of a set of variables of interest between two program points.
As we have seen, this allows composing the cost of the different
program fragments. For each loop (or method call),COSTA infers
the relationϕ between the values before the loop entry (or the
call) and the entry of its parent scope. Suppose that the loop (or
the call) is at lineLl, its parent scope starts at lineLp, and that̄v
are the variables of interest atLl and w̄ represent their values at
Lp. Then we add the JML annotation “//@ ghost int w1 = v1;. . .
; int wn = vn;” immediately after lineLp to capture the values of
v̄ at lineLp, and the JML annotation “//@ assert ϕ” immediately
before lineLl to state that the relationϕ must hold at the program
point. Additional size relations inferred byCOSTA are input-output
size relations. These are linear constraints that relate the return
value of a given method to its input values. For example, suppose
that we replace “i−−” in line 21 of the insert sort program by “i
=decrement(i)” wheredecrement is defined by “int decrement(int
x) {return x−1;}”. Then COSTA infers the relation “ϕ ≡\result=
x−1” which is used to bound the number of iterations of that loop.
In order to verify this relation in KeY we add the JML annotation
“//@ ensures ϕ” to the contract ofdecrement.

3. Verification of Upper Bounds using KeY
We now describe the verification techniques used in KeY to prove
program correctness, focusing on those relevant to UB verification.

3.1 Verification by Symbolic Execution

The program logic used by KeY isJavaCard Dynamic Logic
(JavaDL) [4], a first-order dynamic logic with arithmetic. Pro-
grams are first-class citizens similar to Hoare logics but, in dynamic
logic, correctness assertions can appear arbitrarily nested. JavaDL
extends sorted first-order logic by a program modality〈·〉· (read
“diamond”). Letp denote a sequence of executable Java statements
andφ an arbitrary JavaDL formula, then〈p〉φ is a JavaDL formula
which states that programp terminates and in its final stateφ holds.
A typical formula in JavaDL looks like

i
.
= i0 ∧ j

.
= j0 −> 〈

p︷ ︸︸ ︷
i=j-i;j=j-i;i=i+j;〉(i .

= j0 ∧ j
.
= i0)

wherei, j are program variables represented asnon-rigid constants.
Non-rigid constants and functions are state-dependent: their value
can be changed by programs. Therigid constantsi0, j0 are state-
independent: their value cannot be changed. The formula above
says that if programp is executed in a state wherei and j have
valuesi0, j0, thenp terminatesand in its final state the values
of the variables are swapped. To reason about JavaDL formulas,
KeY employs a sequent calculus whose rules performsymbolic
executionof the programs in the modalities. Here is a typical rule:

ifSplit
Γ, b =⇒ 〈{p}rest〉φ,∆ Γ,¬b =⇒ 〈{q}rest〉φ,∆

Γ =⇒ 〈if (b) {p} else {q} rest〉φ,∆
As values are symbolic, it is in general necessary to split the proof
whenever an implicit or explicit case distinction is executed. It
is also necessary to represent thesymbolic values of variables
throughout execution. This becomes apparent when statements
with side effects are executed, notably assignments. The assign-
ment rule in JavaDL looks as follows:

assign
Γ =⇒ {x := val}〈rest〉φ,∆
Γ =⇒ 〈x = val; rest〉φ,∆

The expression in curly braces in the premise is calledupdateand
is used in KeY to represent symbolic state changes. Anelementary
updateloc := val is a pair of a location (program variable, field,
array) and a value. The meaning of updates is the same as that of an
assignment, but they can be composed in different ways to repre-
sent complex state changes. Updatesu1, u2 can be composed into
parallel updatesu1‖u2. In case of clashes (updatesu1, u2 assign
different values to the same location) a last-wins semantics resolves
the conflict. This reflects left-to-right sequential execution. Apart
from that, parallel updates are applied simultaneously, i.e., they do
not depend on each other. Update application to a formula/terme
is denoted by{u}e and forms itself a formula/term. Application of
updates is similar to explicit substitutions, but is aware of aliasing.

Loops and recursive method calls give rise to infinitely long
symbolic executions. Invariants are used in order to deal with un-
bounded program structures (an example is given below). Exhaus-
tive application of symbolic execution and invariant rules results in
formulas of the form{u}〈〉φ where the program in the modality has
been fully executed. At this stage, symbolic updates are applied to
the postconditionφ resulting in a first-order formula that represents
the weakest precondition of the executed program wrtφ.

3.2 Proof-Obligation for Verifying Upper Bounds

To verify UBs in KeY the annotated source code files provided by
COSTA are loaded. For methods whereCOSTA did not generate a
contract, KeY provides the following default contract:

/∗@ public behavior
@ requires true ;
@ ensures true ;
@ signals only Exception;
@ signals (Exception) true ; @∗/

This contract requires to prove termination for any input and en-
sures that all possible execution paths are analyzed. Abrupt ter-
mination by uncaught exceptions is allowed (signals clauses). To
prove that a methodm satisfies its contract, a JavaDL formula is
constructed which is valid iffm satisfies its contract. Slightly sim-
plified, for insert sort this formula (using the default contract) is:

∀o;∀a0; {a := a0 ‖ self := o}(¬(a .
= null) ∧ ¬(self .

= null) →
〈 try { self.insert sort(a)@NestedLoops; }
catch(Exception e){ exc=e; }〉(exc .

= null ∨
instanceException(exc))

The above formula states that for any possibly valueo of self
and any valuea0 of the argumenta which satisfy the implicit
JML preconditions (self anda are notnull), the method invocation
self.insert sort(a) terminates(required by the use of the diamond
modality) and in its final state no exception has been thrown or any
thrown exception must be of typeException.

3.3 Verification of Proof-Obligations

The proof obligation formula must be proven valid by executing the
methodinsert sort symbolically starting with the execution of the
variable declarations. Ghost variable declarations and assignments
to ghost variables (//@ set var=val;) are symbolically executed
just like Java assignments.

Verifying Size Relations. If a JML assertionassert ϕ; is encoun-
tered during symbolic execution, the proof is split: the first branch
must prove that the assertion formulaϕ holds in the current sym-
bolic state; the second branch continues symbolic execution. In
the insert sort example, a proof split occurs exactly before enter-
ing each loop. This verifies the size relations among variables as
derived byCOSTA and encoded in terms of JML assertion state-
ments (see Sect. 2.2). Input-output size relations encoded in terms
of method contracts are proven correct as outlined in Sect. 3.2.

Verifying Invariants and Ranking Functions. Verification of
the loop invariants and ranking functions obtained fromCOSTA
is achieved with a tailored loop invariant rule that has a variant
term to ensure termination:

loopInv

(i) Γ =⇒ Inv ∧ dec ≥ 0,∆
(ii) Γ, {UA}(b ∧ Inv ∧ dec

.
= d0) ⇒

{UA}〈body〉(Inv ∧ dec < d0 ∧ dec ≥ 0),∆
(iii) Γ, {UA}(¬b ∧ Inv) =⇒ {UA}〈rest〉φ,∆

Γ =⇒ 〈while (b) { body } rest〉φ,∆
Inv and dec are obtained, respectively, from theloop invariant
anddecreasing JML annotations generated byCOSTA. Premise (i)
ensures that invariantInv is valid just before entering the loop and
that the variantdec is non-negative. Premise (ii) ensures thatInv
is preserved by the loop body and that the variant term decreases
strictly monotonic while remaining non-negative. Premise (iii) con-
tinues symbolical execution upon loop exit. The integer-typed vari-
ant term ensures loop termination as it has a lower bound (0) and
is decreased by each loop iteration. UsingCOSTA’s derived ranking
function as variant term obviously verifies that the ranking function
is correct. The updateUA assigns to all locations whose values are
potentially changed by the loop a fixed, but unknown value. This
allows using the values of locations that are unchanged in the loop
during symbolic execution of the body.

Generated Proofs. A single proof for each method is sufficient to
verify the correctness of the derived loop invariants, ranking func-
tions and size relations. The reason is that the contracts capturing
the input-output size relations are not more restrictive w.r.t. the pre-
condition than the default contracts are. Hence, with the verification
of the input-output size relation contracts, we analyze all feasible
execution paths and prove correctness of all loop invariants, ranking
functions and JML assertion annotations. We stress that the proofs
run fully automatic. Much of the time is needed to derive specific
instances of arithmetic properties. As future work, we plan to do
proof profiling and to reduce the search time by hashing frequently
occuring normalisation steps.

4. Implementation and Experiments
The implementation of our approach has required the following
non-trivial extensions toCOSTA and KeY (note thatCOSTA works
on Java bytecode, and KeY on Java source): (1) output the proof
obligations using the original variable names (at the bytecode level,
operand stack variables are often used); (2) place the obligations in
the Java source at the precise program points where they must be
verified (entry points of loops); (3) finding a suitable JML format
for representing proof obligations on UBs has required a consid-
erable number of iterations (defining ghost variables, introducing
assert constructs, etc.); (4) implement the JMLassert construct in
KeY which was not supported hitherto. To express assertions which
have to hold before a method call but after parameter binding sup-
port for a second assertion constructinvocAssert has been added.

Eclipse plugins for both the extendedCOSTA and KeY sys-
tems are available fromhttp://pepm2011.hats-project.eu.
Source code for the tools (under GPL) is planned in the near future.

Table 1 shows some preliminary experiments using a set of
representative programs, available from the above website, which
include sorting algorithms, namely bubble sort (bubsort), insert sort
(inssort), and selection sort (selsort); a method to generate a Pascal
Triangle (pastri); simple (slm) and nested loops (nlf). Columns
Tsize, Tinv, Trf , Tana and Tjml show, respectively, the times
taken byCOSTA to obtain the size relations, loop invariants, ranking
functions, the whole analysis (which includes the previous times)
and generate the JML annotations. ColumnTver shows the time
taken by KeY in order to verify the JML annotations generated

Bench COSTA KeY TotalTsize Tinv Trf Tana Tjml Nodes Branches Tver

slm 22 20 26 112 4 3641 36 6700 6816
nlf 30 16 24 106 6 5665 37 2800 2912
bubsort 38 24 144 296 14 14890 230 57800 58110
inssort 30 12 46 142 6 9875 167 29300 29448
selsort 40 20 112 232 8 12564 209 40700 40940
pastri 66 38 138 394 14 29723 337 110100 110508

Table 1. Statistics about the Analysis and Verification Process

by COSTA. As time measurements for Java are imprecise we state
in addition the number of nodes and branches of the generated
proof to provide some insight on the proof complexity. Column
Total shows the time taken by the whole process. All times are
measured in ms and were obtained using an Intel Core2 Duo P8700
at 2.53GHz with 4Gb of RAM running a Linux 2.6.32 (Ubuntu
Desktop). A notable result of our experiments is that KeY was able
to spot a bug inCOSTA, as it failed to prove correct one invariant
which was incorrect. In addition, KeY could provide a concrete
counterexample that helped understand, locate and fix the bug,
which was related to a recently added feature ofCOSTA.

5. Conclusions and Future Work
We have demonstrated that automatic verification of the upper
bounds inferred byCOSTA using KeY is feasible. Instead of veri-
fying the correctness of the underlying static analysis, we take the
alternative approach of verifying the correctness of their results.
Interestingly, this approach, though weaker in principle than ver-
ification of the analyzer, has advantages in the context of mobile
code. Following proof-carrying-code [6] principles, code originat-
ing from an untrustedproducercan be bundled together with the
proof generated by KeY for its declared resource consumption. This
way, the codeconsumercan check locally and automatically using
KeY whether the claimed resource guarantees are verified. As fu-
ture work, we plan to extend our approach to support programs that
manipulate data structures other than arrays.

Acknowledgments
This work was funded in part by the Information Society Technolo-
gies program of the European Commission, Future and Emerging
Technologies under the IST-231620HATSproject, by TIN-2008-
05624 DOVES, by UCM-BSCH-GR58/08-910502 (GPD-UCM)
and S2009TIC-1465PROMETIDOSproject.

References
[1] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanar-

dini. Termination Analysis of Java Bytecode. InFMOODS’08, volume
5051 ofLNCS, pages 2–18. Springer, 2008.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper
Bounds in Static Cost Analysis.Journal of Automated Reasoning, 2010.
To appear.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost
Analysis of Java Bytecode. InESOP’07, volume 4421 ofLNCS, pages
157–172. Springer, 2007.

[4] B. Beckert, R. Ḧahnle, and P. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach, volume 4334 ofLNCS.
Springer, 2006.

[5] K. Crary and S. Weirich. Resource Bound Certification. InPOPL’05,
pages 184–198. ACM Press, 2000.

[6] G. Necula. Proof-Carrying Code. InPOPL 1997. ACM Press, 1997.

[7] A. Pnueli, M. Siegel, and E. Singerman. Translation Validation. In
TACAS’98, volume 1384 ofLNCS, pages 151–166. Springer, 1998.

[8] A. Podelski and A. Rybalchenko. A Complete Method for the Synthesis
of Linear Ranking Functions. InVMCAI’04, LNCS. Springer, 2004.

Appendix G

Closed-Form Upper Bounds in Static
Cost Analysis

The paper “Closed-Form Upper Bounds in Static Cost Analysis” [9] follows.

156

J Autom Reasoning (2011) 46:161-203
DOI 10.1007/s10817-010-9174-1

Closed-Form Upper Bounds in Static Cost Analysis

Elvira Albert · Puri Arenas

Samir Genaim · Germán Puebla

Abstract The classical approach to automatic cost analysis consists of two phases.

Given a program and some measure of cost, the analysis first produces cost relations

(CRs), i.e., recursive equations which capture the cost of the program in terms of

the size of its input data. Second, CRs are converted into closed-form, i.e., without

recurrences. Whereas the first phase has received considerable attention, with a number

of cost analyses available for a variety of programming languages, the second phase

has been comparatively less studied. This article presents, to our knowledge, the first

practical framework for the generation of closed-form upper bounds for CRs which (1)

is fully automatic, (2) can handle the distinctive features of CRs originating from cost

analysis of realistic programming languages, (3) is not restricted to simple complexity

classes, and (4) produces reasonably accurate solutions. A key idea in our approach is

to view CRs as programs, which allows applying semantic-based static analyses and

transformations to bound them, namely our method is based on the inference of ranking

functions and loop invariants and on the use of partial evaluation.

Keywords Cost analysis, closed-form upper bounds, resource analysis, automatic

complexity analysis, static analysis, abstract interpretation, programming languages.

1 Introduction

Having information about the execution cost of programs, i.e., the amount of resources

that the execution will require, is quite useful for many different purposes. Also, reason-

ing about execution cost is difficult and error-prone. Therefore, it is widely recognized

that cost analysis, sometimes also referred to as resource analysis or automatic com-

plexity analysis, is quite important. In this work we are interested in static cost analysis,

i.e., the analysis results for a program P should allow bounding the cost of executing

P on any input data x without having to actually run P (x).

Elvira Albert · Puri Arenas · Samir Genaim
DSIC, Complutense University of Madrid (UCM), E-28040 Madrid, Spain
E-mail: {elvira,puri}@sip.ucm.es,samir.genaim@fdi.ucm.es

Germán Puebla
DLSIIS, Technical University of Madrid (UPM), E-28660 Boadilla del Monte, Madrid, Spain
E-mail: german.puebla@upm.es

2

The classical approach to static cost analysis consists of two phases. First, given a

program and a cost model, the analysis produces cost relations (CRs for short), i.e., a

system of recursive equations which capture the cost of the program in terms of the

size of its input data. As a simple example, consider the following Java method m

which traverses an array v and, depending whether the array elements are odd or even,

invokes a different method m2 or m1:

public void m(int[] v) {
int i=0;

for (i=0; i<v.length; i++)

if (v[i]%2==0) m1();

else m2();

}

The following cost relations capture the cost of executing this program:

(a) Cm(v) = k1 + Cfor (v, 0) {v≥0}
(b) Cfor (v, i) = k2 {i≥v, v≥0}
(c) Cfor (v, i) = k3 + Cm1() + Cfor (v, i+1) {i<v, v≥0}
(d) Cfor (v, i) = k4 + Cm2() + Cfor (v, i+1) {i<v, v≥0}

where v denotes the length of the array v, i stands for the counter of the loop and Cm,

Cm1 and Cm2 approximate, respectively, the costs of executing the methods m, m1 and

m2. The constraints attached to the equations contain their applicability conditions.

For instance, equation (a) corresponds to the cost of executing the method m with

an array of length greater that 0 (stated in the condition {v≥0}), where a cost k1 is

accumulated to the cost of executing the loop, given by Cfor . The constants k1, . . . , k4
take different values depending on the cost model that one selects. For instance, if

the cost model is the number of executed instructions, then k1 is 1 which corresponds

to the execution of the Java instruction “int i = 0;”. If the cost model is the heap

consumption, then k1 is 0 since the previous instruction does not allocate any memory.

Equations (c) and (d) capture, respectively, the costs of the then and the else branches.

Note that, even if the program is deterministic, they are non-deterministic equations

which contain the same applicability conditions. This is due to the fact that the array v

is abstracted to its length and hence the values of its elements are unknown statically.

Equation (b) captures the cost of exiting the loop.

Some interesting features of cost relations are that: (1) They are programming lan-

guage independent: there are analyzers for many different languages which produce cost

relations. (2) They can cover a wide range of complexity classes: the same techniques

can be used to infer cost which is logarithmic, exponential, etc. (3) They can be used

for capturing a variety of non-trivial notions of resources, such as heap consumption,

number of calls to a specific method, etc.

Though cost relations are simpler than the programs they originate from, since all

variables are of integer type, in several respects they are not as static as one would

expect from the result of a static analysis. One reason is that they are recursive and

thus we may need to iterate for computing their value for concrete input values. An-

other reason is that even for deterministic programs, it is well known that the loss

of precision introduced by the size abstraction may result in cost relations which are

non-deterministic. This happens in the above example: since the array v has been

abstracted to its length v, the values of v[i] are unknown statically. Hence, the last

3

two equations (c) and (d) become non-deterministic choices. In general, for finding the

worst-case cost we may need to compute and compare (infinitely) many results. For

both reasons, it is clear that it is interesting to compute closed-form upper bounds

for the cost relation, whenever this is possible, i.e., upper bounds which are not in re-

cursive form. For instance, for the above example, we aim at inferring the closed-form

upper bound k1+k2+v∗max ({k3 +Cm1 , k4 +Cm2 }) where Cm1 and Cm2 are in turn

closed-form upper bounds for the corresponding methods.

Since cost relations are syntactically quite close to Recurrence Relations [15] (RRs

for short), in most cost analysis frameworks, it has been assumed that cost relations

can be easily converted into RRs. This has led to the belief that it is possible to use

existing Computer Algebra Systems (CAS for short) for finding closed-forms in cost

analysis. As we will show, cost relations are far from RRs. In this article, we present,

to the best of our knowledge, the first practical framework for the fully automatic

inference of reasonably accurate closed-form upper bounds for CRs originating from

a wide range of programs. The main novelty of our approach is that, by providing a

semantics for CRs, we can view CRs as programs and, thus, apply semantic-based

static analyses and transformations to automatically infer upper bounds for them. In

particular, our main contributions are summarized as follows:

– We identify the differences between CRs and RRs, in Section 2.

– We provide a formal definition of CRs and their semantics in terms of evaluation

trees, in Section 3. These notions are independent of the language and cost model.

– We present a general approximation scheme to infer closed-form upper bounds in

Section 4. Basically, it is based on the idea of bounding the cost of the corresponding

evaluation trees. This requires computing upper bounds both on the depth of trees

and also on the cost of nodes.

– In Section 5, we propose to use a specific form of ranking functions, which have

been extensively studied in termination analysis (see e.g. [45]), to bound the depth

of the evaluation tree.

– In Section 6, we present how to bound the cost of nodes by relying on loop invari-

ants [23] and maximization operations.

– In Section 7, we develop an extension of our method to obtain more accurate upper

bounds for divide and conquer programs which is based on counting levels in the

evaluation tree rather than counting nodes.

– Our method can be used when CRs are directly recursive. We present in Section 8

an automatic program transformation, formalized in terms of partial evaluation

(see e.g. [33]), which converts CRs into an equivalent directly recursive form.

– We report on a prototype implementation and apply it to obtain closed-form upper

bounds for CRs automatically generated from Java bytecode programs.

A preliminary version of this work appeared in the Proceedings of SAS’08 [4]. We

have pursued cost relations as a language-independent target language for cost analysis

in [5]. Our remaining previous work on cost analysis [6,8,10,11] is not related to this

article but to the first phase in cost analysis which obtains, from a program and a cost

model, a cost relation.

1.1 Applications of Upper Bounds of Cost Relations

Automatic cost analysis requires the inference of closed-form upper bounds in order to

be used within its large application field, which includes the following applications:

4

Resource Bound Certification. This research area deals with security properties in-

volving resource usage requirements; i.e., the code must adhere to specific bounds on

its resource consumption. The present work enables the automatic generation of non-

trivial closed-form upper bounds on cost. Such upper bounds can be computed by a

trusted server who signs the code using public key infrastructure. Alternatively, they

can be computed from scratch on the client side or (hopefully) efficiently checked by

using certificates, in the proof-carrying code [43] style, though the latter would require

further research. Previous work in resource bound certification was restricted to linear

bounds [25,12,31] and to semi-automatic techniques [21].

Performance Debugging and Validation. This application is based on automating the

process of checking whether certain assertions about the efficiency of the program, pos-

sibly written by the programmer, hold or not. This application was already mentioned

as future work in [54] and is available in the CiaoPP system for Prolog programs [29].

Our closed-form upper bounds can be used to check whether the overall cost of an

application meets the resource-consumption constraints specified in the assertions.

Program Synthesis and Optimization. This application was already mentioned as one

of the motivations for [54]. Both in program synthesis and in semantic-preserving op-

timizations, such as partial evaluation (see e.g. [24,46]), there are multiple programs

which may be produced in the process, with possibly different efficiency levels. Here,

upper bounds on the cost can be used for guiding the selection process among a set of

candidates.

2 Cost Relations vs. Recurrence Relations

The aim of this section is to identify the differences between cost relations and tradi-

tional recurrence relations. For this purpose, we take a close look at the CRs which

appear in cost analysis of real programs. Figure 1 shows a Java program which we use

as running example. We explain in detail, in Section 2.1 below, the CRs produced for

this program by the automatic cost analysis of [6]. Then, in Section 2.2 we discuss the

differences with RRs.

2.1 Cost Relations for the Running Example

Consider the Java code in Figure 1. It uses a List class for (non sorted) linked lists of

integers which is implemented in the usual way. The del method receives as input: l,

a list without repetitions; p, an integer value (the pivot); a and b, two sorted arrays

of integers; and la and lb, two integers which indicate, respectively, the number of

positions occupied in a and b. The a (resp. b) array is expected to contain values which

are smaller (resp. greater or equal) than p, the pivot. Under the assumption that all

values in l are contained in either a or b, the method del removes all values in l from

the corresponding arrays. The rm vec auxiliary method removes a given value e from

an array a of length la and returns a’s new length, la−1.

Example 1 The system Costa [7] is an abstract interpretation-based COSt and Ter-

mination Analyzer for Java bytecode. It receives as input a bytecode program and (a

5

s t a t i c void de l (L i s t l , i n t p , i n t a [] , i n t la , i n t b [] , i n t lb){
whi le (l != nu l l){ // co s t equat ions (2) , (3) , (4)

i f (l . data < p) l a=rm vec (l . data , a , l a) ;
e l s e lb=rm vec (l . data , b , lb) ;
l=l . next ;

}
}
s t a t i c i n t rm vec (i n t e , i n t a [] , i n t l a){

i n t i =0;
whi l e (i < l a && a [i]<e) { i ++;}; // co s t equat ions (5) , (6) , (7)
f o r (i n t j=i ; j<la −1; j++) a [j]=a [j +1] ; // co s t equat ions (8) , (9)
re turn la −1;

}

Fig. 1 Java code of running example

loop-D ENTRY

i<la and
a [i]<e

i>= la o r
 a [i]>=e

i = i + 1 loop-D EXIT

del ENTRY

call LOOP-C

loop-E ENTRY

 j<la-1 j>= la -1

j + +
a [j] =a [j +1]

loop-E EXIT

l !=nu l l
l .data<p

l !=nu l l
l . da ta>=p

l=nu l l

la=rm_vec(l.data,b, lb)la=rm_vec(l.data,a,la)

loop-C ENTRY

l= l .next

loop-C EXIT

DEL rm_vec

i = 0
call LOOP-D
j = i
call LOOP-E
return la-1

Fig. 2 Control flow graphs for running example

choice of) a resource of interest in the form of a cost model, and tries to obtain an

upper bound of the resource consumption of the program. In Figure 2, we show the

control flow graphs (CFG) constructed by Costa in order to generate automatically

the CRs. Such CFGs correspond to the graphs for the two methods (del and rm vec)

and separate CFGs for the loops, as in Costa loop extraction is performed mainly for

efficiency issues (see [2]). Although [6] analyzes Java bytecode and not Java source, we

show the source for clarity of the presentation.

Figure 3 shows the CRs automatically generated by the system for the del method

in Figure 1 using the CFGs in Figure 2. The syntax and semantics of CRs is explained

in detail in Section 3. Briefly, cost relations are defined by means of equations, each of

which has an associated set of constraints which is shown to the right of the equation.

Intuitively, the CRs are obtained from the program after performing the following three

main steps:

1. In the first step, the recursive structure of the cost relation is determined by observ-

ing the iterative constructs in the program. In the case of imperative programs, both

loops and recursion produce recursive calls in the cost relation. The CR matches

the structure of the program such that when the program contains an iterative

6

(1) Del(l, a, la, b, lb) = 1+C(l, a, la, b, lb) {l ≥ 0, a ≥ la, la ≥ 0, b ≥ lb, lb ≥ 0}

(2) C(l, a, la, b, lb) = 2 {l = 0, a ≥ la, a ≥ 0, b ≥ lb, b ≥ 0}
(3) C(l, a, la, b, lb) = 25+D(a, la, 0)+E(la, j)+

C(l′, a, la − 1, b, lb) {l > 0, a ≥ la, a ≥ 0, b ≥ lb, b ≥ 0, j ≥ 0, l > l′}
(4) C(l, a, la, b, lb) = 24+D(b, lb, 0)+E(lb, j)+

C(l′, a, la, b, lb − 1) {l > 0, a ≥ la, a ≥ 0, b ≥ lb, b ≥ 0, j ≥ 0, l > l′}

(5) D(a, la, i) = 3 {i ≥ la, a ≥ la, i ≥ 0}
(6) D(a, la, i) = 8 {i < la, a ≥ la, i ≥ 0}
(7) D(a, la, i) = 10+D(a, la, i+1) {i < la, a ≥ la, i ≥ 0}

(8) E(la, j) = 5 {j ≥ la − 1, j ≥ 0}
(9) E(la, j) = 15+E(la, j+1) {j < la − 1, j ≥ 0}

Fig. 3 Cost relations generated by cost analysis of running example

construct, its CR has a recursion. To carry out this step, analyzers usually build

CFGs. In our example, we have three recursive cost relations C, D and E which

correspond to the three CFGs for the loops in Figure 2:

– C : cost of the while loop in del,

– D : cost of the while loop in rm vec,

– E : cost of the for loop in rm vec.

For readability, the CRs in Figure 3 are shown after performing partial evaluation,

as we will explain in Section 8. This explains why there is no relation for the method

rm vec: the calls to rm vec have been unfolded within its calling context, i.e., they

have been replaced by the right hand side of the corresponding equation.

2. In the second step, static analysis techniques are used in order to approximate how

the sizes of variables change from one call in the cost relation to another. Each pro-

gram variable is abstracted using a size measure such that every non-integer value

is represented as a natural number. Classical size measures used for non-integer

types are: array length for arrays, list length for lists, the length of the longest ref-

erence path for linked data structures, etc. In the above example, l represents the

path-length [51] of the corresponding dynamic structure, which in this case coin-

cides with the length of the list; a and b are the lengths of the corresponding arrays.

Since la and lb are numeric (integer) variables, the CR directly handles those val-

ues, i.e., no abstraction is required for them. Analysis is often done by obtaining an

abstract version of the program by relying on abstract interpretation [22]. Essen-

tially, the abstraction consists in inferring size constraints, sometimes also referred

to as size relations, between the program variables at different program points.

In Figure 3, such size relations are shown to the right of the equations. They are

usually expressed by means of linear constraints. We refer to such abstraction by

size abstraction and to an analysis that infers such relations by size analysis.

3. In the last step, instructions in the original program are replaced by the cost they

represent. In the running example, we count the number of bytecode instructions

executed such that each Java instruction corresponds to several bytecodes. It is

not a concern of this paper to understand how bytecode instructions are related to

Java statements. Hence, we omit explanations about the inferred constants in the

equations.

After applying the above steps, the analyzer can set up the CRs shown in Figure 3

which we explain below. Equation (1) defines the cost of method del as 1 bytecode

instruction plus the cost of the call to C . Observe also that the set of constraints contain

7

applicability conditions (i.e., guards) for each equation, if any, by providing constraints

which only affect a subset of the variables in the left hand side (lhs for short). For

clarity, we have inlined equality constraints (e.g., inlining equality lb′ = lb− 1 is done

by replacing all occurrences of lb′ by lb − 1). The constraints attached to (1) are the

(abstract) preconditions of the program. Among them, we have a ≥ la (resp. b ≥ lb),

which requires that the number of elements occupied in each array is less or equal than

its length. Such preconditions are propagated properly to the rest of the equations.

In addition to Del, we have three recursive relations. As regards E, Equation (8)

is its base case and it corresponds to the exit from the for loop, whereas Equation (9)

counts the cost of each iteration in the loop. As expected, the value of j is increased

by one at the recursive call to E. As regards the cost relation D, we have two base

cases, Equations (5) and (6), which correspond to the exits from the loop because

i ≥ la and because a[i] ≥ e, respectively. The important point here is that the second

condition does not appear in the constraints of Equation (6) because this condition

is not observable after abstracting the array a to its length, i.e., the value in a[i] is

unknown. For the selected cost model, we count 3 bytecode instructions in the first

base case and 8 in the second one. The cost of executing an iteration of the loop is

captured by (7), where the condition i < la must be satisfied and variable i is increased

by one at each recursive call.

Finally, in relation C, Equation (2) corresponds to the case of an empty list, in-

dicated by the condition l = 0. Equations (3) and (4) correspond, respectively, to the

then and else branches of the if-then-else construct within the while loop. Hence, both

of them contain the relation l > 0. Note that, as before, the conditions l.data < p and

l.data ≥ p in the Java program do not appear in the constraints attached to Equa-

tions (3) and (4) as they are not preserved by the corresponding size abstraction. The

calls to D and E in (3) capture the cost of executing the method rm vec for a and la.

In the constraints, la decreases by one upon exit from rm vec. l′ corresponds to the

length of the list when we perform the recursive call. It is ensured that the size of l

has decreased (l > l′), but due to the size abstraction, we do not know how much.

This is because the size analysis for heap allocated data structures used in [6] is based

on path-length analysis, where size relations are expressed using > and ≥ only. Equa-

tion (4) is similar to (3) but for b and lb instead of a and la. Note that when calling

E in equations (3) and (4), a fresh variable j is used since we do not know the value

that j can take after executing the while loop. We only know that j ≥ 0, as it appears

in the attached constraint. 2

Importantly, if the program were written in a different programming language, the first

phase in cost analysis would produce a similar cost relation which differs essentially

only on intermediate equations and on the constants which are counted. This step is

outside the scope of this article (see Section 11 for references to this phase in several

programming languages). Our approach for computing closed-form upper bounds takes

as input cost relations which originate from programs written in any programming

language.

2.2 Why Cost Relations are not Recurrence Relations ?

As can be seen in the CRs in the example, CRs differ from standard RRs [15] in the

following ways:

8

(1) C(x, y) = 2 {x ≥ y}
(2) C(x, y) = 3+C(x′, y′) {x < y′, x′ = x−1, y′ = y}

(3) D(x, y) = 2 {x ≥ y}
(4) D(x, y) = x+D(x′, y′) {x < y′, x′ = x−1, y′ = y, x ≥ 0}

(5) C(x, y) = C′(y−x)

(1’) C′(z) = 2 {z ≤ 0}
(2’) C′(z) = 3+C′(z′) {z > 0, z′ = z−1}

(4’) D′(z) = (y−z)+D′(x′, y′) {x < y′, x′ = x−1, y′ = y, y ≥ z}

Fig. 4 Replacing multiple arguments with a single one

(a) Non-determinism. In contrast to RRs, CRs are highly non-deterministic: equations

for the same relation are not required to be mutually exclusive. Even if the program-

ming language is deterministic, size abstractions introduce a loss of precision: some

guards which make the original program deterministic may not be observable when

using the size of arguments instead of their actual value. In Example 1, this happens

between Equations (3) and (4) and also between (6) and (7).

(b) Inexact constraints. CRs may have constraints other than equalities, such as l > l′.
When dealing with realistic programming languages which contain non-linear data

structures, such as trees, it is often the case that size analysis does not produce exact

results. E.g., analysis may infer that the size of a data structure strictly decreases from

one iteration to another, but it may be unable to provide the precise reduction. This

happens in Example 1 in Equations (3) and (4).

(c) Multiple arguments. CRs usually depend on several arguments that may increase

(variable i in Equation (7)) or decrease (variable l in Equation (2)) at each iteration.

In fact, the number of times that a relation is executed can be a combination of several

of its arguments. E.g., relation E is executed la− j − 1 times.

Point (a) is an obvious source of non-determinism and it was already detected

in [54]. Point (b) is another source of non-determinism. Though it may not be so

evident in small examples, it is almost unavoidable in programs handling trees or when

numeric value analysis loses precision. As a result of (a) and (b), strictly speaking,

CRs do not define functions, but rather relations: given a relation C and input values

v̄, there may exist multiple output values for C(v̄).

As regards point (c), most existing solvers can only handle single-argument recur-

rences (Mathematica is an exception). Sometimes it is possible to automatically convert

relations with several arguments into relations with only one. However, this approach is

only applicable when the equations, in addition to the recursive calls themselves, only

have constant value expression in the right hand side (rhs for short). This problem is

illustrated in Fig. 4. There, relation C has two arguments, but it can be converted into

relation C′ which only has one argument by defining z = y−x, resulting in equations 1′

and 2′, with the adapter equation 5. Now, if we try to apply the same transformation

to relation D, the situation is different. The reason for this is that equation 4 accumu-

lates the non-constant expression x in each iteration. Now, the transformation results

in equation 4′, where the value of y is unbounded and thus an upper bound cannot be

found. Note that a fundamental difference between C and D is that while the former

9

only depends on y−x the latter takes different values depending on the initial value of

x. E.g., C(0, 10) = C(1000, 1010) but D(0, 10) 6= D(1000, 1010).

The above differences make existing methods for solving RRs insufficient to bound

CRs, since they do not cover points (a), (b), and (c) above. On the other hand, CASs

can solve complex recurrences (e.g., coefficients to function calls can be polynomials)

which our framework cannot handle. However, this additional power is not needed in

cost analysis, since such recurrences do not occur as the result of cost analysis.

Given a (non-deterministic) cost relation, it is sometimes useful to define a cost

function. A relatively straightforward way of obtaining a cost function from non-

deterministic CRs would be to introduce a maximization operator. Unfortunately, the

cost functions thus produced are not very useful since existing CAS do not support the

maximization operator. Adding it is far from trivial, since computing the maximum

when the equations are not mutually exclusive requires taking into account multiple

possibilities, which results in a highly combinatorial problem. This combinatorial ex-

plosion also affects the use of such cost-bound function in dynamic approaches, i.e.,

those based on executing cost-bound functions, such as [28].

Another approach is to obtain a cost-bound function by eliminating non-determinism.

For this, we need to remove equations from CRs as well as sometimes to replace inex-

act constraints by exact ones while preserving the worst-case solution. However, this

is not possible in general. E.g., in Figure 3, the maximum cost is obtained when the

execution interleaves Equations (3) and (4), and therefore the worst case cannot be

achieved if we remove either equation. In other words, the upper bound obtained by

removing either of Equations (3) and (4) is not an upper bound of the original CR.

Finally, let us observe that the properties listed above are all evident properties

of constraint programs whose arguments are integer values. This explains the fact

that we treat CR as programs and apply analysis and transformations delevoped for

programming languages on them.

3 Cost Relations: Syntax and Semantics

Let us introduce some notation and preliminary definitions. The sets of natural, integer

and real values are denoted respectively by N, Z and R. The sets of non-negative integer

and real values are denoted respectively by Z+ and R+. We use v and w for values

from Z and Z+, r for values from R and R+, and n for values from N. We write x,

y, and z, to denote variables which range over Z. Given any entity t, vars(t) refers

to the set of variables occurring in t. The notation t̄ stands for a sequence of entities

t1, . . ., tn, for some n > 0. For simplicity, we sometimes interpret these sequences as

sets. We use t[ȳ/x̄] to denote the renaming of the variables x̄ by ȳ.

A linear expression has the form v0 + v1x1 + · · · + vnxn. A linear constraint c

(over Z) has the form l1 ≤ l2 where l1 and l2 are linear expressions. For simplicity,

we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1, and l1 < l2 instead of l1 + 1 ≤ l2. Note

that constraints with rational coefficients can be always transformed to equivalent

constraints with integer coefficients, e.g., 1
2x > y is equivalent to x > 2y. We write

ϕ, ψ or φ, possibly subscripted, to denote sets of linear constraints, i.e., of the form

{c1, . . . , cn}, which should be interpreted as the conjunction c1 ∧ · · · ∧ cn. We write

x̄ = ȳ to denote x1 = y1 ∧ · · · ∧ xn = yn and ϕ1 |= ϕ2 to indicate that the (set of)

linear constraints ϕ1 implies the (set of) linear constraints ϕ2. An assignment σ over

a tuple of variables x̄ is a mapping from x̄ to Z. Sometimes we denote an assignment

10

over x̄ as x̄ = v̄, therefore we might write σ |= ϕ for x̄ = v̄ |= ϕ. We use σ(x) to refer

to the value of x in σ, and σ(x̄) for 〈σ(x1), . . . , σ(xn)〉. The projection operator ∃x̄.ϕ
(resp. ∃̄x̄.ϕ) projects the polyhedron defined by ϕ on the space vars(ϕ) \ x̄ (resp. x̄).

The following definition presents our notion of basic cost expression, which char-

acterizes syntactically the kind of expressions we deal with. Such expressions will be

crucial to characterize the cost relation systems defined in the next section.

Definition 1 (basic cost expression) A symbolic expression exp is a basic cost

expression if it can be generated using the grammar below:

exp::= r | nat(l) | exp+ exp | exp ∗ exp | expr | logn(exp) | nexp | max(S) | exp− r

where r ∈ R+, l is a linear expression, S is a non empty set of basic cost expressions,

nat : Z → Z+ is defined as nat(v)=max({v, 0}), and exp satisfies that for any assign-

ment σ : vars(exp) 7→ Z we have that [[exp]]σ ∈ R+, where [[exp]]σ is the result of

evaluating exp w.r.t. σ.

Basic cost expressions are symbolic expressions which represent the resources we accu-

mulate and are the non-recursive building blocks for defining cost relations and for the

closed-form upper bounds that we infer for them. Cost expressions enjoy two crucial

properties: (1) By definition, they are always evaluated to non-negative values, for in-

stance, the expression nat(x)−1 is not a cost expression, since its evaluated to negative

numbers for x ≤ 0, however, nat(x− 1) is a valid cost expression. Note that the −r ex-

pression has been introduced to the above grammar only for being able of constructing

nnat(l)−1 (when counting the number of nodes of a tree), which is clearly evaluated to

a non-negative value. (2) They are monotonic in their nat components, i.e., replacing

a sub-expression nat(l) by nat(l′) such that l′ ≥ l, results in an upper bound of the

original expression. This is essential for defining the maximization procedure ub exp,

which is defined in Section 6.2.

Proposition 1 Let exp be a basic cost expression, l and l′ be linear expressions and

ϕ be a set of linear constraints such that ϕ |= l′ ≥ l. Let exp′ be the result of replacing

an occurrence of nat(l) in exp by nat(l′). Then for any assignment σ for vars(exp′) ∪
vars(exp), if σ |= ϕ then [[exp′]]σ ≥ [[exp]]σ.

Proof By structural induction on basic cost expressions: (1) for expressions of the form

nat(l) the result follows from σ |= ϕ and ϕ |= l′ ≥ l, which implies [[l′]]σ ≥ [[l]]σ; and

(2) for the induction step, composing expressions as described in Definition 1 preserves

trivially the monotonicity property. 2

Definition 2 (Cost Relation System) A cost relation system S is a finite set of

equations of the form 〈C(x̄) = exp+
∑k

i=1Di(ȳi), ϕ〉 with k ≥ 0, where C and all Di

are cost relation symbols, all variables x̄ ∪ ȳi are distinct variables; exp is a basic cost

expression; and ϕ is a set of linear constraints over x̄ ∪ vars(exp)
⋃k

i=1 ȳi.

In contrast to standard definitions of RRs, in CRSs, the variables which occur in the

rhs of the equations do not need to be related to those in the left hand side (lhs for

short) by equality constraints. Other constraints such as ≤ and < can also be used.

We denote by rel(S) the set of cost relation symbols which are defined in S, i.e., which
appear in the lhs of some equation in S. Given a CRS S and a cost relation symbol C,

the definition of C in S, denoted def (S, C), is the subset of the equations in S whose

11

lhs is of the form C(x̄). Without loss of generality, we assume that all equations in

def (S, C) have the same variable names in the lhs, and that S is self-contained in the

sense that all cost relation symbols which appear in the rhs of an equation in S must

be in rel(S).
A cost equation 〈C(x̄) = exp +

∑k
i=1Di(ȳi), ϕ〉 states that the cost of C(x̄) is

exp plus the sum of the cost of all Di(ȳi) where the linear constraints ϕ contain

the applicability conditions for the equation as well as size relations for the equation

variables. Intuitively, a cost relation is program, very similar to a constraint logic

program [32] where the relation plays the role of a predicate and an equation plays the

role of a clause. Evaluating a call C(v̄) can be done as follows: (1) choose a matching

equation E ≡ 〈C(x̄) = exp+
∑k

i=1Di(ȳi), ϕ〉; (2) choose an assignment σ over vars(E)
s.t. σ |= v̄ = x̄ ∧ ϕ; (3) evaluate exp w.r.t σ and accumulate it to the result; and (4)

evaluate each call Di(v̄i) where v̄i = σ(ȳi). Note that the result (i.e., the cost of the

execution) of the evaluation is the sum of all cost expressions accumulated in step (3).

Such evaluation strategy can be described in terms of evaluation trees. Each node in

the tree describes the cost accumulated at step (3), and the n sub-trees correspond to

the evaluation of the calls in step (4). Then, the result of the evaluation corresponds

to the sum of all nodes in the tree.

The next definition provides a formal (denotational) semantics for CRSs which

maps a call C(v̄) to the set of all possible evaluation trees, and therefore the set of

all possible answers. We will represent evaluation trees using nested terms of the form

node(Call, Local Cost, Children), where Local Cost is a constant in R+ and Children

is a sequence of evaluation trees.

Definition 3 Given a cost relation system S, the set of evaluation trees induced by

an initial query C(v̄) is defined as:

Trees(C(v̄),S)=




node(C(v̄), r, 〈T1, . . ., Tk〉)

∣∣∣∣∣∣∣∣∣∣

1. E≡〈C(x̄)=exp+
∑k

i=1Di(ȳi), ϕ〉∈S
2. σ is an assignment over vars(E) s.t.
σ|=x̄=v̄∧ϕ

3. r = [[exp]]σ
4. Ti ∈ Trees(Di(v̄i), S) s.t v̄i = σ(ȳi)





Then, the set of all possible answers for C(v̄) is defined as:

Answers(C(v̄),S)={Sum(T) | T ∈ Trees(C(v̄),S)}

where Sum(T) = Sum(node(C(v), r, 〈T1, . . . , Tk〉)) = r +
∑k

i=1 Sum(Ti).

A cost-bound function C+(x̄) can be defined as C+(v̄) = max(Answers(C(v̄),S)).
Clearly, it is not always computable. Sometimes there is actually no upper bound

because the tree is infinite. Also, it can happen that an upper bound exists but it is

not computable. Note that the branching in each tree is conjunctive and corresponds

to the different calls in the body, an that the disjunction comes in the form of multiple

trees for the same query.

Example 2 Figure 5 shows two possible evaluation trees for Del(3, 10, 2, 20, 2) in S,
where S is the CR in Figure 3. The tree on the left has maximal cost, whereas the one

on the right has minimal cost. Nodes are represented using boxes split in two parts.

The part on the left contains a call, e.g., Del(3, 10, 2, 20, 2) in the root nodes of both

trees, annotated with a number in parenthesis, e.g., (1) in such nodes, which indicates

12

(9) E(2,1) 5

(8) E(2,0) 15

(5) D(10,2,2)

(7) D(10,2,1) 10

3

(5) D(20,2,2) 3

(7) D(20,2,1) 10

10(7) D(20,2,0)

5(9) E(2,1)

(8) E(2,0) 15

24(4) C(2,10,1,20,2)

(2) C(0,10,0,20,1) 25(9) E(1,0)

(5) D(10,1,1) 3

(7) D(10,1,0) 10

(3) C(1,10,1,20,1) 25

(6) D(20,2,0) 8 (8) E(2,1) 5 (2) C(0,10,1,20,2)2

(4) C(3,10,2,20,2) 24

1(1) Del(3,10,2,20,2)1

(3) C(3,10,2,20,2) 25

(1) Del(3,10,2,20,2)

(7) D(10,2,0) 10

Fig. 5 Two evaluation trees for Del(3, 10, 2, 20, 2)

the equation which was selected for evaluating such call. The part on the right contains

the local cost associated to the call, 1 in both root nodes. Nodes are linked by arrows

to their children, if any.

The two trees differ in that, for solving C(3, 10, 2, 20, 2), in the one on the left we

pick Equation (3) and in the one on the right we pick Equation (4). Furthermore, in

the recursive call to C in Equations (3) and (4) we always assign l′ = l− 1 in the tree

on the left and we assign l′ = l−3 in the tree on the right. Note that both possibilities

are valid w.r.t. S, since we are allowed to pick any value l′ such that l′ < l. The tree

on the left corresponds to a possible execution of the program. However, the tree on

the right does not correspond to any actual execution. This is a side effect of using safe

approximations in static analysis for computing size abstractions: information is correct

in the sense that given a concrete program execution, at least one of the evaluation

trees must correspond to such execution, but there may be other trees which do not

correspond to any valid execution. Therefore, CRSs provide information which is sound

but possibly imprecise.

As this example shows, there may be multiple evaluation trees for a call. In fact,

there may even be infinitely many of them. The latter happens in our example call, as

step 1 in Definition 3 can provide an infinite number of assignments to variable j which

are compatible with the constraint j ≥ 0 in Equations (3) and (4). This shows that

approaches like [28] based on evaluation of RRs may not be of general applicability in

CRSs, as size relations can be inexact and multiple, or even infinitely many evaluation

trees may exist. Fortunately, since we are not interested in executing CRSs but rather

on finding closed-form (i.e., static) upper bounds for them, whether there are infinitely

many evaluation trees for a call is not directly an issue, as long as there are not

infinitely many different answers. In our example, Trees(Del(3, 10, 2, 20, 2),S) is an

infinite set, but infinitely many of the trees in this set produce equivalent results and

Answers(Del(3, 10, 2, 20, 2)),S) is finite. Thus, it is in principle possible to find an

upper bound for it. 2

4 Closed-Form Upper-Bounds for Cost Relations

After providing a suitable semantics for CRs, we now study how to obtain closed-

form upper bounds for them. In what follows, we are only interested in upper-bound

13

(2) C(l, a, la, b, lb) = 2

{a ≥ la, b ≥ lb, b ≥ 0, a ≥ 0, l = 0}
(3) C(l, a, la, b, lb) =

38+15*nat(la-j-1)+10*nat(la) + C(l′, a, la − 1, b, lb)

{a ≥ 0, a ≥ la, b ≥ lb, j ≥ 0, b ≥ 0, l > l′, l > 0}
(4) C(l, a, la, b, lb) =

37+15*nat(lb-j-1)+10*nat(lb) + C(l′, a, la, b, lb − 1)

{b ≥ 0, b ≥ lb, a ≥ la, j ≥ 0, a ≥ 0, l > l′, l > 0}

(3) C(3,10,2,20,2)
 38+15*nat(2−0−1)+
 10*nat(2)=73

(4) C(2,10,1,20,2) 37+15*nat(2−0−1)+
 10*nat(2)=72

(3) C(1,10,1,20,1) 38+15*nat(1−0−1)+
 10*nat(1)=48

(2) C(0,10,0,20,1) 2

Fig. 6 Standalone CR for relation C and a corresponding evaluation tree

functions which are in closed-form. Therefore, for brevity, we often just write ‘upper

bound’ instead of ‘closed-form upper bound’.

A function f : Zn 7→ R+ is in closed-form if it is defined as f(x̄) = exp, where exp

is a basic cost expression and vars(exp) ⊆ x̄. Let C be a cost relation, a closed-form

function U : Zn 7→ R+ is an upper bound of C if ∀v̄ ∈ Zn and ∀r ∈ Answers(C(v̄),S)
it holds that U(v̄) ≥ r. Similarly, we say that a function f : Zn 7→ Z is an upper bound

for g : Zn 7→ Z, if f(v̄) ≥ g(v̄) for any v̄ ∈ Zn. Given a relation C (resp. function f),

we use C+ (resp. f+) to refer to an upper bound of C (resp. f).

4.1 Standalone Cost Relations

An important feature of CRSs, also present in RRs, is their compositionality. This al-

lows computing upper bounds of CRSs composed of multiple relations by concentrating

on one relation at a time. Let us consider an equation E for a cost relation C(x̄) where

a call of the form D(ȳ), with D 6= C appears on the rhs of E . In order to compute an

upper bound of C(x̄), we can replace E by another equation E ′ where the call to D(ȳ)

is replaced by a call to an upper bound D+(ȳ), already in closed-form. The resulting

cost relation is trivially an upper bound of the original one. E.g., suppose that we have

the following upper bounds:

E+(la, j) = 5 + 15 ∗ nat(la− j − 1)

D+(a, la, i) = 8 + 10 ∗ nat(la− i)

Replacing the calls to D and E in Equations (3) and (4) by D+ and E+ results in the

CR shown in Figure 6.

The compositionality principle only results in an effective mechanism if all recur-

sions are direct (i.e., all cycles are of length one). In that case we can start by computing

upper bounds for cost relations which do not depend on any other relations, which we

refer to as standalone cost relations and continue by replacing the computed upper

bounds on the equations which call such relations. In the following, we formalize our

method by assuming standalone cost relations and, in Section 8, we provide a mecha-

nism for obtaining direct recursion automatically.

14

4.2 Approximating Evaluation Trees

Existing approaches to compute upper bounds and asymptotic complexity of RRs,

usually applied by hand, are based on reasoning about evaluation trees in terms of

their size, depth, number of nodes, etc. They typically consider two categories of nodes:

(1) internal nodes, which correspond to applying recursive equations, and (2) leaves

of the tree(s), which correspond to the application of a base (non-recursive) case. The

central idea then is to count (or obtain an upper bound on) the number of leaves and

the number of internal nodes in the tree separately and then multiply each of these by

an upper bound on the cost of the base case and of a recursive step, respectively. For

instance, in the evaluation tree in Figure 6 for the standalone cost relation C, there

are three internal nodes and one leaf. The values in the internal nodes, once performed

the evaluation of the expressions are 73, 72, and 48, therefore 73 is the worst case. In

the case of leaves, the only value is 2. Therefore, the tightest upper bound we can find

using this approximation is 3× 73 + 1 ∗ 2 = 221 ≥ 73 + 72 + 48 + 2 = 193.

We now extend the approximation scheme mentioned above in order to consider

all possible evaluation trees which may exist for a call. In the following, we use |S| to
denote the cardinality of a set S. Also, given an evaluation tree T , leaf (T) denotes

the set of leaves of T (i.e., those without children) and internal(T) denotes the set of

internal nodes (all nodes but the leaves) of T .

Proposition 2 (node-count upper bound) Let C be a cost relation. We define:

C+(x̄) = internal+(x̄) ∗ costr+(x̄) + leaf+(x̄) ∗ costnr+(x̄)

where internal+(x̄), costr+(x̄), leaf+(x̄) and costnr+(x̄) are closed-form functions de-

fined on Zn 7→ R+. Then, C+ is an upper bound of C if for all v̄ ∈ Zn and for all

T ∈ Trees(C(v̄),S), the following properties hold:

1. internal+(v̄) ≥ |internal(T)| and leaf+(v̄) ≥ | leaf (T)|;
2. costr+(v̄) is an upper bound of {r | node(, r,) ∈ internal(T)} and

3. costnr+(v̄) is an upper bound of {r | node(, r,) ∈ leaf (T)}.

Proof Trivially correct by the definition of upper bound and Answers. 2

This proposition presents the main approximation approach which we use for comput-

ing upper bounds. Our main contribution is to come up with mechanisms to infer the

four functions appearing above.

5 Upper Bounds on the Number of Nodes

In this section, we present an automatic mechanism for obtaining correct internal+(x̄)

and leaf+(x̄) functions which statically provides upper bounds of the number of internal

nodes and leaves in evaluation trees. The basic idea is to first obtain upper bounds on

the branching factor (denoted b) and height (the distance from the root to the deepest

leaf) of all corresponding evaluation trees (denoted h+(x̄)) and, then, use the number

of internal nodes and leaves of a complete tree with such branching factor and height

as an upper bound. Well-known formulas exist which, given the branching factor and

the height of the tree, compute the number of nodes of the complete tree. As usual,

a tree is complete when all internal nodes have as many children as indicated by the

15

branching factor and leaves are at the same depth. Clearly, complete trees provide an

upper bound of the number of nodes of any tree with such height and branching factor.

Therefore, we define internal+(x̄) and leaf+(x̄) as follows:

leaf+(x̄) = bh+(x̄) internal+(x̄) =

{
h+(x̄) b = 1

bh+(x̄)-1
b-1

b ≥ 2

For a cost relation C, the branching factor b in any evaluation tree for a call C(v̄) is

limited by the maximum number of recursive calls which occur in a single equation

for C, which obviously can be computed statically. Note that we mean the actual

occurrences of recursive calls in the right hand side of the equations which determines

the complexity scheme (exponential, polynomial, etc.) not how many calls will actually

be performed in a concrete execution. This is not related to how the arguments increase

or decrease.

We now propose a way to compute an upper bound for the height, h+. Given an

evaluation tree T ∈ Trees(C(v̄),S) for a cost relation C, consecutive nodes in any

branch of T represent consecutive recursive calls which occur during the evaluation of

C(v̄). Therefore, bounding the height of a tree may be reduced to bounding consecutive

recursive calls during the evaluation of C(v̄). The notion of loop in a cost relation, which

we introduce below, is used to model consecutive calls.

Definition 4 (loops) Let E = 〈C(x̄) = exp +
∑k

i=1 C(ȳi), ϕ〉 be an equation for a

cost relation C. The set of loops induced by E is defined as:

Loops(E) = {〈C(x̄)→ C(ȳi), ϕ
′〉 | ϕ′ = ∃̄x̄ ∪ ȳi.ϕ, 1 ≤ i ≤ k}

Similarly, we define Loops(C) = ∪E∈def (S,C)Loops(E).

Intuitively, a loop 〈C(x̄) → C(ȳ), ϕ′〉 over-approximates that evaluating C(v̄1) such

that x̄ = v̄1 |= ϕ′, may eventually be followed by an evaluation for C(v̄2) such that x̄ =

v̄1 ∧ ȳ = v̄2 |= ϕ′. In terms of evaluation trees, this means that the node corresponding

to C(v̄1) will have a child with C(v̄2).

Example 3 The cost relation in Figure 6 induces the following two loops which corre-

spond to Equations (3) and (4).

(3) 〈C(l, a, la, b, lb)→ C(l′, a, la′, b, lb), ϕ′
1〉

where ϕ′
1 = {a ≥ 0, a ≥ la, b ≥ lb, b ≥ 0, l > l′, l > 0, la′ = la− 1}

(4) 〈C(l, a, la, b, lb)→ C(l′, a, la, b, lb′), ϕ′
2〉

where ϕ′
2 = {b ≥ 0, b ≥ lb, a ≥ la, a ≥ 0, l > l′, l > 0, lb′ = lb− 1}

2

The problem of bounding the number of consecutive recursive calls has been exten-

sively studied in the context of termination analysis. Automatic termination analyzers

usually prove that an upper bound of the number of iterations of the loop exists by

proving that there exists a function f from the loop’s arguments to a well-founded par-

tial order, such that f decreases in any two consecutive calls. This in turn guarantees

the absence of infinite traces, and therefore termination. These functions are usually

called ranking functions [27]. A difference w.r.t. termination analysis is that we aim

at determining a concrete ranking function f , rather than just proving that it exists,

which is usually enough for termination proofs. The following definition characterizes

the kind of ranking functions we are interested in since, as we will see later, they are

adequate for bounding the number of iterations of a loop.

16

Definition 5 (ranking function for a loop) A function f : Zn 7→ Z+ is a ranking

function for a loop 〈C(x̄)→ C(ȳ), ϕ〉 if ϕ |= f(x̄) > f(ȳ).

The above definition basically requires that f be decreasing in every iteration of the

loop, and well-founded since the range of f is Z+. In order to satisfy these conditions it

is required that: (1) the constraint ϕ captures information about the way in which the

value of variables change from one iteration to another; and (2) ϕ captures sufficient

information about the applicability conditions (guards) of the loop so as to identify

cases where the loop does not apply.

In addition, since a cost relation may induce several loops (i.e., several possibilities

for generating calls), we require the ranking function to decrease for all loops.

Definition 6 (ranking function for a cost relation) A function fC : Zn 7→ Z+ is

a ranking function for C if it is a ranking function for all loops in Loops(C).

Example 4 The function fC(l, a, la, b, lb) = nat(l) is a ranking function for C in the

cost relation in Figure 6. Note that ϕ′
1 and ϕ′

2 in the loops of C in Example 3 contain

the constraints {l > l′, l > 0} which is enough to guarantee that fC is decreasing and

well-founded. 2

The following example illustrates that sometimes the ranking function involves

several arguments.

Example 5 Consider the loop which originates from Equation (7) depicted in Figure 3.

〈D(a, la, i)→ D(a, la, i′), {i′ = i+1, i < la, a ≥ la, i ≥ 0}〉. The function fD(a, la, i) =

nat(la− i) is a ranking function for the above loop. Any ranking function for D must

involve both la and i. 2

We propose to use ranking functions for cost relations as an upper bound on the

number of consecutive calls (and therefore on the height of the corresponding evaluation

trees). This is justified by the following two facts: (1) the ranking function decreases

at least by one unit in each iteration when applying it on two consecutive calls (since

its range is Z+); and (2) it is always non-negative.

Lemma 1 Let fC(x̄) be a ranking function for a cost relation C. Then, ∀v̄ ∈ Zn and

∀ T ∈ Trees(C(v̄),S) it holds fC(v̄) ≥ h(T).

Proof For h(T) = 0, the proof is straightforward as fC(v̄) is non-negative. For h(T) >

0, assume the contrary, i.e., there exists an evaluation tree T ∈ Trees(C(v̄),S) such

that h(T) = n > fC(v̄). This means there exists a path (starting from the root)

which consists of n+1 nodes. Let C(v̄0), . . . , C(v̄n) be the calls that correspond to the

nodes in that path, where v̄0 = v̄. By definition of ranking function for a cost relation,

for all i < n, we have fC(v̄i) − fC(v̄i+1) ≥ 1 and fC(v̄i) > 0. Then, it holds that

fC(v̄) ≥ n+1 > n = h(T), which contradicts the assumption that fC(v̄) < h(T). 2

As it can be observed, in the above examples, the ranking functions that we have

used are linear cost expressions. However, in general, we are not restricted to linear,

and any cost expression that satisfies the conditions of Definition 6 can be used as

ranking functions. The following example demonstrates the need for non-linear ranking

functions.

17

Example 6 Consider the following two loops:

〈P (x, y, z)→ P (x′, y′, z′), {x > 0, y > 0, z > 0, x′ = x, z′ = z, y > y′, z ≥ y′}〉
〈P (x, y, z)→ P (x′, y′, z′), {x > 0, y > 0, z > 0, x > x′, z′ = z, z ≥ y′}〉

which correspond, for example, to the following while loop:

whi l e (x>0 && y>0 && z>0) {
i f (∗) {

y=y−1;
} e l s e {

x=x−1;
y=random (1 , z) ;

}
}

No linear ranking function exists that decreases for both loops. However, the non-linear

cost expression fP (x, y, z) = nat(x) ∗ nat(z) + nat(y) is a ranking function which can

be used to bound the number of iterations.

In the current implementation, as we explain later, we have restricted ourselves to

linear ranking functions. We infer them by using the algorithm described in [45] and,

then, wrap them by nat in order to guarantee that they are always non-negative. This

explains why cost expressions, as defined in Definition 1, include nat.

Even though ranking functions inferred using [45] provide an upper bound for

the height of the corresponding trees, in some cases we can further refine them and

obtain tighter upper bounds. For example, if the difference between the value of the

ranking function in each two consecutive calls is guaranteed to be larger than a constant

δ > 1, then ⌈ fC(x̄)
δ ⌉ is a tighter upper bound. A more interesting case, if each loop

〈C(x̄) → C(ȳ), ϕ〉 ∈ Loops(C) satisfies ϕ |= fC(x̄) ≥ k ∗ fC(ȳ) where k > 1 is a

constant, then the height of the tree is bounded by ⌈logk(fC(v̄) + 1)⌉, as each time

the value of the ranking function decreases by k. For instance, given a loop the form:

〈C(l)→ C(l′), {l′ = l/3, l > 0}〉, we find the bound “⌈log3(nat(l) + 1)⌉” for the height

of the tree. These cases are handled in our system.

6 Bounding the Cost per Node

After studying how to obtain upper bounds of the number of internal and leaf nodes in

evaluation trees, in this section, we present an automatic method to obtain functions

costr+(x̄) and costnr+(x̄), which are upper bounds of the local cost associated to an

internal node and of a leaf node, respectively. We first give an intuitive description of

the technique on our running example. Consider the evaluation tree in Figure 6. There

is only one leaf node and its local cost is 2. Therefore, we can define costnr+(x̄) = 2.

As regards the three internal nodes, observe that the corresponding expressions are

instantiations of either:

exp3 = 38 + 15 ∗ nat(la− j − 1) + 10 ∗ nat(la)
exp4 = 37 + 15 ∗ nat(lb− j − 1) + 10 ∗ nat(lb)

18

Knowing the expressions which generate the possible values in nodes is important, since

if we know (or have a safe approximation of) the values of the variables which appear

in such expressions, then it is possible to obtain an upper bound of the cost of nodes.

Therefore, we split the construction of costr+(x̄) and costnr+(x̄) in the following two

parts.

Invariants. First, it is necessary to know what are the possible values to which the

different variables in exp3 and exp4 can be instantiated. Computing this information is

usually undecidable or impractical, but it can be approximated (by means of a superset

of the actual values) using static program analysis. One possible way to approximate

it is to infer (linear) constraints between the values of the variable in each node and

the initial values. For example, for the equations in Figure 6, we are interested in

obtaining constraints between the root call C(l0, a0, la0, b0, lb0) and the call in any

node C(l, a, la, b, lb). Note that for a variable x we use x0 to refer to the value of x at

the root call. The following linear constraints describe a (possible) relation:

ψ = {0 ≤ l ≤ l0, a = a0, la ≤ la0, b = b0, lb ≤ lb0}

In other words, ψ is a loop invariant that holds between the initial values {l0, a0, la0, b0, lb0}
and the variables in any recursive call C(l, a, la, b, lb) during the evaluation.

Upper Bounds of Cost Expressions. The invariant can then be used to infer upper

bounds for exp3 and exp4. Since exp3 and exp4 are monotonic in their nat sub-

expressions, as stated in Proposition 1, it is enough to obtain upper bounds for those

sub-expressions in order to obtain upper bounds for exp3 and exp4. For maximizing

exp3, we need to compute an upper bound for la− j− 1 in the context of the invariant

ψ conjoined with the local constraints ϕ3, associated to Equation (3). By maximizing

la−j−1 w.r.t. {l0, a0, la0, b0, lb0}, we infer that la0−1 is an upper bound for la−j−1

since ψ ∧ ϕ3 |= {la ≤ la0, j ≥ 0}. Similarly, we obtain the upper bounds la0, lb0 − 1

and lb0 for la, lb− j − 1, and lb, respectively. By putting all pieces together we obtain

that:
mexp3 = 38 + 15 ∗ nat(la0 − 1) + 10 ∗ nat(la0)
mexp4 = 37 + 15 ∗ nat(lb0) + 10 ∗ nat(lb0)

are upper bounds for exp3 and exp4, respectively. Then, we use max({mexp3, mexp4})
as an upper bound for all possible expressions in the internal nodes of any possible

evaluation tree for C(l0, a0, la0, b0, lb0). We now formalize the two steps that have

been described above.

6.1 Invariants

Computing an invariant, in terms of linear constraints, that holds between the ar-

guments at the initial call and at each call during the evaluation, can be done by

using Loops(C). Intuitively, if we know that a linear constraint ψ holds between

the arguments of the initial call C(x̄0) and the arguments of a specific recursive

call C(x̄) during the evaluation, denoted 〈C(x̄0) ; C(x̄), ψ〉, and we have a loop

〈C(x̄)→ C(ȳ), ϕ〉 ∈ Loops(C), then we can apply the loop one more step and get the

new calling context (or context for short) 〈C(x̄0) ; C(ȳ), ∃x̄.(ψ ∧ ϕ)}〉. The following

definition describes how from a set of contexts I we learn more contexts by applying

19

all loops in a relation. We denote by R the set of all possible contexts for C, and by

℘(R) all subsets of C that include I0 = 〈C(x̄0) ; C(x̄), {x̄0 = x̄}〉.

Definition 7 (loop invariants) For a relation C, let TC : ℘(R) 7→ ℘(R) be an

operator defined:

TC(X) =



〈C(x̄0) ; C(ȳ), ψ′〉

∣∣∣∣∣∣

〈C(x̄0) ; C(x̄), ψ〉 ∈ X
〈C(x̄)→ C(ȳ), ϕ〉 ∈ Loops(C)

ψ′ = ∃̄x̄0 ∪ ȳ.(ψ ∧ ϕ)





which derives a set of contexts, from a given context X, by applying all loops. The

loop invariant IC is defined as ∪i∈ωT i
C({I0}).

Example 7 Let us compute IC for the loops that we have computed in Example 3. Let

x̄0 = 〈l0, a0, la0, b0, lb0〉 and x̄ = 〈l, a, la, b, lb〉. The initial context is

I0 = 〈C(x̄0) ; C(x̄), {l = l0, a = a0, la = la0, b = b0, lb = lb0}〉

In the first iteration we compute T 0
C({I0}) = {I0}. In the second iteration we compute

T 1
C({I0}), which results in the contexts

I1 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0 − 1, b = b0, lb = lb0, l0 > 0}〉
I2 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0, b = b0, lb = lb0 − 1, l0 > 0}〉

where I1 and I2 correspond to applying respectively the first and second loops on I0.

The underlined constraints are the modifications due to the application of the loop.

Note that in I1 (resp. I2) the variable la0 (resp. lb0) decreases by one. The third

iteration T 2
C({I0}), i.e., TC({I1, I2}), results in

I3 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0 − 2, b = b0, lb = lb0, l0 > 0}〉
I4 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0 − 1, b = b0, lb = lb0 − 1, l0 > 0}〉
I5 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0, b = b0, lb = lb0 − 2, l0 > 0}〉
I6 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0 − 1, b = b0, lb = lb0 − 1, l0 > 0}〉

where I3 and I4 originate from applying the loops to I1, and I5 and I6 from apply-

ing the loops to I2. The modifications on the constraints reflect that, when applying

a loop, either we decrease la or lb. After three iterations, the invariant IC includes

{I0, . . . , I6}. More iterations will add more contexts that further modify the value of

la or lb. Therefore, the invariant IC grows indefinitely in this case. 2

The following lemma guarantees that IC , as defined in Definition 7, is a loop invari-

ant, i.e., it holds between the initial call and any call in the corresponding evaluation

tree.

Lemma 2 Let C(v̄) be a call, then ∀T ∈ Trees(C(v̄),S) and ∀node(C(w̄), ,) ∈ T ,
there exists 〈C(x̄0) ; C(x̄), ψ〉 ∈ IC such that {x̄0 = v̄ ∧ x̄ = w̄} |= ψ.

Proof Given an initial call C(v̄) and an evaluation tree T ∈ Trees(C(v̄),S), we show

by induction that if node(C(w̄), ,) ∈ T is at a level n (the level of the root is 0), then

there exists 〈C(x̄0) ; C(x̄), ψ〉 ∈ ∪0≤i≤nT i
C({I0}) such that {x̄0 = v̄ ∧ x̄ = w̄} |= ψ.

Then, since TC is continuous over the lattice 〈℘(R), {I0},R,⊆,∪,∩〉, it holds for the

least fixed point IC = ∪i∈ωT i
C(I0) and any level.

20

Base case. If n = 0, it is obvious that the lemma holds using the initial context which

is in T 0
C({I0}).

Induction step. Assume the above lemma holds for any node at a level smaller than

n. Consider a node node(C(w̄), ,) ∈ T at level n ≥ 1, and let its parent node

be node(C(w̄′), ,) ∈ T . By the induction assumption, since the parent level is n− 1,

there exists I = 〈C(x̄0) ; C(x̄), ψ〉 ∈ ∪0≤i<nT i
C({I0}) such that x̄0 = v̄∧ x̄ = w̄′ |= ψ.

By the definition of Loops(C), there exists a loop ℓ = 〈C(x̄) → C(ȳ), ϕ〉 ∈ Loops(C)

such that x̄ = w̄′ ∧ ȳ = w̄ |= ϕ. Since the context I must have been introduced

by T k
C ({I0}) for some k < n, then at iteration k + 1 ≤ n the operator TC will use

I and ℓ to generate 〈C(x̄0) ; C(ȳ), ∃̄x̄0 ∪ ȳ.(ψ ∧ ϕ)〉 ∪0≤i≤n T i
C({I0}). Moreover,

x̄0 = v̄ ∧ ȳ = w̄ |= ∃̄x̄0 ∪ ȳ.(ψ ∧ ϕ). 2

The problem with Definition 7 is that it is not computable in general since the

invariant IC possibly consists of an infinite number of calling contexts, as it happens

in our example. In practice, we approximate IC using abstract interpretation over, for

instance, the domain of convex polyhedra [23]. For our example, as an approximation

for IC of Example 7 we obtain the invariant:

IαC = {〈C(x̄0) ; C(x̄), {l ≤ l0, a = a0, la ≤ la0, b = b0, lb ≤ lb0}〉}

In general, we approximate IC by a single context IαC = 〈C(x̄0) ; C(x̄), ψ′〉} such that

∀〈C(x̄0) ; C(x̄), ψ〉 ∈ IC .ψ |= ψ′. This is simply done by replacing ∪ in Definition 7

by a convex-hull operation, and applying a widening operator to guarantee termination

[23]. It is clear that Lemma 2 also holds for such approximation of IC .

6.2 Upper Bounds on Cost Expressions

At this point, we want to use the loop invariant in order to obtain upper bounds,

in terms of the initial call values, for the values in all internal nodes and leaves in

the corresponding evaluation trees. Since the values which appear in the nodes of

evaluation trees correspond to different instantiations of the cost expressions in the

cost equations, we concentrate first on finding upper bounds for those cost expressions

and then combine them to build upper bounds for all internal nodes and all leaves.

Consider, for example, the expression nat(la− j−1) which appears in Equation (3)

of Figure 6. We want to infer an upper bound of the values that it can be evaluated

to in terms of the input values 〈l0, a0, la0, b0, lb0〉. We have inferred that 〈C(x̄0) ;

C(x̄), ψ〉 where ψ = {l ≤ l0, a = a0, la ≤ la0, b = b0, lb ≤ lb0}, is a safe approximation

of the loop invariant IC , from which we can observe that the maximum value that la

can take is la0. In addition, from the local constraints ϕ of Equation (3) we know that

j ≥ 0. Since la−j−1 takes its maximal value when la is maximal and j is minimal, the

expression la0 − 1 is an upper bound for la− j − 1. In practice, this inference method

can be done in a fully automatic way using linear constraints tools (e.g. [13]) as follow:

1. compute φ = ∃̄l0, a0, la0, b0, lb0, r.(ψ∧ϕ∧y = la−j−1), where y is a new variable;

2. syntactically look in φ for an expression that can be rewritten to y ≤ f ′, where f ′ is
a linear expression which (obviously) contains only variables from {l0, a0, la0, b0, lb0}.

Given a cost equation 〈C(x̄) = exp +
∑k

i=1 C(ȳi), ϕ〉 and a safe approximation of its

loop invariant 〈C(x̄0) ; C(x̄), ψ〉, the function below computes an upper bound for

exp by maximizing its nat components:

21

1: function ub exp(exp,x̄0,ϕ,ψ)
2: mexp = exp
3: for all nat(f)∈exp do
4: φ = ∃̄x̄0, y.(ϕ ∧ ψ ∧ y = f) // y is a fresh variable
5: if ∃f ′ such that vars(f ′) ⊆ x̄0 and φ |= y ≤ f ′ then mexp = mexp[nat(f)/nat(f ′)]
6: else return ∞
7: return mexp

This function computes an upper bound f ′ for each expression f which occurs inside a

nat function and then replaces in exp all such f expressions with their corresponding

upper bounds (line 5). If it cannot find an upper bound, the method returns ∞ (line

6).

Example 8 Applying ub exp to the cost expressions exp3 and exp4, that appear in

Equations (3) and (4) in Figure 6, w.r.t. the invariant that we have computed in

Section 6.1, can be done by maximizing their nat sub-expressions. Similarly to what

we have done above for la− j − 1, we can find upper bounds for lb− j − 1, la and lb

as lb0 − 1, la0 and lb0 respectively. Therefore, the expressions

mexp3 = 38 + 15 ∗ nat(la0 − 1) + 10 ∗ nat(la0)
mexp4 = 37 + 15 ∗ nat(lb0 − 1) + 10 ∗ nat(lb0)

are upper bounds for exp3 and exp4. 2

The lemma below guarantees the soundness of the function ub exp.

Lemma 3 (soundness of ub exp) Let 〈C(x̄) = exp+
∑k

i=1 C(ȳi), ϕ〉 be a cost equa-

tion for C, 〈C(x̄0) ; C(x̄), ψ〉 be a safe approximation of the loop invariant IC , and

mexp = ub exp(exp, x̄0, ϕ, ψ). Then, for any call C(v̄) and for all T ∈ Trees(C(v̄),S),
if node(C(w̄), r,) ∈ T such that r originates from exp, then [[mexp]]σ ≥ r where σ is a

substitution that maps x̄0 to v̄.

Proof The Lemma is trivially correct when mexp = ∞. For mexp 6= ∞, given T ∈
Trees(C(v̄),S) and node(C(w̄), r,) ∈ T , by Lemma 2, there exists a substitution σ,

over x̄0 and the variables of the equation, such that σ |= x̄0 = v̄ ∧ x̄ = w̄ ∧ ψ ∧ ϕ and

r = [[exp]]σ. Let exp′ be a cost expression obtained from exp by replacing only one

nat(f) by nat(f ′) (lines 4 and 5 in function ub exp). Proposition 1 and the fact that

ψ ∧ ϕ |= f ≤ f ′ implies [[exp′]]σ ≥ [[exp]]σ. Since mexp is obtained by repeating such

replacement for all nat components, at the end we will have [[mexp]]σ ≥ [[exp]]σ = r. 2

The following lemma is a completeness lemma for function ub exp, in the sense that

if ψ and ϕ imply that there is f ′ which is an upper bound for f , then by syntactically

looking on φ (line 4 of ub exp) we will be able to find one, without guarantees that it

will be the tightest one.

Lemma 4 (completeness of ub exp) Consider line 5 of ub exp, if there exists f ′

such that φ |= y ≤ f ′ and φ = {c1, . . . , cn}, then there exists ci which can be worked

out to y ≤ f ′′ (or y = f ′′) where vars(f ′′) ⊆ x̄0.

Proof The lemma follows from: (1) if there exists f ′ such that vars(f ′) ⊆ x̄0 and

ψ ∧ ϕ |= f ≤ f ′ then, φ |= y ≤ f ′, since y = f and y 6∈ vars(ψ ∧ ϕ); (2) if φ |= y ≤ f ′

and vars(φ) ⊆ x̄0 ∪ {y}, then y must appear in one of the ci, which obviously can be

worked out to y ≤ f ′; and (3) if there is more than one ci where y appears, then taking

one is safe as they appear in a conjunction. 2

22

6.3 Concluding Remarks

Using Lemmata 2 and 3, the theorem below concludes by building the upper bound

expression costnr+(x̄0) and costr+(x̄0).

Theorem 1 Let S = S1 ∪ S2 be a cost relation where S1 and S2 are respectively the

sets of non-recursive and recursive equations for C. Let

– 〈C(x̄0) ; C(x̄), ψ〉 be a safe approximation of the loop invariant IC ;

– Ei = {ub exp(exp, x̄0, ϕ, ψ) | 〈C(x̄) = exp+
∑k

j=1 C(ȳj), ϕ〉 ∈ Si}, 1 ≤ i ≤ 2; and

– costnr+(x̄0) = max(E1) and costr+(x̄0) = max(E2).

Then, for any call C(v̄) and for all T ∈ Trees(C(v̄),S), it holds that

– ∀node(, r,) ∈ internal(T). costr+(v̄) ≥ r; and
– ∀node(, r,) ∈ leaf (T). costnr+(v̄) ≥ r.

Proof Follows from Lemmata 2 and 3. 2

Example 9 At this point we have all the pieces in order to compute an upper bound,

as described in Proposition 2, for the CR depicted in Figure 3. We start by computing

upper bounds for E and D as they are standalone cost relations:

h+ costnr+ costr+ Upper Bound

E(la0, j0) nat(la0 − j0 − 1) 5 15 5 + 15 ∗ nat(la0 − j0 − 1)

D(a0, la0, i0) nat(la0 − i0) 8 10 8 + 10 ∗ nat(la0 − i0)

These upper bounds can then be substituted in the Equations (3) and (4) which results

in the cost relation for C depicted in Figure 6. We have already computed a ranking

function for C in Example 4, and costnr+ and costr+ in Example 8, which are then

combined into:

C+(l0, a0, la0, b0, lb0) = 2 + nat(l0) ∗max({mexp3, mexp4})

By reasoning similarly, we obtain the upper bound for Delete shown in Table 1. 2

7 Improving Accuracy in Divide and Conquer Programs

We have presented in Section 4 an approximation approach, based on bounding both

the number of nodes in evaluation trees and the cost per node, which is able to provide

upper bounds for a large class of programs. However, there is an important class of

programs known as divide and conquer for which the node-count upper bound does

not compute sufficiently precise upper bounds. Intuitively, the reason for this is that

divide and conquer programs have a branching factor greater than one. Therefore, the

number of nodes grows exponentially with the height of the evaluation tree. However,

the size of the input data decreases so quickly from one level of the tree to the next one

that the sum of the local cost expressions in the nodes at each level does not increase

from one level to another.

In this section we propose an approximation mechanism, which we refer to as level-

count upper bound which is based on bounding both the number of levels in evaluation

trees and the total cost per level. It allows obtaining accurate upper bounds for divide

and conquer programs.

23

7.1 Level-count upper bound

Given an evaluation tree T , we denote by Sum Level(T, i) the sum of the local cost of

all nodes in T which are at depth i, i.e., at distance i from the root. As before, we

write h(T) to denote the height of T .

Proposition 3 (level-count upper bound) Let C be a cost relation. We define

function C+ as:

C+(x̄) = l+(x̄) ∗ costl+(x̄)

where l+(x̄) and costl+(x̄) are closed-form functions defined on Zn 7→ R+. Then, C+

is an upper bound of C if for all v̄ ∈ Zn and T ∈ Trees(C(v̄),S), it holds:

1. l+(v̄) ≥ h(T) + 1; and

2. ∀ 0 ≤ i ≤ h(T) . costl+(v̄) ≥ Sum Level(T, i).

Proof The proposition is trivially correct by the definition of upper bound and Answers.

2

Similarly to what we have done for h+(x̄) in Section 5, the function l+(x̄) can

simply be defined as l+(x̄) = nat(fC(x̄))+1. Finding an accurate costl+ function is not

easy in general, which makes Proposition 3 not as widely applicable as Proposition 2.

7.2 Divide and Conquer Programs

We now provide a formal definition of divide and conquer programs and show that

for all programs which fall into this class it is possible to apply the level-count upper

bound approach. Intuitively, a program belongs to the divide and conquer class when

the local cost of each node in the evaluation tree is guaranteed to be greater than or

equal to the sum of the local costs of its children. As we will see, this guarantees that

Sum Level(T, k) ≥ Sum Level(T, k + 1). In that case, we can simply take the local cost

of the root node as an upper bound of costl+(x̄).

Often we have multiple recursive and non-recursive equations for a cost relation.

Checking that the local cost of a node is greater than the sum of those of its children

needs to take into account all possible combinations of cost expressions produced by

picking a recursive equation followed by picking any equation –be it recursive or not– for

each recursive call in such equation. We now define the set of child local-cost expressions

as a set of triplets composed by two cost expressions linked by a set of constraints which

are all those achievable in the combinations explained.

Definition 8 (Child local-cost expressions) The set of child local-cost expressions

of a standalone cost relation C, denoted Child Exps(C), is defined as

Child Exps(C) =




〈exp, exp′, ψ〉

∣∣∣∣∣∣∣

〈C(x̄) = exp+
∑k

i=1 C(ȳi), ϕ〉 ∈ S, where k ≥ 1

∀ 1 ≤ i ≤ k. 〈C(ȳi) = expi +
∑ki

j=1 C(z̄j), ϕi〉 ∈ S
exp′ = exp1 + · · ·+ expk
ψ = ∃̄vars(exp) ∪ vars(exp′).ϕ ∧ ϕ1 ∧ · · · ∧ ϕk





Example 10 Consider a CR in which C is defined by the two equations:

〈C(x) = 0, {x ≤ 0}〉
〈C(x) = nat(x) + C(x1) + C(x2), ϕ〉

24

where ϕ = {x > 0, x1+x2+1 ≤ x, x ≥ 2∗x1, x ≥ 2∗x2, x1 ≥ 0, x2 ≥ 0}. It corresponds
to a divide and conquer problem such as merge-sort when the cost model used counts

the number of comparison instructions executed, which is a usual criteria for comparing

sorting programs and algorithms. The set Child Exps(C) consists of:

Child Exps(C) =





〈nat(x), 0, ϕ ∧ x1 ≤ 0 ∧ x2 ≤ 0〉
〈nat(x), nat(x1), ϕ ∧ x1 ≤ 0 ∧ ϕ2〉
〈nat(x), nat(x2), ϕ ∧ ϕ1 ∧ x2 ≤ 0〉
〈nat(x), nat(x1) + nat(x2), ϕ ∧ ϕ1 ∧ ϕ2〉





where ϕ1 (resp. ϕ2) is a renaming apart of ϕ, except for the variable x1 (resp. x2). 2

The following lemma provides a sufficient condition for a cost relation falling into

the divide and conquer class, i.e., for Proposition 3 to be applicable. It is based on

checking that each cost expression contributed by an equation is greater than or equal

to the sum of the cost expressions contributed by the corresponding immediate recursive

calls.

Lemma 5 (A sufficient condition for divide and conquer) Let C be a standalone

cost relation. If for any 〈exp, exp′, ψ〉 ∈ Child Exps(C) and any σ : vars(exp) ∪
vars(exp′) 7→ Z such that σ |= ψ it holds that [[exp]]σ ≥ [[exp′]]σ, then for any call

C(v̄), a corresponding evaluation tree T ∈ Trees(C(v̄),S), and a level k, it holds that

Sum Level(T, k) ≥ Sum Level(T, k + 1).

Proof Assume the contrary, i.e., the condition holds but there exists a call C(v̄), a corre-

sponding evaluation tree T ∈ Trees(C(v̄),S), and a level k, such that Sum Level(T, k) <

Sum Level(T, k+1). This means that there exists a node node(C(v̄), r, 〈T1, . . . , Tn〉) at
level k, such that for each subtree Ti = node(C(v̄i), ri, 〉) it holds r < r1+ · · ·+rn. As-

sume this node was constructed using an equation E = 〈C(x̄) = exp+
∑m

i=1 C(ȳi), ϕ〉 ∈
S and that 〈C(ȳi) = expi+

∑mi

j=1 C(z̄j), ϕi〉 ∈ S was used to match each call Ci(ȳi) in

E . Then, there exists σ verifying σ |= ϕ∧ϕ1∧· · ·∧ϕm |= x̄ = v̄∧ȳ1 = v̄1∧· · ·∧ȳm = v̄m,

such that [[exp]]σ < [[exp1 + · · · + expm]]σ, which contradicts the assumption that the

condition holds. 2

The intuition of the above lemma is that for each node in any evaluation tree, there

exists a tuple 〈exp, exp′, ψ〉 ∈ Child Exps(C) and a substitution σ : vars(exp) ∪
vars(exp′) 7→ Z such that σ |= ψ, [[exp]]σ is equal to its local cost, and [[exp′]]σ is equal

to the sum of its children local costs.

Theorem 2 Let C be a standalone cost relation which satisfies the divide and con-

quer condition of Lemma 5, E = {ub exp(exp, x̄0, ϕ, {x̄0 = x̄}) | 〈C(x̄) = exp +∑k
i=1 C(ȳi), ϕ〉 ∈ S}, and costl+(x̄) = max(E). Then, for any call C(v̄), a corre-

sponding evaluation tree T ∈ Trees(C(v̄),S), and a level k, it holds that costl+(v̄) ≥
Sum Level(T, k).

Proof It follows from Lemmata 3 and 5. 2

Example 11 Consider again the cost relation C defined in Example 10. Computing the

set E of Theorem 2 results in {nat(x), 0}, and therefore costl+(x) = nat(x). Using the

techniques described in Section 5 we can automatically compute

l+(x)=⌈log2(nat(x)+1)⌉+1

25

Thus, we obtain the upper bound C+(x) = nat(x) ∗ (⌈log2(nat(x) + 1)⌉ + 1). Note

that this upper bound is inferred in a fully automatic way by our prototype which is

described in Section 10. By using the node-count approach, we would obtain C+(x) =

nat(x) ∗ (2⌈log2(nat(x)+1)⌉−1) = nat(x)2 as upper bound. 2

8 Direct Recursion using Partial Evaluation

Our approach requires that all recursions be direct. However, automatically generated

CRSs often contain recursions which are not direct, i.e., cycles involve more than one

function.

Example 12 The cost analyzer of [6,7], in order to define the cost of the “for” loop in

the program in Figure 1, instead of Equations (8) and (9) (relation E) in Figure 3,

produces the following equations:

(8’) E(la, j) = 5 + F (la, j, j′, la′) {j′ = j, la′ = la− 1, j′ ≥ 0}
(9’) F (la, j, j′, la′) = H(j′, la′) {j′ ≥ la′}
(10) F (la, j, j′, la′) = G(la, j, j′, la′) {j′ < la′}
(11) H(j′, la′) = 0

(12) G(la, j, j′, la′) = 10 + E(la, j + 1) {j < la− 1, j ≥ 0, la− la′ = 1, j′ = j}

The new E relation captures the cost of evaluating the loop condition “j < la − 1”

(5 cost units) plus the cost of its continuation, captured by F . In Equation (9’) the

relation F corresponds to the exit of the loop (it calls the auxiliary relation H, which

represents the cost of exiting the loop, i.e., 0 units). Equation (10) captures the cost

of one iteration, which accumulates 10 cost units and calls E recursively. 2

In this section, we present an automatic transformation of CRSs into directly re-

cursive form. The transformation is done by replacing calls to intermediate relations

by their definitions using unfolding. For instance, given the CRS in Example 12, if we

keep E and unfold the remaining relations in the example (F , G, and H), we obtain

the equations for E shown in Figure 3.

8.1 Binding Time Classification

We now recall some standard terminology on graphs. A directed graph G is a pair

〈N,A〉 where N is the set of nodes and A ⊆ N × N is the set of arcs. Given a

graph G = 〈N,A〉, a set of nodes S ⊆ N is strongly connected if ∀n, n′ ∈ S we

have that n′ is reachable from n. The strongly connected components of G = 〈N,A〉
is a partition of N into the largest possible strongly connected sets. Given a graph

G we write SCC(G) to denote its strongly connected components. Given a graph

G = 〈N,A〉 and a set S⊆N , the subgraph of G w.r.t. S, denoted G|S , is defined as

G|S = 〈S,A ∩ (S×S)〉. Also, given a strongly connected component S, a node n ∈ S is

a covering point for G|S if G|S\{n} is an acyclic graph, i.e., n is a covering point of G|S
if n is part of all cycles in G|S . The problem of finding a minimal set of nodes to delete

from a cyclic graph in order to convert it into an acyclic graph is also known as the

feedback vertex set problem in computational complexity theory. The feedback vertex set

decision problem is NP-complete in general, but for reducible graphs it is linear [50].

26

As explained in [50], control flow graphs originating from structured programming

languages are often reducible, since usually there are no jumps to the the middle of a

loop. Moreover, since our interest is only in checking if there exists a feedback set of

size 1, when the graph is not reducible, we can solve it in quadratic time simply by

removing a node n from G|S and checking if G|S\{n} is acyclic.

Note that, when the CRS originates from a structured program (i.e., without

jumps), it is not common to have SCCs without covering points. This is due to: (1)

As done in [6], each structured loop (e.g., while, for, etc.) can be transformed to a

separated method in tail recursive form, and the loop itself is replaced by a call to this

method. Therefore, the program becomes even more structured since nested loops are

not anymore in the same SCC. (2) SCCs of a CRS coincide with those of the original

program (after extracting the loops) and, in structured programs, it is common that

each SCC has a point were all cycles go through (e.g, the entry of loop, the entry of

a recursive method, etc). However, a covering point might not exist in programs with

complex mutual recursion, as we explain in Section 9.

The notion of unfolding corresponds to the intuition of replacing a call to a relation

by the definition of the corresponding relation. Naturally, this process in the presence of

recursive relations might be non-terminating. Intuitively, the transformation proposed

removes intermediate relations from the CRS and we achieve direct recursion if at

most one relation remains per strongly connected component in the call graph of the

original CRS . In this section, we find a Binding Time Classification (or BTC for short)

which ensures the termination of the unfolding process by declaring which relations are

residual, i.e., they have to remain in the CRS . The remaining relations are considered

unfoldable, i.e., they are eliminated. To define such BTC, we associate a call graph to

each CRS S as follows. Given a CRS S with C, D ∈ rel(S), we say that C calls D in

S, denoted C 7→SD, iff there is an equation 〈C(x̄) = exp +
∑k

i=1Di(ȳi), ϕ〉 ∈ S such

that Di = D for some i ∈ {1, . . . , k}. The call graph associated to S, denoted G(S),
is the directed graph obtained from S by taking N = rel(S) and where (C,D) ∈ A
iff C 7→SD. We now present sufficient conditions under which CRSs can be put into

directly recursive form. In particular, we require that the graph associated to the CRS

be of minimal coverage.

Definition 9 (minimal coverage) A graph G = 〈N,A〉 is of minimal coverage iff

∀S ∈ SCC(G), there exists n ∈ S such that n is a covering point for G|S .

Intuitively, a graph is of minimal coverage if each SCC has a covering point. Let us

see some examples.

Example 13 Given the CRS S of Example 12, its call graph G(S) is shown on the left

hand side of the figure below. Also, we have that SCC(G(S)) = {{E,F,G}, {H}}.

H

E

F

G H

E

F

G

(11’)(11)

The strongly connected component which could be problematic as regards minimal

coverage (more than one element) is {E,F,G}. Since there is just one cycle, any of

27

the nodes is a covering point and therefore G is of minimal coverage. However, if we

replace Equation (11) in Example 12 with Equation (11’) below:

(11′) 〈H(j′, la′)← 1 +H(j′′, la′) + E(j′′, la′), {j′′ = j′ − 1}〉
we obtain the graph to the right of the figure. Now, SCC(G(S)) = {{E,F, G,H}},
i.e., all nodes are in the same strongly connected component, and we have three cycles

(〈E,F,G〉, 〈E,F,H〉, and 〈H〉) which belong to such strongly connected component.

Unfortunately, this time there is no node which belongs simultaneously to the three

cycles. 2

As shown in the example above, there are graphs which are not of minimal cover-

age. Therefore, there are CRSs which cannot be put into canonical form. However,

structured loops (built using for, while, etc.) and the recursive patterns found in most

programs naturally result in CRSs whose reachability graphs are of minimal coverage.

We can now define the notion of directly recursive BTC which ensures both the

termination of our partial evaluation process and the effectiveness of the transformation

(i.e., we indeed obtain direct recursion form). Formally, a relation D is reachable from

a relation C in S iff there is a path from C to D in G(S). A relation C is recursive iff C

is reachable from itself. It is directly recursive if (C 7→SD∧D 6=C)⇒ C is not reachable

from D in S, i.e., there cannot be cycles in the reachability relation (recursion) of

length greater than one.

Definition 10 (directly recursive BTC) Given a CRS S with graph G, a BTC

btc for S is directly recursive if for all S ∈ SCC(G) the following two conditions hold:

(DR) if s1, s2 ∈ S and s1, s2 ∈ btc, then s1 = s2.

(TR) if S has a cycle, then there exists s ∈ S such that s ∈ btc.

Condition (DR) ensures that all recursions in the transformed CRS are direct, as there

is only one residual relation per SCC. Condition (TR) guarantees that the unfolding

process terminates, as there is a residual relation per cycle.

A directly recursive BTC for Example 12 is btc = {E}. In our implementation we

include in BTCs only the covering point of SCCs which contain cycles, but not that

of components without cycles. This way of computing BTCs, in addition to ensuring

direct recursion, also eliminates all intermediate cost relations which are not part of

cycles. Coming back to Example 12, our implementation computes btc = {E}. This is
why the CRS shown in Figure 3 does not include equations for H.

8.2 Partial Evaluation of Cost Relations

We now present a Partial Evaluation [33] (PE for short) algorithm for transforming

CRSs. Unfolding, in this context, in addition to taking care of combining arithmetic

expressions, also has to combine the linear constraints and to consider a BTC btc to

control the transformation process. The next definition of unfolding, given a call to a

relation, produces a specialization for such call by unfolding all calls to relations which

are marked as unfoldable in btc.

Definition 11 (unfolding) Given a CRS S, a call C(x̄0) such that C ∈ rel(S),
a set of linear constraints ϕx̄0 over the variables x̄0, and a BTC btc for S, a spe-

cialization 〈E,ϕ〉 is obtained by unfolding C(x̄0) and ϕx̄0 in S w.r.t. btc, denoted

Unfold(〈C(x̄0), ϕx̄0〉,S, btc) ; 〈E,ϕ〉, if one of the following conditions hold:

28

(res) (C ∈ btc ∧ ϕ 6= true) ∧ 〈E,ϕ〉 = 〈C(x̄0), ϕx̄0〉.
(unf) (C 6∈ btc ∨ ϕ = true) ∧ 〈E,ϕ〉 = 〈(exp+ e1 + . . .+ ek), ϕ

′ ∧
i=1..k

ϕi〉,

where we have that:

1. 〈C(x̄) = exp+
∑k

i=1Di(ȳi), ϕC〉 is a renamed apart equation in S such that ϕ′ is
satisfiable in Z, where ϕ′ = ϕx̄0 ∧ ϕC [x̄0/x̄].

2. Unfold(〈Di(ȳi), ϕ
′〉,S, btc) ; 〈ei, ϕi〉 for all i ∈ {1, . . . , k}.

The first case, (res), is required for termination. When we call a relation C which

is marked as residual, we simply return the initial call C(x̄0) and constraints ϕx̄0 ,

as long as ϕx̄0 is not the initial one (true). The latter condition is added in order to

enforce the initial unfolding step for relations marked as residual. In all subsequent

calls to Unfold different from the initial one, the constraints are different from true.

The second case (unf) corresponds to continuing the unfolding process. Step 1 is non

deterministic in general, since cost relations are often defined by means of several

equations. Furthermore, since expressions are transitively unfolded, step 2 may also

provide multiple solutions. As a result, unfolding may produce multiple outputs. Also,

note that the final constraint ϕ can be unsatisfiable. In such case, we simply do not

regard 〈E,ϕ〉 as a valid unfolding. In the following, we denote by
unf
=e an “unfolding

step” performed by unf where an equation e is selected to replace a function call by

its right hand side.

Example 14 Given the initial call 〈E(la, j), true〉, we obtain an unfolding by performing

the following steps.

〈E(la, j), true〉 unf
= (8′)

〈5 + F (la, j, j′, la′), {j′ = j, la′ = la− 1, j′ ≥ 0}〉 unf
= (10)

〈5 +G(la, j, j′, la′), {j′ = j, la′ = la− 1, j′ ≥ 0, j′ < la′}〉 unf
= (12)

〈15 + E(la, j′′), {j < la− 1, j ≥ 0}〉

The last call E(la, j′′) cannot be further unfolded because the relation belongs to btc

and ϕ 6= true. 2

In the above definition, from each result of unfolding, we can build a residual equa-

tion. Given Unfold(〈C(x̄0), ϕx̄0〉,S, btc) ; 〈E,ϕ〉, its corresponding residual equation

is 〈C(x̄0) = E,ϕ〉. We use Residuals(〈C(x̄0), ϕx̄0〉,S, btc) to denote the set of residual

equations for 〈C(x̄0), ϕx̄0〉 in S w.r.t. ϕ. Now, we obtain a partial evaluation of C by

collecting all residual equations for the call 〈C(x̄0), true〉 where x̄0 are distinct variables.

Definition 12 (partial evaluation) Given a CRS S, a relation C, and a BTC btc

for S, the partial evaluation for C in S w.r.t. btc is defined as:
⋃

D∈btc∪{C}
Residuals(〈D(x̄0), true〉,S, btc)

The above definition provides an algorithm for partial evaluation of CRSs. In terms

of PE [33], the algorithm we propose is an off-line PE which at the global control

level is monovariant, since the initial constraint is true for all residual relations, and

at the local-control it unfolds all calls to unfoldable relations and residualizes all calls

to residual relations. Note that, in addition to the relations in btc, we also generate

equations for the initial relation C.

29

Example 15 The partial evaluation of the equations of Example 12 w.r.t. the call of

Example 14 are Equations (8) and (9) of Figure 3. Equation (9) is obtained from the

unfolding steps depicted in Example 14 and Equation (8) from an unfolding derivation

where the selected equations are (8’), then (9’) and finally (11). As expected, the

resulting CRS is directly recursive. 2

The lemma below shows that partial evaluation is an effective way of obtaining

direct recursion. It easily follows by the definition of BTC.

Lemma 6 Let S be a CRS of minimal coverage and let C be a relation. Let btc be a

directly recursive BTC for S. Then,

1. partial evaluation for C in S w.r.t. btc produces a CRS S’ which is directly recursive

and,

2. S′ is obtained in finite time.

Proof The proof is by contradiction. Let us first prove claim 1. Assume that we have a

relation in S’ which is not directly recursive. This means that we can have equations of

the form: 〈C(x̄) = exp+D(ȳ), ϕC〉 and 〈D(x̄) = exp+C(ȳ), ϕD〉 with D 6= C. As D has

not been unfolded, then it must happen that D ∈ btc. We have that C is in the same

SCC as D. Then, by condition (DR) of Definition 10, it must happen that C = D.

This contradicts the initial assumption. Claim 2 follows from the condition (TR) of

Definition 10 by reasoning by contradiction. Let us assume that S’ is not obtained in

finite time. This can only happen because Unfold does not terminate. Hence, there exists

an infinite derivation 〈E1, ϕ1〉 unf
= 〈E2, ϕ2〉 unf

= . . .
unf
= 〈En, ϕn〉 unf

= 〈En+1, ϕn+1〉 unf
=

Since the number of cost relations in rel(S) is finite and the sequence is infinite, there

is a cycle from some Ei to an En for i < n. By condition (TR), this cannot happen

because there must exist an Ej in the cycle with i ≤ j ≤ n that belongs to btc. 2

The following lemma guarantees that PE preserves the solutions of CRSs. The

proof basically consists in ensuring the correctness of the basic operators in the partial

evaluation algorithm of Definition 12 to, then, rely on the classical correctness results

of PE proven in the context of logic programming (see e.g. [39,34,33] and more recent

formulations like [38,37]).

Lemma 7 (correctness of PE) Let S be a CRS, C be a relation, and let btc be a

BTC for S. Let S′ be the partial evaluation of C in S w.r.t. btc. Then, ∀v̄ ∈ Zn, ∀r ∈
R+ we have that r ∈ Answers(C(v̄),S) iff r ∈ Answers(C(v̄),S′).

Proof (sketch) The proof can be done by demonstrating that Definition 12 is a correct

partial evaluation as defined in logic programming. Correctness results were already

stated in Theorem 1 of [34] and more recent formulations appear in [38,37]. In all cases,

correctness requires proving:

1. Soundness. The soundness condition ensures that the all answers in the partially

evaluated program are also answers in the original program. It is proven by demon-

strating that each unfolding step in the partially evaluated program corresponds

to a sequence of equivalent steps in the original one. In our context, it amounts to

ensuring that the operator Unfold of Definition 11 preserves the answers.

2. Completeness. Completeness guarantees that all answers in the original program

are also found in the partially evaluated one. It can be ensured when the set of terms

30

to be partially evaluated meets the so-called closedness condition [39]. The role of

this condition is to ensure that all possible calls that raise during the execution of

a CRS will find a matching relation. In our context, we need to ensure that the set

btc enforces the closedness condition, i.e., answers are not lost.

Point 1 requires to prove the correctness of operator Unfold of Definition 11. It indeed

trivially holds as Unfold simply replaces in rule (unf) a function call by its right hand

side, with the corresponding propagation of constraints. In terms of evaluation trees,

this step basically merges a node with (some of) its successors.

The closedness of the terms to be partially evaluated, i.e., the elements in the set

btc, follows from the fact that only terms in btc remain in the relation and the remaining

ones are unfolded. This trivially ensures that all possible calls during execution will be

covered by btc, as required by point 2 above. In standard PE, correctness requires that

the partial evaluation process terminates. This is ensured by Lemma 6. 2

9 Incompleteness in Cost Analysis

When we consider the whole cost analysis which comprises the two phases mentioned in

Section 1, i.e., obtaining a closed-form upper bound from a program —instead of from a

CRS— the problem is strictly more difficult than proving termination. This is explained

by the fact that obtaining a closed-form upper bound of a program which has a non-

zero cost expression associated to each recursive equation implies the termination of the

program from which the CR has been generated. Therefore, the approach is necessarily

incomplete and might fail to produce an upper bound. Clearly, this may occur because

the resource usage of the program is actually infinite w.r.t. the cost model used. For

instance, a non-terminating program that can perform an infinite number of steps.

When the resource consumption is finite, we can still fail to produce an upper bound

because of loss of precision in one of the two phases in the cost analysis. This can occur

in the first phase, i.e., when the program is transformed into the CRS since it applies

abstract interpretation based analyses in order to approximate undecidable problems

such as aliasing and size relations. However, the incompleteness in the first part of the

analysis is completely outside the scope of this paper and we refer to [6] for further

details.

Certainly, the second part of cost analysis is undecidable as well, i.e., if a given cost

relation admits a closed-form upper bound, so we must accept certain restrictions. In

[16], it is proven that a simpler problem, namely the termination of a special case of

CRS where all equations have at most one call in the body and constraints are of the

form x−y ≤ c, is undecidable. A detailed discussion about decidability of simple loops

with integer constraints can be found in [20]. There are three sources of incompleteness

in our approach, i.e., in the process of obtaining an upper bound from a CRS by using

our techniques.

1. The first one is obtaining directly recursive CRs. For instance, the following CRS

does not have a cover point:

〈C(n) = C(n′) +D(n′), {n > 0, n′=n−1}〉
〈D(n) = D(n′) + C(n′), {n > 0, n′=n−1}〉

Importantly, this phase is complete for CRs extracted from structured loops and

from the recursive patterns found in most programs. The use of features like break

31

and continue in languages like Java or C have do not pose any problem, since the

control flow graph of the program can be constructed and the program can thus be

turned into recursive form. As it can be seen in the example, incompleteness might

occur in certain types of mutually recursive relations.

2. The second source of incompleteness in our method is in finding ranking functions.

Currently, we use a complete procedure for inferring linear ranking functions [45].

However, there are CRSs which do not have a linear ranking function as explained

in Example 6. Integrating other more sophisticated ranking functions is possible,

but it is probably not required in practice.

3. The third one is finding useful invariants. Sometimes this is not possible by using

linear constraints. This happens for example in this example:

〈C(n,m) = m, {n=0}〉
〈C(n,m) = C(n′,m′), {n′=n−1,m′=2∗m,n>0}〉

The value of m in the base case will be (2n) ∗ m0. In principle, we could use

methods for inferring polynomial invariants, although we would need a different

maximization procedure.

10 Experimental Evaluation

In order to evaluate the practicality of our approach, we have developed a system

that we call PUBS (Practical Upper Bounds Solver), which implements the ideas pre-

sented in this paper. PUBS is implemented in Prolog and uses the Parma Polyhedra

Library [13] for manipulating linear constraints. We have conducted a number of ex-

periments which aim at evaluating the applicability of our approach, the quality of the

upper bounds obtained, and the efficiency and scalability of the system.

In order to test our system on realistic CRs produced by automatic cost analysis,

we have used as benchmarks in our experiments a set of CRs automatically generated

by the cost analyzer of Java bytecode described in [6], using several cost models. The

Java bytecode programs taken as input cover a wide range of complexity classes and

are the result of compiling the corresponding Java source programs. Both the Java

source code and the produced CRs for such programs are available at the PUBS web

interface at http://costa.ls.fi.upm.es/pubs, from where PUBS can be run on such

CRs and also on CRs provided by the user.

Now we briefly describe the programs considered, which are listed in increasing

complexity order and range from constant to exponential complexity, going through

polynomial and divide and conquer. Polynomial is a method for copying polynomials

and has a constant upper bound (on memory consumption). DivByTwo is a loop which

iterates a logarithmic number of times, as its counter is decremented by half in each

iteration. ArrayReverse produces a reversed copy of an array of integers. Concat con-

catenates two arrays of integers into a new array. Incr has a loop which iterates a linear

number of times that depends on the run-time type of an input argument. ListReverse

is an in-place reversal of a list represented as a linked list. MergeList merges two sorted

lists implemented as linked lists. Power recursively computes the power operation. Cons

copies a linked list. MergeSort sorts an array using the Merge Sort algorithm. EvenDigits

is a simple for loop with a call to the DivbyTwo method inside the loop body. ListInter

computes the intersection of two unsorted linked lists. SelectSort sorts an array by Se-

lection Sort. FactSum adds up the factorial of all naturals from 0 to the input value n.

32

Benchmark Properties Upper Bound

Polynomial∗ a,b,c 216
DivByTwo a,b 8log2(nat(2x−1)+1)+14
ArrayReverse a 14nat(x)+12
Concat a,c 11nat(x)+11nat(y)+25
Incr a,c 19nat(x+1)+9
ListReverse a,b,c 13nat(x)+8
MergeList a,b,c 29nat(x+ y)+26
Power 10nat(x)+4
Cons∗ a,b 22nat(x−1)+24
MergeSortn a,b,c 2nat(−x+ y + 1)(log2(nat(−2x+ 2y − 1) + 1) + 1)
EvenDigits a,b,c nat(x)(8log2(nat(2x−3) + 1) + 24) + 9nat(x) + 9
ListInter a,b,c nat(x)(10nat(y) + 43) + 21
SelectSort a,c nat(x−2)(17nat(x−2) + 34) + 9
FactSum a nat(x+1)(9nat(x) + 16) + 6
Delete a,b,c 3 + nat(l)max(38+15nat(la−1)+10nat(la),

37+15nat(lb−1)+10nat(lb))
MatMult a,c nat(y)(nat(x) + 10)(27nat(x) + 10) + 17

Hanoi 20(2nat(x))-17

Fibonacci 18(2nat(x−1))-13

BST∗ a,b 96(2nat(x))-49

Table 1 Upper bounds computed automatically

Delete is the running example in Figure 1. MatMult multiplies two matrices. Hanoi has

a doubly recursive structure, as the well-known Towers of Hanoi problem. Fibonacci

is a naive doubly recursive implementation of Fibonacci numbers. Finally, BST is a

method for recursively copying a binary search tree. In addition, in the experiments,

we have used three different cost models:

– the heap consumption (in bytes), in those benchmarks marked with “∗”,
– the number of executed comparison instructions, in the benchmark marked with

“n”, and

– the number of executed bytecode instructions, in the rest of benchmarks.

10.1 Accuracy of the Upper-Bounds Obtained

The first set of experiments performed aims at evaluating the applicability of PUBS

and the accuracy of the closed-form upper bounds thus obtained. Table 1 shows the

upper bounds generated by PUBS for the benchmarks described above. The column

Properties shows the properties of the corresponding CR, in such a way that a, b and

c indicate, respectively, that the CR is non-deterministic, that it has inexact size con-

straints, and multiple arguments (Section 2.2). As can be seen, most of the benchmarks

have one or more of such properties. If we handle the complete semantics of programs,

including exceptions, even simple programs such as ArrayReverse are non-deterministic

since accesses to arrays may in principle throw array-out-of-bounds exceptions. As a

result, only the purely numerical programs, i.e., Power, FactSum, Hanoi, and Fibonacci

are in a format syntactically acceptable by MathematicaR© or other CAS. In contrast,

PUBS has been able to automatically find upper bounds for all benchmarks considered.

This clearly shows that CAS have rather restricted applicability in CRs obtained from

33

Benchmark Input Estimated Actual Accuracy

Polynomial∗ copy pol(10) 216 216 100
DivByTwo divByTwo(10) 49 38 76
ArrayReverse arrayReverse(10) 152 152 100
Concat concat(10,10) 245 245 100
Incr add(10,10) 218 218 100
ListReverse listReverse(10) 138 138 100
MergeList merge(5,5) 316 279 88
Power power(10) 104 104 100
Cons∗ cons(10) 222 222 100
MergeSortn ms sort(, ,0,5) 52 32 62
EvenDigits evenDigits(10) 462 345 75
ListInter listInter(5,5) 486 486 100
SelectSort selectSort(6) 417 315 76
FactSum doSum(10) 1172 677 58
Delete delete(3, , ,3, ,3) 297 256 86
MatMult multiply(3,3) 866 866 100
Hanoi hanoi(10) 20463 20463 100
Fibonacci fibonacciMethod(10) 9203 1589 17
BST∗ copy(4) 180 132 73

Table 2 Estimated versus actual maximal value

real programs. Column Upper Bound shows the closed-form upper bound obtained

by PUBS. As can be seen, they are relatively syntactically simple. This is important

since, as already mentioned in [54], one of the problems of cost analysis is that the cost

functions produced can grow considerably large. This can hinder the success of cost

analysis since large cost functions are hard to understand by humans and also difficult

to automatically handle in applications such as resource certification [9], where it is

required to compare cost functions [3].

In order to evaluate the accuracy of the upper bounds obtained using our approach,

Table 2 compares the values obtained by evaluating the upper bounds generated by

PUBS on some concrete input data with the maximum value which can be obtained by

evaluating the input CRs. Column Input indicates the input data considered for each

Benchmark, i.e., given the entry C for a cost relation S, it provides the particular

C(v̄) used for evaluating both the upper bound and the associated cost relation.

Then, column Estimated provides the value obtained by evaluating the upper

bound computed by PUBS on the given input data. Column Actual provides the

actual value obtained by evaluating the cost-bound function discussed in Section 3,

which is defined as C+(v̄) = max(Answers(C(v̄),S)). For this we have implemented an

evaluator for CRSs which given a CRS S and an initial call C(v̄) produces all answers

corresponding to all evaluation trees for C(v̄) in S and then obtains the maximum of

them. The evaluator has been implemented in Constraint Logic Programming [32] in

order to efficiently handle the size constraints which are accumulated when obtaining

the evaluation trees. It is important to note that due to the highly non-deterministic

nature of many of the CRs, this evaluation often results in a combinatorial explosion

which makes evaluation of most CRs unfeasible except for very small input values. This

is why in some cases the input values are smaller than 10, which was the originally

attempted input value for all arguments. We also use underscore to indicate arguments

which do not affect the evaluation of the CR.

34

Finally, the column Accuracy tries to provide an indication of the accuracy ob-

tained by showing the value Actual/Estimated × 100. Correctness of the upper

bounds computed requires that Actual ≤ Estimated, which occurs in all cases. Also,

this implies that Accuracy is a number between 0 and 100, with a 100 indicating

that the upper bound computed by PUBS is exact. As can be seen, PUBS obtains the

exact upper bound in a good number of cases. Then there is a group of programs for

which the accuracy obtained ranges from 58% to 88% which we argue is quite good for

many applications. The main reason for loss of precision in these benchmarks is the

occurrence of loops (or recursion) whose body contains computations with cost which

is different in different iterations, since our approach will take the worst case cost for

such computation and multiply it by the number of iterations. Though this precision

loss accumulates with the depth of nesting, it is important to note that it does not

accumulate with the length of programs. Also, this precision loss does not occur if the

cost of inner computations is the same in all iterations. This is why we obtain full

accuracy for MatMult, even though it has three nested loops.

There are, however, some cases where accuracy is low, such as Fibonacci, where

our approach is able to find an upper bound, but its accuracy is 17%. In contrast, this

CR can be solved in MathematicaR© and obtain an exact upper bound. However, such

upper bound is syntactically rather complex: −(23−x(151+x − 19(1−
√
5)x +5

√
5(1−√

5)x−19(1+
√
5)x−5

√
5(1+

√
5)x))/((−1+

√
5)2(1+

√
5)2). The fact that it is more

complex makes it more difficult to use it for the applications discussed in Section 1.1

and in some cases it is preferable to use a simpler, though less accurate, upper bound,

such as the one obtained by PUBS. Note also that the benchmark MergeSort falls into

the class of divide-and-conquer programs explained in Section 7 where, by using the

level-count approach, we obtain the accurate closed-form shown in the Table 1.

Also, we argue that using CAS for obtaining upper bounds of realistic CRs is not

an option. In fact, it was our own previous experience in trying to obtain upper bounds

with MathematicaR©, in the work reported in [8], which motivated this work. There, we

obtained upper bounds for a subset of the benchmarks considered in this paper, but

only after significant human intervention in order to convert the CRs into a format

solvable in MathematicaR©, since it has several restrictions that CRs do not satisfy,

namely, (1) we cannot include guards, (2) variables cannot be repeated in the equation

head, (3) all equations must have at least one variable argument and (4) variables in

the equation head must appear in the body.

10.2 Efficiency and Scalability of the Approach

Table 3 aims at studying the efficiency of our system by showing the results of two

different experiments. In the first experiment, we analyze each of the benchmarks in

isolation. Column #eq shows the number of equations before PE (in brackets after

PE). Note that PE greatly reduces #eq in all benchmarks. Column T shows the total

runtime in milliseconds. The experiments have been performed on an Intel Core 2

Quad Q9300 at 2.50GHz with 1.95GB of RAM, running Linux 2.6.24-21. We argue

that analysis times are acceptable. In the case of MergeSort analysis time is higher

because its equations contain a large number of variables when compared to those of

the other examples. This affects the efficiency when computing the ranking function

and also when maximizing expressions.

35

Benchmark #eq T #c
eq Tpe Tub Rat.

Polynomial∗ 23(3) 10 385(97) 388 1190 4.1
DivByTwo 9(3) 2 362(94) 402 1173 4.3
ArrayReverse 9(3) 2 344(88) 387 1122 4.4
Concat 14(5) 10 335(85) 386 1102 4.4
Incr 28(5) 23 321(80) 384 1046 4.5
ListReverse 9(3) 4 293(75) 374 943 4.5
MergeList 21(4) 17 284(72) 374 925 4.6
Power 8(2) 2 262(67) 366 898 4.8
Cons∗ 22(2) 6 253(64) 376 912 5.1
MergeSortn 39(12) 499 230(61) 354 805 5.0
EvenDigits 18(5) 7 191(49) 130 290 2.2
ListInter 37(9) 48 173(44) 126 246 2.2
SelectSort 19(6) 22 136(35) 115 169 2.1
FactSum 17(5) 8 117(29) 109 143 2.2
Delete 33(9) 106 100(24) 102 130 2.3
MatMult 19(7) 17 67(15) 69 34 1.5
Hanoi 9(2) 5 48(8) 67 16 1.7
Fibonacci 8(2) 4 39(6) 63 11 1.9
BST∗ 31(4) 36 31(4) 64 8 2.3

Table 3 Scalability of upper bounds inference

The second experiment aims at studying how analysis time increases when larger

CRs are used as benchmarks, i.e., the scalability of our approach. In order to do so,

we have connected together the CRs for the different benchmarks by introducing a

call from each CR to the one appearing immediately below it in the table. Such call

is always introduced in a recursive equation. The results of this second experiment

are shown in the last four columns of the table. Column #c
eq shows the number of

equations we want to solve in each case (in brackets after PE). Reading this column

bottom-up, we can see that when we analyze BST in the second experiment we have

the same number of equations as in the first experiment. Then, for Fibonacci we have

its 8 equations plus 31 which have been previously accumulated. Progressively, each

benchmark adds its own number of equations to #c
eq. Thus, in the first row we have a

CRS with all the equations connected, i.e., we compute a closed-form upper bound of a

CRS with at least 20 nested loops and 385 equations. In this experiment, the analysis

time is split into Tpe and Tub, where Tpe is the time of PE and Tub is the time of

all other phases. The results show that even though PE is a global transformation, its

time efficiency is linear with the number of equations, since PE operates on strongly

connected components. Our system solves 385 equations in 388 + 1190ms.

Finally, column Rat. shows the total time per equation. The ratio is quite small

from BST to EvenDigits, which are the simplest benchmarks and also have few equa-

tions. It increases notably when we analyze the benchmark MergeSort because, as

discussed above, its equations have a large number of variables. The important point

is that for larger CRs (from MergeSort upwards) this ratio decreases more and more

as we connect new benchmarks. It should be observed that it decreases even if the

size of the CRs increases and also the equations have to count more complex expres-

sions. This happens because the new benchmarks which are connected are simpler than

MergeSort in terms of the number of variables. We believe that this demonstrates that

our approach is scalable even if the implementation is preliminary. The upper bound

expressions get considerably large when the benchmarks are composed together. We

36

are currently implementing standard techniques for simplification of arithmetic expres-

sions.

Pubs is already integrated within the COst and Termination Analyzer for Java

bytecode, Costa [7]. If one wants to obtain closed-form upper bounds from Java

(bytecode) programs rather than from the cost relations, the Costa system can be

used online at: http://costa.ls.fi.upm.es/costa.

In summary, we argue that our experimental results show that, for many common

programs, our approach provides reasonably accurate results which are syntactically

simple and in an acceptable amount of analysis time.

11 Related Work

As already mentioned in Section 1, the classical approach to automatic cost analysis,

which dates back to the seminal work of [54] consists of two phases. In the first phase,

given a program and a cost model, static analysis produces what we call a cost relation

(CR), which is a set of recursive equations which capture the cost of our program in

terms of the size of its input data. The fact that CRs are recursive make them not

very useful for most applications of cost analysis. Therefore, a second phase is required

to obtain a non-recursive representation of such CRs, known as closed-form. In most

cases, it is not possible to find an exact solution and the closed-form corresponds to

an upper bound.

There are a number of cost analyses available which are based on building CRs

and which can handle a range of programming languages, including functional [54,36,

47,53,49,18,40], logic [26,42], and imperative [6]. Such CRs must ensure that, for any

valid input integer tuple, a value which is guaranteed to be an upper bound of the

execution cost of the program for any input data in the (usually infinite) set of values

which are consistent with the input sizes. There is no unified terminology in this area

and such cost relations are referred to as worst-case complexity functions in [1], as

time-bound functions in [47], and recursive time-complexity functions in [36]. Apart

from syntactic differences, the main differences between such forms of functions and

our cost relations are twofold: (1) our equations contain associated size constraints and

(2) we consider (possibly) non-deterministic relations. Both features are necessary to

perform cost analysis of realistic languages (see Section 2.2). While in all such analyses

the first phase, i.e., producing CRs is studied in detail, the second phase, i.e., obtaining

closed-form upper bounds for them, has received comparatively less attention.

There are two main ways of viewing CRs which lead to different mechanisms for

finding closed-form upper bounds. We call the first view algebraic and the second view

transformational. The algebraic one is based on regarding CRs as recurrence relations.

This view was the first one to be proposed and it is the one which is advocated for in

a larger number of works. It allows reusing the large existing body of work in solving

recurrence relations. Within this view, two alternatives have been used in previous

analyzers. One alternative consists in implementing restricted recurrence solvers within

the analyzer based on standard mathematical techniques, as done in [54,26]. The other

alternative, motivated by the availability of powerful computer algebra systems (CASs

for short) such as MathematicaR©, MAXIMA, MAPLE, etc., consists in connecting the

analyzer with an external solver, as proposed in [53,49,18,6,40].

The transformational view consists in regarding CRs as (functional) programs. In

this view, closed-form upper bounds are produced by applying (general-purpose) pro-

37

gram transformation techniques on the time-bound program [47] until a non-recursive

program is obtained. Note that, as discussed in Section 2, it is straightforward to

obtain time-bound programs from CRs by introducing a maximization operator (or

disjunctive execution). The transformational view was first proposed in the ACE sys-

tem [36], which contained a large number of program transformation rules aimed at

obtaining non-recursive representations. It was also advocated by Rosendahl in [47],

who later in [48] provided a series of program transformation techniques based on

super-compilation [52] which were able to obtain closed-forms for some classes of pro-

grams.

The problem with all the approaches mentioned above is that, though they can

be successfully applied for obtaining closed-forms for CRs generated from simple pro-

grams, they do not fulfill the initial expectations in that they are not of general appli-

cability to CRs generated from real programs. The essential features which neither the

algebraic nor the transformational approaches can handle are discussed in Section 2.2.

The main motivation for this work was our own experience in trying to apply the alge-

braic approach on the CRs generated by [6]. We argue that automatically converting

CRs into the format accepted by CASs is unfeasible. Furthermore, even in those cases

where CASs can be used, the solutions obtained are so complicated that they become

useless for most practical purposes. In contrast, our approach can produce correct and

comparatively simple results even in the presence of non-determinism.

The need for improved mechanisms for automatically obtaining closed-form up-

per bounds was already pointed out in Hickey and Cohen [30]. A significant work in

this direction is PURRS [14], which has been the first system to provide, in a fully

automatic way, non-asymptotic closed-form upper and lower bounds for a wide class

of recurrences. Unfortunately, and unlike our proposal, it also requires CRs to be de-

terministic. Another relevant work is that of Marion et. al. [41,19], who propose an

analysis for stack frame size in first order functional programming. They use quasi-

interpretations, which are different from ranking functions and the whole approach is

limited to polynomial bounds.

An altogether different approach to cost analysis is based on type systems with

resource annotations, which does not use CRs as an intermediate step. Thus, this

approach does not require computing closed-form upper bounds for CRs, but it is

often restricted to linear bounds [31], with some notable exception like [25].

A program analysis based approach for inferring polynomial boundedness of com-

puted values (as a function of the input) has been recently proposed in [17]. It infers

the complexity of a given program by first obtaining a step-counting program. This

work builds on similar previous works along the lines of [44,35], and the main novelty

here is that it provides completeness for a simple (Turing incomplete) language. Com-

pared to this line of research, our approach is more powerful in that it is not limited

to polynomial complexity but, on the other hand, the techniques we use are inherently

incomplete.

12 Conclusions

We have proposed an approach to the automatic inference of non-asymptotic closed-

form upper bounds of CRs produced by automatic cost analysis. For this, we have

formally defined CRs as a target language for cost analysis. Hence, our method for

38

closed-form upper bound inference can be used in static cost analysis of any program-

ming language. In spite of the inherent incompleteness, we have experimentally shown

that our approach is able to obtain useful upper bounds for a large class of common pro-

grams. In summary, the use of ranking functions and our practical method to compute

upper bounds for a very general notion of cost expression (including exponential, loga-

rithmic, etc.) allows obtaining closed-form upper bounds for realistic CRs with possibly

non-deterministic equations, multiple arguments, and inexact size constraints.

In recent work [11], we have applied our method to obtain closed-form upper bounds

from non-standard CRs, namely from CRs which capture the heap space usage of

programs by taking into account the deallocations performed by garbage collection,

without requiring any change to the techniques presented in this paper. The way in

which cost relations are generated is different from the standard approach because the

live heap space is not an accumulative resource of a program’s execution but, instead,

it requires to reason on all possible states to obtain their maximum. As a result, cost

relations include non-deterministic equations which capture the different peak heap

usages reached along the execution. Importantly, the additional non-determinism does

not pose any problem to the applicability of our method.

Acknowledgements We gratefully thank the anonymous referees for many useful comments
and suggestions that greatly helped to improve this article. This work was funded in part by
the Information & Communication Technologies program of the European Commission, Future
and Emerging Technologies (FET), under the ICT-231620 HATS project, by the Spanish
Ministry of Science and Innovation (MICINN) under the TIN-2008-05624 DOVES project,
the TIN2008-04473-E (Acción Especial) project, the HI2008-0153 (Acción Integrada) project,
the UCM-BSCH-GR58/08-910502 Research Group and by the Madrid Regional Government
under the S2009TIC-1465 COMPROMETIDOS project.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination
Analysis of Java Bytecode. In 10th IFIP International Conference on Formal Methods
for Open Object-based Distributed Systems (FMOODS’08), volume 5051 of Lecture Notes
in Computer Science, pages 2–18. Springer, 2008.

3. E. Albert, P. Arenas, S. Genaim, I. Herraiz, and G. Puebla. Comparing cost functions in
resource analysis. In 1st International Workshop on Foundational and Practical Aspects
of Resource Analysis (FOPARA’09), Lecture Notes in Computer Science. Springer, 2009.
To appear.

4. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper Bounds
for Recurrence Relations in Cost Analysis. In 15th International Symposium on Static
Analysis (SAS’08), volume 5079 of Lecture Notes in Computer Science, pages 221–237,
2008.

5. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Cost Relation Systems: a Language–
Independent Target Language for Cost Analysis. In 8th Spanish Conference on Pro-
gramming and Computer Languages (PROLE’08), volume 17615 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2008.

6. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java
Bytecode. In 16th European Symposium on Programming, (ESOP’07), volume 4421 of
Lecture Notes in Computer Science, pages 157–172. Springer, 2007.

7. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design and Im-
plementation of a Cost and Termination Analyzer for Java Bytecode. In 6th International
Symposioum on Formal Methods for Components and Objects (FMCO’08), number 5382
in Lecture Notes in Computer Science, pages 113–133. Springer, 2007.

39

8. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Experiments in Cost
Analysis of Java Bytecode. In 2nd Workshop on Bytecode Semantics, Verification, Anal-
ysis and Transformation (BYTECODE’07), volume 190, Issue 1 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2007.

9. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Resource usage analysis
and its application to resource certification. In 9th International School on Foundations of
Security Analysis and Design (FOSAD’09), number 5705 in Lecture Notes in Computer
Science, pages 258–288. Springer, 2009.

10. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis of Java Bytecode. In
6th International Symposium on Memory Management (ISMM’07), pages 105–116. ACM
Press, 2007.

11. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis for Lan-
guages with Garbage Collection. In 8th International Symposium on Memory management
(ISMM’09). ACM Press, 2009.

12. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource Guar-
antees for Smart Devices. In Workshop on Construction and Analysis of Safe, Secure and
Interoperable Smart Devices (CASSIS’04), volume 3362 of Lecture Notes in Computer
Science, pages 1–27. Springer, 2005.

13. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
Complete Set of Numerical Abstractions for the Analysis and Verification of Hardware
and Software Systems. Science of Computer Programming, 72(1–2):3–21, 2008.

14. R. Bagnara, A. Pescetti, A. Zaccagnini, and E. Zaffanella. PURRS: Towards Computer
Algebra Support for Fully Automatic Worst-Case Complexity Analysis. Technical report,
2005. arXiv:cs/0512056 available from http://arxiv.org/.

15. Paul M. Batchelder. An Introduction to Linear Difference Equations. Dover Publications,
1967.

16. Amir M. Ben-Amram. Size-Change Termination with Difference Constraints. ACM Trans-
actions on Programming Languages and Systems, 30(3), 2008.

17. Amir M. Ben-Amram, Neil D. Jones, and Lars Kristiansen. Linear, Polynomial or Expo-
nential? Complexity Inference in Polynomial Time. In Logic and Theory of Algorithms,
4th Conference on Computability in Europe, (CiE’08), volume 5028 of Lecture Notes in
Computer Science, pages 67–76. Springer, 2008.

18. R. Benzinger. Automated Higher-Order Complexity Analysis. Theoretical Computer Sci-
ence, 318(1-2), 2004.

19. G. Bonfante, J-Y. Marion, and J-Y. Moyen. Quasi-Interpretations and Small Space
Bounds. In 16th International Conference on Rewriting Techniques and Applications
(RTA’05), volume 3467 of Lecture Notes in Computer Science, pages 150–164, 2005.

20. M. Braverman. Termination of Integer Linear Programs. In 18th Computer Aided Ver-
ification (CAV’06), volume 4144 of Lecture Notes in Computer Science, pages 372–385.
Springer, 2006.

21. A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula. Enforcing Resource Bounds
via Static Verification of Dynamic Checks. In 14th European Symposium on Programming
(ESOP’05), volume 3444 of Lecture Notes in Computer Science, pages 311–325. Springer,
2005.

22. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In ACM Symposium
on Principles of Programming Languages (POPL’77), pages 238–252. ACM Press, 1977.

23. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among Variables
of a Program. In ACM Symposium on Principles of Programming Languages (POPL’78),
pages 84–97. ACM Press, 1978.

24. Stephen-John Craig and Michael Leuschel. Self-Tuning Resource Aware Specialisation for
Prolog. In 7th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’05), pages 23–34. ACM Press, 2005.

25. K. Crary and S. Weirich. Resource Bound Certification. In 27 th ACM Symposium on
Principles of Programming Languages (POPL’05), pages 184–198. ACM Press, 2000.

26. S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions on
Programming Languages and Systems, 15(5):826–875, November 1993.

27. R. W. Floyd. Assigning Meanings to Programs. In Proceedings of Symposium in Ap-
plied Mathematics, volume 19, Mathematical Aspects of Computer Science, pages 19–32.
American Mathematical Society, Providence, RI, 1967.

40

28. G. Gómez and Y. A. Liu. Automatic Time-Bound Analysis for a Higher-Order Lan-
guage. In Proceedings of the ACM SIGPLAN 2002 Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, pages 75–88. ACM Press, 2002.

29. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated Program Debug-
ging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System
Preprocessor). Science of Computer Programming, 58(1–2):115–140, October 2005.

30. T. Hickey and J. Cohen. Automating Program Analysis. Journal of the ACM, 35(1), 1988.

31. M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-Order Functional
Programs. In 30th Symposium on Principles of Programming Languages (POPL’03),
pages 185–197. ACM Press, 2003.

32. J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of Logic
Programming, 19/20:503–581, 1994.

33. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, New York, 1993.

34. J. Komorovski. An Introduction to Partial Deduction. In Meta Programming in Logic
(META’92), volume 649 of Lecture Notes in Computer Science, pages 49–69. Springer,
1992.

35. Lars Kristiansen and Neil D. Jones. The Flow of Data and the Complexity of Algorithms.
In 1st Conference on Computability in Europe (CiE’05), volume 3526 of Lecture Notes in
Computer Science, pages 263–274, 2005.

36. D. Le Metayer. ACE: An Automatic Complexity Evaluator. ACM Transactions on Pro-
gramming Languages and Systems, 10(2):248–266, April 1988.

37. M. Leuschel. A Framework for the Integration of Partial Evaluation and Abstract Interpre-
tation of Logic Programs. ACM Transactions on Programming Languages and Systems,
26(3):413 – 463, May 2004.

38. M. Leuschel and M. Bruynooghe. Logic Program Specialisation through Partial Deduction:
Control Issues. Theory and Practice of Logic Programming, 2(4 & 5):461–515, July &
September 2002.

39. J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming. Journal of
Logic Programming, 11(3–4):217–242, 1991.

40. Beatrice Luca, Stefan Andrei, Hugh Anderson, and Siau-Cheng Khoo. Program transfor-
mation by solving recurrences. In ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation (PEPM ’06), pages 121–129. ACM, 2006.

41. J-Y. Marion and R. Péchoux. Sup-Interpretations, a Semantic Method for Static Analysis
of Program Resources. ACM Transactions on Computational Logic, 10(4), 2009.

42. J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-Definable Resource
Bounds Analysis for Logic Programs. In 23rd International Conference on Logic Pro-
gramming (ICLP’07), volume 4670 of LNCS, pages 348–363. Springer, 2007.

43. G. Necula. Proof-Carrying Code. In ACM Symposium on Principles of programming
languages (POPL 1997), pages 106–119. ACM Press, 1997.

44. K-H. Niggl and H. Wunderlich. Certifying Polynomial Time and Linear/Polynomial Space
for Imperative Programs. SIAM Journal on Computing, 35(5):1122–1147, 2006.

45. A. Podelski and A. Rybalchenko. A Complete Method for the Synthesis of Linear Ranking
Functions. In 5th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’04), Lecture Notes in Computer Science, pages 239–251. Springer,
2004.

46. G. Puebla and C. Ochoa. Poly-Controlled Partial Evaluation. In 8th ACM-
SIGPLAN International Symposium on Principles and Practice of Declarative Program-
ming (PPDP’06), pages 261–271. ACM Press, 2006.

47. M. Rosendahl. Automatic Complexity Analysis. In 4th ACM Conference on Functional
Programming Languages and Computer Architecture (FPCA’89), pages 144–156. ACM
Press, 1989.

48. M. Rosendahl. Simple Driving Techniques. In T. Mogensen, D. Schmidt, and I. Hal Sud-
borough, editors, The Essence of Computation, volume 2566 of Lecture Notes in Computer
Science, pages 404–419. Springer, 2002.

49. D. Sands. A Näıve Time Analysis and its Theory of Cost Equivalence. Journal of Logic
and Computation, 5(4), 1995.

50. Adi Shamir. A Linear Time Algorithm for Finding Minimum Cutsets in Reducible Graphs.
SIAM Journal on Computing, 8(4):645–655, 1979.

41

51. Fausto Spoto, Patricia M. Hill, and Etienne Payet. Path-Length Analysis of Object-
Oriented Programs. In 1st International Workshop on Emerging Applications of Abstract
Interpretation (EAAI’06), Electronic Notes in Theoretical Computer Science. Elsevier,
2006.

52. V. F. Turchin. The Concept of a Supercompiler. ACM Transactions on Programming
Languages and Systems, 8(3):292–325, 1986.

53. P. Wadler. Strictness Analysis Aids Time Analysis. In ACM Symposium on Principles of
Programming Languages (POPL’88), pages 119–132. ACM Press, 1988.

54. B. Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9), 1975.

	1 Introduction
	2 Preliminaries
	2.1 Linear Constraints
	2.2 Cost Relations

	3 Cost Analysis of ABS
	3.1 Overview of the ABS Language
	3.1.1 Informal Description and P2P Example
	3.1.2 A Rule-based Intermediate Language
	3.1.3 The Abstract Syntax
	3.1.4 Operational Semantics

	3.2 Cost and Cost Models for Concurrent Programs
	3.2.1 Cost Models

	3.3 The Basic Cost Analysis Framework
	3.3.1 Field-Sensitive Size Analysis for Concurrent OO Programs
	3.3.2 Cost Relations Based on Cost Centers

	3.4 Class Invariants in Cost Analysis
	3.5 Implementation and Experimental Evaluation
	3.5.1 Experimental Evaluation

	4 Advanced Issues in Cost Analysis
	4.1 Component-Based Approach
	4.1.1 Abstract Interpretation Fundamentals
	4.1.2 Modular Cost Analysis

	4.2 Asymptotic UBs
	4.2.1 Asymptotic Notation for Cost Expressions
	4.2.2 Asymptotic Orders of Cost Expressions

	4.3 Checking Against Specifications
	4.3.1 Context Constraints
	4.3.2 Comparison of Cost Functions
	4.3.3 Inclusion of Cost Functions

	4.4 Accurate Upper and Lower Bounds
	4.4.1 An Informal Account of Our Approach

	5 Verification of Resource Guarantees using KeY + costa
	5.1 Introduction
	5.2 Inference of UBs in costa
	5.2.1 Main Components of an UB
	5.2.2 costa Claims as JML Annotations

	5.3 Verification of UBs using KeY
	5.3.1 Verification by Symbolic Execution
	5.3.2 Proof-Obligation for Verifying UBs
	5.3.3 Verification of Proof-Obligations

	5.4 Implementation and Experiments

	6 Related Work
	7 Conclusion
	Bibliography
	Glossary
	A Task-Level Analysis for a Language with async-finish Parallelism
	B Modular Termination Analysis of Java Bytecode and its Application to phomeME Core Libraries
	C Asymptotic Resource Usage Bounds
	D Comparing Cost Functions in Resource Analysis
	E More Precise yet Widely Applicable Cost Analysis
	F Verified Resource Guarantees using costa and KeY
	G Closed-Form Upper Bounds in Static Cost Analysis

