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Abstract—Energy estimation at architectural level is vital since
early design decisions have the greatest impact on the final im-
plementation of an electronic system. It is, however, a particular
challenge to perform energy evaluations for processors: While
the software presents the processor designer with methodological
problems related to, e.g., choice of benchmarks, technology
scaling has made implementation properties depend strongly on,
e.g., different circuit optimizations such as those used during
timing closure. However tempting it is to modularize the hard-
ware, this common method of using decoupled pipeline building
blocks for energy estimation is bound to neglect implementation
and integration aspects that are increasingly important. We
introduce CREEP, an energy-evaluation framework for processor
pipelines, which at its core has an accurate 65-nm CMOS
implementation model of different configurations of a MIPS-I-
like pipeline including level-1 caches. While CREEP by default
uses already existing estimated post-layout data, it is also possible
for an advanced user to modify the pipeline RTL code or retarget
the RTL code to a different process technology. We describe
the CREEP evaluation flow, the components and tools used,
and demonstrate the framework by analyzing a few different
processor configurations in terms of energy and performance.

I. INTRODUCTION

In the early days of IC design, processors were developed
with a focus on achieving high performance. Other design
factors such as cost, area and power dissipation were also
considered but only as limiting factors. However, in the late
1990’s it became apparent that this design philosophy was
unsustainable. CMOS technology scaling allowed for higher
densities and increasing clock rates, but performance-centered
designs that tried to leverage these advances became hard or
impossible to cool in a cost-effective manner [1]. The power
wall, which is a direct consequence of a discontinued Dennard
scaling, means that technology scaling no longer is the obvious
answer to increased performance and lower power [2], [3].

Energy efficiency is, next to performance, the major fo-
cal point in VLSI design. The driving forces behind this
are increased portability and environmental concerns. For
portable battery-powered devices lower energy dissipation
directly translates into a more well-received product. As far
as environmental concerns, it is becoming painfully obvious
that the rate at which the global energy dissipation increases
is not sustainable. What is worrying is that integrated circuits
contribute to a considerable chunk of this increase [4].

To facilitate energy-efficient design, architectural evaluation
frameworks are required to enable vital early estimations to
allow for more predictable prototyping results [5]. Early esti-
mations are perhaps the most important estimations as changes
at the architecture level have a larger impact on the final
energy and performance numbers than changes at the circuit
level. Since such estimation frameworks are significantly faster
than those available at the circuit level, workloads that are
impractical (or even impossible) to use during register transfer
level (RTL) power estimation become feasible to evaluate.
However, these frameworks have traded speed for accuracy
by neglecting the actual circuit integration, by adopting pa-
rameterizable models that are obtained through analytical or
empirical studies of underlying hardware components [6]–
[10]. Since current frameworks tend to neglect the impact of
implementation, the synergy between the integrated parts of a
design is not considered.

We introduce the open-source CREEP framework, Chalmers
RTL-based Energy Evaluation of Pipelines [11], that models a
MIPS-I-like pipeline that is fully integrated with level-1 (L1)
cache memories. Since the CREEP framework extends down
to RTL and place-and-route, it yields high accuracy and allows
for detailed pipeline studies at the system level. Furthermore,
the RTL provided in CREEP is written in a modular fashion
and can easily accommodate different pipeline extensions. The
operation of CREEP is automated through scripts to make the
framework user-friendly and, more importantly, results fully
reproducible from one evaluation round to another. The open-
source package of CREEP supports several configurations; in
particular different configurations of caches which have a very
significant impact on the processor performance and energy.

This report is organized as follows: Sec. II gives an overview
of CREEP and briefly reviews the microarchitecture assumed
and the architecture simulator used. In Sec. III, we present
the components of the CREEP framework as they are applied
in an evaluation flow. Sec. IV gives a brief introduction to
the practical handling of CREEP, while Sec. V provides a
demonstration of the capability of CREEP as it is used to
evaluate different processor configurations with respect to
performance as well as power and energy dissipation.
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II. INTRODUCTION TO CREEP

This section serves the purpose to give an overview of
the CREEP framework with some background on non-VLSI
issues, such as microarchitecture and architecture simulator,
while details on, e.g., implementation and power estimation
will be given in the next section (Sec. III).

The CREEP framework contains two different components:
1) RTL code for the pipeline and level-1 (L1) caches, and
2) a modified SimpleScalar version as architecture simulator.
Controlled via an extensive script, these components are
configured and simulated with the goal to combine accurate
per cycle resource statistics from the architecture simulator
with power estimates resulting from an implementation of the
RTL code.

The conceptual workflow of the framework is shown in
Fig. 1 where two branches are visible. The most straightfor-
ward way to employ CREEP is to use the rightmost simulation
branch. Here, the user controls parameters primarily associated
with the caches via the script in CREEP:START and relies
on energy values that we have already prepared. Since this
use scenario requires no licenses for neither benchmarks nor
design software, all users can use this branch.

CREEP: START

      Pipeline
Implementation

Architecture
 Simulation

    Power
 Estimation

Resource: Power
     Mapping

CREEP: END

Fig. 1. The methodology embodied in the CREEP framework.

All energy values that CREEP is shipped with were prepared
by us using the leftmost implementation branch which allows
a user1 to organize, generate, verify, and analyze both RTL
code and netlists. Although this branch is not as approachable
as the simulation branch, the CREEP framework was created
in a modular manner to help implementation-centric users to,
e.g., make revisions to portions of our current RTL code or
remap our current RTL base to a different technology node to
obtain a different set of power and energy estimates.

A. Pipeline Microarchitecture – 5SP

In this section, a microarchitecture compliant with MIPS
I [12] called 5SP (the 5-Stage Pipeline) will be presented. As
the cornerstone of CREEP, 5SP is a simple microarchitecture,
with limited pipelining (5 stages) and single-issue, in-order
execution. While the CREEP framework is prepared with

1Here, the workflow depends on the user’s access to design software, design
kits and cell libraries.

energy numbers annotated to all parts of the pipeline (making
most users prefer the simulation branch), the purpose of using
a simpler pipeline is to make it possible for a user to perform
experiments also on the implementation branch.

Since the pipelining in 5SP is limited there are few op-
portunities to evenly distribute the pipeline logic between the
different stages. In a perfectly balanced n-stage pipeline the
cycle time of the design is roughly 1/n of the cycle time
of a corresponding non-pipelined design [13]. But since data
and instructions accesses need to retrieve data from SRAM
banks, memory accesses are significantly slower than logic
delays, which makes the critical path of some pipeline stages
significantly longer than for others2.

The implemented 5SP microarchitecture features some 50
instructions including different branches, logic and memory
instructions and a register file with general-purpose 32-bit
registers. 5SP does not include a floating-point unit to provide
floating-point support, which was motivated by the targeted
embedded domain where floating-point operations usually are
replaced by fixed-point calculations.

An overview of the 5SP pipeline is shown in Fig. 2. The
instructions are processed in five stages; instruction fetch (IF),
instruction decode (ID), execute (EX), memory access (MEM),
and write back (WB). In the IF stage, instructions are read
from the level-1 instruction cache (L1IC) from an address
pointed to by the PC register, which is updated to point to
consecutive instructions or to branch target addresses. During
the ID stage the register file is accessed and control signals for
later stages are set based on the instruction type. Branch and
jump instructions are solved in the ID stage, but by the time
they are resolved the next instruction has already been fetched.
A branch delay slot is utilized to solve this problem and is
accounted for by the compiler. In the EX stage, arithmetic
and logic operations are executed in an ALU. A dedicated
two-stage multiplication unit is also available, spanning the
EX and MEM stages. In the memory-access stage, loads and
stores access the level-1 data cache (L1DC). Finally, in the WB
stage, results are written back to the register file. In CREEP’s
RTL code, the MEM and WB stages are combined to simplify
the implementation. However, the combined stage logically
functions as two separate stages.

A hazard-detection unit, which physically resides in the ID
stage but is for simplicity not shown in Fig. 2, detects any
potential hazards and stops the pipeline by stalling the IF stage.
In this manner, NOPs are inserted into the pipeline. The cache
also produces a stall signal, which is asserted upon a cache
miss. In contrast to the hazard stalls, cache misses stall the
entire pipeline. The 5SP microarchitecture does not support
exceptions, but these are by design rare events. Exceptions are
necessary to support I/O, recover from errors (Invalid Opcode
etc.), and for system calls.

The 5SP implementation includes level-1 caches, i.e., L1IC
and L1DC, which are separate from each other (Harvard style)
to avoid structural hazards. No L2 cache is included in the
implementation. Instead an ideal memory module serves as

2Note though that a more substantial performance overhead is caused by
stall cycles due to the dependencies between instructions (hazards) moving
down the pipeline [14].
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Fig. 2. Microarchitectural overview of the 5-stage pipeline (5SP) embedded in CREEP.
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Fig. 3. Memory hierarchy of the 5SP.

a replacement for the lower levels of the memory hierarchy
as shown in Fig. 3. The L1DC is available for read and write
accesses, while the L1IC only serves reads. However, the L1IC
still needs to access external memory on cache fills and in
the case of a cache miss. The two caches share one memory
bus to the external memory and a memory controller (arbiter)
orchestrates which cache is allowed to access the external
memory. The L1 cache RTL code is designed to be relatively
flexible, as will be demonstrated in Sec. V.

B. Architecture Simulator – SimpleScalar

SimpleScalar is a wide-spread execution-driven architecture
simulator [15] which was chosen because of the relatively
simple processor pipeline that it models, it it easy to access
and easy to use, and it is suitable for hardware-oriented studies
thanks to its hardware-centric architectural model. The fact
that SimpleScalar is execution driven is essential, as this makes
it possible to capture the dynamic behavior of the underlying
architecture in terms of branches and cache misses, which can
have a dramatic impact on performance and energy. Further-
more, because SimpleScalar captures both the functionality
and the performance of the architecture, validation is possible
and accurate resource usage and time measurements (execution
time in clock cycles) are made possible.

SimpleScalar supports configuration through configuration
files that are provided when calling it from the command
line [15]. These files enable features such as branch resolution,
cache parameters, speculative execution, decode width, issue
width and number of functional units to be tweaked without
the need to rebuild the simulator.

In fact, SimpleScalar provides several different simulators
of varying detail and speed [15]. The simplest and fastest
simulator, called sim-fast, is a purely functional simulator
which is not cycle-accurate. In contrast, the most complex
simulator, the sim-outorder, supports out-of-order, speculative
execution, and multi-issue while being cycle-accurate. The
simulator used in the CREEP framework is based on a

modified version of the sim-outorder simulator. The modifi-
cations were implemented to reduce the out-of-order pipeline
modeled to an in-order pipeline that matches the 5SP pipeline
microarchitecture described in Sec. II-A. The base simulator
was then augmented with performance counters that tracked
usage of pipeline resources relevant to energy estimation.

III. CREEP COMPONENTS AND INTEGRATION

While the previous section gave an overview of the CREEP
framework and how it is used, this section will present more
details on CREEP components and their interaction. Each
subsection below corresponds directly to one node in the
workflow of Fig. 1.

A. CREEP:Start – Configurability

The CREEP framework supports configurability that needs
to be implemented identically in the RTL code and in the ar-
chitecture simulator, since the simulator captures the behavior
of the RTL and vice versa.

Since the energy per event is higher and since the events are
more infrequent, cache parameters like size and associativity
are the parameters that have the biggest impact on overall
energy. Thus, the user configurability built into the framework
was concentrated on parameters for L1IC and L1DC. The RTL
pipeline does not include a L2 cache, hence, the framework
does not estimate the power dissipation of this cache. However,
SimpleScalar can still be used to simulate the L2 cache’s
impact on performance and, indirectly, on energy estimates.
Thus, settings related to the L2 cache were also included
amongst the configurable settings. The supported settings are
presented below in Table I.

B. Architecture Simulation

Since the sim-outorder simulator of SimpleScalar allows
for accurate resource tracking, this is the starting point for
the simulator used in CREEP. Modifications to SimpleScalar’s
source code were performed with the goal of reducing the
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TABLE I
CREEP SETTINGS

Unit Setting Values

L1DC Associativity 1‡/2/4
L1DC Replacement policy LRU/Pseudo random
L1DC Number of sets 64/128/256/512
L1DC Line size (words) 8
L1DC Bank size (words) 4/8

L1IC Associativity 1‡/2/4
L1IC Replacement policy LRU/Pseudo random
L1IC Number of sets 64/128/256/512
L1IC Line size (instructions) 8
L1IC Bank size (instructions) 4/8

L2DC Latency 10/12/14

L2IC Latency 10/12/14

‡: An associativity of 1 is equivalent to a direct-mapped cache.

modeled pipeline’s complexity to a state that matches the
pipeline’s RTL code. The modifications included moving store
operations from the commit stage to the issue stage (similar to
loads) whereby the stores were locked to non-speculative in-
order execution. Other features such as multi-issue, speculative
execution (for instructions besides stores) and branch predic-
tion were disabled through configuration files. However, an
exception was made for the issue width which was set to two.
This was necessary as load and store instructions are split up
into a separate address calculation and a read/write instruction.
This will not cause any issues for other instructions, as
only one instruction at a time leaves the preceding dispatch
stage. The branch prediction was configured to perfect, which
resembles the branch delay slot technique used in the RTL
code of the 5SP pipeline.

A common ground between the architecture simulator and
the RTL code was found in the caches. The SimpleScalar
caches are configured through the aforementioned configura-
tion file and support a superset of the settings available in
the RTL code. The SimpleScalar caches were configured to
mirror the caches in the RTL code. All relevant settings for
the framework are summarized in Table II.

TABLE II
RELEVANT SIMPLESCALAR SETTINGS

Setting Description Value

-fetch:ifqsize
Instruction fetch queue size, set to 1
to model a single-issue pipeline.

1

-decode:width
Decode width, set to 1
to model single-issue pipeline.

1

-issue:width
Issue width, set to 2 to model
single-issue and allow loads/stores to
be issued in one cycle.

2

-commit:width
Commit width, set to 1
to model a single-issue processor.

1

-issue:inorder Pipeline is set to issue in-order. true
-issue:wrongpath Pipeline is set to issue non-speculatively. false

-bpred
Branch predictor component set to
perfect to emulate delayed branch slot.

perfect

-cache:il1 / -cache:dl1
L1 cache settings,
to be coordinated with RTL.

-RTL

-cache:il1lat / -cache:dl1lat L1 cache access latency 1
-cache:il2lat /-cache:dl2lat L2 cache access latency 12

One major difference between the provided 5SP RTL code
and the corresponding pipeline model implemented in Sim-
pleScalar is that the latter supports a larger set of instructions,
e.g., floating-point instructions and system calls. The impact of
this difference was limited by choosing simulator benchmarks
that included few of the unsupported instructions and features.

Several workloads were considered for the framework.
MiBench is open source and consists of a set of 35 embedded
applications which are divided into six suites each targeting
a specific area in the embedded domain [16]. MiBench was
chosen as the default workload for the framework, mainly
because it is open source and can be shipped with the
framework. However, not all 35 benchmarks in the suite are
used because of incompatibility with the simulator. Instead,
a representative subset of 20 benchmarks were selected from
the automotive, consumer, network, office and security cate-
gories. The categories and pertaining benchmarks are shown
in Table III.

TABLE III
MIBENCH BENCHMARKS

Category Applications
Automotive basicmath, bitcount, qsort, susan
Consumer jpeg, lame, tiff
Network dijkstra, patricia
Office ispell, rsynth, stringsearch
Security blowfish, rijndael, sha, pgp
Telecomm adpcm, crc32, fft, gsm

C. Pipeline Implementation

The implementation branch of Fig. 1 is based on an RTL im-
plementation of the 5SP microarchitecture (Sec. II-A), which
provides the user a baseline processor on which it is possible to
explore RTL variations. We have, however, already completed
one 5SP implementation down to and including place-and-
route, to generate 65-nm energy data for users that prefer only
to work with the simulation branch of CREEP. This subsection
will describe the implementation flow used to obtain these
energy data and should be instructive for any user who wishes
to perform a similar analysis.

The 5SP RTL code has gradually been developed during
several recent projects [17], [18]. Since the integration effort
for a processor pipeline is substantial, a solid verification
methodology is imperative. To verify the RTL design, the
Cadence Incisive Enterprise Simulator (IES) system [19] was
used for logic simulation of executables, compiled for the
MIPS I ISA, running in a testbench in which the 5SP RTL
code was instantiated. Logic simulations of large designs
are time consuming, but can be facilitated through the use
of small and effective workloads with good test coverage.
Since the EEMBC benchmark suite [20] targets embedded
processors, is lightweight, and utilizes fixed-point arithmetics,
the following benchmarks are used in the implementation
branch of CREEP3: Autocorrelation, Convolutional Encoder,

3Any user who wishes to use scripts for running EEMBC needs to obtain
the proper licenses from the EEMBC consortium [20].



5

FFT/IFFT, Viterbi Decoder, and RGBCMY01 (Consumer
RGB to CMYK).

Timing-driven synthesis was performed using Synopsys
Design Compiler (DC) [21] for a 65-nm LP low-VT cell
library, using worst-case corners, 1.1 V, and 125◦C, and with a
corresponding library for the SRAM memories in the caches.
We used automatic clock gating to reduce the design’s dy-
namic power dissipation. The synthesis was carried out for
increasingly stricter timing constraints to find the maximum
achievable clock rate and the worst-case design was estab-
lished to meet a timing constraint of 2.5 ns, producing a netlist
running at 400 MHz. The netlist verification was done using
the same testbench developed for RTL verification above.

Place-and-route (P&R) using Cadence Encounter [22] was
used to produce a post-layout netlist. While a post-synthesis
netlist may suffice in some design-exploration situations, P&R
was deemed necessary to be include not primarily because of
the higher accuracy this stage provides but because the utilized
SRAM memories are already placed and routed and, thus, are
taking into account the routing’s impact on power dissipation.
However, since the extensive use of heuristics makes the
P&R solution of each pipeline design differ significantly,
here we can identify a conflict with the desired scalability
of the flow. In CREEP, therefore, a more scalable approach
was implemented that estimate the P&R impact on power
dissipation by comparing the power of one placed and routed
netlist to a post-synthesis netlist; from this comparison, a
scaling factor could be deduced. The rationale behind this
approach was that the pipeline logic was not subjected to any
modifications but that it remains relatively unaffected by the
configuration of the caches.

D. Power Estimation

Similar in purpose to Sec. III-C, this section describes the
flow used to perform power estimation and it is included to
help other users who wish to perform a similar analysis.

Based on the netlist obtained after implementation, the
power consumption was estimated by using use-case simu-
lations, in which switching activities for the nodes in the
design were obtained. During SAIF generation the average
switching activities of all netlist nodes are recorded throughout
simulation, which allows an average power estimate of the
design to be produced. (While VCD-based methods allow for
detailed analysis of the power dissipation, the usage of VCD
is computationally complex and hence less scalable than the
SAIF-based method.) Cadence IES was used to simulate the
netlists using the testbench and the EEMBC benchmarks from
Sec. III-C as stimuli.

Synopsys PrimeTime PX (PT) [23] was used to generate
the final power estimates. Synopsys PT was first used to
remap the gate netlist to a different cell library from the
library with worst-case conditions used during timing-driven
synthesis. The power dissipation was analyzed for a library
with nominal process corners, nominal VDD (1.2 V) and
nominal temperature (25◦C). This approach yields nominal
power estimates for the pipeline design and, thus, allows
different pipeline configurations to be compared under normal

circumstances where the technology parameters are at their
expected values.

The power estimation was done by reading the netlist
and each of the aforementioned SAIF files. Thus, a total of
five power reports, one per benchmark, were produced and
averaged to create the final design power estimate. Hierarchal
reports were produced for the design and the granularity of
these reports was tweaked to reveal major pipeline units and
to suit the performance counters generated by the simulator
component (Sec. II-B).

Average power reports amortize the power of certain units
over the power estimation time interval. Units such as the
ALU, multiplier and L1DC are associated with enable signals
that prompt them to activate, i.e., start switching and dissipat-
ing power. Unless the power of these units are scaled according
to their usage, the framework would greatly underestimate
their contribution to the final energy results. The solution
to this problem requires information of how many cycles
each unit in question is active during the estimation interval.
This usage information was obtained by augmenting the RTL
testbench used during verification and power estimation with
counters that were incremented when the enable signal for a
unit was asserted. Each unit counter was then divided by the
total number of cycles also tracked by the testbench, to obtain
the utilization factor U as

U =
#active_cycles
#total_cycles

(1)

The power dissipation reported by Synopsys PT (Punscaled)
was then divided by U , as shown in Eq. 2 to obtain the final
power values used in the framework.

Pscaled =
Punscaled

U
(2)

Since the SRAM memories come placed and routed in
macros, scaling to consider the power impact of place and
route (P&R) must be applied to all other pipeline units. As
discussed in Sec. III-C, the challenge is to use P&R data in
a scalable manner. Thus, in an attempt to streamline the P&R
scaling, one archetype combinatorial pipeline unit was selected
and the power of the unit was compared post-synthesis and
post P&R. The ALU was chosen and the power estimates were
obtained by assigning switching activities on the ALU input
and let these propagate through the unit. The power was then
extracted using Synopsys PT and a factor between the post-
synthesis and post-layout was obtained as shown in Eq. 3.
This factor was then used to scale the post-synthesis power
estimates for all pipeline units.

P&Rscaling =
PALUpost−synthesis

PALUpost−layout
(3)

A similar estimation was done for the clock-tree power,
which is very limited in a post-synthesis netlist where bare
register clock pins are exposed directly to the simulator. The
clock power dissipation in a post-layout netlist is considerably
larger since a clock tree has been inserted to drive all register
clock pins.
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TABLE IV
SIMPLESCALAR PERFORMANCE COUNTERS

Stage Unit Condition

IF Pipeline logic No stall
IF L1IC No stall

DE Pipeline logic No stall
DE Decode logic No stall
DE Register file Instruction has operands
DE Hazard detection No stall
DE Branch logic Control instruction

EX Pipeline logic No stall
EX ALU ALU instruction
EX Multiplier Mult instruction
EX AGU Load/store

MEM Pipeline logic No stall
MEM L1DC Load/store
MEM LSU Load/store

WB Pipeline logic No stall, instruction produces result

E. CREEP:END – Combining Circuits and Architecture

One challenge with combining the two CREEP components
to form one complete workflow is to accurately match mea-
surement units and pipeline building blocks between the two
abstraction levels.

Synopsys PT reports power dissipation in the SI unit for
power, i.e., Joules per second rather than Joules per cycle
which is required for the power estimates to be combined
with the resource counters reported by SimpleScalar. The
conversion necessary is relatively straightforward to make,
since the clock rate is assumed to match the timing constraint
set during synthesis: Ec = P/f where the power dissipation
P is in Joules per second, Ec is in Joules per cycle, and f is
the clock rate.

The most complex issue when combining the pipeline
implementation with SimpleScalar is to appropriately match
the building blocks in the pipeline with pipeline constructs that
exist in the simulator. There is indeed a practical limitation
as to how fine grained this mapping of pipeline resources
can be done given that SimpleScalar uses a relatively high
level of abstraction, mainly exposing discrete pipeline stages
and major architectural events coupled to each of these. The
power reports produced by the CREEP’s RTL branch were
adapted to match the more coarse-grain resources modeled by
the simulator. As the demonstration will later show (Sec. V),
the resources modeled this way are efficiently representing the
pipeline’s most energy-dissipating blocks.

Performance counters for each pipeline stage were intro-
duced in the simulator to reflect the pipeline logic. Selec-
tive performance counters that appreciate that instructions
do not use all resources in each pipeline stage were also
introduced for pipeline units. One additional performance
counter was added in relation to the L1IC to emulate way-
determination [24], which is an optimization technique that is
otherwise not present in the 5SP RTL implementation. The
tracked units are shown in Table IV.

IV. FRAMEWORK AUTOMATION

The framework RTL and simulator components create an
intimidating amount of output data that need to be combined
as discussed in Sec. III-E. By automating the framework and
presenting the user with a set of configurable parameters, the
framework becomes user friendly and, more importantly, the
pipeline energy evaluations become reproducible.

The automation is handled via a script that, when invoked,
runs the entire workflow. The scripting language chosen to
implement the script was Perl which supports text handling
and file I/O. To ensure that the architectural parameters are the
same for the RTL and simulator, all parameters (save for the
configurable settings) were hidden from the user. In addition to
the configurations listed in Sec. III-A, a setting used to enable
or disable the emulated way-prediction in the L1IC was added.
Configuration files, called CREEP configurations, were created
to list the configurable options. As users would want to create
several configuration files, the main script was designed to use
one such configuration as argument when calling the script as
shown below:

./CREEP.pl -[CREEP_configuration]

The parameters specified in the configuration file are here
parsed by the main Perl script, applied to the RTL code, the
simulator configuration and all auxiliary scripts surrounding
these components such as RTL testbenches, Synopsys DC
synthesis script, SAIF-generation scripts and Synopsys PT
scripts. The main script then starts both components and
makes use of the outputs, i.e., power estimates from the
RTL and resource usage information from the simulator. The
implementation output would then be scaled by the main
script and combined with the resource mapping discussed in
Sec. III-E to produce the final energy estimates.

The CREEP script was designed to offer the user three
different options; 1) run the entire framework, i.e., both
branches, with both RTL and simulator components, 2) run
the implementation branch alone and 3) run the simulation
branch separately. The options were designed to be specified
when invoking the script from a terminal as such:

./CREEP.pl -[flag] -[CREEP_configuration]

Allowing separate components to be used allows users
that because of licensing issues are unable to use the RTL
component to still use the framework. An issue here is that
simulator statistics alone are not enough to produce the final
energy results. This issue was addressed by saving the partial
results generated from the RTL and simulation components
for later use. The main script would then be able to load these
partial results when running one of the components. It was
decided to name the partial results after the provided CREEP
configuration file to allow the aforementioned command invo-
cation to remain unaltered and the interaction with the main
script simple.

The complete workflow is shown in Fig. 4. The workflow
starts with the user supplying an option flag and a CREEP-
configuration file as shown in Sec. IV. The main script, named
CREEP.pl, applies the configuration to all relevant files in the
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framework and starts the components designated by the flag.
The RTL and simulator components generate data, i.e., power
scaling information, pipeline power dissipation estimates and
resource counters, which are combined by the CREEP.pl
script according to the power scaling and resource mapping
discussed in Sec. III-E.

Verification

Configuration
processing

Synthesis

Power extraction

Scaling

Power

Resource
counters

Energy Estimates

Sim-outorder

Flag Configuration

RTL

CREEP.pl

Simulator

Fig. 4. The workflow of the framework showing the RTL and simulator
components and the central CREEP.pl script.

Due to licensing issues, the RTL component is shipped
without EDA tool binaries and cell libraries, i.e., no logic nor
SRAM libraries are included in the framework package. How-
ever, as discussed in Sec. IV, a selection of configurations and
pertaining power estimates are supplied with the framework
to allow the simulator component to function separately and
produce energy estimates of the provided configurations.

V. DEMONSTRATION OF FRAMEWORK

We use a selection of CREEP configurations to demonstrate
the framework. Due to the large design space supported, the
number of configurations had to be limited to those shown
in Table V. These were selected on the basis that they span
the design space supported by the framework, i.e., cache sizes
and associativity. Unless specified, all configurations use a 12-
cycle L2 cache access latency (L2L). Furthermore, all caches
use a line and bank size of 8.

8kB 1-1 represents a lightweight embedded processor, while
8kB 2-2 and 8kB 4-4 are chosen to evaluate the impact of
increased associativity on performance and energy. Because
instructions has more regular access patterns than data, an
L1IC often has lower associativity than an L1DC has. To
evaluate lower associativity in the L1IC, which will reduce
power dissipation while sacrificing some performance, the 8kB
1-4 configuration is chosen. Variations in L2 access latency,
which impact execution time and thus energy, are evaluated
via 8kB 1-1 10, 8kB 1-1 14, 8kB 2-2 10, 8kB 2-2 14, 8kB 4-4
10, and 8kB 4-4 14. Again it should, however, be noted that

TABLE V
CACHE PARAMETERS FOR SELECTED CONFIGURATIONS

Name Size Assoc. RP #Sets #Sets L2L
IC DC IC DC

8kB 1-1 10 8kB 1 1 N/A 256 256 10
8kB 1-1 8kB 1 1 N/A 256 256 12
8kB 1-1 14 8kB 1 1 N/A 256 256 14
8kB 2-2 10 8kB 2 2 LRU 128 128 10
8kB 2-2 8kB 2 2 LRU 128 128 12
8kB 2-2 14 8kB 2 2 LRU 128 128 14
8kB 4-4 10 8kB 4 4 LRU 64 64 10
8kB 4-4 8kB 4 4 LRU 64 64 12
8kB 4-4 14 8kB 4 4 LRU 64 64 14
8kB 1-4 8kB 1 4 LRU 256 64 12
16kB 4-4 16kB 4 4 LRU 128 128 12
16kB 2-4 16kB 2 4 LRU 256 128 12
16kB 2-2 16kB 2 2 LRU 256 256 12
32kB 32kB 4 4 LRU 256 256 12

CREEP does not include any direct energy estimates of the
L2 cache. The 16kB configurations represent a performance-
oriented embedded processor: 16kB 2-2, 16kB 2-4, and 16kB
4-4. Likewise, the single 32kB configuration represents a no-
compromise performance-oriented embedded processor and
uses the upper bound on the supported cache size in the
framework.

A. MiBench Execution Times

Fig. 5 shows the execution time (#sim_cycles × Tcycle)
for the MiBench benchmarks that are primarily used. A few
benchmarks deviate significantly from the average: As the
name implies, basicmath is mainly composed of arith-
metic operations and is by far the largest benchmark with
6,360,380,890 simulated instructions. In contrast, rsynth
and stringsearch are included in the office category (Ta-
ble III) and are composed of text processing computations. At
1,138,490 and 4,656,782 simulated instructions, respectively,
these benchmarks are relatively small.
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Fig. 5. Per-benchmark execution time for 16kB 4-4 configuration.

The number of simulated cycles is greater than the num-
ber of simulated instructions. This is because the simulator
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component captures the pipeline’s dynamic events, such as
cache misses and hazards stalls, that degrade the processor’s
instructions per cycle (IPC). For basicmath the 16kB 4-
4 configuration manages an IPC of 0.7 which offers further
insight into the execution time of the benchmark.

B. Execution Time vs Power Dissipation

The average execution time versus the average power dis-
sipation for all aforementioned configurations is shown in the
scatter plot in Fig. 6.
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Fig. 6. Execution time versus power (MiBench).

As expected, the 8kB configurations have the lowest per-
formance but also the lowest power dissipation. The small
cache capacity causes relatively high cache miss rates, as
demonstrated in Fig. 7. Each miss is associated with cycle
penalties of accessing the L2 caches; L2L in Table V.
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The impact of L2L on performance is clearly visible in
Fig. 6. The three L2L configurations (three for each of 8kB 1-
1, 8kB 2-2, and 8kB 4-4) are evenly spaced on the performance
axis; that with an L2L of 10 is the fastest, while that with an
L2L of 14 is the slowest. The difference in power dissipation
manifests because the L2 latency impacts how frequently the
caches are accessed. The average cache power drops as L2
latency increases, since there is a higher proportion of stall
cycles which dissipate less energy than regular cycles.

In order to enhance performance by reducing miss rates
(Fig. 7), the L1DC associativity can be increased to four ways.
As Fig. 6 shows this 8kB 1-4 configuration performs better
than 8kB 1-1 (assuming equal L2L of 12 cycles), but it does
so with a power dissipation penalty that is substantial.

Similarly, we can explore using the same associativity in
both the L1IC and the L1DC, i.e., the 8kB 2-2 and the 8kB
4-4 configurations. In comparison to 8kB 1-4, 8kB 2-2 trades
increased miss rates in the L1DC for decreased miss rates
in the L1IC. Since the L1IC is accessed almost every cycle,
lower L1IC miss rate has a larger impact on performance than
lower L1DC miss rate, which explains why this configuration
performs better.

The 8kB 4-4 configurations do not yield a very significant
performance increase over 8kB 2-2, but they draw consider-
ably more power since the hardware complexity increases with
the increased level of associativity. For example, compared to
the direct-mapped 8kB 1-1 configuration, the 8kB 1-4, 8kB 2-
2, and 8kB 4-4 configurations require an additional six, four
and 12 SRAM memories, respectively.

When stepping up the cache capacity to 16kB the perfor-
mance increases substantially. Larger capacity caches can store
larger parts of the program and more data without the need to
evict items to the L2 caches. In effect, the number of misses
and subsequent L2 accesses are reduced, which is shown in
Fig. 7 where the 16kB configurations have lower miss rates in
both caches compared to the 8kB configurations. The lowest
performing 16kB configuration is the 16kB 2-2 configuration
with the lowest degree of associativity. However, as shown
in Fig. 6 the configuration offers good performance with
comparatively low power dissipation that is substantially better
than the other 16kB configurations. Moreover, the 16kB 2-2
configuration is both faster and has a lower power dissipation
than the smaller 8kB 4-4 configurations.

Increasing the associativity in the L1DC to four-way yields
the 16kB 2-4 configuration. The increase in associativity does
increase performance but only slightly which is explained
by the minor reduction in the L1DC miss rate shown in
Fig. 7. In contrast, the power dissipation increases substantially
because additional SRAM memories are added to facilitate
the associativity, which shifts the configuration to the right in
Fig. 6. Increasing the associativity in the L1IC results in the
16kB 4-4 configurations which manages to achieve the highest
performance of all the 16kB configurations but also dissipates
the most power.

As the capacity of the cache is increased to 32kB the
performance rises considerably but less than the step from
8kB to 16kB. The increase in performance stems from the
lower miss rates in the L1DC and especially the L1IC shown
in Fig. 7. The 32kB cache clocks in at 2.75 s which is by a
sizable margin the fastest configuration. However with eight
large SRAM macros and low execution time the configuration
dissipates the most power at around 53 mW.

The general trend that can be observed in the results indi-
cates that higher capacity rather than increased associativity
produces the most power-efficient configurations that also
boasts good performance increases. This can be explained
by the non-linear power increase of SRAM blocks, which
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are designed to be dense and power-efficient. There are fixed
costs associated with the input pins on the blocks and the
internal power dissipation scales well with size. Thus using
fewer larger SRAM blocks, i.e., lower associativity, is more
power-efficient than several smaller SRAM blocks. Another
trend is the diminishing returns in performance for increasing
cache size and especially associativity, which could indicate
that MiBench benchmarks are too simple to capture the
performance increases normally associated with high capacity
and associative caches.

C. Pipeline Energy Breakdown

The absolute energy integrated over all MiBench bench-
marks for different pipeline configurations is shown in Fig. 8.
The energy is divided into four categories; 1) clock network, 2)
pipeline, 3) L1IC and 4) L1DC. Since the energy metric com-
bines execution time and power dissipation, power-efficient
designs are not necessarily the most energy-efficient if their
performance is low and leakage is prominent. However, in this
case the 8kB direct-mapped configurations turn out to be the
most energy-efficient configurations (but whether it offers the
desired performance is a different question).
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Fig. 8. Absolute energy of the different configurations.

A minor energy difference can be observed between the
8kB 1-1 configurations which is caused by the difference
in L2 latency. Higher L2 latency causes longer execution
times during which the clock network dissipates power. A
similar reasoning on the L2 latency applies to the 8kB 2-2
configurations.

The 16kB 2-2 configuration manages to be the most energy-
efficient 16kB configuration while also beating the 8kB 4-4
configurations and breaking even with the 8kB 2-2 configura-
tions. It performs good enough compared to the 8kB 2-2 to
compensate for its higher power dissipation and it beats the
8kB 4-4 configurations in both performance and power. The
16kB 2-4 configuration dissipated more power in the L1DC
than the 16kB 2-2 configuration while only slightly increasing
the performance and is, thus, less energy-efficient. The least
energy-efficient caches are the large capacity and four-way
associative 16kB 4-4 and 32kB configurations. The lower
execution time offered by both configurations is insufficient
to offset the higher power dissipation in the caches.

The general trends are that the caches dominate the energy
consumption and the number of SRAM macros, i.e., associa-
tivity, is the main source to this. Cache size does contribute
but to a lesser extent. The L1IC tends to consume the most
energy when the caches are balanced (same associativity in
the caches), which is expected as an instruction is ideally
fetched each cycle. In contrast, the L1DC is accessed roughly
every fourth instruction. The clock energy depends on the
execution time and decreases with increasing performance (#
cycles). However, the clock energy differences are small and
really only observable between the 8kB 1-1 and the 32kB
configurations. The energy of the pipelines remains relatively
constant across the configurations; variations are most likely
due to synthesis heuristics.

Assuming only the configurations with the default L2 la-
tency of 12, we also show the energy distribution as pie charts
in Figs 9-11. What is shown is that increasing cache sizes, with
the exception of lower associative caches, shifts the energy
distribution towards the caches. For the 8kB 1-1, 8kB 2-2,
16kB 2-4 and 16kB 2-2 configurations the energy instead shifts
towards the clock network and the pipeline, most notably so
for the 8kB 1-1 configuration as the cache energy has been
reduced significantly when compared to the other ones.
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Fig. 9. Energy distribution of three different 8kB configurations.
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Fig. 10. Energy distribution of three different 16kB configurations.
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Fig. 11. Energy distribution of 32kB configuration.

VI. RELATED WORK

Energy estimation/evaluation frameworks have over time
evolved from estimation methods limited to specific structures
within a processor, to complex system-level tools more or
less detached from implementation details. While analytical
estimation generally has the advantage of being scalable across
different microarchitectures, empirical methods are based on
detailed implementation information and thus are best suited
for the type of architectures from which they were derived [5].
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CACTI, released in 1996, specifically targets cache struc-
tures [6] and uses analytical models to estimate both power
and delay within the cache structure. Since caches are highly
regular structures, analytical models do not have to be that
complex to accurately estimate energy and delay. In contrast
to CACTI, CREEP also models the less regular datapath with
which the caches are integrated.

Wattch and SimplePower, both released in 2000, analyt-
ically model power for a complete processor. Wattch links
SimpleScalar to analytical power models [7] and bases its
power estimations on a collection of parameterized power
models for different hardware structures and per-cycle resource
usage counts generated through cycle-level simulations us-
ing SimpleScalar. SimplePower is an execution-driven, cycle-
accurate RTL energy estimation tool that uses a combination
of analytical and transition-sensitive energy models for a five-
stage pipeline [8]. However, developing transition-sensitive
models is not straightforward and, thus, the pipeline control
path was omitted because it was considered too challenging to
model [25]. Compared to CREEP, Wattch and SimplePower,
while being more flexible, fail to capture the implementation
integration aspect that CREEP addresses.

The McPAT framework was released in 2009 and estimates
power, area and timing [9]. In contrast to SimplePower and
Wattch, McPAT is compatible with any performance simulator
through an XML interface. Furthermore, McPAT is built on
more accurate analytical models compared to Wattch and these
models also include static power. Similar to McPAT, CREEP
provides a system perspective but does so more accurately as
power estimates are obtained from an RTL implementation.
However, while McPAT supports multicore contexts, CREEP
targets simple embedded processors.

In contrast to the above approaches, IBM’s PowerTimer
is based on empirical data collected from existing micropro-
cessors [10]. Low-level circuit macros are analyzed and used
to generate higher-level energy models for microarchitecture
units [26] which can be controlled by technology and circuit
parameters as well as microarchitectural parameters. CREEP
is likewise limited to the specific architecture implemented
in RTL. Both frameworks work at the system level but
PowerTimer chooses to distance itself from the physical imple-
mentation through parameterized models which lends it greater
flexibility at the expense of accuracy.

VII. CONCLUSION

To enable higher-level estimations, it is necessary to abstract
away details pertaining to the technology and circuit level. The
risk of abstraction is, however, that important dependencies
at the circuit level are neglected, rendering the result of
abstraction inaccurate as far as implementation is concerned.
We have introduced CREEP which stands for Chalmers RTL-
based Energy Evaluation of Pipelines [11]. The main goal of
the framework is to deliver energy evaluation results that are
faithful to the VLSI integration of the pipeline and its level-1
caches, while simultaneously keeping with the rational work-
flow that involves running a pipeline model in an architecture
simulator with processor software benchmarks.
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