
Composable Non-interactive Zero-knowledge
Proofs in the Random Oracle Model

Yashvanth Kondi

Based on joint work with abhi shelat (Asiacrypt ’22)

In this talk…
• Zero-knowledge proofs (of knowledge)

— Understand and use their security guarantees

• A taste for how they are designed and analysed
— Provably secure composition
— Random Oracle Model

• [Ks 22] Uncover a gap in the literature that was glossed over as
folklore—turns out to permit a new kind of attack
Briefly discussion on how we fix it

Quick Disclaimer

• What will be covered:
Intuitive abstract idea of how to construct composition-safe ZK,
how our attack works

• What won’t be touched:
Formalism of definitions, concrete instantiations, efficiency
(this is to help understanding, not to hand-wave; please ask if
something is unclear!)

Composable
Non-interactive

Zero-knowledge Proofs
in the Random Oracle Model

Zero-knowledge Proofs
• Very powerful cryptographic primitive, introduced by

[Goldwasser Micali Rackoff 85]

• Intuition: Prover convinces a Verifier of a statement, without
revealing “why” it’s true.

- Prover typically needs to use some secret information

- Verifier obtains no useful information about Prover’s secrets

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

I know

Show me

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

I know

Show me

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

I know

Show me

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

I know

Show me

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

I know

Show me

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

I know

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

I know

Prove it

Zero-knowledge Proofs
• Simple application: proof of possession (key ownership)

Bob

I know

Prove it

Zero-knowledge Proof:
“I know that unlocks ”

Defining Zero-knowledge Proofs
• ZK is intuitive: No information about the key should be leaked by the proof

• But what does it mean to “know” something?

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

Defining Zero-knowledge Proofs
• ZK is intuitive: No information about the key should be leaked by the proof

• But what does it mean to “know” something?

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

Zero-knowledge Proof:
“I know that unlocks ”

Defining Zero-knowledge Proofs

Zero-knowledge Proof:
“I know that unlocks ”

𝖤𝗑𝗍

• ZK is intuitive: No information about the key should be leaked by the proof

• But what does it mean to “know” something?

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

Defining Zero-knowledge Proofs

Zero-knowledge Proof:
“I know that unlocks ”

𝖤𝗑𝗍

• ZK is intuitive: No information about the key should be leaked by the proof

• But what does it mean to “know” something?

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

Why is special?𝖤𝗑𝗍
• Clearly, must not be an algorithm that just anybody can run

• has carefully chosen special privileges:

- Powerful enough to accomplish extraction

- Still meaningful as a security claim

• We will look at a certain type of ZK proof to build intuition

𝖤𝗑𝗍

𝖤𝗑𝗍

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ
[Damgård 02]

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ
[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ
[Damgård 02]

X =

= w

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w)

[Damgård 02]

X =

= w

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)

[Damgård 02]

X =

= w

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)

[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)

[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)

[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)

[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)
a

[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)
a
e

[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)
a
e
z

[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)
Commitment a

e
z

[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)
Commitment a

Challengee
z

[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w) V(X)
Commitment a

Challengee
Response z

[Damgård 02]

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w)
a

[Damgård 02]

𝖤𝗑𝗍
e
z

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w)
a

[Damgård 02]

𝖤𝗑𝗍
e z

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w)
a

[Damgård 02]

𝖤𝗑𝗍
e ze′

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w)
a

[Damgård 02]

𝖤𝗑𝗍
e ze′

z′

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w)
a

[Damgård 02]

𝖤𝗑𝗍
e z
e′ z′

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w)
a

[Damgård 02]

𝖤𝗑𝗍
e z
e′ z′

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w)
a

[Damgård 02]

𝖤𝗑𝗍
e z
e′ z′

Toy example

solve for

z = we + f(a)
z′ = we′ + f(a)

w

X =

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 ProtocolsΣ

P(X, w)
a

[Damgård 02]

𝖤𝗑𝗍
e z
e′ z′

Toy example

solve for

z = we + f(a)
z′ = we′ + f(a)

w

X =

This is a useful
protocol feature
to keep in mind

Composable
Non-interactive

Zero-knowledge Proofs
in the Random Oracle Model

Composable

Non-interactive

?

Composable

Non-interactive

?

Composable

Non-interactive

?

Composable

Non-interactive

?

𝖤𝗑𝗍

Composable

Non-interactive

?

𝖤𝗑𝗍
′ ′

Composable

Non-interactive

?

𝖤𝗑𝗍
′ ′

𝖤𝗑𝗍

Composable

Non-interactive

?

𝖤𝗑𝗍
′ ′

𝖤𝗑𝗍′ ′

Composable

Non-interactive

?

Composable

Non-interactive

?

𝖤𝗑𝗍 𝖤𝗑𝗍

Composable

Non-interactive

?

𝖤𝗑𝗍
𝖤𝗑𝗍

Composable

Non-interactive

?

𝖤𝗑𝗍
𝖤𝗑𝗍

′

Composable

Non-interactive

?

𝖤𝗑𝗍
𝖤𝗑𝗍

′ ′ ′

Composable

Non-interactive

?

𝖤𝗑𝗍
𝖤𝗑𝗍

′ ′ ′

?!

Composable

Non-interactive

?

𝖤𝗑𝗍
𝖤𝗑𝗍

′ ′ ′

?!

Composable

Non-interactive

?

𝖤𝗑𝗍
𝖤𝗑𝗍

′ ′ ′

?!

Rewinding extraction strategies are bad for concurrent composition

Straight-line Extraction

• What special privileges can we grant that compose
nicely?

• One option is a “Common Reference String”

- i.e. system parameter for which has a backdoor

- Well studied, theoretically sound

- Unsatisfying in practice; trusted generator needed

𝖤𝗑𝗍

𝖤𝗑𝗍

in the Random Oracle ModelRandom Oracle Model

Composable
Non-interactive

Zero-knowledge Proofs

in the Random Oracle Model

Zero-knowledge Proofs

Random Oracle Model

H

H : {0,1}* ↦ {0,1}ℓ

in the Random Oracle Model

Zero-knowledge Proofs

Random Oracle Model

H
H : {0,1}* ↦ {0,1}ℓ

in the Random Oracle Model

Zero-knowledge Proofs

Random Oracle Model

• Began as a heuristic to analyze protocols that use
cryptographic hash functions

• Developed as a methodology to design efficient protocols
with meaningful provable guarantees

• Intuition:

- Cryptographic hashes are complex and highly unstructured

- Unless you evaluate from scratch, it looks randomH(x)

Random Oracles as Privilege𝖤𝗑𝗍
H

Random Oracles as Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍

Random Oracles as Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍

Qi

Random Oracles as Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍

Qi

Random Oracles as Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍

Qi

Qj

Random Oracles as Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍

Qi

Qj

Random Oracles as Privilege𝖤𝗑𝗍
H

𝖤𝗑𝗍
Qi Qj

Random Oracles as Privilege𝖤𝗑𝗍
• Bob “knows” all of the values queried to

• could obtain useful information from

• can be obtained without rewinding

{Qi} H

𝖤𝗑𝗍 {Qi}

{Qi}

𝖤𝗑𝗍
{Qi} 𝖤𝗑𝗍

{Qj}

𝖤𝗑𝗍
{Qi}

in the Random Oracle Model

Composable
Non-interactive

Zero-knowledge Proofs

Non-interactive
• As the name suggests, a non-interactive proof is a

single message protocol

• Useful communication pattern for many applications

• Common methodology: compile protocol

• [Pass 03] gave a simple straight-line extractable
compiler in the random oracle model

Σ

Fischlin’s Compiler

• [Fischlin 05] gave a much more efficient compiler in the
same model as [Pass 03]

• More interesting to analyze, and has remained the state
of the art for compilersΣ ↦ 𝖭𝖨𝖹𝖪

a
e
z

Fischlin’s Compiler

• [Fischlin 05] gave a much more efficient compiler in the
same model as [Pass 03]

• More interesting to analyze, and has remained the state
of the art for compilersΣ ↦ 𝖭𝖨𝖹𝖪

a e z

Fischlin’s Compiler

• [Fischlin 05] gave a much more efficient compiler in the
same model as [Pass 03]

• More interesting to analyze, and has remained the state
of the art for compilersΣ ↦ 𝖭𝖨𝖹𝖪

a e z

H

Fischlin’s Compiler

• [Fischlin 05] gave a much more efficient compiler in the
same model as [Pass 03]

• More interesting to analyze, and has remained the state
of the art for compilersΣ ↦ 𝖭𝖨𝖹𝖪

a e z H(a, e, z) = 0

H

Fischlin’s Transformation

H

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Fischlin’s Transformation

H

Sample -protocol first message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Fischlin’s Transformation

H

(a,0,z0)

Sample -protocol first message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Fischlin’s Transformation

H

(a,0,z0)
0010101

Sample -protocol first message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Fischlin’s Transformation

H

(a,0,z0)

(a, i, zi)

0010101

1001001
⋮

⋮

Sample -protocol first message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Fischlin’s Transformation

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Output

Fischlin’s Transformation

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Output

Fischlin’s Transformation
• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

Soundness: Except with Pr= ,
is forced to query more than one

accepting transcript to

2−ℓ P

H

Completeness: terminates in poly
time when is small, i.e.

P
ℓ O(log κ)

Output

Fischlin’s Transformation
• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

Soundness: Except with Pr= ,
is forced to query more than one

accepting transcript to

2−ℓ P

H

Completeness: terminates in poly
time when is small, i.e.

P
ℓ O(log κ)

This gives the values
and as needed, by looking

at queries made to

𝖤𝗑𝗍 (e, z)
(e′ , z′)

H

Problem!

Output

Fischlin’s Transformation
• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

Soundness: Except with Pr= ,
is forced to query more than one

accepting transcript to

2−ℓ P

H

Completeness: terminates in poly
time when is small, i.e.

P
ℓ O(log κ)

This gives the values
and as needed, by looking

at queries made to

𝖤𝗑𝗍 (e, z)
(e′ , z′)

H

Problem!

Output

Fischlin’s Transformation
• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol first message ‘ ’Σ a

Soundness: Except with Pr= ,
is forced to query more than one

accepting transcript to

2−ℓ P

H

Completeness: terminates in poly
time when is small, i.e.

P
ℓ O(log κ)

Full Soundness: Repeat timesr

This gives the values
and as needed, by looking

at queries made to

𝖤𝗑𝗍 (e, z)
(e′ , z′)

H

Fischlin vs Pass: Qualitative

• Pass’ compiler works for any Sigma protocol

• Fischlin’s compiler works for a restricted class of Sigma
protocols with ‘quasi-unique responses’

• Supported by many standard Sigma protocols (eg. DLog),
but many may not—especially if a statement can have
multiple witnesses (eg. Pedersen Commitment opening,
1-of-2 witnesses, etc.)

Quasi-unique Responses [Fischlin 05]
Hard: such that (a, e, z, z′) ← 𝒜(𝗉𝗉)

V(a, e, z) = V(a, e, z′) = 1
Fixing fixes (a, e) z

Quasi-unique Responses [Fischlin 05]
Hard: such that (a, e, z, z′) ← 𝒜(𝗉𝗉)

V(a, e, z) = V(a, e, z′) = 1
Fixing fixes (a, e) z

H

(a,0,z0)

(a, i, zi)

(a, e, z)
⋮

⋮

Quasi-unique Responses [Fischlin 05]
Hard: such that (a, e, z, z′) ← 𝒜(𝗉𝗉)

V(a, e, z) = V(a, e, z′) = 1
Fixing fixes (a, e) z

H

(a,0,z0)

(a,0,z′ 0)

(a,0,z′ ′ 0)
⋮

⋮
Easy to see how this

ties into soundness of
Fischlin’s compiler

Quasi-unique Responses [Fischlin 05]
Hard: such that (a, e, z, z′) ← 𝒜(𝗉𝗉)

V(a, e, z) = V(a, e, z′) = 1
Fixing fixes (a, e) z

H

(a,0,z0)

(a,0,z′ 0)

(a,0,z′ ′ 0)
⋮

⋮
Prover can produce a proof
without ever having to try
more than one challenge

Easy to see how this
ties into soundness of

Fischlin’s compiler

Quasi-unique Responses [Fischlin 05]
Hard: such that (a, e, z, z′) ← 𝒜(𝗉𝗉)

V(a, e, z) = V(a, e, z′) = 1
Fixing fixes (a, e) z

H

(a,0,z0)

(a,0,z′ 0)

(a,0,z′ ′ 0)
⋮

⋮
Prover can produce a proof
without ever having to try
more than one challenge

Recall:
Extractor needs transcripts
with different challenges

Easy to see how this
ties into soundness of

Fischlin’s compiler

Is it really necessary, though?

• Folklore: breaking Sigma protocol abstraction, and
simply ‘adjusting syntax’ of the extractor is usually
sufficient to preserve Proof of Knowledge

• This is demonstrated by the Sigma protocol to prove
knowledge of one-out-of-two witnesses
[Cramer Damgård Schoenmakers 94]

• In [K shelat 22] we formalize this folklore

What about Zero-knowledge?

• Interestingly, Fischlin’s proof of Zero-knowledge also
depends on quasi-unique responses

• Unlike extraction, it is not intuitive as to why
(or whether it’s even necessary)

• [K shelat 22]: In the absence of unique responses, an explicit
attack on Witness Indistinguishability (WI)

 I know either OR

Witness Indistinguishability

• The following kind of statement finds many applications:

a
e
z

 I know either OR

Witness Indistinguishability

• The following kind of statement finds many applications:

a
e
z

Zero-knowledge Proof:
“I know that unlocks

OR
 that unlocks ”

 I know either OR

Witness Indistinguishability

• The following kind of statement finds many applications:

a
e
z

Zero-knowledge Proof:
“I know that unlocks

OR
 that unlocks ”

Witness Indistinguishable:
No information about which

key Bob actually has
(Implied by ZK)

 I know either OR

Witness Indistinguishability

• The following kind of statement finds many applications:

a
e
z

Zero-knowledge Proof:
“I know that unlocks

OR
 that unlocks ”

Witness Indistinguishable:
No information about which

key Bob actually has
(Implied by ZK)

Important note:
This holds even if both keys
are actually known to bank

(like known plaintext security)

Useful Fact
• Some protocols have the following property:

(including some multi-witness ones)
Σ

a
e
z

𝖮𝖱
a

Taken in isolation, no
information about which

key Bob has

Useful Fact
• Some protocols have the following property:

(including some multi-witness ones)
Σ

a
e
z

𝖮𝖱
a

Taken in isolation, no
information about which

key Bob has

Useful Fact
• Some protocols have the following property:

(including some multi-witness ones)
Σ

a
e
z

𝖮𝖱
a

Useful Fact
• Some protocols have the following property:

(including some multi-witness ones)
Σ

a
𝖮𝖱

a e z

(Before Bob’s response)
compute and z′ z*

Useful Fact
• Some protocols have the following property:

(including some multi-witness ones)
Σ

a
𝖮𝖱

a e z

(Before Bob’s response)
compute and z′ z*

Useful Fact
• Some protocols have the following property:

(including some multi-witness ones)
Σ

a
𝖮𝖱

e′

a e z

(Before Bob’s response)
compute and z′ z*

Useful Fact
• Some protocols have the following property:

(including some multi-witness ones)
Σ

a
𝖮𝖱

e′

a e z

z′

(Before Bob’s response)
compute and z′ z*

Useful Fact
• Some protocols have the following property:

(including some multi-witness ones)
Σ

a
𝖮𝖱

e′

a e z

z′

(Before Bob’s response)
compute and z′ z*

Useful Fact
• Some protocols have the following property:

(including some multi-witness ones)
Σ

a
𝖮𝖱

e′

a e z

z*

(Before Bob’s response)
compute and z′ z*

Useful Fact
• Some protocols have the following property:

(including some multi-witness ones)
Σ

a
𝖮𝖱

e′

a e z

z*

Attack Strategy

a, e, z
H(a, e, z) = 0

𝖮𝖱 H

Reveals nothing about Bob’s key in isolation

Attack Strategy

a, e, z
H(a, e, z) = 0

𝖮𝖱 H

Reveals nothing about Bob’s key in isolation

Attack Strategy

• Imagine we could ask Bob to answer challenge
…his answer (or) would determine which key he has

• Turns out we can achieve this effect by probing
(with no special privileges)

e′

z′ z*

H

a, e, z
H(a, e, z) = 0

𝖮𝖱 H

Probing Strategy

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

:
If both possibilities

“agree” at , then they
“disagree” at any

e
e′ ≠ e

z

Common a

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

Common a

Probing Strategy

If both possibilities
“agree” at , then they
“disagree” at any

e
e′ ≠ e

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)

(0, z*0)

Common a

Probing Strategy

If both possibilities
“agree” at , then they
“disagree” at any

e
e′ ≠ e

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

(0, z*0) (1, z*1)

Common a

Probing Strategy

If both possibilities
“agree” at , then they
“disagree” at any

e
e′ ≠ e

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

⋮

(0, z*0) (1, z*1) ⋯

Common a

Probing Strategy

If both possibilities
“agree” at , then they
“disagree” at any

e
e′ ≠ e

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

⋮

(0, z*0) (1, z*1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

Probing Strategy

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

⋮

(0, z*0) (1, z*1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

Probing Strategy

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

⋮

(0, z*0) (1, z*1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

W.h.p., only one
path—

induced by one
of the two keys

—
is plausible

Probing Strategy

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

⋮

(0, z*0) (1, z*1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

Probing Strategy

W.h.p., only one
path—

induced by one
of the two keys

—
is plausible

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

⋮

(0, z*0) (1, z*1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

Probing Strategy

W.h.p., only one
path—

induced by one
of the two keys

—
is plausible

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

⋮

(0, z*0) (1, z*1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

HThis path induces
fresh queries to H

Probing Strategy

W.h.p., only one
path—

induced by one
of the two keys

—
is plausible

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

⋮

(0, z*0) (1, z*1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

HThis path induces
fresh queries to H

Probing Strategy

W.h.p., only one
path—

induced by one
of the two keys

—
is plausible

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

⋮

(0, z*0) (1, z*1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

HThis path induces
fresh queries to H

Probing Strategy

W.h.p., only one
path—

induced by one
of the two keys

—
is plausible

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

e(,)

:

: z

(0, z′ 0)
(1, z′ 1)

⋮

(0, z*0) (1, z*1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

HThis path induces
fresh queries to H

Probing Strategy

W.h.p., only one
path—

induced by one
of the two keys

—
is plausible

Would have
terminated here

How to Fix it? [Ks 22]
• The probing strategy very strongly depends on being able

to “re-trace” the Prover’s steps
- This is enabled by the deterministic nature of Fischlin’s

compiler

• We showed that randomizing the order in which the Prover
tries challenges will fix the problem

• We strengthen Fischlin’s technique to be good enough to
apply to most useful Sigma protocols

In Summary
• We saw what non-interactive zero-knowledge proofs of knowledge

are, how they can be used

• We got a taste for how they are designed and analysed, and how to
understand security guarantees like concurrent composition and ROM

• We uncovered a gap in the literature that was glossed over as folklore,
and saw how it turned out to be a vulnerability
(and briefly discussed how it’s now fixed)

eprint.iacr.org/2022/393

Questions? Thanks Eysa Lee for

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Example: Schnorr PoK of Discrete Logarithm

P(X, x) V(X)X = gx

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Example: Schnorr PoK of Discrete Logarithm

P(X, x) V(X)X = gx

r ← ℤq

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Example: Schnorr PoK of Discrete Logarithm

P(X, x) V(X)

a = gr

X = gx

r ← ℤq

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Example: Schnorr PoK of Discrete Logarithm

P(X, x) V(X)

a = gr

e ∈ ℤq

X = gx

r ← ℤq

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Example: Schnorr PoK of Discrete Logarithm

P(X, x) V(X)

a = gr

e ∈ ℤq

z = xe + r

X = gx

r ← ℤq

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Example: Schnorr PoK of Discrete Logarithm

P(X, x) V(X)

a = gr

e ∈ ℤq

z = xe + r

X = gx

r ← ℤq

gz ?= Xe ⋅ a

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Example: Schnorr PoK of Discrete Logarithm

P(X, x) V(X)

a = gr

e ∈ ℤq

z = xe + r

X = gx

r ← ℤq

gz ?= Xe ⋅ a

:

𝖤𝗑𝗍(a, (e, z), (e′ , z′))
x = (z′ − z)/(e′ − e)

𝖮𝗎𝗍𝗉𝗎𝗍 x

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Example: Schnorr PoK of Discrete Logarithm

P(X, x) V(X)

a = gr

e ∈ ℤq

z = xe + r

X = gx

r ← ℤq

gz ?= Xe ⋅ a

HVZK :

𝒮(e)
z ← ℤq

a = gz/Xe

𝖮𝗎𝗍𝗉𝗎𝗍 (a, z):

𝖤𝗑𝗍(a, (e, z), (e′ , z′))
x = (z′ − z)/(e′ − e)

𝖮𝗎𝗍𝗉𝗎𝗍 x

• [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

The Fiat-Shamir Transform

• [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

P(X, w) V(X)
a
e
z

𝖵𝖾𝗋𝗂𝖿𝗒(a, e, z)

The Fiat-Shamir Transform

The Fiat-Shamir Transform
• [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to

a non-interactive proof, given a suitably chosen hash function

P(X, w) V(X)
a

e = H(X, a)
z

𝖵𝖾𝗋𝗂𝖿𝗒(a, e, z)

• [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

P(X, w) V(X)
a e = H(X, a)z,

𝖵𝖾𝗋𝗂𝖿𝗒(a, e, z)

The Fiat-Shamir Transform

P*

H

a0

ai

e0

⋮
*

Fiat-Shamir: Security

• “Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

P*

H

a0

ai

e0

ei

am
em

⋮

⋮

𝖮𝗎𝗍𝗉𝗎𝗍 (ai, ei, zi)

Fiat-Shamir: Security

• “Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

P*

H

a0

ai

e0

ei

am
em

⋮

⋮

P*

H

a0

ai

e0

⋮
*

𝖮𝗎𝗍𝗉𝗎𝗍 (ai, ei, zi)

Fiat-Shamir: Security

• “Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

P*

H

a0

ai

e0

ei

am
em

⋮

⋮

P*

H

a0

ai

e0

⋮

e*i

a*m
e*m

⋮
*

𝖮𝗎𝗍𝗉𝗎𝗍 (ai, ei, zi)

Fiat-Shamir: Security

• “Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

P*

H

a0

ai

e0

ei

am
em

⋮

⋮

P*

H

a0

ai

e0

⋮

e*i

a*m
e*m

⋮
*

𝖮𝗎𝗍𝗉𝗎𝗍 (ai, ei, zi) 𝖮𝗎𝗍𝗉𝗎𝗍 (ai, e*i , z*i)

Fiat-Shamir: Security

• “Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

P*

H

a0

ai

e0

ei

am
em

⋮

⋮

P*

H

a0

ai

e0

⋮

e*i

a*m
e*m

⋮
Outputs witness w

*

𝖮𝗎𝗍𝗉𝗎𝗍 (ai, ei, zi) 𝖮𝗎𝗍𝗉𝗎𝗍 (ai, e*i , z*i)

𝖤𝗑𝗍
(ai, ei)

zi, z*i

(ai, ei)

Fiat-Shamir: Security

• “Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

P*

H

a0

ai

e0

ei

am
em

⋮

⋮

P*

H

a0

ai

e0

⋮

e*i

a*m
e*m

⋮

𝖤𝗑𝗍
(ai, ei)

Outputs witness w

Probability of
success:

p p ≈ p2

* zi, z*i

𝖮𝗎𝗍𝗉𝗎𝗍 (ai, ei, zi) 𝖮𝗎𝗍𝗉𝗎𝗍 (ai, e*i , z*i)

(ai, ei)

Fiat-Shamir Compilation
• Advantages:

- Simple to describe/implement

- Very efficient; proving, verification cost exactly the
same as input -protocol

• Downsides:

- Forking strategy does not compose;
unclear how to prove concurrent security

- Quadratic security loss

Σ

Straight-line Extraction
• Formalized by [Pass 03] in the Random Oracle Model:

P*

H

Q0

Qi

r0

ri

Qm
rm

⋮

⋮

P*

H

Q0

Qi

r0

⋮

r*i

Q*m
r*m

⋮

𝖤𝗑𝗍 ((Q0, r0), ⋯(Qm, rm))

Outputs witness w

Probability of
success:

p p ≈ p

Straight-line Extraction
• Formalized by [Pass 03] in the Random Oracle Model:

P*

H

Q0

Qi

r0

ri

Qm
rm

⋮

⋮

P*

H

Q0

Qi

r0

⋮

r*i

Q*m
r*m

⋮

𝖤𝗑𝗍 ((Q0, r0), ⋯(Qm, rm))

Outputs witness w

Probability of
success:

p p ≈ p

Supports concurrent composition
[Pass 03]

Logical OR-Composition of ProtocolsΣ
[Cramer Damgård Schoenmakers 94]

P𝖮𝖱(wb) x0, x1 VPΣ(wb)

P𝖮𝖱(wb) x0, x1 VPΣ(wb)

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

P𝖮𝖱(wb) x0, x1 VPΣ(wb) ab

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

P𝖮𝖱(wb) x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

PΣ(wb) ab

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

P𝖮𝖱(wb)

a0, a1

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

PΣ(wb) ab

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

P𝖮𝖱(wb)

e
a0, a1

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

PΣ(wb) ab

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

P𝖮𝖱(wb)

e
a0, a1

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

PΣ(wb) ab

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

P𝖮𝖱(wb)

e
a0, a1

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

PΣ(wb) ab

eb

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

P𝖮𝖱(wb)

e
a0, a1

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

PΣ(wb) ab

eb
zb

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

PΣ(wb) ab

eb
zb

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

Both are
accepting

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

PΣ(wb) ab

eb
zb

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

Both are
accepting

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

PΣ(wb) ab

eb
zb

+

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

Recall:
violates unique responses

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

Recall:
violates unique responses

(a, e, z, z′) ← 𝒜(𝗉𝗉)

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

Recall:
violates unique responses

(a, e, z, z′) ← 𝒜(𝗉𝗉)

… but what does
look like here?

(a, e, z, z′)

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

Recall:
violates unique responses

(a, e, z, z′) ← 𝒜(𝗉𝗉)

… but what does
look like here?

(a, e, z, z′)

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

Recall:
violates unique responses

(a, e, z, z′) ← 𝒜(𝗉𝗉)

… but what does
look like here?

(a, e, z, z′)

z

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

Recall:
violates unique responses

(a, e, z, z′) ← 𝒜(𝗉𝗉)

… but what does
look like here?

(a, e, z, z′)

z(e′ 0, z′ 0), (e′ 1, z′ 1) z′

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

Recall:
violates unique responses

(a, e, z, z′) ← 𝒜(𝗉𝗉)

… but what does
look like here?

(a, e, z, z′)

z(e′ 0, z′ 0), (e′ 1, z′ 1) z′

Either , or e0 ≠ e′ 0 e1 ≠ e′ 1

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

Recall:
violates unique responses

(a, e, z, z′) ← 𝒜(𝗉𝗉)

… but what does
look like here?

(a, e, z, z′)

z(e′ 0, z′ 0), (e′ 1, z′ 1) z′

Either , or e0 ≠ e′ 0 e1 ≠ e′ 1

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

wb ← 𝖤𝗑𝗍(ab, (eb, zb), (e′ b, z′ b))

P𝖮𝖱(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V

(a1−b, e1−b, z1−b) ← 𝖲𝗂𝗆(x1−b)

eb = e − e1−b

Recall:
violates unique responses

(a, e, z, z′) ← 𝒜(𝗉𝗉)

… but what does
look like here?

(a, e, z, z′)

z(e′ 0, z′ 0), (e′ 1, z′ 1) z′

Either , or e0 ≠ e′ 0 e1 ≠ e′ 1

[Cramer Damgård Schoenmakers 94]

Logical OR-Composition of ProtocolsΣ

wb ← 𝖤𝗑𝗍(ab, (eb, zb), (e′ b, z′ b))

Quasi-unique responses not strictly necessary for extraction (folklore)

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Tightening Conditions for Extraction

P(X, w) V(X)
a
e
z

-special soundness:2

 such that w ← 𝖤𝗑𝗍(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

𝖵𝖾𝗋𝗂𝖿𝗒(a, e, z)

[Ks 22]

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Tightening Conditions for Extraction

P(X, w) V(X)
a
e
z

-special soundness:2

 such that w ← 𝖤𝗑𝗍(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

𝖵𝖾𝗋𝗂𝖿𝗒(a, e, z)

[Ks 22]

Strong

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 OR e1 ≠ e2 z1 ≠ z2

Tightening Conditions for Extraction

P(X, w) V(X)
a
e
z

-special soundness:2

 such that w ← 𝖤𝗑𝗍(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

𝖵𝖾𝗋𝗂𝖿𝗒(a, e, z)

[Ks 22]

Strong

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 OR e1 ≠ e2 z1 ≠ z2

Tightening Conditions for Extraction

P(X, w) V(X)
a
e
z

-special soundness:2

 such that w ← 𝖤𝗑𝗍(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

𝖵𝖾𝗋𝗂𝖿𝗒(a, e, z)

[Ks 22]

Strong

…are we done?

