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Composability in cryptography

One would expect that if you wire together “provably secure” protocols you end up
with a secure protocol.

I This is false in general! Standard game-based security notions don’t necessarily
guarantee composability. In fact, many “secure” protocols might not be secure
anymore if several copies are run concurrently.

I QKD and 20(ish) years between first security proofs and composable ones.

I Several frameworks for composability and plenty of work within them, but none
have convinced the whole community.



Real-world ideal-world paradigm

AKA simulation paradigm.

Usual definition: a real protocol P securely realizes the ideal functionality F from the
resource R if for any attack A on P � R there is a simulator S on F such that
(A,P) � R is indistuingishable from S � F by any (e�cient) environment.

“Any bad thing that could happen during the protocol could also happen in the ideal
world.”

Usual ways of making this precise:

I Fixing a concrete low-level formalism for interactive computation (e.g.
UC-security)

I Abstract cryptography and constructive cryptography — close to our work in
spirit but technically di↵erent



N+1th approach

In our work we formalize the simulation paradigm over an arbitrary category (and a
model of attacks). The main result is that protocols secure against a fixed attack
model can be composed sequentially and in parallel. Some benefits:

I simulation-based security definitions are inherently composable, whether the
model of computation is synchronous or not, classical or quantum etc.

I abstract attack models pave way for other kinds of attackers than malicious ones

I di↵erent notions of security (computational, finite-key regimen etc) fit in

I benefits of CT: (i) tools, in particular string diagrams (ii) potential connections to
other fields



Categories via pictures

A category has objects and morphisms between them. We will depict a morphism
f : A ! B by

A

B

f

Special morphisms get special pictures. For plain categories there’s only the identity
morphisms idA : A ! A drawn as

A

A

Morphisms can be composed if the object in the middle matches:

A

C

g � f =

A

B

C

g

f



Categories via pictures

The pictures make the axioms implicit, or alternatively - the axioms are whatever is
needed for the pictures to be unambiguous. Besides associativity, we have left and
right unit laws:

A

B

f
=

A

B

f =

A

B

f

Example

I Sets-with structure and structure-preserving-maps: e.g. sets and functions, vector
spaces and linear maps, topological spaces and cont. maps,

I Any group gives a category with a single object: morphisms correspond to
elements of G and composition is given by multiplication in G

I Any poset (X ,) gives a category: elements of X are the objects, and there’s a
single morphism x ! y i↵ x  y



Monoidal categories via pictures

In a monoidal category one also has parallel composition of objects and morphisms

A ⌦ C

B ⌦ D

f ⌦ g =

A

B

C

D

f g

The monoidal unit is denoted by the empty picture, and boxes can now have arbitrary
amounts of input and output wires (a box with no inputs is called a state):

. . .

. . .

A1

B1

An
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f

f

. . .
A1 An

Examples: (Set,⇥, 1), (VectF,⌦,F)



Symmetry and compact closure via pictures

In a symmetric monoidal category (SMC) one can also cross wires, and only
connectivity matters.

A

A

B

B

In a compact closed category we also have cups and caps, i.e. morphisms

A A⇤ and
A⇤ A

satisfying the snake equations

=

A

A

and =

A⇤

A⇤

This blurs the distinction between inputs and outputs. Eg. (Rel,⇥, 1), (FVectF,⌦,F)



CT in cryptography I: protocols as morphisms

Source: Portmann & Renner (2014) - Cryptographic security of quantum key distribution



CT in cryptography II: reasoning about protocols

Source: Rosulek & Prabhakaran (2008) - Cryptographic Complexity of Multi-Party Computation
Problems



Resource theories

Examples:

I Can these noisy channels be used to simulate a (almost) noiseless channel?

I Is there a LOCC-protocol that transforms this quantum state to that one?

I Can these (possibly non-local) correlations be used to simulate those?

For a category theorist, this is roughly speaking an SMC where you mostly care
whether a transformation A ! B exists or not.



Resource theory of states

In ‘A mathematical theory of resources’

Coecke, Fritz & Spekkens, Information and Computation (2016).

many resource theories are built theories starting from an SMC C equipped with a
(wide) sub-SMC CF of free processes.
One of the constructions – the resource theory of states – can be desribed as follows:
the resources are states of C and the resource conversions x ! y are maps f in CF

such that

x

f

=
y

.



Resource theory of n-partite states

n-partite version: Objects are of the form ((Ai )ni=1
, r : I !

N
Ai ). A map

((Ai )ni=1
, r) ! ((Bi )ni=1

, s) is then a tuple (fi )ni=1
that transforms r to s:

r

. . .
f1 fn

=
s

. . .

We think of this as a resource theory with n parties who try to agree on actions
f1, . . . fn to transform some resource to another one.



Resource theory of maps

We can easily vary the construction to have our resources be arbitary morphisms
f : A ! B ( or f :

Nn
i=1

Ai !
Nn

i=1
Bi in the n-partite case) and our resource

conversions be given by (n-tuples of) “combs”

g

h

built out of free processes.

In general, it su�ces to have a “well-behaved”1 operation R assigining to each object
A the set R(A) of resources of type A and to each f : A ! B a function
R(f ) : R(A) ! R(B) explaining how f transforms resources.

1lax monoidal functor



Security in the running example

Such protocols are not necessarily secure—what if some subset of the parties does
something else instead?
Assume the first k parties are honest and the last n � k parties are dishonest. Then
(f1, . . . fn) is secure if for any a there is a b such that

r

[k] (k, n]

f |[k] a

=
s

[k] (k, n]

b

It su�ces to check this for the initial attack
Nn

k+1
id:

r

[k] (k, n]

f |[k]

=
s

[k] (k, n]

b



Security in the abstract

Usually a resource theory talks only about correct transformations

To add in security:

I need an attack model A that gives for each protocol f a collection A(f ) of
attacks on it, satisfying some axioms.

I security against A: for each attack on the protocol there is an attack on the
target with similar end-results



Security in the abstract II

Definition

An attack model on C gives for each f a collection A(f ) of morphisms in C such that

(i) A(g � f ) = A(g) �A(f ) and

(ii) A(g ⌦ f ) = A(id) � (A(g)⌦A(f ))

For malicuous adversaries we can use identities/wires to get the factorizations

r

[k] (k, n]

g |[k]

f |[k]

a

r t

[k] (k, n]

f |[k] g |[k]

a

(Conjectural): for honest-but-curious adversaries, use the canonical ones that output a
transcript



Composability

Theorem

Protocols secure against an attack model A are closed under composition (� and ⌦).

Proof.

⌦ and � inherited form the ambient category—one just needs to check that they work.
Here’s the key steps for � and ⌦ in the n-partite case with the first k parties honest

r

[k] (k, n]

g |[k]

f |[k]
=

s

[k] (k, n]

g |k a

=

t
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a

b
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=
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(k, n][k]

ba



Security against multiple attack models

Corollary

Protocols secure against A1, . . .Ak form a symmetric monoidal category

Proof.

Symmetric monoidal subcategories are closed under intersection

Example

Fix a family of subsets of [n] parties: protocols secure against each of these subsets
behaving maliciously form an SMC. For instance, in MPC one often studies protocols
secure against at most n/2 or n/3 malicious participants.



OTP: starting resources

Channel from Alice to Bob that leaks everything to Eve:

A

BE

(Note: if instead the message goes via Eve (who may tamper with it), the analysis is
di↵erent)
Shared random key:

BA

Target resource: a channel

A

B

Free building blocks: local (e�cient) computation



Local ingredients for OTP

A group structure on the message space: a multiplication with unit satisfying the
following equations.

= = =

Note that copying and deleting satisfy similar equations

= = =



Rest of the group structure

In addition, multiplication and copying interact:

=

and the map i giving inverses satisfies

i = = i



Uniform randomness

The key being uniformly random is captured by

= =

“Adding uniform noise to a channel gives uniform noise”

For the experts: a Hopf algebra with an integral in a symmetric monoidal category.



The protocol

A

B

B

i

A

E B

Alice adds the key to her message, broadcasts it to Eve and Bob. Eve deletes her part
and Bob adds the inverse of the key to recover the message.



Security of OTP

A

E
B

i (1.)
=

E

A

B

i
(2.)
=

BE

A

i
(3.)
=

BE

A

(4.)
=

E

A

B

(5.)
=

E

A

B

(6.)
=

A

BE

1. Bialgebra. 2. Associativity. 3. Antipode 4. Units 5. Random noise 6. Units.



More on OTP

In other words, anything Eve might learn from the ciphertext she could already
compute without it, so this protocol is indeed a secure transformation against Eve.

Reusing keys is not a secure map key ! key ⌦ key . However, a computationally secure
PRNG will give a computationally secure way of constructing a long shared key from a
short one, depicted by

short

BA

PNRGPNRG

⇡
long

BA

where ⇡ stands for computational indistinguishability.
Composing these two results in the stream cipher, which is secure automatically as a
composite of secure protocols inside our framework.



Extensions of the simple model

The above captures a very particular cryptographic situation:
There is no set-up, i.e., the parties have no free cryptographic primitives or
communication not given by the starting functionality.

I This can be fixed by fixing a class X of free resources and defining general
protocols r ! s as those of the form r ⌦ x ! s with x 2 X .

Security is perfect (i.e. information theoretic) instead of computational. This can be
fixed in two ways:

I replace = with an equivalence relation ⇡ modelling computational
indistinguishability

I Work with a pseudometric, and work with approximately or asymptotically secure
protocols



A no-go theorem for two parties

Let C now be a compact closed category, with modelling a shared communication
channel.

Theorem

For Alice and Bob (one of whom might cheat), if a bipartite functionality r

r

can be realized from a communication channel between them, i.e. from by a secure
protocol, then r satisfies

r

A B

=
r r

f

for some f .



A no-go theorem for two parties

Proof.

Assume a protocol fA ⌦ fB achieving this. Security constraints against each party give
us

fA =
r

sB

and fB =
r

sA

Which gives

r = fA fB = fA fB =
r r

sB sA



A no-go theorem for two parties

Theorem

For Alice and Bob (one of whom might cheat), if a bipartite functionality r can be
realized from a communication channel between them, i.e. from by a secure protocol,
then r satisfies

r =
r r

f

for some f .

Corollary

In the same bipartite setting, (composable) bit commitment and oblivious transfer are
impossible without setup.



Summary

We have a categorical framework where

I composability is guaranteed (also for computational security)

I attack models are general enough to cover various kinds of adversarial behavior
(e.g. colluding vs independent attackers)

I string diagrams can be used to make existing (or new) pictures into rigorous proofs



Further work

I do more composable cryptography in this framework

I explicit computational models, more interesting attack models

I suggestions?



Questions...

?

Broadbent A., MK, “Categorical composable cryptography”, FoSSaCS (2022),
arXiv:2105.05949
Broadbent A., MK, “Categorical composable cryptography: extended version” (2022),
arXiv:2208.13232

See also:

I my talk at Structure meets power workshop: slides, talk

I my talk at the Applied Category Theory conference: slides, talk

https://arxiv.org/abs/2105.05949
https://arxiv.org/abs/2208.13232
https://mysite.science.uottawa.ca/mkarvone/slides/SmP2021.pdf
https://www.youtube.com/watch?v=GDOtMRayfo0
https://mysite.science.uottawa.ca/mkarvone/slides/ACT2021.pdf
https://www.youtube.com/watch?v=koXjeTfyCrk&t=3592s

