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ABSTRACT
This paper evaluates how much extended dictionary-based
code compression techniques can reduce the static code size.
In their simplest form, such methods statically identify iden-
tical instruction sequences in the code and replace them by a
codeword if they yield a smaller code size based on a heuris-
tic. At run-time, the codeword is replaced by a dictionary
entry storing the corresponding instruction sequence.

Two previously proposed schemes are evaluated. The first
scheme, as used in DISE, provides operand parameters to
catch a larger number of identical instruction sequences.
The second scheme replaces different instruction sequences
with the same dictionary entry if they can be derived from
it using a bit mask that can cancel out individual instruc-
tions. Additionally, this paper offers a third scheme, namely,
to combine the two previously proposed schemes along with
an off-line algorithm to compress the program. Our data
shows that all schemes in isolation improve the compress-
ibility. However, the most important finding is that the
number of operand parameters has a significant effect on
the compressibility. In addition, our proposed combined
scheme can reduce the size of the dictionary and the number
of codewords significantly which can enable efficient imple-
mentations of extended dictionary-based code compression
techniques.

Categories and Subject Descriptors
C.1 [Computer System Organization]: Processor Archi-
tectures; B.3 [Hardware]: Memory Structures

General Terms
Algorithms, Design, Experimentation, Measurement, Per-
formance

Keywords
Code Compression, Code Size Reduction, Dynamic Decom-
pression, Memory Size Reduction
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1. INTRODUCTION
Designers of many embedded systems, especially mobile

appliances, often face challenging design tradeoffs owing to
form factor requirements, limited battery capacity, and small
cost margins. The trend towards more functionality in these
appliances, makes the memory size an especially important
factor in reducing energy consumption, chip area, and cost.
We focus in this paper on techniques to reduce the static
code size that combine dynamic and static approaches.

Static code size can be reduced by compressing individual
instructions or sequences of instructions or both. Beszédes
et al. [1] survey static code size reduction techniques. To
position the contributions of this paper, let’s first put the
different approaches in perspective starting with techniques
that compress individual instructions.

Many processors for the embedded domain extend the ar-
chitecture with an option to switch to a reduced instruction
set mode using a smaller instruction word size. MIPS-16 [8]
and Thumb [15] both use 16 bits for each instruction. While
such an approach can greatly reduce the static code size,
one disadvantage is that the limited instruction size gives
constraints on the number of registers each instruction can
access as well as the size of the immediate values. Recently,
attempts have been made to exploit variable-size instruction
words to code more frequently occurring instructions with
fewer bits. Lefurgy et al. [12] have looked at the possibil-
ity to compress common instructions with small codewords.
CodePack [14, 7] divides each instruction into two parts and
compresses each part separately using different static Huff-
man tables. However, variable-sized instruction words re-
quire extra care when branching since instructions are not
always aligned in memory.

Continuing with compiler approaches, for a given ISA,
the compiler can eliminate redundant code using a variety of
code compaction methods [4] such as dead code elimination,
code factoring, as well as dedicated transformations such as
code abstraction. The advantage of static techniques is that
they impose no performance overhead at run-time.

We focus in this paper on a complementary approach in
which identical instruction sequences in the code are iden-
tified statically, after code generation, and replaced by a
codeword if it yields a smaller code size based on a heuris-
tic. At run-time, the codeword is replaced by a dictionary
entry storing the corresponding instruction sequence.

DISE [3] generalizes the notion of an identical instruction
sequence by extending the codeword with operand param-
eters. As a result, code sequences that only differ in the
set of operands used can use the same codeword but with
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different parameters. A critical design choice is of course
how many operands should be used. This is one of sev-
eral design choices studied in detail in this paper. A second
generalization of the basic technique is to replace different
code sequences with a generic code sequence and a bitmask.
The idea is that a replaced code sequence is a subset of the
generic code sequence and the bitmask designates the sub-
set. This approach is called Bitmask Echo and was proposed
by Lau et al. [9].

This paper systematically evaluates the design space of
these extended dictionary-based code compression techniqu-
es by focusing on the compressibility achieved by each tech-
nique in isolation. Especially, we look in detail to what
extent the number of parameters and the size of the bit-
mask impact on the compressibility, the dictionary size, and
the number of codewords. Previous work on DISE shows
that adding operand parameters enables efficient compres-
sion though no detailed study has to our knowledge been
published nor has the implication of using a bitmask been
analyzed in this framework.

Apart from our findings that the number of operand pa-
rameters has a significant impact on the compressibility, we
also contribute with a generalized architectural framework
and an off-line algorithm for identifying identical code se-
quences using a combined technique that uses both operand
parameters – according to DISE – and bitmask – accord-
ing to Bitmask echo. This combined technique is shown
to significantly reduce the size of the dictionary as well as
the number of codewords which may yield more efficient
implementations of extended dictionary-based compression
techniques.

The paper is organized as follows: In Section 2, we intro-
duce the architectural framework and describe in detail the
different techniques evaluated later. Section 3 then describes
the combined technique and its algorithm for compressing
the static code size. We then introduce the experimental
methodology in Section 4 and present the experimental re-
sults in Section 5. Finally Section 6 discusses related work
and Section 7 presents the conclusions.

2. ARCHITECTURAL FRAMEWORK AND
PRIOR ART

Dictionary-based compression techniques are based on the
simple idea that recurring (static) sequences of instructions
need not to be stored more than once. The repeated se-
quences of instructions are placed in a dictionary and as-
signed an ID. Compression is achieved by substituting the
sequence of instructions in the program with a pointer to
the dictionary entry, denoted a (codeword). As an example,
consider the instruction sequence ABCDABC. Here ABC could
be stored in a dictionary, assigned the ID 1 and the program
would then simply be (1)D(1), where (1) is the codeword
associated with ID 1.

An architecture for decompressing dictionary-based in-
struction streams is shown in Figure 1. At an instruc-
tion decode, when a codeword is identified by the codeword
matching-logic, the instruction is read from the dictionary
instead of the normal instruction stream. This framework
was introduced in DISE [3] and we will host many variations
of the basic scheme in this framework.

We now extend this baseline method with two previously
proposed generalizations: First, parameterized schemes aim

Codeword
matching

Compressed Instruction Stream

Codeword Found

Dictionary

Figure 1: Architectural framework for extended
dictionary-based static code size compression tech-
niques.

at using the same codeword not only for sections of code that
are identical, but also for sections of code that are identical
disregarding a set of operand parameters. Second, bitmask
schemes allow different sequences that are subsets of the
same generic sequence to share that sequence by using a
bitmask that designates which subset of the generic sequence
that makes up each sequence. We describe each of these
schemes in detail in the next section.

In Figures 2(a) and 2(b), we show the potential of com-
bining both of these schemes by using two code sequences
found in the PGP benchmark available in Mediabench and
shown in Figure 2(a). The dictionary entry in Figure 2(b)
can represent all instructions in Figure 2(a) in the following
way. The resulting codewords are shown in the bottom of
Figure 2(b).

The first codeword is expanded with the operand param-
eter P1 being .LL19 and the bitmask cancels out the mov
instruction in the dictionary entry. The second codeword
assigns the parameter .LL155 and the bit mask cancels out
the first and the last instruction. Let’s now study each of
the techniques in isolation.

2.1 DISE - Dynamic Instruction Stream
Editing

DISE [3] is a static and dynamic scheme that allows a
programmer to implement general application customization
functions. The hardware consists of a pattern-matching unit
in the instruction-fetch pipeline that expands codewords to
uncompressed instructions, thus allowing the user to dy-
namically edit the instruction stream. While this general
approach has many applications, we focus here solely on its
use to compress the static code size.

Figure 3 shows the DISE architecture and how it is used
for static code compression where codewords are replaced
with instruction sequences from the dictionary. The code-
word logic simply detects if an instruction is a codeword
which then forces the dictionary to generate the appropri-
ate instruction sequence.

A novel idea in DISE is that it allows operand parame-
ters in the codewords. In this way, DISE manages to use
the same codeword and dictionary entry to similar, but not
identical, sections of instructions. In particular, two instruc-
tion sequences that only differ in e.g. the choice of source
operands, can use the same codeword with a set of param-
eters designating the source operands.

Clearly, the size of the dictionary is critical as it sits in
the front end of the pipeline. Its size is affected by the num-
ber of codewords as well as the length of the instruction
sequences associated with a codeword. The approach taken
in DISE is to use a dictionary cache, (called Pattern Table
and Replacement Table in the DISE architecture) that stores
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Uncompressed Program
add %o0 -1 %o0
cmp %o0 0
bge .LL19
st %o0 [%i1]
..
cmp %o0 0
bge .LL155
mov %o0 %l0

(a) Original Code

Dictionary
DE1 add %o0 -1 %o0

cmp %o0 0
bge P1
mov %o0 %l0
st %o0 [%i1]

Compressed Program
(DE1 .LL19 11101)
..
(DE1 .LL55 01110)

(b) Compressed Program.

Figure 2: Example of code compression from the PGP benchmark (Mediabench) using extended dictionary-
based compression techniques.

Dictionary

Compressed Instruction Stream

Match Found

�
Codeword Logic

Cache CW
Counter
Table

CW
Table

Cache

Dictionary

Figure 3: The DISE architecture: Expansion of
codewords using dictionary caches.

a subset of a larger table. On the other hand, the codeword
logic (see Figure 3) is not trivial to extend with a cache; if
a match is found in the codeword cache, we can raise the
Match Found signal, but if no match is found, a match could
be in the larger table. An extra table, the CW Counter Ta-
ble, is used to keep track of how many codewords that could
possibly match the OP-field of the instruction. If all these
are already in the cache, a miss can be flagged, otherwise all
possible codeword patterns are loaded into the cache, and
the instruction is checked again.

Extending the dictionary with a cache is trivial since a
miss in the dictionary cache means that the dictionary en-
try must be in the dictionary. However, cache misses come
with a cost in performance. Many codewords and large dic-
tionaries may cause a higher miss rate and thus performance
overhead; thus there is a tradeoff between performance and
compression ratio [3]. Bottom line is that the number of
codewords needed and the size of the instruction sequences
are critical to efficient implementations of this scheme. We
will evaluate the impact of these parameters later in the
paper.

2.2 Echo and Bitmask Echo
Fraser introduced an instruction which allows the direct

interpretation and execution of programs compressed in a
LZ771-like fashion [5]. This instruction, called echo, repeats
a sequence of instructions at a given offset and length from

1general sliding window data-compression algorithm

the current execution point. A difference from traditional
dictionary-based compression schemes is that no separate
dictionary is used since echo instructions identify sequences
inside the program. The work assumes interpretation of
byte-code although it also discusses other types of imple-
mentations.

As a follow-on study, Lau et al. [9] considered a hardware
implementation of the echo instruction, and also extended it
by allowing bitmasks instead of length to allow the merger of
similar, though not identical sections of code. The bitmask
is used to generate all instruction sequences that are a subset
of the coded instruction sequence.

By using Bitmask Echo, they achieve on average a com-
pression ratio (size of compressed code over uncompressed
code) of about 0.85 for applications from the Mediabench
suit compiled for the Alpha ISA. The compression ratios of
echo and bitmask echo can not be directly compared in these
studies mentioned above since the original echo instruction
used byte code, which is believed to be easier to compress
than register-based instructions. We will evaluate bitmask
echo in the same framework as DISE.

3. COMBINED EXTENDED DICTIONARY-
BASED COMPRESSION SCHEME

In both Bitmask Echo and DISE, additional compression
is achieved by extending the baseline scheme with parame-
ters allowing sequences of similar instructions to be repre-
sented using one codeword.

We propose an extension to DISE which designates one
of its parameters as a bitmask instead of an operand pa-
rameter, creating a flexible framework with highly param-
eterizable dictionary entries. By adding information in the
dictionary about how the operands should be interpreted, all
three operands can be used as operand parameters when pre-

Figure 4: Proposed codeword format for the ex-
tended dictionary-based compression scheme.
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1 dictionary ← {} // Create empty dictionary
2 do
3 // Initialize the set of all possible dictionary entries
4 all possible des ← {}
5 // Iterate through all possible instruction sequences
6 for start ← 0 to program size
7 for size ← min de size to max de size
8 // Add sequence only if one entry point exist and if
9 // no codewords is inside sequence

10 if valid sequence(program, start, size) then
11 all possible des ← all possible des ∪ {(start, size)}
12 if all possible des 6= {} then
13 // Find sequence with best immediate compression,
14 // returns NULL if no sequence yielding compression exists
15 best pde ← get best pde(all possible des, program)
16 if best pde 6= NULL then
17 // Update dictionary and replace instructions with codewords in program
18 dictionary ← dictionary ∪ {best pde}
19 program ← update program(program, best pde)
20 // Continue until no more compressible sequences can be found
21 while all possible des 6= {} and best pde 6= NULL

Figure 5: Pseudo code for generating dictionary entries.

ferred. In our proposed codeword format, shown in Figure 4,
the OP-code triggers the replacement; P1, P2, and P3 are
parameters that can be used as operands in the codewords,
and ID identifies the dictionary entry in the replacement ta-
ble. BM is the bitmask used to cancel out instructions in
the dictionary entry. In this study it is assumed that the
cost of the dictionary entry is the number of instructions it
holds.

3.1 Baseline Scheme
Generating an optimal encoding using dictionary-based

compression (even without parameters) is NP-complete in
the size of the code [13]. The baseline algorithm used to
generate the dictionary is based on the greedy algorithm
described by Lefurgy et al. [12]. The pseudo-code in Fig-
ure 5 gives an overview of the algorithm. In each iteration,
one dictionary entry is selected and the program is updated.
When no more dictionary entries can be found that improves
the compression ratio of the program, the algorithm termi-
nates and outputs the compressed program. Each program
is compressed independently and uses its own dictionary.

The first part of the algorithm (line 2 to 11) generates
the set of all possible dictionary entries that will be con-
sidered when selecting the next sequence to be included in
the dictionary. The second part (line 12 to 20, the function
get best pde selects the one that according to our algorithm
should yield the best compression, and the selected sequence
is added to the dictionary and the program is updated.

The heuristic used to choose the best possible dictionary
entry, immediate compression, is defined in Equation 1 and
weights the cost of the dictionary entry and the codeword
against the gain from the removed instructions. In the equa-
tion, Entry Size means the number of instructions in the dic-
tionary, Number of Codewords shows how many times the
codeword is used in the program, and Removed Instructions
gives the number of instructions that were replaced with this
codeword. The implications of using another function when
selecting the best dictionary entry is analyzed in Section 5.4.

Immediate Comp. =
Entry Size + No. of Codewords

Removed Instructions
(1)

To avoid implementation complexity, jump and branch in-
structions are only allowed to jump to the first instruction
of a dictionary entry. This constraint limits the number
of instruction sequences to consider in the algorithm. The
maximum size of the dictionary entry, max de size, is also
an input to the algorithm. While previous algorithms only
consider basic blocks [9, 3], our implementation allows su-
perblocks, a more general form of instruction sequences that
can have multiple exit-points.

3.2 Algorithm for Parameterized Dictionary
Entries

When calculating the compression achieved using a par-
ticular instruction sequence (possible dictionary entry), the
baseline algorithm has to be extended to allow operand pa-
rameters. In order to match as many instructions as possi-
ble, operand parameters are added to the possible dictionary
entry when calculating the possible compression ratio (line
15 in the algorithm in Figure 5). Again, a greedy algorithm
is used; when comparing if an instruction sequence could be
replaced by a codeword, parameters are always added to the
possible dictionary entry if it helps locally.

To make use of bitmask parameters, we have further ex-
tended the baseline algorithm. When analyzing the gain
from using a given possible dictionary entry (with at most
two operand parameters), we can still use the codeword even
though not all instructions in the entry exist since a bitmask
can cancel them out. If the possible dictionary entries are
generated the same way as before, we might lose some pos-
sibility of compression. For example, no codeword exists
that can represent this sequence of instructions: ABDEACDE.
Given that the maximum size of the dictionary is 4, the fol-
lowing possible dictionary entries are then generated by the
baseline algorithm: {AB, ABD, ABDE, BD, BDE, BDEA, DE,
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adpcm epic g721 gsm jpg mpeg2 pegwit pgp rasta avg

C
om

pr
es

si
on

 R
at

io

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

3 length 4 length 6 length 8 length

(a) Maximum length of dictionary entry is varied
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(b) Maximum size of bitmask is varied

Figure 6: Compression ratio when (a) no parameters are used, and (b) when only bitmask is used.

DEA, DEAC, EA, EAC, EACD, AC, ACD, ACDE, CD, CDE}.
None of these can be used as a codeword to achieve any
compression.

We extend the baseline algorithm by adding sequences of
instructions not found in the program that may be used on
several places with the help of bitmasks. Already present
possible dictionary entries are used as templates and are
extended with extra instructions. With this extension, the
following possible dictionary entries can also be considered:
{ABCDE, ACBDE}. Using one of them makes it possible to
compress the program. The dictionary could contain the
entry ABCDE with ID 1, and the program would be (111011)
(110111), where bitmasks are denoted with subscripts.

The insertion of new possible dictionary entries can be
done in two different ways. The algorithm described in Fig-
ure 5 is modified at either line 11 or line 17. In the first case,
new possible dictionary entries may be generated based on
each valid sequence in the program, while in the latter case
the new entries are only based on one entry. When appli-
cable, in our experiments we use both and select the best
result from the two. Since the modification at line 11 added
more possible dictionary entries, it usually gives the best
result at the cost of higher computational complexity.

4. EXPERIMENTAL METHODOLOGY
To evaluate how the different parameters affect the com-

pression ratio, the number of codewords, and the size of the
dictionary, applications from the Mediabench [10] suite were
compressed using our proposed algorithm. Table 1 describes
the benchmarks used in the experiments. The programs
were compiled using gcc to Sparc ISA. As Mediabench is a
collection of real applications, each application was compiled
with the settings recommended by the original authors. All
of them used the optimization flag and most of them used
-O2. The output from the algorithm is a compressed pro-
gram with statistics about the size of the program, dictio-
nary and the number of codewords used.

The rather high computational complexity of the algo-

rithm mentioned in the previous section limits the input size
that can be handled in a reasonable time. To get a fair com-
parison we chose to consider one thousand instructions from
each of the applications as input in all our experiments, ex-
cept for ADPCM which only contains 365 instructions. We
expect that the compression ratios achieved are conserva-
tive for two reasons: First, experimentation with different
code sequences in the same application containing thousand
instructions yielded consistent results. Second, larger code
sequences would yield higher compression ratios making our
results conservative.

Name Description
Number of
Instructions

ADPCM Simple audio encod-
ing/decoding

365

EPIC Wavelet-based image com-
pression utility

5821

G.721 Voice Compression Algorithm 1648
GSM Full Speech Transcoding 8696
JPEG Lossy image compression al-

gorithm
32926

Mesa 3-D graphics library clone for
OpenGL

113611

MPEG Algorithms for high quality
digital video processing

25433

PEGWIT Public key encryption and de-
cryption

10794

PGP Public key encryption and de-
cryption

37791

RASTA Program for speech recogni-
tion

10770

Table 1: Selected programs from the Mediabench
used in the experiments.
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Figure 7: Compression ratio when comparing no parameter with bitmask parameter. When no parameter is
used, the maximum size of dictionary is fixed.

5. EXPERIMENTAL RESULTS
First we consider the impact of the different parameters

separately before considering their combined impact. In
each diagram, the bar labeled avg shows the average across
all the benchmarks.

5.1 Impact of Bitmask Parameters
The first experiment considers the gain from adding a

bitmask to a parameterless version of our general archi-
tecture. In bitmask echo [9], the bitmask field replaces a
length field and here we study the gain from doing this in
our architecture. Figure 6(a) shows the compression ra-
tio achieved when changing the maximum length of the
dictionary-entries (max de length in Figure 5) from three to
eight. The average compression ratio, presented in the right-
most group of the diagram, shows a total improvement in
compression ratio of about two percent.

When using a bitmask parameter in a codeword, the max-
imum size of the bitmask also gives the maximum size of the
dictionary entry. The next experiment adds a bitmask pa-
rameter to the codeword and considers how different max-
imum sizes of the dictionary entry change the compression
ratio. Figure 6(b) shows the compression ratio when the bit-
mask size is changed from three to seven bits. Note that this
scheme is similar to the bitmask echo, though in our frame-
work, the instructions are stored in a dedicated dictionary.
In almost all cases the compression ratio is improved when
moving to a larger bitmask. The few cases where the com-
pression ratio is worsened can be attributed to our greedy
algorithm, that makes locally good choices which turns out
to be worse in the long run. The small improvement in
compression ratio when allowing larger dictionary entries
suggests that it is better to use small dictionary entries if
it results in a smaller dictionary in total, which it in most
cases does in the experiments here.

Comparing the results in Figure 6(a) and 6(b) we can see
that adding bitmask-enabled codewords gives an improved

compression ratio. A fair comparison between a parameter-
less technique and one with bitmask is to compare the same
maximum possible size of dictionary-entry for both. Fig-
ure 7 compares the case assuming a fixed dedicated size for
length or bitmask. Using three bits for bitmask or length
achieves better or equal compression ratio in all but two
benchmarks, Figure 7(a). When using up to four bits, the
result is even better for bitmask, on average, 5% better as
seen in Figure 7(a). ADPCM has the worst compression ra-
tio of the benchmarks. This can be explained by the fact
that it only contains 365 instructions, making it harder to
find useful dictionary entries.

The results in this section show that bitmask parameters
enable improved compression ratio to the general dictionary
based compression scheme. Another important finding is
that the bitmask length does not affect the compression ratio
in a major way.

5.2 Impact of Operand Parameters
DISE extends the base dictionary method with operand

parameters. The default implementation allows three oper-
ands, each of them which may be register or immediate val-
ues. This experiment considers how the number of parame-
ters affects the compression ratio when only operand param-
eters are allowed, i.e., with no bitmask. Figure 8 shows the
compression ratio when the number of parameters is varied
from zero to three.

The result shows that the number of parameters has a
quite large impact on the compression ratio. The last bar
in the diagram shows that moving from zero to three pa-
rameters improves the compression ratio by 18% on aver-
age. With each extra parameter, the gain gets smaller and
smaller. An interesting thing to note is that even though the
maximum number of parameters is fixed, the actual number
of parameters a codeword uses varies between zero and the
maximum. For the compressed programs which allow three
parameters, only about half use all of them. For the bench-
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Figure 8: Variation of number of operand parame-
ters

marks considered, the number varies between 45% and 75%,
with an average of 55%.

During this study we assume that one operand parameter
may be referenced several times in the codeword. The next
experiment compares this to the case when a parameter is
only allowed to be used once in the dictionary. The result
can be seen in Figure 9. As expected, allowing the same pa-
rameter several times has a positive effect on the compres-
sion ratio. This is intuitive since neighboring instructions
often use the same set of registers.

The assembly code in Figure 10(a) is taken from the bench-
mark EPIC. Even though the two sections of code differ
in six operands, only three parameters are needed to make
them identical when we allow parameter reuse. Figure 10(b)
shows a dictionary entry that can replace both sections of
code and the codewords in the compressed program. All
experiments with operand parameters use parameter reuse
unless otherwise noted.
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Figure 9: Impact of operand-parameter reuse on the
compression ratio.

A conclusion that can be drawn from this section is that
each extra operand parameter that is allowed gives us im-
proved compression ratio. Also we note that a big fraction
of dictionary entries use less than the maximum allowed pa-
rameters.

ld [%o7+4] %o0
sra %o4 1 %o4
add %o0 %o4 %o0
...
ld [%l1+4] %o2
sra %o4 1 %o3
add %o2 %o3 %o2

(a) Original Code

Dictionary
DE1 ld [P1+4] P2

sra %o4 1 P3
add P2 P3 P2

Program
CW %o7 %o0 %o4 DE1
..
CW %l1 %o2 %o3 DE1

(b) Compressed Program.

Figure 10: Example code taken from EPIC which
could only be compressed if parameter reuse is al-
lowed.

5.3 Impact of Operand and Bitmask
Parameters

By allowing one of the parameters to be either an operand-
parameter or a bitmask it is possible to extend the DISE
scheme to use bitmask when it is useful and to use three
operand parameters when that gives more compression. Sin-
ce the encoding in the dictionary shows how the parameters
should be interpreted, it is possible to get at least the same
compression as the case without a bitmask. The fact that
many of the dictionary entries do not use all the parameter,
as described in Section 5.2, suggests that we could achieve
better results using this approach.

When not using bitmask, it is possible to generate the
dictionary entries by only looking at consecutive instructions
from the program. When the bitmask can be used, we have
analyzed different methods of generating dictionary entries
by looking at a larger domain of possible dictionary entries.
The method that gave the best result was to start by looking
at sequences that exist in the program, and then adding
instructions to these if it yielded better results, as outlined
in Section 3.2.

The results in Figure 11(a) shows only small improve-
ments in the compression ratio. On the other hand, when
looking at the size of the dictionary, Figure 11(b), and the
number of codewords, Figure 11(c), used in the program
we see that they have decreased substantially for some of
the applications. This has the positive effect of decreasing
the number of misses in both the codeword- and dictionary-
cache in our extended DISE-architecture. Another positive
side-effect is that if the compiler is compression-aware it has
one more tool to efficiently schedule instructions to be com-
pressed.

When analyzing the effect of parameter reuse in this ex-
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Figure 11: The diagrams show the gain when moving from only operand parameters to one with both operand
and bitmask parameters.
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periment, the result was similar to the experiment with only
operand parameters in Section 5.2, though we noted that
more applications gained from it in this configuration. In
our previous experiment, Figure 9, the compression ratio
could only be improved when the number of parameters for
a possible dictionary entry could be reduced to three or less,
but when allowing a bitmask, reducing it to two or less also
makes it possible to use one operand as a bitmask parame-
ter.

Figure 12 shows the compression ratio for our architecture
when the number of allowed operand parameters is varied. A
difference between this result and the case when no bitmask
was used (Figure 8) is that the compression ratio is increased
most when changing from two to three operand parameters.
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Figure 12: Compression ratio for bitmask parameter
and different number of operand parameters.

5.4 Immediate and Absolute Compression
As described in Section 3.1, immediate compression has

been the metric used to select the best possible dictionary
entry in the function get best pde, Figure 5. Another cost
function analyzed was absolute compression, Equation 2.
Here Size after comp. refers to the compression ratio achiev-
ed if this possible dictionary entry is chosen.

Abs. Comp. =
Size before comp..− Size after comp.

Size before compression
(2)

Figure 13 compares the compression ratio achieved using
the two cost functions. Immediate compression always re-
sults in better or equally good compression ratio as absolute
compression. The absolute compression metric sometimes
selects too greedily, selecting small dictionary entries that
are used in many places, making it harder to find dictionary
entries in the next iterations.

6. RELATED WORK
Compiler techniques such as Code Factoring target the

same type of redundancy as dictionary based compression.
Code Compaction is the general term for code compression
techniques that require no decompression to execute. Code
Factoring tries to use only one representation for instruc-
tions that are similar and find ways to execute them without

Absolute and Immediate Compression
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much overhead. This can be done using jump instructions
(procedural abstraction) or moving instructions to common
branches (local code transformations). Debray et al [4] stud-
ied a way of abstracting partially matched blocks, but be-
cause of low benefit and high computational complexity, it
was not considered a beneficial transformation in most cases.
Code Compaction may be used at the same time as hard-
ware dictionary-based compression since code compaction is
a pure software method.

CodePack [14, 7] is a compression scheme used by IBM in
the PowerPC 405. CodePack works between the L1-cache
and the rest of the memory hierarchy and is designed to
make the CPU-core unaware of the compression. It works
by compressing fixed length instructions to variable length
codewords. Each 32-bit instruction is divided into two 16-
bit parts which is encoded using two separate pre-computed
Huffman-tables. Using CodePack, IBM reports a compres-
sion ratio of 0.6 with a performance change within 10%
compared to execution of an uncompressed program [6].
CodePack extends the work done on variable-length code-
words in dictionary-based instruction compression by Le-
furgy [11]. An important difference compared to dictionary-
based schemes is that CodePack compresses individual in-
structions while our scheme compresses sequences of instruc-
tions. Because of the different granularities targeted, Code-
Pack can be used at the same time as our proposed dictio-
nary based compression scheme. Combining CodePack with
Bitmask Echo results in an additional 7% improvement in
compression ratio [9].

Collin and Brorsson[2] also uses variable length instruc-
tions in order to compress the static code size. Their in-
structions are byte aligned and their main focus is to reduce
the power consumption in the instruction-fetch pipeline-
stage. As in our proposed architecture, the beginning of
the pipeline needs to be modified. Using their approach,
they achieve up to 15% energy savings in the data path and
memory system while compressing the program up to 30%.
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7. CONCLUSION
This paper has studied several schemes of extended dict-

ionary-based code compression. Targeting the embedded
domain where static code compression can be an impor-
tant tool, programs from the Mediabench suite has been
used to evaluate such schemes. Compared to a baseline
dictionary based-code compression scheme, bitmask-enabled
codewords results in 5% better compression ratio while oper-
and-enabled codewords achieve about 20% improvement.
Our proposed framework and algorithm for combing both
schemes achieves at least the same reduction in code size
as operand parameters, but enables more efficient coding of
the dictionary allowing for a more efficient implementation.
Our study on heuristics and cost-functions in the algorithms
also shows that immediate compression performs better than
absolute compression and that register reuse enables more
efficient use of the parameters.
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