# Composable Non-interactive Zero-knowledge Proofs in the Random Oracle Model 

Yashvanth Kondi



AARHUS<br>UNIVERSITY

Based on joint work with abhi shelat (Asiacrypt '22)

## In this talk...

- Zero-knowledge proofs (of knowledge) - Understand and use their security guarantees
- A taste for how they are designed and analysed
- Provably secure composition
- Random Oracle Model
- [Ks 22] Uncover a gap in the literature that was glossed over as folklore-turns out to permit a new kind of attack Briefly discussion on how we fix it


## Quick Disclaimer

- What will be covered:

Intuitive abstract idea of how to construct composition-safe ZK , how our attack works

- What won't be touched:

Formalism of definitions, concrete instantiations, efficiency (this is to help understanding, not to hand-wave; please ask if something is unclear!)

## Composable

## Non-interactive

## Zero-knowledge Proofs

in the Random Oracle Model

## Zero-knowledge Proofs

- Very powerful cryptographic primitive, introduced by [Goldwasser Micali Rackoff 85]
- Intuition: Prover convinces a Verifier of a statement, without revealing "why" it's true.
- Prover typically needs to use some secret information
- Verifier obtains no useful information about Prover's secrets


## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)



## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)


Bob

## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)



## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)



## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)



## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)



## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)



## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)



## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)



## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)



## Zero-knowledge Proofs

- Simple application: proof of possession (key ownership)



## Defining Zero-knowledge Proofs

- ZK is intuitive: No information about the key should be leaked by the proof
- But what does it mean to "know" something?
- "Proof of Knowledge" is formalized by an "extractor" Ext


## Defining Zero-knowledge Proofs

- ZK is intuitive: No information about the key should be leaked by the proof
- But what does it mean to "know" something?
- "Proof of Knowledge" is formalized by an "extractor" Ext



## Defining Zero-knowledge Proofs

- ZK is intuitive: No information about the key should be leaked by the proof
- But what does it mean to "know" something?
- "Proof of Knowledge" is formalized by an "extractor" Ext



## Defining Zero-knowledge Proofs

- ZK is intuitive: No information about the key should be leaked by the proof
- But what does it mean to "know" something?
- "Proof of Knowledge" is formalized by an "extractor" Ext



## Why is Ext special?

- Clearly, Ext must not be an algorithm that just anybody can run
- Ext has carefully chosen special privileges:
- Powerful enough to accomplish extraction
- Still meaningful as a security claim
- We will look at a certain type of ZK proof to build intuition


## $\Sigma$ Protocols

[Damgård 02]


## $\Sigma$ Protocols

[Damgård 02]


## $\Sigma$ Protocols

[Damgård 02]


## $\Sigma$ Protocols

[Damgård 02]

$$
P(X, w)
$$



## $\Sigma$ Protocols <br> [Damgård 02]



## $\Sigma$ Protocols


[Damgård 02]


## $\Sigma$ Protocols


[Damgård 02]


## $\Sigma$ Protocols


[Damgåd 02]


## $\Sigma$ Protocols


[Damgård 02]


## $\Sigma$ Protocols


[Damgård 02]



## $\Sigma$ Protocols


[Damgård 02]

$\frac{\text { IIII }}{V(X)}$


## $\Sigma$ Protocols


[Damgård 02]

$\frac{\text { IIII }}{V(X)}$


## $\Sigma$ Protocols




## $\Sigma$ Protocols



## $\Sigma$ Protocols



## $\Sigma$ Protocols

[Damgård 02]


Ext

## $\Sigma$ Protocols

[Damgård 02]


## Ext <br> e $z$

## $\Sigma$ Protocols

[Damgård 02]


## Ext $e \quad z$

## $\Sigma$ Protocols

[Damgård 02]


## Ext $e z$

## $\Sigma$ Protocols


[Damgård 02]


$$
\begin{aligned}
& \text { Ext } \\
& e^{\prime} \quad z \\
& e^{\prime} \\
& z^{\prime}
\end{aligned}
$$

## $\Sigma$ Protocols


[Damgård 02]


$$
\begin{aligned}
& \text { Ext } \\
& e \\
& e^{\prime} \\
& e^{\prime} \\
& z^{\prime}
\end{aligned}
$$

## $\Sigma$ Protocols


[Damgård 02]


Toy example
$z=w e+f(a)$
$z^{\prime}=w e^{\prime}+f(a)$ solve for $w$

$$
\begin{array}{ll}
\text { Ext } \\
e & z \\
e^{\prime} & z^{\prime}
\end{array}
$$

## $\Sigma$ Protocols



This is a useful protocol feature to keep in mind
[Damgård 02]


Toy example
$z=w e+f(a)$
$z^{\prime}=w e^{\prime}+f(a)$ solve for $w$

## Ext

 e $z$ $e^{\prime} z^{\prime}$
## Composable

## Non-interactive

Zero-knowledge Proofs
in the Random Oracle Model

## Composable? 8

## Composable? 8



1
8

## Composable?



## Composable?



## Ext

## Composable?



Ext

## Composable?



## Composable?











Rewinding extraction strategies are bad for concurrent composition

## Straight-line Extraction

- What special privileges can we grant Ext that compose nicely?
- One option is a "Common Reference String"
- i.e. system parameter for which Ext has a backdoor
- Well studied, theoretically sound
- Unsatisfying in practice; trusted generator needed


## Composable

Non-interactive

## Zero-knowledge Proofs

in the Random Oracle Model

## Random Oracle Model



$$
H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}
$$



## Random Oracle Model

- Began as a heuristic to analyze protocols that use cryptographic hash functions
- Developed as a methodology to design efficient protocols with meaningful provable guarantees
- Intuition:
- Cryptographic hashes are complex and highly unstructured
- Unless you evaluate $H(x)$ from scratch, it looks random

Random Oracles as Ext Privilege H
 IIII

Random Oracles as Ext Privilege H


Ext

Random Oracles as Ext Privilege


Random Oracles as Ext Privilege


Random Oracles as Ext Privilege


Ext

Random Oracles as Ext Privilege


Ext

Random Oracles as Ext Privilege


Ext
$Q_{i} Q_{j}$

## Random Oracles as Ext Privilege

- Bob "knows" all of the $\left\{Q_{i}\right\}$ values queried to $H$
- Ext could obtain useful information from $\left\{Q_{i}\right\}$
- $\left\{Q_{i}\right\}$ can be obtained without rewinding



## Ext <br> $\left\{Q_{i}\right\}$

Ext
$\left\{Q_{j}\right\}$

## Ext

$\left\{Q_{i}\right\}$

## Composable

## Non-interactive

## Zero-knowledge Proofs

in the Random Oracle Model

## Non-interactive

- As the name suggests, a non-interactive proof is a single message protocol
- Useful communication pattern for many applications
- Common methodology: compile $\Sigma$ protocol
- [Pass 03] gave a simple straight-line extractable compiler in the random oracle model


## Fischlin's Compiler

- [Fischlin 05] gave a much more efficient compiler in the same model as [Pass 03]
- More interesting to analyze, and has remained the state of the art for $\Sigma \mapsto$ NIZK compilers



## Fischlin's Compiler

- [Fischlin 05] gave a much more efficient compiler in the same model as [Pass 03]
- More interesting to analyze, and has remained the state of the art for $\Sigma \mapsto$ NIZK compilers



## Fischlin's Compiler

- [Fischlin 05] gave a much more efficient compiler in the same model as [Pass 03]
- More interesting to analyze, and has remained the state of the art for $\Sigma \mapsto$ NIZK compilers



## Fischlin's Compiler

- [Fischlin 05] gave a much more efficient compiler in the same model as [Pass 03]
- More interesting to analyze, and has remained the state of the art for $\Sigma \mapsto$ NIZK compilers



## Fischlin's Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle



## Fischlin's Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle

Sample $\Sigma$-protocol first message ' $a$ '


## Fischlin’s Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle

Sample $\Sigma$-protocol first message ' $a$ '
$\left(a, 0, z_{0}\right)$


## Fischlin's Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle

Sample $\Sigma$-protocol first message ' $a$ '


## Fischlin's Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle

Sample $\Sigma$-protocol first message ' $a$ '


## Fischlin’s Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle

Sample $\Sigma$-protocol first message ' $a$ '


## Fischlin’s Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle

Sample $\Sigma$-protocol first message ' $a$ '


## Output

## Fischlin's Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle

Sample $\Sigma$-protocol first message ' $a$ '


Soundness: Except with $\mathrm{Pr}=2^{-\ell}, P$ is forced to query more than one accepting transcript to $H$

Completeness: $P$ terminates in poly time when $\ell$ is small, i.e. $O(\log \kappa)$

## Output

## Fischlin's Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle

Sample $\Sigma$-protocol first message ' $a$ '

This gives Ext the values ( $e, z$ ) and ( $e^{\prime}, z^{\prime}$ ) as needed, by looking at queries made to $H$


Soundness: Except with $\operatorname{Pr}=2^{-\ell}, P$ is forced to query more than one accepting transcript to $H$

Completeness: $P$ terminates in poly time when $\ell$ is small, i.e. $O(\log \kappa)$

## Output

## Fischlin's Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle

Sample $\Sigma$-protocol first message ' $a$ '

This gives Ext the values ( $e, z$ ) and ( $e^{\prime}, z^{\prime}$ ) as needed, by looking at queries made to $H$


Soundness: Except with $\operatorname{Pr}=2^{-\ell}, P$ is forced to query more than one accepting transcript to $H$

Completeness: $P$ terminates in poly time when $\ell$ is small, i.e. $O(\log \kappa)$

Problem!

## Fischlin's Transformation

- Let $H:\{0,1\}^{*} \mapsto\{0,1\}^{\ell}$ be a random oracle

Sample $\Sigma$-protocol first message ' $a$ '

This gives Ext the values ( $e, z$ ) and ( $e^{\prime}, z^{\prime}$ ) as needed, by looking at queries made to $H$


## Output

Soundness: Except with $\operatorname{Pr}=2^{-\ell}, P$ is forced to query more than one accepting transcript to $H$

Completeness: $P$ terminates in poly time when $\ell$ is small, i.e. $O(\log \kappa)$

## Problem!

Full Soundness: Repeat $r$ times

## Fischlin vs Pass: Qualitative

- Pass' compiler works for any Sigma protocol
- Fischlin's compiler works for a restricted class of Sigma protocols with 'quasi-unique responses'
- Supported by many standard Sigma protocols (eg. DLog), but many may not-especially if a statement can have multiple witnesses (eg. Pedersen Commitment opening, 1 -of-2 witnesses, etc.)


## Quasi-unique Responses [Fischlin 05]

Hard: $\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp})$ such that $V(a, e, z)=V\left(a, e, z^{\prime}\right)=1$

Fixing $(a, e)$ fixes $z$

## Quasi-unique Responses [Fischlin 05]

Hard: $\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp})$ such that $V(a, e, z)=V\left(a, e, z^{\prime}\right)=1$

Fixing $(a, e)$ fixes $z$


## Quasi-unique Responses [Fischlin 05]

Hard: $\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp})$ such that $V(a, e, z)=V\left(a, e, z^{\prime}\right)=1$

Fixing $(a, e)$ fixes $z$

Easy to see how this ties into soundness of
Fischlin's compiler


## Quasi-unique Responses [Fischlin 05]

Hard: $\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp})$ such that $V(a, e, z)=V\left(a, e, z^{\prime}\right)=1$

Fixing $(a, e)$ fixes $z$

Easy to see how this ties into soundness of
Fischlin's compiler


Prover can produce a proof without ever having to try more than one challenge

## Quasi-unique Responses [Fischlin 05]

Hard: $\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp})$ such that $V(a, e, z)=V\left(a, e, z^{\prime}\right)=1$

Fixing $(a, e)$ fixes $z$

Easy to see how this ties into soundness of
Fischlin's compiler


Prover can produce a proof without ever having to try more than one challenge

Recall:
Extractor needs transcripts with different challenges

## Is it really necessary, though?

- Folklore: breaking Sigma protocol abstraction, and simply 'adjusting syntax' of the extractor is usually sufficient to preserve Proof of Knowledge
- This is demonstrated by the Sigma protocol to prove knowledge of one-out-of-two witnesses [Cramer Damgård Schoenmakers 94]
- In [K shelat 22] we formalize this folklore


## What about Zero-knowledge?

- Interestingly, Fischlin's proof of Zero-knowledge also depends on quasi-unique responses
- Unlike extraction, it is not intuitive as to why (or whether it's even necessary)
- [K shelat 22]: In the absence of unique responses, an explicit attack on Witness Indistinguishability (WI)


## Witness Indistinguishability

- The following kind of statement finds many applications:



## Witness Indistinguishability

- The following kind of statement finds many applications:



## Witness Indistinguishability

- The following kind of statement finds many applications:



## Witness Indistinguishability

- The following kind of statement finds many applications:


Witness Indistinguishable:
No information about which key Bob actually has
(Implied by ZK)

## Important note:

This holds even if both keys are actually known to bank (like known plaintext security)

## Useful Fact

- Some $\Sigma$ protocols have the following property: (including some multi-witness ones)



## Useful Fact

- Some $\Sigma$ protocols have the following property: (including some multi-witness ones)



## Useful Fact

- Some $\Sigma$ protocols have the following property: (including some multi-witness ones)



## Useful Fact

- Some $\Sigma$ protocols have the following property: (including some multi-witness ones)

aez


## Useful Fact

- Some $\Sigma$ protocols have the following property: (including some multi-witness ones)



## Useful Fact

- Some $\Sigma$ protocols have the following property: (including some multi-witness ones)


(Before Bob's response) compute $z^{\prime}$ and $z^{*}$


## Useful Fact

- Some $\Sigma$ protocols have the following property: (including some multi-witness ones)


(Before Bob's response) compute $z^{\prime}$ and $z^{*}$


## Useful Fact

- Some $\Sigma$ protocols have the following property: (including some multi-witness ones)


(Before Bob's response) compute $z^{\prime}$ and $z^{*}$


## Useful Fact

- Some $\Sigma$ protocols have the following property: (including some multi-witness ones)



## Useful Fact

- Some $\Sigma$ protocols have the following property: (including some multi-witness ones)



## Attack Strategy



## Attack Strategy



## Attack Strategy



Reveals nothing about Bob's key in isolation

$$
H(a, e, z)=0
$$

- Imagine we could ask Bob to answer challenge $e^{\prime}$ ...his answer ( $z^{\prime}$ or $z^{*}$ ) would determine which key he has
- Turns out we can achieve this effect by probing $H$ (with no special privileges)


## Probing Strategy



If both possibilities "agree" at $e$, then they "disagree" at any $e^{\prime} \neq e$

## Probing Strategy



## Common $a$

If both possibilities "agree" at $e$, then they "disagree" at any $e^{\prime} \neq e$

$$
(e, z)
$$

## Probing Strategy

## Common $a$

If both possibilities "agree" at $e$, then they "disagree" at any $e^{\prime} \neq e$
$\left(0, z_{0}^{*}\right)$
$(e, z)$

## Probing Strategy

## Common $a$

If both possibilities "agree" at $e$, then they "disagree" at any $e^{\prime} \neq e$

$$
\left(0, z_{0}^{*}\right)\left(1, z_{1}^{*}\right)
$$

$$
(e, z)
$$

## Probing Strategy



## Probing Strategy

Given ( $a, e, z$ ) produced by
Fischlin's compiler, we can test which path is "plausible"


## Probing Strategy

Given ( $a, e, z$ ) produced by
Fischlin's compiler, we can test which path is "plausible"


## Probing Strategy

Given ( $a, e, z$ ) produced by Fischlin's compiler, we can test which path is "plausible"


## Probing Strategy

Given ( $a, e, z$ ) produced by Fischlin's compiler, we can test which path is "plausible"

$:\left(0, z_{0}^{*}\right)$
$\left(1, z_{1}^{*}\right)$

W.h.p., only one pathinduced by one of the two keys
is plausible

## Probing Strategy

Given ( $a, e, z$ ) produced by Fischlin's compiler, we can test which path is "plausible"

$:\left(0, z_{0}^{*}\right)$
$\left(1, z_{1}^{*}\right)$

W.h.p., only one pathinduced by one of the two keys
is plausible

## Probing Strategy

Given ( $a, e, z$ ) produced by Fischlin's compiler, we can test which path is "plausible"
This path induces
fresh queries to $H$
$:\left(0, z_{0}^{*}\right)\left(1, z_{1}^{*}\right) \cdots(e, z)$

## Probing Strategy

Given ( $a, e, z$ ) produced by Fischlin's compiler, we can test which path is "plausible"
This path induces
fresh queries to $H$
$:\left(0, z_{0}^{*}\right)\left(1, z_{1}^{*}\right) \cdots(e, z)$

## Probing Strategy

Given ( $a, e, z$ ) produced by Fischlin's compiler, we can test which path is "plausible"
This path induces
fresh queries to $H$
$(x)$
$:\left(0, z_{0}^{*}\right)$
$\left(1, z_{1}^{*}\right) \cdots \quad(e, z)$
is plausible

## Probing Strategy

Given ( $a, e, z$ ) produced by Fischlin's compiler, we can test which path is "plausible"

This path induces fresh queries to $H$

Would have terminated here

W.h.p., only one pathinduced by one of the two keys
is plausible

## How to Fix it? [Ks 22]

- The probing strategy very strongly depends on being able to "re-trace" the Prover's steps
- This is enabled by the deterministic nature of Fischlin's compiler
- We showed that randomizing the order in which the Prover tries challenges will fix the problem
- We strengthen Fischlin's technique to be good enough to apply to most useful Sigma protocols


## In Summary

- We saw what non-interactive zero-knowledge proofs of knowledge are, how they can be used
- We got a taste for how they are designed and analysed, and how to understand security guarantees like concurrent composition and ROM
- We uncovered a gap in the literature that was glossed over as folklore, and saw how it turned out to be a vulnerability (and briefly discussed how it's now fixed)


## Questions?

## Example: Schnorr PoK of Discrete Logarithm



$$
X=g^{x}
$$



## Example: Schnorr PoK of Discrete Logarithm

$$
r \leftarrow \mathbb{Z}_{q}
$$

$$
X=g^{x}
$$

$$
V(X)
$$

## Example: Schnorr PoK of Discrete Logarithm

$$
r \leftarrow \mathbb{Z}_{q}
$$

$$
X=g^{x}
$$

$$
V(X)
$$

$$
a=g^{r}
$$

## Example: Schnorr PoK of Discrete Logarithm

$$
r \leftarrow \mathbb{Z}_{q}
$$

$$
X=g^{x}
$$

$$
V(X)
$$

$$
\xrightarrow{a=g^{r}}
$$

$$
e \in \mathbb{Z}_{q}
$$

## Example: Schnorr PoK of Discrete Logarithm



## Example: Schnorr PoK of Discrete Logarithm


$P(X, x)$
$X=g^{x}$ $V(X)$
$r \leftarrow \mathbb{Z}_{q}$

$e \in \mathbb{Z}_{q}$
$\xrightarrow{z=x e+r}$

$$
g^{z} \stackrel{?}{=} X^{e} \cdot a
$$

## Example: Schnorr PoK of Discrete Logarithm


$P(X, x)$
$X=g^{x}$
$V(X)$

$$
r \leftarrow \mathbb{Z}_{q}
$$



## $\operatorname{Ext}\left(a,(e, z),\left(e^{\prime}, z^{\prime}\right)\right):$ $x=\left(z^{\prime}-z\right) /\left(e^{\prime}-e\right)$ <br> Output $x$

$$
\xrightarrow{z=x e+r} \quad g^{z} \stackrel{?}{=} X^{e} \cdot a
$$

## Example: Schnorr PoK of Discrete Logarithm


$P(X, x)$
$r \leftarrow \mathbb{Z}_{q}$
$\operatorname{Ext}\left(a,(e, z),\left(e^{\prime}, z^{\prime}\right)\right):$
$x=\left(z^{\prime}-z\right) /\left(e^{\prime}-e\right)$
Output $x$

$$
X=g^{x}
$$



$$
\xrightarrow{z=x e+r}
$$

$$
g^{z} \stackrel{?}{=} X^{e} \cdot a
$$

$V(X)$

## HVZK $\mathcal{S}(e):$

$$
\begin{gathered}
z \leftarrow \mathbb{Z}_{q} \\
a=g^{z} / X^{e} \\
\text { Output }(a, z)
\end{gathered}
$$

## The Fiat-Shamir Transform

- [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to a non-interactive proof, given a suitably chosen hash function


## The Fiat-Shamir Transform

- [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to a non-interactive proof, given a suitably chosen hash function

$\operatorname{Verify}(a, e, z)$


## The Fiat-Shamir Transform

- [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to a non-interactive proof, given a suitably chosen hash function



## The Fiat-Shamir Transform

- [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to a non-interactive proof, given a suitably chosen hash function


$$
\begin{aligned}
& e=H(X, a) \\
& \text { Verify }(a, e, z)
\end{aligned}
$$

## Fiat-Shamir: Security

- "Forking" extraction strategy in Random Oracle Model [Pointcheval Stern 96]:


Output $\left(a_{i}, e_{i}, z_{i}\right)$

## Fiat-Shamir: Security

- "Forking" extraction strategy in Random Oracle Model [Pointcheval Stern 96]:


Output $\left(a_{i}, e_{i}, z_{i}\right)$

## Fiat-Shamir: Security

- "Forking" extraction strategy in Random Oracle Model [Pointcheval Stern 96]:


Output $\left(a_{i}, e_{i}, z_{i}\right)$

## Fiat-Shamir: Security

- "Forking" extraction strategy in Random Oracle Model [Pointcheval Stern 96]:


Output $\left(a_{i}, e_{i}, z_{i}\right)$


Output $\left(a_{i}, e_{i}^{*}, z_{i}^{*}\right)$

## Fiat-Shamir: Security

- "Forking" extraction strategy in Random Oracle Model [Pointcheval Stern 96]:


Output $\left(a_{i}, e_{i}, z_{i}\right)$


Output $\left(a_{i}, e_{i}^{*}, z_{i}^{*}\right)$
$\operatorname{Ext}\binom{\left(a_{i}, e_{i}\right)\left(a_{i}, e_{i}\right)}{z_{i}, z_{i}^{*}}$

Outputs witness $w$

## Fiat-Shamir: Security

- "Forking" extraction strategy in Random Oracle Model [Pointcheval Stern 96]:


Output $\left(a_{i}, e_{i}, z_{i}\right)$


Output $\left(a_{i}, e_{i}^{*}, z_{i}^{*}\right)$

## Fiat-Shamir Compilation

- Advantages:
- Simple to describe/implement
- Very efficient; proving, verification cost exactly the same as input $\Sigma$-protocol
- Downsides:
- Forking strategy does not compose; unclear how to prove concurrent security
- Quadratic security loss


## Straight-line Extraction

- Formalized by [Pass 03] in the Random Oracle Model:


$$
\operatorname{Ext}\left(\left(Q_{0}, r_{0}\right), \cdots\left(Q_{m}, r_{m}\right)\right)
$$

Outputs witness $w$

Probability of success:

$$
p
$$

$\approx p$

## Straight-line Extraction

- Formalized by [Pass 03] in the Random Oracle Model:


Probability of success:

$$
p
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1} \quad V
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
P_{\Sigma}\left(w_{b}\right) \quad P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
P_{\Sigma}\left(w_{b}\right) \quad P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1}
$$



## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\left.\xrightarrow\left[{P_{\Sigma}\left(w_{b}\right) \xrightarrow{\left.a_{b-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{sim}\left(x_{1-b}\right)} \quad P_{\mathrm{OR}}\left(w_{b}\right.}\right)\right]{x_{0}, x_{1}}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
P_{\Sigma}\left(w_{b}\right) \quad P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1}
$$

$$
\left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right)
$$



## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
P_{\Sigma}\left(w_{b}\right) \quad P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1}
$$

$$
\left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right)
$$



## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{aligned}
& P_{\Sigma}\left(w_{b}\right) \quad P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1} \\
& \left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& \xrightarrow{a_{0}, a_{1}} \\
& e_{b}=e-e_{1-b}
\end{aligned}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
P_{\Sigma}\left(w_{b}\right) \quad P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1}
$$

$$
\left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right)
$$



$$
e_{b}=e-e_{1-b}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{aligned}
& P_{\Sigma}\left(w_{b}\right) \quad P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1} \\
& \left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& \xrightarrow{a_{0}, a_{1}} \\
& \stackrel{e_{b}}{\stackrel{z_{b}}{\longleftrightarrow}} \\
& e_{b}=e-e_{1-b}
\end{aligned}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{aligned}
& P_{\Sigma}\left(w_{b}\right) \quad P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1} \\
& \left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& \xrightarrow{a_{0}, a_{1}} \\
& \stackrel{e_{b}}{\stackrel{z_{b}}{\longleftrightarrow}} \\
& e_{b}=e-e_{1-b} \\
& \xrightarrow{\left(e_{0}, z_{0}\right),\left(e_{1}, z_{1}\right)}
\end{aligned}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{aligned}
& P_{\Sigma}\left(w_{b}\right) \quad P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1} \\
& \left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& \xrightarrow{a_{0}, a_{1}} \\
& e_{b}=e-e_{1-b} \\
& \text { Both are } \\
& \xrightarrow{\left(e_{0}, z_{0}\right),\left(e_{1}, z_{1}\right)} \text { accepting }
\end{aligned}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{aligned}
& P_{\Sigma}\left(w_{b}\right) \quad P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1} \\
& \left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& \xrightarrow{a_{0}, a_{1}} \\
& e_{b}=e-e_{1-b} \\
& \text { Both are } \\
& \text { accepting }
\end{aligned}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{array}{ccc}
P_{\mathrm{OR}}\left(w_{b}\right) & x_{0}, x_{1} & V \\
\left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) & \begin{array}{l}
a_{0}, a_{1} \\
e_{b}=e-e_{1-b}
\end{array} & \begin{array}{l}
\text { Recall: }\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp}) \\
\text { violates unique responses }
\end{array} \\
& \xrightarrow{\left(e_{0}, z_{0}\right),\left(e_{1}, z_{1}\right)}
\end{array}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{aligned}
& P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1} \\
& \left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& \xrightarrow{a_{0}, a_{1}} \\
& e_{b}=e-e_{1-b} \\
& \text { Recall: }\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp}) \\
& \text { violates unique responses } \\
& \ldots \text { but what does ( } a, e, z, z^{\prime} \text { ) } \\
& \text { look like here? } \\
& \xrightarrow{\left(e_{0}, z_{0}\right),\left(e_{1}, z_{1}\right)}
\end{aligned}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{aligned}
& P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1} \\
& \left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& \xrightarrow{a_{0}, a_{1}} \\
& e_{b}=e-e_{1-b} \\
& \text { Recall: }\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp}) \\
& \text { violates unique responses } \\
& \ldots \text { but what does }\left(a, e, z, z^{\prime}\right) \\
& \text { look like here? } \\
& \left(e_{0}, z_{0}\right),\left(e_{1}, z_{1}\right)
\end{aligned}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{array}{cc|c}
P_{\mathrm{OR}}\left(w_{b}\right) & x_{0}, x_{1} & V \\
\left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) & a_{0}, a_{1} \\
e_{b}=e-e_{1-b} & e & \begin{array}{c}
\text { (.) but what does }\left(a, e, z, z^{\prime}\right) \\
\text { look like here? }
\end{array} \\
\begin{array}{c}
\text { Recall: }\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp}) \\
\text { violates unique responses }
\end{array} \\
\begin{array}{c}
z\left(e_{0}, z_{0}\right),\left(e_{1}, z_{1}\right)
\end{array}
\end{array}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{aligned}
& P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1} \\
& \left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& \xrightarrow{a_{0}, a_{1}} \\
& e_{b}=e-e_{1-b} \\
& \text { Recall: }\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp}) \\
& \text { violates unique responses } \\
& \ldots \text { but what does }\left(a, e, z, z^{\prime}\right) \\
& \text { look like here? } \\
& z\left(e_{0}, z_{0}\right),\left(e_{1}, z_{1}\right)
\end{aligned}
$$

## Logical OR-Composition of $\Sigma$ Protocols

[Cramer Damgård Schoenmakers 94]

$$
\begin{aligned}
& P_{\mathrm{OR}}\left(w_{b}\right) \quad x_{0}, x_{1} \\
& \left(a_{1-b}, e_{1-b}, z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& \xrightarrow{a_{0}, a_{1}} \\
& e_{b}=e-e_{1-b} \\
& \xrightarrow{\left(e_{0}^{\prime}, z_{0}^{\prime}\right),\left(e_{1}^{\prime}, z_{1}^{\prime}\right)} z^{\prime} \\
& \text { Recall: }(a, e, z, z) \leftarrow \mathscr{A}(\mathrm{pp}) \\
& \text { violates unique responses } \\
& \ldots \text { but what does }\left(a, e, z, z^{\prime}\right) \\
& \text { look like here? } \\
& z\left(e_{0}, z_{0}\right),\left(e_{1}, z_{1}\right) \\
& \text { Either } e_{0} \neq e_{0}^{\prime} \text {, or } e_{1} \neq e_{1}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Logical OR-Composition of } \Sigma \text { Protocols } \\
& \text { [Cramer Damgård Schoenmakers 94] } \\
& \left.z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& e-e_{1-b} \\
& \text { Recall: }\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp}) \\
& \text { violates unique responses } \\
& \ldots \text { but what does }\left(a, e, z, z^{\prime}\right) \\
& \text { look like here? } \\
& \xrightarrow{\left(e_{0}^{\prime}, z_{0}^{\prime}\right),\left(e_{1}^{\prime}, z_{1}^{\prime}\right)} z^{\prime} \begin{array}{l}
z\left(e_{0}, z_{0}\right),\left(e_{1}, z_{1}\right) \\
\text { Either } e_{0} \neq e_{0}^{\prime} \text { or } e_{1} \neq
\end{array} \\
& \text { Either } e_{0} \neq e_{0}^{\prime} \text {, or } e_{1} \neq e_{1}^{\prime} \\
& w_{b} \leftarrow \operatorname{Ext}\left(a_{b},\left(e_{b}, z_{b}\right),\left(e_{b}^{\prime}, z_{b}^{\prime}\right)\right)
\end{aligned}
$$

# Logical OR-Composition of $\Sigma$ Protocols <br> [Cramer Damgård Schoenmakers 94] 

$$
\begin{aligned}
& \left.z_{1-b}\right) \leftarrow \operatorname{Sim}\left(x_{1-b}\right) \\
& \text { Recall: }\left(a, e, z, z^{\prime}\right) \leftarrow \mathscr{A}(\mathrm{pp}) \\
& \text { violates unique responses } \\
& \ldots \text { but what does }\left(a, e, z, z^{\prime}\right) \\
& \text { look like here? } \\
& z\left(e_{0}, z_{0}\right),\left(e_{1}, z_{1}\right) \\
& \text { Either } e_{0} \neq e_{0}^{\prime} \text {, or } e_{1} \neq e_{1}^{\prime} \\
& w_{b} \leftarrow \operatorname{Ext}\left(a_{b},\left(e_{b}, z_{b}\right),\left(e_{b}^{\prime}, z_{b}^{\prime}\right)\right)
\end{aligned}
$$

Quasi-unique responses not strictly necessary for extraction
(folklore)

## Tightening Conditions for Extraction


[Ks 22]

$\operatorname{Verify}(a, e, z)$
2-special soundness:
$w \leftarrow \operatorname{Ext}\left(X, a,\left(e_{1}, z_{1}\right),\left(e_{2}, z_{2}\right)\right)$ such that $R(X, w)=1$

## Tightening Conditions for Extraction

[Ks 22]

$\operatorname{Verify}(a, e, z)$
Strong 2 -special soundness:
$w \leftarrow \operatorname{Ext}\left(X, a,\left(e_{1}, z_{1}\right),\left(e_{2}, z_{2}\right)\right)$ such that $R(X, w)=1$

## Tightening Conditions for Extraction

[Ks 22]

$\operatorname{Verify}(a, e, z)$
Strong 2 -special soundness:

$w \leftarrow \operatorname{Ext}\left(X, a,\left(e_{1}, z_{1}\right),\left(e_{2}, z_{2}\right)\right)$ such that $R(X, w)=1$

$$
e_{1} \neq e_{2} \quad \text { OR } \quad z_{1} \neq z_{2}
$$

## Tightening Conditions for Extraction

[Ks 22]

$\operatorname{Verify}(a, e, z)$
Strong 2 -special soundness:

$w \leftarrow \operatorname{Ext}\left(X, a,\left(e_{1}, z_{1}\right),\left(e_{2}, z_{2}\right)\right)$ such that $R(X, w)=1$

$$
e_{1} \neq e_{2} \quad \text { OR } \quad z_{1} \neq z_{2}
$$

