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In this talk…
• Zero-knowledge proofs (of knowledge) 

— Understand and use their security guarantees 

• A taste for how they are designed and analysed 
— Provably secure composition 
— Random Oracle Model 

• [Ks 22] Uncover a gap in the literature that was glossed over as 
folklore—turns out to permit a new kind of attack 
Briefly discussion on how we fix it



Quick Disclaimer

• What will be covered: 
Intuitive abstract idea of how to construct composition-safe ZK, 
how our attack works 

• What won’t be touched: 
Formalism of definitions, concrete instantiations, efficiency 
(this is to help understanding, not to hand-wave; please ask if 
something is unclear!)



Composable
Non-interactive

Zero-knowledge Proofs
in the Random Oracle Model



Zero-knowledge Proofs
• Very powerful cryptographic primitive, introduced by 

[Goldwasser Micali Rackoff 85] 

• Intuition: Prover convinces a Verifier of a statement, without 
revealing “why” it’s true. 

- Prover typically needs to use some secret information 

- Verifier obtains no useful information about Prover’s secrets
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• ZK is intuitive: No information about the key should be leaked by the proof 

• But what does it mean to “know” something? 

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍
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Defining Zero-knowledge Proofs

Zero-knowledge Proof: 
“I know    that unlocks    ”

𝖤𝗑𝗍

• ZK is intuitive: No information about the key should be leaked by the proof 

• But what does it mean to “know” something? 

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍



Why is  special?𝖤𝗑𝗍
• Clearly,  must not be an algorithm that just anybody can run 

•  has carefully chosen special privileges: 

- Powerful enough to accomplish extraction 

- Still meaningful as a security claim 

• We will look at a certain type of ZK proof to build intuition

𝖤𝗑𝗍

𝖤𝗑𝗍
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This is a useful 
protocol feature 
to keep in mind
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Rewinding extraction strategies are bad for concurrent composition



Straight-line Extraction

• What special privileges can we grant  that compose 
nicely? 

• One option is a “Common Reference String” 

- i.e. system parameter for which  has a backdoor 

- Well studied, theoretically sound 

- Unsatisfying in practice; trusted generator needed

𝖤𝗑𝗍

𝖤𝗑𝗍
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in the Random Oracle Model

Zero-knowledge Proofs

Random Oracle Model

• Began as a heuristic to analyze protocols that use 
cryptographic hash functions 

• Developed as a methodology to design efficient protocols 
with meaningful provable guarantees 

• Intuition: 

- Cryptographic hashes are complex and highly unstructured 

- Unless you evaluate  from scratch, it looks randomH(x)



Random Oracles as  Privilege𝖤𝗑𝗍
H



Random Oracles as  Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍



Random Oracles as  Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍

Qi



Random Oracles as  Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍

Qi



Random Oracles as  Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍

Qi

Qj



Random Oracles as  Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍

Qi

Qj



Random Oracles as  Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍
Qi Qj



Random Oracles as  Privilege𝖤𝗑𝗍
• Bob “knows” all of the  values queried to  

•  could obtain useful information from  

•  can be obtained without rewinding

{Qi} H

𝖤𝗑𝗍 {Qi}

{Qi}

𝖤𝗑𝗍
{Qi} 𝖤𝗑𝗍

{Qj}

𝖤𝗑𝗍
{Qi}
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Non-interactive
• As the name suggests, a non-interactive proof is a 

single message protocol 

• Useful communication pattern for many applications 

• Common methodology: compile  protocol 

• [Pass 03] gave a simple straight-line extractable 
compiler in the random oracle model

Σ



Fischlin’s Compiler

• [Fischlin 05] gave a much more efficient compiler in the 
same model as [Pass 03] 

• More interesting to analyze, and has remained the state 
of the art for  compilersΣ ↦ 𝖭𝖨𝖹𝖪
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• [Fischlin 05] gave a much more efficient compiler in the 
same model as [Pass 03] 

• More interesting to analyze, and has remained the state 
of the art for  compilersΣ ↦ 𝖭𝖨𝖹𝖪

a e z H(a, e, z) = 0

H



Fischlin’s Transformation

H

• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ



Fischlin’s Transformation

H

Sample -protocol first message ‘ ’Σ a

• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ



Fischlin’s Transformation

H

(a,0,z0)

Sample -protocol first message ‘ ’Σ a

• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ



Fischlin’s Transformation

H

(a,0,z0)
0010101

Sample -protocol first message ‘ ’Σ a

• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ



Fischlin’s Transformation

H

(a,0,z0)

(a, i, zi)

0010101

1001001
⋮

⋮

Sample -protocol first message ‘ ’Σ a

• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ



Fischlin’s Transformation

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ



Output

Fischlin’s Transformation

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ



Output

Fischlin’s Transformation
• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

Soundness: Except with Pr= ,  
is forced to query more than one 

accepting transcript to  

2−ℓ P

H

Completeness:  terminates in poly 
time when  is small, i.e. 

P
ℓ O(log κ)



Output

Fischlin’s Transformation
• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

Soundness: Except with Pr= ,  
is forced to query more than one 

accepting transcript to  

2−ℓ P

H

Completeness:  terminates in poly 
time when  is small, i.e. 

P
ℓ O(log κ)

This gives  the values  
and  as needed, by looking 

at queries made to 

𝖤𝗑𝗍 (e, z)
(e′ , z′ )

H



Problem!

Output

Fischlin’s Transformation
• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

Soundness: Except with Pr= ,  
is forced to query more than one 

accepting transcript to  

2−ℓ P

H

Completeness:  terminates in poly 
time when  is small, i.e. 

P
ℓ O(log κ)

This gives  the values  
and  as needed, by looking 

at queries made to 

𝖤𝗑𝗍 (e, z)
(e′ , z′ )

H



Problem!

Output

Fischlin’s Transformation
• Let    be a random oracleH : {0,1}* ↦ {0,1}ℓ

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

Soundness: Except with Pr= ,  
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accepting transcript to  

2−ℓ P

H
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time when  is small, i.e. 

P
ℓ O(log κ)

Full Soundness: Repeat  timesr

This gives  the values  
and  as needed, by looking 

at queries made to 

𝖤𝗑𝗍 (e, z)
(e′ , z′ )

H



Fischlin vs Pass: Qualitative

• Pass’ compiler works for any Sigma protocol 

• Fischlin’s compiler works for a restricted class of Sigma 
protocols with ‘quasi-unique responses’ 

• Supported by many standard Sigma protocols (eg. DLog), 
but many may not—especially if a statement can have 
multiple witnesses (eg. Pedersen Commitment opening, 
1-of-2 witnesses, etc.)
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Hard:  such that (a, e, z, z′ ) ← 𝒜(𝗉𝗉)

V(a, e, z) = V(a, e, z′ ) = 1
Fixing  fixes (a, e) z

H

(a,0,z0)

(a,0,z′ 0)

(a,0,z′ ′ 0)
⋮

⋮
Prover can produce a proof 
without ever having to try 
more than one challenge

Recall: 
Extractor needs transcripts 
with different challenges

Easy to see how this 
ties into soundness of 

Fischlin’s compiler



Is it really necessary, though?

• Folklore: breaking Sigma protocol abstraction, and 
simply ‘adjusting syntax’ of the extractor is usually 
sufficient to preserve Proof of Knowledge 

• This is demonstrated by the Sigma protocol to prove 
knowledge of one-out-of-two witnesses 
[Cramer Damgård Schoenmakers 94] 

• In [K shelat 22] we formalize this folklore



What about Zero-knowledge?

• Interestingly, Fischlin’s proof of Zero-knowledge also 
depends on quasi-unique responses 

• Unlike extraction, it is not intuitive as to why 
(or whether it’s even necessary) 

• [K shelat 22]: In the absence of unique responses, an explicit 
attack on Witness Indistinguishability (WI)
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Witness Indistinguishability

• The following kind of statement finds many applications:

a
e
z

Zero-knowledge Proof: 
“I know    that unlocks     

OR 
       that unlocks      ”

Witness Indistinguishable: 
No information about which 

key Bob actually has 
(Implied by ZK)

Important note: 
This holds even if both keys 
are actually known to bank 

(like known plaintext security)
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Reveals nothing about Bob’s key in isolation

Attack Strategy

• Imagine we could ask Bob to answer challenge  
…his answer (  or ) would determine which key he has 

• Turns out we can achieve this effect by probing  
(with no special privileges)

e′ 

z′ z*

H

a, e, z
H(a, e, z) = 0

𝖮𝖱 H
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How to Fix it? [Ks 22]
• The probing strategy very strongly depends on being able 

to “re-trace” the Prover’s steps 
- This is enabled by the deterministic nature of Fischlin’s 

compiler 

• We showed that randomizing the order in which the Prover 
tries challenges will fix the problem 

• We strengthen Fischlin’s technique to be good enough to 
apply to most useful Sigma protocols



In Summary
• We saw what non-interactive zero-knowledge proofs of knowledge 

are, how they can be used 

• We got a taste for how they are designed and analysed, and how to 
understand security guarantees like concurrent composition and ROM 

• We uncovered a gap in the literature that was glossed over as folklore, 
and saw how it turned out to be a vulnerability 
(and briefly discussed how it’s now fixed)

eprint.iacr.org/2022/393

Questions? Thanks Eysa Lee for
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Example: Schnorr PoK of Discrete Logarithm

P(X, x) V(X)

a = gr

e ∈ ℤq

z = xe + r

X = gx

r ← ℤq

gz ?= Xe ⋅ a

HVZK : 
 

 

𝒮(e)
z ← ℤq

a = gz/Xe

𝖮𝗎𝗍𝗉𝗎𝗍 (a, z): 
 

𝖤𝗑𝗍(a, (e, z), (e′ , z′ ))
x = (z′ − z)/(e′ − e)

𝖮𝗎𝗍𝗉𝗎𝗍 x
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The Fiat-Shamir Transform
• [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to 

a non-interactive proof, given a suitably chosen hash function

P(X, w) V(X)
a

e = H(X, a)
z

𝖵𝖾𝗋𝗂𝖿𝗒(a, e, z)



• [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to 
a non-interactive proof, given a suitably chosen hash function

P(X, w) V(X)
a e = H(X, a)z,

𝖵𝖾𝗋𝗂𝖿𝗒(a, e, z)

The Fiat-Shamir Transform
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• “Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:
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⋮

e*i

a*m
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Probability of 
success:

p p ≈ p2

* zi, z*i

𝖮𝗎𝗍𝗉𝗎𝗍 (ai, ei, zi) 𝖮𝗎𝗍𝗉𝗎𝗍 (ai, e*i , z*i )

(ai, ei)



Fiat-Shamir Compilation
• Advantages: 

- Simple to describe/implement 

- Very efficient; proving, verification cost exactly the 
same as input -protocol 

• Downsides: 

- Forking strategy does not compose; 
unclear how to prove concurrent security 

- Quadratic security loss

Σ
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• Formalized by [Pass 03] in the Random Oracle Model:

P*

H

Q0

Qi
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Qm
rm

⋮

⋮

P*

H

Q0

Qi

r0

⋮

r*i

Q*m
r*m

⋮

𝖤𝗑𝗍 ((Q0, r0), ⋯(Qm, rm))

Outputs witness w

Probability of 
success:

p p ≈ p

Supports concurrent composition 
[Pass 03]
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… but what does  
look like here?

(a, e, z, z′ )

z(e′ 0, z′ 0), (e′ 1, z′ 1) z′ 

Either , or e0 ≠ e′ 0 e1 ≠ e′ 1

[Cramer Damgård Schoenmakers 94]
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Logical OR-Composition of  ProtocolsΣ

wb ← 𝖤𝗑𝗍(ab, (eb, zb), (e′ b, z′ b))

Quasi-unique responses not strictly necessary for extraction (folklore)
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Tightening Conditions for Extraction

P(X, w) V(X)
a
e
z

-special soundness:2

 such that  w ← 𝖤𝗑𝗍(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

𝖵𝖾𝗋𝗂𝖿𝗒(a, e, z)

[Ks 22]
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Strong

…are we done?


