
16/10/2023

1

Jaap-Henk Hoepman

* jhh@cs.ru.nl //	8 www.cs.ru.nl/~jhh //	8 blog.xot.nl //	@xotoxot

Privacy	&	Identity	Lab
iHub

Radboud	University
Karlstad	University

University	of	Groningen

Mutual Contact Discovery

1
Jaap-Henk Hoepman //

It started with a monkey…

2023-10-16 // Mutual Contact Discovery 2

2

Jaap-Henk Hoepman //

Contact discovery: preliminaries

n There is an underlying,
existing, social graph (𝑽,𝑬)
● Unique	identifiers	𝐴,	𝐵,…		
(e.g.	phone	numbers).

● Low	entropy	(enumerable;	
guessable).

● User/device	𝐴maintains	contact	
list	
𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! = {𝐵 ∈ 𝑉 | 𝐴, 𝐵 ∈ 𝐸}

2023-10-16 // Mutual Contact Discovery 3

A

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! ..
B
..

3
Jaap-Henk Hoepman //

Contact discovery: goal

n Users join a new (messaging) service
● And	what	to	learn	who	is	also	a	member	of	the	service

n Requirement
● If	B ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! 	then	𝐴	gets	notified	that	𝐵 ∈ 𝒰 when	𝐵 joins	(or	when	𝐴	adds	𝐵 	to	
𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! 	when	𝐵 ∈ 𝒰 	already).

2023-10-16 // Mutual Contact Discovery 4

A
matching server

B

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠"..
B
..

..

..

..

..

..

Messaging
server𝒰

4

16/10/2023

2

Jaap-Henk Hoepman //

The classic (WhatsApp) approach

2023-10-16 // Mutual Contact Discovery 5

Alice
matching server

Bob

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠"..
B
..

..

..

..

..

..

Messaging
server𝒰

1:𝐴, 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!
2:𝐵, 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠"

3:𝐵 ∈ 𝒰

Matching takes place
here.

Contacts stored for later
matching, also for “non-users”

3’: 𝐴 ∈ 𝒰

5
Jaap-Henk Hoepman //

Privacy issue

n Matching service learns all contacts of a user on the underlying
social graph, including the identifiers of ‘non users’

2023-10-16 // Mutual Contact Discovery 6

6

Jaap-Henk Hoepman //

Solutions

n Hashing
● Store	the	contacts	as	hashes	on	
the	matching	database.

● Improvement:	hash	the	
contactlist	before	sending	it	to	
the	matching	service.

● Even	better:	use	a	key	
derivation	function	(KDF).

n Problem
● NL:	2"#	phonenumbers.
● Dictionary	easily	computed	in	
seconds,	and	storable	on	disk.

n Trusted hardware (Signal)
● Use	hashing		like	above,	but
● Run	matching	code	on	server	in	
trusted	hardware.

n Private Set Intersection
● To	compute	𝒰 ∩ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!.
● Problem

– Expensive.
– Needs	to	be	done	for	every	
user	whenever	a	new	user	
joins.

2023-10-16 // Mutual Contact Discovery 7

7
Jaap-Henk Hoepman //

Still some privacy issues remain

n Not mutual
● If	A ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠$ 	then	𝐵	gets	
notified	that	𝐴 ∈ 𝒰	even	if	𝐵 ∉
𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!.

n This is problematic
● Ex-es,	former	bosses,	doctors.

2023-10-16 // Mutual Contact Discovery 8

8

16/10/2023

3

Jaap-Henk Hoepman //

Mutual contact discovery: requirements

n Correctness
● Output	𝑜𝑢𝑡!
● 𝐵 ∈ 𝑜𝑢𝑡!	if	 𝐵 ∈ 𝒰

∧ 𝐴 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠$
∧ 𝐵 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! .

n Security
● Let	𝐵 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!.	If	𝐵 ∉ 𝒰	
then	𝑋	cannot	force	𝐵 ∈ 𝑜𝑢𝑡!.

(𝑋	stands	for	the	matching	server	
or	a	user	respectively.)

n Membership privacy
● If	𝑋 ∉ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!	then	𝑋	does	not	
learn	whether	𝐴 ∈ 𝒰	(for	any	
𝐴 ≠ 𝑋 of	its	choosing).

n Contact privacy
● 𝑋	does	not	learn	whether	𝐵 ∈
𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!	(for	any	𝐴, 𝐵	both	
unequal	to	𝑋	of	its	choosing).

2023-10-16 // Mutual Contact Discovery 9

9
Jaap-Henk Hoepman //

Threat model

n Active adversary
● May	behave	arbitrarily.
● May	block	and	observe	messages	(as	channels	are	secure,	eavsdropping,	
replaying	or	modifying	messages	is	prevented).

n May use prior knowledge to maximise chance of success
● Knows	list	of	identifiers	in	use,
● Knows	identifiers	for	persons	of	interest,	and
● May	have	knowledge	of	potential	contacts.

2023-10-16 // Mutual Contact Discovery 10

10

Jaap-Henk Hoepman //

Protocol #1

n Notation
● Time	divided	into	slots	𝑇,	
starting	at	0.

● Epoch	 <𝑇 = 𝑇 𝑑𝑖𝑣 2.
● Token	𝑣!$ = 𝐾𝐷𝐹(<𝑇 𝐴 𝐵).		

n Submission phase, even
epoch
● Each	user	𝐵	sends 𝑣!$ 	to	the	
server,	for	all	𝐴 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠$.

● The	server	stores	these	values	
in	𝑆.

n Query phase, odd epoch
● Each	𝐵	now	sends 𝑣$!	to	the	
server,		for	all	𝐴 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠$.

● The	server	returns	whether	
𝑣$! ∈ 𝑆.

● 𝐵 adds	𝐴	to	𝑜𝑢𝑡$.

n After every odd epoch
● The	server	deletes	S.

2023-10-16 // Mutual Contact Discovery 11

11
Jaap-Henk Hoepman //

Protocol #1 example

2023-10-16 // Mutual Contact Discovery 12

Alice
matching server

Bob

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠"..
B
..

A
..
..
..
..

Messaging
server𝑆

𝑣!" = 𝐾𝐷𝐹(9𝑇 𝐴 𝐵) 𝑣"! = 𝐾𝐷𝐹(9𝑇 |𝐵|𝐴)

𝑣"! = 𝐾𝐷𝐹(9𝑇|𝐵|𝐴)

yes

12

16/10/2023

4

Jaap-Henk Hoepman //

Key derivation function

n Like a (cryptographic) hash function
● Takes	a	‘significant’	time	to	compute	(to	make	constructing	a	dictionary	
expensive).

n Hashing single phone numbers offers no significant protection
● Small	dictionary	can	be	computed	in	seconds

n But, what about the concatenation of two phone numbers
● NL:	2"#	phonenumbers.
● Input	to	KDF	then	48	bits;	dictionary	2#%~32	TB.
● Assume	averge	customer	hardware	2"&	times	slower	than	attacker	
computing	power.

● If	average	contact	list	contains	2%	(hundreds)	of	contacts,	then	work	for	
attacker	compared	to	work	for	user	is	factor	2#%/(2"&2%) = 2"&	higher.

2023-10-16 // Mutual Contact Discovery 13

13
Jaap-Henk Hoepman //

Analysis

n Correctness
● Yes

n Security
● Server:	can	always	reply	yes	in	
query	phase.

● User:	can	guess	𝐴, 𝐵	such	that	
𝐵 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!,	then	compute	
𝑣!$ 	and	send	it	in	the	
submission	phase.	𝐴	will	query	
this	value	in	the	query	phase	
and	(wrongly)	conclude	𝐵 ∈
𝑜𝑢𝑡!

n Membership privacy
● Server,	user:	can	choose	𝐴	and	
subsequently	guess	𝐵	such	that	
𝐵 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!, and	then	submit	
𝑣!$ 	in	the	query	phase	to	verify	
this	guess.	

n Contact privacy
● Server,	user:	Compute	𝑣!$ 		to	
test	𝐵 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!.

n Limited protection?
● Infeasible	in	general	because	
KDF	limits	number	of	guesses

2023-10-16 // Mutual Contact Discovery 14

14

Jaap-Henk Hoepman //

Analysis (cont.)

n Better than single sided
contact discovery
● Adversary	𝑋	needs	to	guess	a	
contact	of	𝐴	in	order	to	detect	
𝐴 ∈ 𝒰.

● Infeasible	unless	adversary	has	
sufficient	prior	knowledge

● In	particular,	it	is	infeasible	for	
the	server	to	reconstruct	the	
social	graph.

n To improve even further
● Either	autenticate	submissions	or	
queries	(so	that	𝐴	cannot	submit	a	
value	that	isn’t	related	to	itself).

● Or	make	sure	that	submissions	or	
queries	depend	on		a	secret	that	
only	users	themselves	know

n Idea: using certified identifiers
● Messaging	server,	or	from	
underlying	social	graph	(eg	SIM)

2023-10-16 // Mutual Contact Discovery 15

15
Jaap-Henk Hoepman //

A more formal treatment

n We have social graph (𝑽,𝑬)
● Stored	by	clients:	𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! =
{𝐵 ∈ 𝑉 | 𝐴, 𝐵 ∈ 𝐸}

● Split	in	𝑣𝑖𝑠𝑖𝑏𝑙𝑒! + ℎ𝑖𝑑𝑑𝑒𝑛!
● ℎ𝑖𝑑𝑑𝑒𝑛! = ∅	for	honest	A

n Define 𝑨 ⇉ 𝑩 if
● 𝐴 ∈ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒$ ∧ (𝐵 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!)
● Is	only	symmetric	for	honest	users

n Correctness
● 𝐵 ∈ 𝑜𝑢𝑡! if	𝐵 ∈ 𝒰 ∧ 𝐴 ⇉ 𝐵

n Static setting
● Users	and	contacts	are	fixed

n Sender anonymous star
network
● Tor,	or	Apple	Private	Relay

2023-10-16 // Mutual Contact Discovery 16

16

16/10/2023

5

Jaap-Henk Hoepman //

The ideal model

2023-10-16 // Mutual Contact Discovery 17

Trusted	server	𝒯

Member	M

Matching	server	𝒳

Omission	
error	count	𝜖

𝑣𝑖𝑠𝑖𝑏𝑙𝑒# +ℎ𝑖𝑑𝑑𝑒𝑛#

𝑜𝑢𝑡’#

𝑜𝑢𝑡’# ⊆ 𝑜𝑢𝑡#
𝑜𝑢𝑡#\out’# = 𝜖#

M
#

𝜖# = 𝜖

Number	of	(mutual)	
contacts

17
Jaap-Henk Hoepman //

Protocol #2: using a key server

n Definitions
● Let	𝒆:𝔾𝟏×𝔾𝟏 ↦ 𝔾𝟐 be	a	pairing	
function:
– 𝑒 𝑎𝑃, 𝑏𝑄 = 𝑒 𝑃, 𝑄)* 	for	
any	points	P,	Q

● Let	𝐻+: 𝑉 ↦ 𝔾+	be	
cryptographic	hash	function
– Define	𝑃! = 𝐻+(𝑃)	

● Let	s	be	a	secret	of	the	
certificate	authority
– Define	the	certificate	for	A	as	
𝐶 𝐴 = 𝑠𝑃!

● Define	a	token	𝑇!$ =
𝑒(𝐶 𝐴 , 𝑃$)
– Then	𝑇!$ = 𝑇$!
– Only	A	and	B	can	create	it

● Define	another	cryptographic	
hashfunction	𝐻": 𝔾𝟐×𝔾𝟏×
𝔾𝟏 ↦ 𝟎, 𝟏 𝒏

● Let	<	be	a	total	order	over	𝔾+
● Define	𝐻"-(𝑋, 𝑌, 𝑍) =

] 𝐻" 𝑋, 𝑌, 𝑍 𝑖𝑓 𝑌 < 𝑍
𝐻" 𝑋, 𝑍, 𝑌 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

● Then	𝐻"- 𝑋, 𝑌, 𝑍 = 𝐻"-(𝑋, 𝑍, 𝑌)			

2023-10-16 // Mutual Contact Discovery 18

18

Jaap-Henk Hoepman //

Protocol #2: using a key server

2023-10-16 // Mutual Contact Discovery 19

A:C(A)
matching server

B:C(B)

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠"..
B
..

..
A
..
..
..

Messaging
server𝑆

Certificate authority

..
𝐶(𝐴)
𝐶(𝐵)

1. Submission phase

𝐻$%(𝑇!" , 𝑃! , 𝑃")

𝐻$%(𝑇!" , 𝑃" , 𝑃")

𝑇!" = 𝑒 𝐶 𝐴 ,𝑃"
𝑇!" = 𝑇"!

𝐻$% 𝑇!" , 𝑃! , 𝑃" = 𝐻$%(𝑇!" , 𝑃" , 𝑃!)

Add	to	S

19
Jaap-Henk Hoepman //

Protocol #2: using a key server

2023-10-16 // Mutual Contact Discovery 20

A:C(A)
matching server

B:C(B)

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠! 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠"..
B
..

..
A
..
..
..

Messaging
server𝑆

Certificate authority

..
𝐶(𝐴)
𝐶(𝐵)

2. Query phase

𝐻$%(𝑇!" , 𝑃! , 𝑃")

𝐻$%(𝑇!" , 𝑃" , 𝑃")

𝐻$%(𝑇"! , 𝑃" , 𝑃!)

𝐻$%(𝑇"! , 𝑃! , 𝑃!)

𝐻$%(𝑇!" , 𝑃! , 𝑃")

𝐻$%(𝑇!" , 𝑃" , 𝑃")

𝑇!" = 𝑒 𝐶 𝐴 ,𝑃"
𝑇!" = 𝑇"!

𝐻$% 𝑇!" , 𝑃! , 𝑃" = 𝐻$%(𝑇!" , 𝑃" , 𝑃!)

Check	that	𝐻$%(𝑇"! , 𝑃" , 𝑃!) in	 S Check	this	is	addressed	to	B

20

16/10/2023

6

Jaap-Henk Hoepman //

Analysis

n Sketch
● Only	X	knows	𝐶(𝑋)
● So,	only	A	and	B	can	contstruct	𝑇!$,	by	Bilinear	Diffie-Hellman	(BDH)	
problem	

● A	can	pretend	that	B	in	𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!,	but	this	is	modelled	as	if	𝐵 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠!
● 𝑇!$ 	only	sent	as	𝐻"-(𝑇!$, 𝑋, 𝑌),	so	no	other	party		learns	it
● So,	meaningful	𝐻"-(𝑇!$, 𝑋, 𝑌)	can	only	be	constructed	by	A	or	B
● B	adds	A	to	𝑜𝑢𝑡$ only	if	it	receives	𝐻"- 𝑇!$, 𝑃!, 𝑃$, 𝐻"-(𝑇!$, 𝑃$, 𝑃$)	

– which	is/can	only	be	constructed	by	A
● The	server	can	prevent	A	from	adding	B	to	𝑜𝑢𝑡!	by	not	sending	
𝐻"- 𝑇!$, 𝑃!, 𝑃$, 𝐻"-(𝑇!$, 𝑃!, 𝑃!)	but	this	is	modelled	as	𝐴 ∈ ℎ𝑖𝑑𝑑𝑒𝑛$

2023-10-16 // Mutual Contact Discovery 21

21
Jaap-Henk Hoepman //

Generalise to dynamic setting

n Make asynchronous
● Note	how	in	query	phase	
members	submit	the	same	
information	as	in	the	
submission	phase

● Therefore,	omit	submission	
phase

● Members	only	execute	the	
query	phase,	regularly

● Query	tuples	added	to	database
● Responses	sent	when	a	match	is	
detected

n Support deletion
● Add	delete	command,	sending	
same	tuple	as	in	query	
command

● Server	is	supposed	to	honestly	
delete	the	tuple	from	its	
database

2023-10-16 // Mutual Contact Discovery 22

22

Jaap-Henk Hoepman //

Discussion

2023-10-16 // Mutual Contact Discovery 23

[Monty	Python’s	
Argument	Clinic	sketch]

23

