
An Efficient Twin-Precision Multiplier

Magnus Själander, Henrik Eriksson, and Per Larsson-Edefors
VLSI Research Group, Department of Computer Engineering

Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Abstract

We present a twin-precision multiplier that in normal op-
eration mode efficiently performs N-b multiplications. For
applications where the demand on precision is relaxed, the
multiplier can perform N/2-b multiplications while expend-
ing only a fraction of the energy of a conventional N-b
multiplier. For applications with high demands on through-
put, the multiplier is capable of performing two indepen-
dent N/2-b multiplications in parallel. A comparison be-
tween two signed 16-b multipliers, where both perform sin-
gle 8-b multiplications, shows that the twin-precision mul-
tiplier has 72% lower power dissipation and 15% higher
speed than the conventional one, while only requiring 8%
more transistors.

1. Introduction

Recent development at the micro architecture level
shows that there is an increasing interest in datap-
ath components that are capable of performing com-
putations with variable operand size, e.g. adders capa-
ble of doing both N and N/2-b additions [1]. By using
only a part of the datapath component for computa-
tion, it has been demonstrated [2] that reductions in the
total power dissipation can be effected. Datapath compo-
nents that can perform both one N, one single N/2, or two
N/2-b operations give the designer the opportunity to de-
sign a system which can adapt to changing modes, such
as low-power, high-throughput, or high-precision opera-
tion. Such a datapath component could be used for dynamic
power reduction in the same way as described by Ab-
ddollahi et al. [2]; by using the same kind of logic for
detecting if the effective bit rate is within N/2-b pre-
cision, it is possible to control at what precision the
datapath component should be operating. This versa-
tile type of datapath component is also suitable for sys-
tems in which several applications, having quite different
requirements on precision and/or throughput, are exe-
cuted [3]. Furthermore, such a datapath component could

prove useful in processors that can support several in-
struction sets. In a processor that combines x86-32 and
x86-64, a flexible datapath could be used for 64-b op-
erations as well as for Single Instruction Multiple Data
(SIMD) instructions, where two 32-b operations are per-
formed in parallel.

It has been shown [4] that it is relatively straightforward
to partition an array multiplier, so as to obtain a multiplier
that can perform multiplications with varying operand size1.
In comparison to tree multipliers, however, an array multi-
plier is slow and power hungry which makes it a poor design
choice when a fast and efficient multiplier is needed [5]. It
was claimed, but not substantiated, that the power-reduction
techniques used for array multipliers [2] can be applied
also to tree multipliers. It is certainly not straightforward to
transfer the proposed technique to tree multipliers. Mokrian
et al. presented a reconfigurable multiplier, which is consti-
tuted by several smaller tree multipliers [6]. However, the
recursive nature of this multiplier is, due to an addition of
reduction stage(s), likely to have a large impact on the de-
lay for the N-b multiplication, compared to the multiplier
proposed in this paper.

In the following we explore the possibility of combining
N and N/2-b multiplications in the same N-b tree multiplier:
we call this a twin-precision multiplier. The key challenges
in designing a twin-precision multiplier are to limit the im-
pact of flexibility on power dissipation, delay, and area. The
proposed twin-precision multiplier efficiently performs ei-
ther one N-b multiplication, one single N/2-b multiplica-
tion, or two N/2-b multiplications in parallel.

2. Design Exploration

Based on a simple representation of an array multiplier,
Figure 1, it is obvious that if the partial product bits not be-
ing used in a low-precision multiplication are set to zero, the
array multiplier will produce the correct result without the
need of any additional logic. The 2-input AND gates corre-

1 This was done by gating parts of the array of carry-save adders and by
using multiplexers to read out the data from a low-precision multipli-
cation.

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



p00p10p20p30p40p50p60p70

p01p11p21p31p41p51p61p71

p02p12p22p32p42p52p62p72

p03p13p23p33p43p53p63p73

p04p14p24p34p44p54p64p74

p05p15p25p35p45p55p65p75

p06p16p26p36p46p56p66p76

p07p17p27p37p47p57p67p77

x0x1x2x3x4x5x6x7

y0y1y2y3y4y5y6y7

s0s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15

Figure 1: Partial product representation of a 4-b multi-
plication in an 8-b multiplier.

sponding to the partial product bits that are not being used in
the low-precision multiplication can be replaced by 3-input
AND gates to force those bits to zero2.

When doing an N/2-b multiplication within an N-b mul-
tiplier only one quarter of the logic is being used, as seen in
grey in Figure 1. This makes it possible to use the multiplier
for two parallel and independent N/2-b multiplications. We
can partition the partial product bits of the N-b multiplier,
such that an N/2-b multiplication can be performed in the
Least Significant Part (LSP) of the multiplier in parallel
with another N/2-b multiplication in the Most Significant
Part (MSP), without using any additional logic in the partial
product reduction tree, as seen in grey and black, respec-
tively, in Figure 1. To be able to switch between N, N/2, or
two N/2-b multiplications, the 2-input AND gates used to
create the partial products need to be replaced with 3-input
AND gates and two control signals for selecting the operat-
ing mode of the multiplier need to be introduced.

2.1. Tree Multiplier

Until now we have implicitly used the array multiplier
to demonstrate the twin-precision feature. The array multi-
plier is, however, slow and power dissipating in compari-
son to a logarithmic tree multiplier. The implementation of
the twin-precision feature in an N-b tree multiplier is simi-
lar to that of the array multiplier; all that is needed is to set
the partial products bits not being used to zero and to parti-
tion the partial products bits of the two multiplications into
the respective LSP and MSP of the tree. To reduce the crit-
ical path for the N/2-b multiplications the partial products
bits used during the computation are moved as far down the
tree as possible, Figure 2. In this paper we use a tree multi-
plier with regular connectivity [7].

To further reduce the critical path of the N/2-b multi-
plications it is possible to move the partial products even

2 When performing only one N/2-b multiplication it is possible to set
the most significant bits of the operands to zero instead.

Partial product for the
two 4-b multiplications

H Half adder

Full adder

H

H

H

H

H

HH

Final Adder

015

Figure 2: Partitioned tree of an 8-b multiplier.

further down the tree by adding multiplexers on lower lev-
els3. This makes it possible to select either the carry and
sum from higher levels, when doing the N-b multiplication,
or the partial products bits, when doing the N/2-b multi-
plication. This introduces multiplexers in the critical path
of the N-b multiplier, which significantly increases the de-
lay of the N-b multiplication. Thus, this alternative has not
been considered here, since our goal is to find a good de-
sign tradeoff between the delay of N-b multiplications and
N/2-b multiplications, respectively.

2.2. Signed Multiplication According to Baugh-
Wooley

We used the Baugh-Wooley algorithm [8] to investigate
the impact of the twin-precision feature on delay and power
of a signed tree multiplier4. Here, signed multiplication is
performed by first inverting all partial product bits that are
results of the most significant bit (MSB) of exactly one of
the operands, Figure 3. Second, for each executed multipli-
cation, a logical one (framed) is added to column N (col-
umn 0 is to the far right in Figure 3) and, third, the MSB
of the product is inverted. This is directly mapped onto the
tree multiplier as shown in Figure 4.

To be able to generate the inverted partial product bits,
we chose to replace the AND gates corresponding to the in-
verted bits with NAND gates followed by XOR gates. The
option to either invert or not invert the signal from the
NAND gates makes it possible to switch between signed and
unsigned multiplication

The inversion of the MSB of the product is also done
with an XOR gate. The insertion of the logical one to col-
umn N of the multiplication is straightforward for the N-b
and the N/2-b multiplication in the LSP by changing the
half adder of that column to a full adder and adding the log-

3 Moving further down in the tree implies approaching the final adder.
4 Modified Booth does not impose any fundamental problems to the

twin-precision concept. It has been evaluated, but is not included in
this paper because of space constraints.

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



p00p10p20p40p50p60

p01p11p21p41p51p61

p02p12p22p42p52p62

p33p43p53p63

p04p14p24p34p44p54p64

p05p15p25p35p45p55p65

p06p16p26p36p46p56p66

p70

p71

p72

p73

p74

p75

p76

p77 p67 p57 p47 p37 p27 p17 p07

p30

p31

p32

p23 p13 p03

1

1
1

Used during
8-b operation

Used during
4-b operation

Used during
4-b operation

Figure 3: Example showing the inverted partial prod-
uct bits of two signed 4-b multiplications within a
signed 8-b multiplication.

ical one to the new adder. For the N/2-b multiplication in the
MSP there is no half adder that can be replaced, but an ex-
tra level of half adders has to be added, seen at the far left
in Figure 4. This added level of half adders does not in-
crease the delay for the N-b multiplication, since none of
the half adders are in the critical path.

Partial product for the
two 4-b multiplications

H Half adder

Full adder

X XOR gate

’1' for 8-b

’1' for 4-b ’1' for 4-b

H

H

H

H

H

H

H

H

X Invert X Invert

Final Adder

0

15

Figure 4: Signed 8-b multiplier capable of doing two
signed 4-b multiplications using Baugh-Wooley.

3. Final Adder

The choice of final adder is very important in order to
get short delay for both N and N/2-b multiplications. The
recommendations given by Oklobdzija et al. [9] are not di-
rectly applicable in our twin-precision multiplier, since the
delay profile of the multiplier varies with the multiplication
precision. It would be possible to use the adder scheme pre-
sented by Oklobdzija et al. to reduce the delay for the N-b
multiplication, but this could introduce long delays for the
two independent N/2-b multiplications. In order to not in-
crease the delay too much for the N/2-b multiplications, it
is therefore important to have a final adder that is fast for
both N and N/2-b multiplications. Mathew et al. [1] pre-
sented a sparse-tree carry-lookahead adder that is capable

of doing both fast 64-b and fast 32-b additions. This adder
scheme has been adapted to the appropriate word length in
order to obtain short delays for both N and N/2-b multipli-
cations, Figure 5.

Figure 5: Example of 31-b final adder for a 16-b twin-
precision multiplier.

4. Simulation Setup and Results

To evaluate delay and power dissipation, simulations
have been performed in a commercially available 0.13-µm
technology. The simulated circuit is a 16-b twin-precision
tree multiplier, which is capable of performing two 8-b mul-
tiplications in parallel, and which uses the fast final adder of
Section 3. As reference we use a conventional 8-b and 16-b
multiplier, respectively, which both use a Kogge-Stone as fi-
nal adder. For signed multiplication the Baugh-Wooley al-
gorithm [8] has been implemented for both the conventional
and the twin-precision multiplier. All simulations have been
done using Spice transistor netlists including estimated wire
capacitances. All logic has been implemented as static logic
and designed to resemble what could be expected to be
found in a standard-cell library. The implemented version of
the multiplier cancels the inactive partial products by forc-
ing the AND gates to zero. The impact of using sleep-mode
techniques on power and delay has not been investigated5.
For power simulation 50 random input vectors were applied
to HSpice at 500 MHz, a supply voltage of 1.2 V, and an
operating temperature of 25 ◦C. Delay was obtained using
PathMill.

Table 1: Reference values normalized to the conven-
tional 8-b multiplier.

Reference Delay Power
16 bit 1.40 4.06
8 bit 1.0 1.0

Table 1 lists the values for the conventional 8-b and 16-b
multipliers used as comparison references. Table 2 lists de-
lay and power for the twin-precision multiplier. All values
have been normalized to the 8-b reference multiplier.

With a conventional 16-b multiplier as reference, the de-
lay of the 16-b twin-precision multiplier operating in 16-b

5 We expect no fundamental problems in introducing sleep-mode tech-
niques in the twin-precision multiplier.

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



Table 2: Simulation results for a twin-precision 16-b multiplier, where columns 2 and 3 are normalized to the con-
ventional reference 8-b multiplier. Columns 4 to 7 are comparisons against the conventional reference multipliers
given in Table 1.

Mode Delay Power Compared to 8-b Compared to 16-b
Delay Power Delay Power

16-b 1.52 4.10 9.0% 0.9%
2x8-b 1.29 2.34 29.0% 16.9% -7.5% -42.4%
8-b 1.18 1.13 18.2% 13.3% -15.3% -72.1%

mode was 9.0% larger whereas the power dissipation was
less than 1.0% larger. When using the 16-b twin-precision
multiplier in single 8-b mode, the power dissipation is only
28% of the reference 16-b multiplier. The reason for the
power reduction is that in single 8-b mode about two thirds
of the multiplier tree is kept at constant zero, eliminating
the dynamic power in these parts. The additional decrease
in power comes from the reduction of glitches in the multi-
plier.

With a conventional 8-b multiplier as reference, the de-
lay of the 16-b twin-precision multiplier operating in sin-
gle 8-b mode was 18.2% larger whereas the power dissipa-
tion was 13.3% larger.

When doing two 8-b multiplications in parallel the power
dissipation increases by about 4% and the delay is increased
with 10% compared to a single 8-b multiplication. The in-
crease in the delay is due to an increased logic depth—the
8-b multiplication in the MSP of the multiplier tree has a
longer critical path than the 8-b multiplication in the LSP
has, Figure 4. Additionally the logical depth of the final
adder is one gate deeper for the MSP which contributes to
a longer critical path for the 8-b multiplication computed in
the MSP of the tree.

The power dissipation for driving the control signals to
set the mode of the multiplier was not included in the power
simulation. The control signal used to set the partial product
bits to zero, when doing two N/2-b multiplications, is con-
nected to the input of N AND gates. In order to cancel out
the second N/2-b multiplication the control signal is con-
nected to the input of N/2 AND gates. It has been shown
that it is realistic to expect the multiplier to operate in the
same mode for longer durations [2]. Since the control sig-
nals only toggle when the mode of the multiplier is changed,
the power dissipation for these signals is negligible when
the multiplier stays in one mode for longer durations.

5. Conclusion

The twin-precision multiplier presented in this paper of-
fers a good tradeoff between precision flexibility, area, de-
lay and power dissipation by using the same multiplier for
doing N, N/2 or two N/2-b multiplications. In comparison to
a conventional 16-b multiplier, a 16-b twin-precision mul-

tiplier has 8% higher transistor count and 9% longer delay.
The relative transistor count overhead decreases for larger
multipliers, since the number of AND gates needed to set
the partial products to zero does not grow as fast as the num-
ber of adders in the tree.

References

[1] S. Mathew, M. Anders, B. Bloechel, T. Nguyen, R. Krishna-
murthy, and S. Borkar. A 4GHz 300mW 64b Integer Execu-
tion ALU with Dual Supply Voltages in 90nm CMOS. In Pro-
ceedings of the International Solid State Circuits Conference,
pages 162–163, 2004.

[2] A. Abddollahi, M. Pedram, F. Fallah, and I. Ghosh.
Precomputation-based Guarding for Dynamic and Leakage
Power Reduction. In Proceedings of the 21st International
Conference on Computer Design, pages 90–97, 2003.

[3] J. Hughes, K. Jeppson, P. Larsson-Edefors, M. Sheeran,
P. Stenström, and L. J. Svensson. FlexSoC: Combining Flex-
ibility and Efficiency in SoC Designs. In Proceedings of the
IEEE NorChip Conference, 2003.

[4] Z. Huang and M. D. Ercegovac. Two-Dimensional Signal Gat-
ing for Low-Power Array Multiplier Design. In Proceedings
of the IEEE International Symposium on Circuits and Systems,
pages I–489–I–492 vol.1, 2002.

[5] T. K. Callaway and E. E. Swartzlander, Jr. Optimizing Multi-
pliers for WSI. In Proceedings of the Fifth Annual IEEE Inter-
national Conference on Wafer Scale Integration, pages 85–94,
1993.

[6] P. Mokrian, M. Ahmadi, G. Jullien, and W. Miller. A Recon-
figurable Digital Multiplier Architecture. In Proceedings of
the IEEE Canadian Conference on Electrical and Computer
Engineering, pages 125–128, 2003.

[7] H. Eriksson. Efficient Implementation and Analysis of CMOS
Arithmetic Circuits. PhD thesis, Chalmers University of Tech-
nology, 2003.

[8] C. R. Baugh and B. A. Wooley. A Two’s Complement Par-
allel Array Multiplication Algorithm. IEEE Transactions on
Computers, 22:1045–1047, December 1973.

[9] V. G. Oklobdzija, D. Villeger, and S. S. Liu. A Method
for Speed Optimized Partial Product Reduction and Gener-
ation of Fast Parallel Multipliers Using an Algorithmic Ap-
proach. IEEE Transactions on Computers, 45(3):294–306,
March 1996.

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 


	footer1: 


