
Programming With Information Flow-Control

Yannick Zakowski

September 3, 2012

Internship report, Magistère Informatique et Télécommunication, ENS Cachan/Rennes and
University of Rennes 1

Internship performed from the 15th of May 2012 to the 25th of August 2012 in the University of
Chalmers.

Supervisors : David Sands, Niklas Broberg, Bart van Delft.

Chalmers, Göteborg University.

Abstract

We informally introduce here the information flow-control domain. We then present two
theoretical layouts for developping programming language with information flow-control. The
approach is semantic-based and allows programs to be statically type-checked. We then consider
its practical use, through the so-called Paragon language, extending Java in a user-friendly way.
We’ll be especially intersted in issues about its compiler, written in Haskell. Specifically, we’ll
take a close look at both the problem of infering non-specified policies, and the performance of
a null-pointer analysis.

Keywords: Computer security, information flow-control, security-type system, implemen-
tation, paragon.

1



Introduction

Information security, as an economically and military sensible field, has been widely studied
and developped. But it certainly is a vast domain, and one can think of it as being roughly
partitioned in three big pictures. In order to illustrate it, let’s draw a parallel with some highly
confidential military intelligence and think of our expectations about its protection.

Obviously, the intelligence can’t be readen by any non-expressively authorized person, and
the guards will make it sure to stand! Tranposed to computer science, this leads to the access
control field, which is well known and dealt with both academically and industrially. Its purpose
is security at the system border.

Now and then, the intelligence may have to be communicated to an other base, and it must be
ensured that it can’t be intercepted nor modified! It obviously is the very object of encryption,
dealing with security outside of the system.

But there remains a security issue, so obvious in the military case that one can easily miss it:
what about all these expensive measures if the general, legitimately working on the intelligence,
makes a draft of which he then casually gets rid in the main hall? This is all the point of
information flow-control, ensuring security inside the system.

If the first two fields are quite old, the consciousness of the importance of the last issue, and
its understanding, have been developped more recently. Especially, there are very few prototypes
which could be considered in an industrial context. Niklas Broberg, in his thesis [7], has not only
developped a new brillant approach, defining a powerful semantic based language, to specify the
concepts underlying a program secured from a information flow-control point of view. He also
has put it in practice by extending Java in order to obtain an actual programming language.

The object of this document is to introduce the mechanism behind this new language and
expose my work realized on its compiler in order to address two specific subproblems.

The report is organized as follow: in a first section, we introduce informally the information
flow-control issue; the second section presents FlowLocks, the first semantic based language de-
velopped by Broberg; the third one covers its extension, ParaLocks; the last section is dedicated
to Paragon, and focus on my personal work by addressing both the policy inference issue and
the null-pointer analysis topic.

1 Information Flow-Control

Speaking of information flow-control assumes that your system possesses different channels,
which can be physically accessed by different entities. Therefore, the successive values taken by
some variables will be readable by anyone, while others will remain secret for most. Supposing
that we quite naturally want to use the first one to store our sensitive information, our purpose
is to conceive a programming language in which one no information about a channel someone
don’t have access to can be infered by observing the other ones.

In order to give a feeling of how to put it in practice, let’s consider the elementary case of
two variables h, containing sensible information, and l, whose successive taken values are public.
Figure 1 presents some programs that we would like to forbid.1.

Assuming that the source code is freely available, you quite obviously do not want to allow
the value of h to be assigned to l. We therefore want an assigment to be allowed if and only if
the variable on the left-hand side is more ”private”, notion we obviously need to specify, than
every single one appearing on the right-hand side.

But a leak can also arise indirectly, as illustrated in the second example. We therefore can’t
allow in the body of a conditionnal statement any assignment to a more public variable than

1If the reader wants to have the pleasure to discover by himself the basics, he can try to hack the successive
type-system suggested here: http://ifc.hvergi.net/. It’s both didactic and quite enjoyable :)

2

http://ifc.hvergi.net/


Figure 1: Examples of potentially leaking programs

Ex1 : l← h Ex3 : while (h = 0) do . . .

Ex2 : if (h = 0) then Ex4 : if (h = 0) then
l← 0 compute(100000!)

else l← 1 else skip

the most private one used to compute the guard.
The third example introduces in a rather extrem way a new notion, the use of a temporal

dimension to infer a property: the value of h depends on the terminaison of the loop. The
fourth one is a more subtle illustration to this idea that the time spent to execute a branch can
be exploited to infer information on the value of the guard.

Those latters give a feeling of the diversity of sources of insecurity. A survey of the domain,
realized by Sabelfeld and Myers [2], is quite astonishing, including probabilistic channels for
instance. Each of these exotic ways to leak some information raising the necessity of a specific
study, and adequate tools, the ”secured” programming layout are legions, but deal with nearly
as much different definitions of security. It raises an obvious but difficult necessity: a general
declassification framework. Sabelfeld and Sands have given it a first precious attempt, classifying
the basic goals according to the so-called what, who, where and when [3] parameters of the leak.

This complexity highlights the necessity of defining the capability of the attaquant that we
consider, and what is a secured program according to such a threat.

What’s more, we actually do want to allow some leaks. Otherwise, we couldn’t even control
the validity of a password, since answering whether it’s the good one gives some information
about its value! But we want to restrict these leaks to an explicitely specified area so that any
one of them is consciously conceded. Therefore, we need a new construction, declassify, which
allows us to ponctually get rid of the degree of privacy of a channel.

In the following sections, we will describe the language developped by Broberg in its thesis to
specify information flow policies, its solution to the flow-control with declassification problem.

2 FlowLocks

The object of flow security is both specifying the notion of a ”secured” program, and developing
a process able to decide if a given program is actually one such. As we have seen in the previous
section, it requires the introduction of new features in our language in order to solve a few
challenges:

• modelling different levels of confidentiality;

• formalizing the notion of attaquant and consequently of a secured program;

• introducing a construction allowing us to declassify an information.

We present in this section FlowLocks, a semantic-based language answering these issues.
The formalism being quite rich and our place quite restricted, we’ll strive for giving a good
understanding to the reader in a quite informal way.

2.1 Motivating example

Lets consider the present situation, quite artificial but for pedagogical purpose. A student is
giving a talk in front of a jury composed by two members. We model it through:

3



• a variable talk used by the student to show its prestation: everyone can read it at any
time;

• a variable marki for each judge to store its secret grade;

• a variable average which will contains the average mark, and be readable by anyone, but
only once the prestation is over!

Actually, the individual marks can’t be completely secret since we want to use them together
to compute the average one. We need a trusted agent that will be in our case the chairman of
the jury.

The idea behind FlowLock is to assign to each variable a policy which regulates whose actors
ase authorized to access it at a given time, time which is modeled by the state of some locks. We
naturally grant our language with two constructions allowing to open or close a lock . Namely,
in our example, where ‘x is a special actor standing for ”anyone”:

• talk : {∅ ⇒ ‘x}
• juryi : {∅ ⇒ Juryi; ∅ ⇒ Chairman}
• average : {∅ ⇒ Chairman; {Finished} ⇒ ‘x}
Therefore for instance, trying to assign the result of a computation depending on the variable

average to a variable which would be public, i.e. attached to the policy {∅ ⇒ ‘x}, will be
statically rejected by the type system, unless the lock Finished is open.

2.2 FlowLock Security

As stated through the motivating example, we introduce two new sorts of entities, actors and
locks. We then define a clause, and therefore a policy , as:

Definition 1 A clause is a formula Σ ⇒ α where Σ is a set of locks required to be open for
the actor α to be granted access to the data ruled by this policy.

A policy is defined as a set of clauses.

Thanks to this policy mechanism, the declassify construction can be easily modeled by giving
to the variable h a policy such as {{Declassifiedh} ⇒ ‘x}. Then the construction declassify
h in c would be encoded as:

open Declassifiedh; c; close Declassifiedh;

But this system is quite obviously much richer.
Those tools being set, FlockLock models a perfect attacker, meaning with an infinite memory.

Therefore, the intuitive idea is to define successively the following properties of an attacker:

• its capability, given by a set of locks. This capability allows it to see some of the outputs,
depending on their policies;

• its knowledge is therefore the set of initial complete memory states from which ones the
program execution would actually produce the observed outputs;

• and finally the property we require: an attacker whose capability includes the current
lockstate at the time an output rises should learn nothing new thanks to this observation,
meaning the set defining its knowledge shouldn’t be reduced.

Consequently, typing the system from an initially empty lockstate, we won’t allow any leaks,
until a lock would be manually opened, and will restrain it to its minimum.

A different approach, although equivalent, is exposed by Askarov and Sabelfeld [5] as the idea
of gradual release. It modeles the intuitive feeling that the uncertainty on the initial memory
must be reduced by steps, when a declassification occurs, and only at these points.

4



Despite this particular subject won’t be discuss here, the relations between programs pro-
tected relatively to different attaquants seem to be a promising area of research. Notably,
Askarov and Chong [6] have recently presented a system in which one the security relatively to
a perfect attacker is consequence of the one relatively to an attacker with memory of any size,
but bounded.

2.3 Type System

Beyond its elegance and expressiveness, and therefore its practical convenience, an other FlowLocks’s
asset is its sound type system. We make the arguable choice not to reproduce it there, but only
to expose the main underlying reflexions, its understanding not being necessary for our purpose,
but we can’t help inviting the curious reader to seek for details in the already mentionned thesis.

For expressions, the idea is to simply follow the intuition we tried to develop so far. The
information we are interested in is the so-called read effect, meaning a safe approximation of
the degree of privacy the expression contains. It is therefore quite naturally its policy for a
variable. For a composed expression, we simply take, thanks to the lattice structure, the join of
the sub-expressions’ read effect.

The statement judgment of c has the following form: Σ ` c p,Σ′, where:

• Σ is the set of locks assumed to be open before execution of c.

• p is a policy referred as the write effect of c. It is the union of all variables whose content
might be changed when executing the command.

• Σ′ is a safe approximation of the set of locks open after the execution of the command.

Let’s illustrate it through two examples.

` e : r r(Σ) v pol(x)

Σ ` x := e pol(x),Σ

We get the read effect of the expression, and check that it is, in the current lock context,
lower than the policy of x, i.e. ”less confidential” that what someone allowed to read x should
be able to know.

` e : r Σ ` ci  ωi,Σi r(Σ) v ω1 u ω2

Σ ` if e then c1 else c2  ω1 u ω2,Σ1 ∩ Σ2

The conditionnal rule illustrates a lot of crucial ideas. The read effect of the guard illustrates
the privacy of information we could infer simply by observing which path has been taken.
Therefore, someone not allowed to know the value of e can’t be allowed to see any affectation
made in the conditionnal. That’s the very purpose of the write effect : we make sure that no
affectation in neither branch, through the meet, will be made to a variable ”more public” than
is the guard. Finally, we return only the locks that we are sure to be open no matter which
branch has been taken as we want a safe approximation.

3 ParaLocks

Going back to our motivating example from section 2, we can’t be satisfied with our juryi couple
of actors. Indeed, not only is it dirty, but what if we don’t know at run time how many judges
there’ll be? This question invites us to introduce the concept of role.

This new concept is kind of an abstraction of the actor one. Actually, it is quite natural to
consider that the policies allowing someone to access to an information are more likely to be
based on something like his job or his rank than his identity itself.

5



Note that if roles abstract actors, the lattest can hardly simply get rid of since depending
on the context, we can both need to reason about status or individual. This is for instance
illustrated if we enforce the fact that the grade given by a member of the jury is not visible by
any other one.

Thinking about it through the FlowLocks’s formalism, we want to be able to state that a
variable is accessible to an actor a iif a is a member of a role R, therefore we want a lock
stating ”R(a) is open iif a is a member of R”. But then to state the corresponding policy , we
need to be able to quantify over actors in order to write ∀x,R(x)⇒ x.

Thus, ParaLocks mainly extends FlowLocks with two new features:

• Parameterised Locks: locks can now be parameterised by actors, modelling the role con-
cept.

• Actor Polymorphism: we allow quantification over all actors.

This way, we can combine fine grained policies with role-based ones.
Once again, having to aim at my actual work and lacking of place, we won’t detail the

formalism of ParaLocks in this document. But it is highly interesting to note that the few
additions, despite seeming to fit fluently in the previous layout, actually imply consequent
refactoring of the whole modelisation of a safe program. Indeed, this notably comes from the
fact that actors and locks now have runtime representations. We therefore have to know if we
are dealing with concrete entities, and a consequence is that they now also must have policies,
since having a runtime representation implies to hold some flow-sensitive information.

A last interesting enhancement proposed by Broberg is offering the possibility for clauses to
have locks on their right-hand side, and in particular to be recursive. The main interest is that
it allows one to model easily properties on locks. For example, stating that a relation between
two actors, modeled by a lock R(a, b), is transitive can be written as:

∀x, y, zR(x, y) ∧R(y, z)⇒ R(x, z)

Such special clauses are grouped as a global policy which modificates the lattice of policies.
This last feature raises issues of computability, as well as has consequences over the policy

inference mechanism that we will cover in the following section.

4 Paragon

ParaLocks is a powerful language dedicated to the specification of information flow policies, but
it’s not a practical programming language. Paragon2 fills the gap by integrating the ParaLocks
paradigm to Java, in a user-friendly way.

The compiler, written in Haskell, aims at dealing with every feature of the language so that it
could be adopted in industrial context. We won’t cover in the present document the challenges,
ranging from syntactic choices to computability issues, that the transition from ParaLocks to
Paragon rises, but the curious reader is once more invited to refer to Broberg’s thesis. [7]

More pragmatically, the following sections cover the jobs in which ones I actually did take
an active part, namely policy inference and null-pointer analysis.

4.1 Policy inference

Aiming at actual industrial use, Paragon has to add as little extra work for the programmer as
possible. In particular, we easily imagine that if we want to explicitely specify the policy for
sensible variables, either containing classified information, either being public, we also would
like to be authorized not to think of what should be the policy of some unremarkable local

2http://www.cse.chalmers.se/~d00nibro/paragon/

6

http://www.cse.chalmers.se/~d00nibro/paragon/


variables. All we want is to be granted by the system that there exists a policy which would
respects every other ones.

More precisely, the type checking being modular, we consider the body of a single method.
As we explained, an assigment such as x ← y is correctly typed iif ȳ v x̄, with the convention
that x̄ designs the policy of x. Therefore, assuming that we now allow unspecified policies, the
set of assigments in the body of a method will generate a set of constraints having the form :

{p vG,L q}

Where G is the global policy and L the set of open locks standing at the assigment point. Each
policy implied potentially containing unspecified ones, our goal is to infer from these constraints
if there exists a set of solutions.

This feature was actually not handled in the implementation of Paragon when I began my
internship. But the structure of lattice possessed by our set of policies seemed suitable for a
constrained-based resolution, being even in the definite problem configuration covered by Rehof
and Mogensen [10]. It actually appeared that a simpler solution could be used in our situation.

4.1.1 Without global policies

As a first step, I dealt without considering neither the global policies nor the locks. One can
notice that our case actually possesses an additionnal property, being transitive, i.e.:

Property 1
(p v q ∧ q v r) ⇒ p v r

But more accurately, we have:

Property 2 if p and q don’t depend on X,

∃X, (p v X ∧ r(X) v q)⇔ r[X ← p] v q

The next important point is to consider the form of the right-hand side of the constraints.
Despite a significant case on which one we will come back later, it must be an atomic policy .
Indeed, it has to be the policy associated with the left-hand side of an assigment, i.e. a variable,
and therefore is either a concrete policy or reduced to an unspecified one.

On the other side of the constraint, the important point is that no meets can be encountered.
It explains that the condition in property 2 is suitable since if p depends on X, then it is

more restrictive than X and the constraints can be dismissed, being trivial. And if q depends
on X, then it resumes to X and the constraint is trivial.

All these remarks lead to the quite straightforward algorithm 1. The instruction cstrs[X ←
p] returns the set of constraints in which one X has been substituted by p, but also the unmodi-
fied ones since X is likely to be on the right-hand side of more than one inequality. Consequently,
the function check first gets rid of the constraints still containing any variable so that it only
have to check the transitive closure.

The implementation itself went quite easily once I had learnt the Haskell basis, since it
worked with very few interaction with the compiler.

4.1.2 Open locks and global policies

We now take into consideration both the global policies and the open locks. We actually
can’t anymore directly go on with the substitutions as we did in the algorithm 1 since all the
constraints are not meant to be satisfied on the same lattice. Indeed, opening a lock may kind
of merge two points of our lattice into the same one, and closing it will separate them. So
property 2 is no longer true. But we have an additionnal property which saves the situation:

7



Algorithm 1 Algorithm for policy inference without global policies and locks issues

Input: cstrs
cstrsV ar ← {p v q s.t. q is a variable}
for each variable X do

for each p s.t. p v X is in cstrs do
cstrs← cstrs[X ← p]

end for
end for
check(cstrs)

Property 3
(p t q vG,L r)⇔ (p vG,L r ∧ q vG,L r)

Thanks to property 3, we can assume that we have atomic constraints also on the left-hand
side of our inequalities. We then get back a new version of the transitive property:

Property 4 if p and q are atomic policies,

∃X, (p vG,L X ∧X vG,L′ q)⇔ p vG,L∪L′ q

The resulting algorithm is very similar to the first one, but is internally based on a more
evolved lower than relationship, depending on the lock state and taking the global policy into
account.

Algorithm 2 Algorithm for policy inference without global policies and locks issues

Input: cstrs
cstrs←split(cstrs)
cstrsV ar ← {p vG,L q s.t. q is a variable}
for each variable X do

for each p s.t. p vG,L X is in cstrs do
cstrs← cstrs[X ← p]

end for
end for
check(cstrs)

The primitive split, following the property 3, flattens our input into elementary constraints,
namely inequalities between atomic policies. The substitution mechanism now works according
to property 4.

The implementation has been a little bit harder since it has been coupled on a refactoring
of the data structure used to represent policies, and therefore forced me to enter deeper in the
compiler.

4.1.3 Filling the remaining gap ?

So far, we assumed that we did not have any meet policies on the left-hand side of a constraint,
and therefore could split them the way we did, neither join ones on the right-hand side. This
necessity comes from the fact that both the following implications are true, but the reciprocals
are not.

8



Property 5
p u q vG,L r ⇐ p vG,L r ∧ q vG,L r

p vG,L q t r ⇐ p vG,L q ∧ p vG,L r

But actually, both these bad cases can occur.
Especially, since Paragon technically allows the programmer, when specifying the writing

policy of a method, to express it in function of the possibly non-specified ones of the arguments,
and in particular as a meet, the second case might rise. It’s actually a quite pathological case
that we could simply forbid, but the same issue can also come from an imbrication of two
exceptions, the resulting write effect, i.e. the flow-sensitive policy context in which one we are,
beeing a meet.

Expecting to find a way to be complete, we tried to take another point of view. We see a
policy as the set of actors it allows and our set of constraints becomes a problem of set theory
inclusions. Such a problem can be solved in a complete way, as described by Omedeo, Ferro and
Schwartz in [8].

But if it solves our remaining issues in the easy context we treated in subsection 4.1.1, it
does not seem to be compatible with locks. Consequently, at this point, the Paragon compiler
simply asks to the programmer to manually specify the problematic policies if it falls in such a
case.

4.2 Null-pointer analysis

4.2.1 Leaks through exception

Paragon inherits from ParaLocks of the choice of being termination insensitive, meaning we
allow the last step of computation to reveal the existence of an observable output. This conces-
sion is pretty much a practical necessity, due to the non-computability of the halting problem.
Consequently, we could assume to pay no attention to exceptions, considering them as potential
premature terminations. But the catch feature makes it being flow control based, and therefore
needs to be prevented.

This aspect was already handled for most of exceptions as Java’s methods have to declare
if they might raise such one. We can therefore enforce in Paragon the systematic checking of
them and work consequently in the adequate context. [7]

But some exceptions actually can’t be dealt with this way. Indeed, subclasses of Runtime-
Exception are unchecked. This concerns in particular the infamous NullPointerException and
therefore highlights the need for a null-pointer analysis. The point of it is infering through
a static analysis the existence of a run raising such an exception. It is known to be non-
computable in a complete and correct form, and we will therefore naturally need a correct one
for our purpose.

If the domain is quite covered in academical researches, our context is incompatible with most
of them. Especially many assume, and in particular do the first papers I’ve investigated [12],
to be working on Java Bytecode. Indeed, this is clever since it gets rid of many ultimately
redundant features of the language, and evolves far less through the years. But sadely, this is
not an option for us.

The second constraint is the fact that we need to perform this analysis in parallel with our
current one, so that we can use the detection of a potential null-pointer error as do when crossing
a Raise statement. This dismissed the second promising paper I considered [9], since this one
would first analyse the whole program to generate a set of constraints, and then solve it.

9



4.2.2 Our analysis

I based my work on the method suggested by Summers and Müller [1]. The idea is to add two
additionnal informations to types :

• a non-null type in {MaybeNull, NotNull} indicating whether we actually know that the
expression can’t be null;

• an initialisation modifier, taking its value in {Commited, Free, Unclassified}, assuring
whether an object is deeply initialized when accessed.

The object initialisation is dealt with in various way in the literature. The idea is that the
runtime system initialises all fields of a new object with zero-equivalent values. So even fields
declared as non-null start out being null. To adress this issue, we need a way to track the point
at which one we know the initialisation to be done.

The point is depicted as the commitment point, and an object must have, before it, a free
modifier so that an access to a field, even NotNull, will end with a MaybeNull type. Once the
commitment point is reach, the type system enforce the object to remain deeply initialized.

The non-null type is more intuitive. The idea is to consider any field being initially May-
beNull, unless explicitely specified. We then track affectations, as well as non-nullity tests in
guards of conditionnals or loop. We also allow the programmer to explicitely defer its non-nullity
checking in the body of a method, or before its call, as arguments are assumed MaybeNull by
default, unless specified otherwise.

Unexpectedly, this work has been really hard for me, and took me a lot of time. The theory
is quite not trivial to handle in details, and switching from the toy language described to Java
implied some work, but my greatest difficulty has been practical. This time, interventions at
nearly every single level of the compiler was necessary to carry the extra informations needed,
and make the desired checkings. It therefore took me a huge amount of time between the
moment I decided which paper to use and studied it, and my first step in its implementation.

It surely has not been some waste time, as it taught me lots of stuff about Haskell, Paragon
itself, compilation and simply how to handle a huge project, but it led to the deceiving situation
being that I did not finished the job. The initialisation modifiers handling is missing. Never-
theless, most of the type system is implemented, being successfully tested on various examples.
And maybe more important, the core necessary enhancements of the data structures are in, so
that I have great hope that it can easily be completed by my successor.

Conclusion

Niklas Broberg has developped a new platform for information theory in the presence of de-
classification [7], namely ParaLocks, a rich policy specification language accompanied by a a
sound type system. He has incorporated it to an actual programming language, having chosen
for this purpose Java, mainly in order to compare itself with the only major existing alterna-
tive, Jif [11, 4], resulting in the so-called Paragon. My internship took place in this context, a
practical compiler, written in Haskell, about to be complete, missing only very few features.

It has therefore been a great opportunity to be introduced to the information flow-control
field, and discover in a deeper way some of its aspects. I furthermore learned the Haskell
language in order to be able to work on the compiler.

These requirements being fullfiled, I worked on the policy inference issue. I implemented
a correct method, based on transitive closure computation, able to infer most of unspecified
policies through a method body. We then investigated an idea, taking a set-theoretic point of
view, which led to a dead-end.

The second part of my work has been dedicated to the null-pointer analysis. Information
leaks through uncaught exception being undesirable, the Java RunTimeException need special

10



intention. I partially implemented a correct, and therefore non-complete, such analysis. It is
mainly based on the enrichment of the type system with both a non-nullity tracker and an
initialisation one.

Please don’t hesitate to give a try to the Paragon compiler, and through it to my fractional
contribution, and program in a secure way!

Acknowledgment

I would like to thanks all the people who allowed this intership not only to happen, but to be
both a pleasure and an highly rewarding experience.

In order to do so, I’m extremely grateful to David Sands for having so warmly welcomed me
in the security department.

I’m also grateful to each of its member, since no matter how intimidated I’ve been, they all
have been incredibly kind and friendly. It’s an impressively and beautifully cosmopolitan team.
It has made this journey for me as rich in lessons from a social point of view than a scientific
one.

And my last words here go to the two people who gave me a lot of their time and kindness
to answer to every one of my questions. So, Bart van Delft and Niklas Broberg, thank you both!

References

[1] Peter Müller Alexander J. Summers. Freedom before commitment: a lightweight type
system for object initialisation. OOPSLA, pages 1013–1032, 2011.

[2] Andrew C. Myers Andrei Sabelfeld. Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications, 21(1), 2003.

[3] David Sands Andrei Sabelfeld. Declassification: Dimensions and principles. Journal of
Computer Security, 2009.

[4] Barbara Liskov Andrew C. Myers. A decentralized model for information flow control.
Symposium on Operating Systems Principles, 1997.

[5] Andrei Sabelfeld Aslan Askarov. Gradual release: Unifying declassification, encryption and
key realease policies. IEEE Symposium on Security and Privacy, 2007.

[6] Stephen Chong Aslan Askarov. Learning is change in knowledge: Knowledge-based security
for dynamic policies. CSF, 2012.

[7] Niklas Broberg. Practical, Flexible Programming with Information Flow Control. PhD
thesis, Chalmers University of Technology, 2011.

[8] Omodeo E. G. Ferro A. and Schwartz J. T. Decision procedures for elementary sublanguages
of set theory. i. multi-level syllogistic and some extensions., 1980.

[9] Laurent Hubert, Thomas Jensen, and David Pichardie. Semantic foundations and inference
of non-null annotations. In Proceedings of the 10th IFIP WG 6.1 international conference
on Formal Methods for Open Object-Based Distributed Systems, FMOODS ’08, pages 132–
149, Berlin, Heidelberg, 2008. Springer-Verlag.

[10] Torben Ae. Mogensen Jakob Rehof. Tractable constraints in finite semilattices, 1996.

[11] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In In Proc. 26th
ACM Symp. on Principles of Programming Languages (POPL), pages 228–241, 1999.

[12] Fausto Spoto. Precise null-pointer analysis. Softw. Syst. Model., 10(2):219–252, May 2011.

11


	Information Flow-Control
	FlowLocks
	Motivating example
	FlowLock Security
	Type System

	ParaLocks
	Paragon
	Policy inference
	Without global policies
	Open locks and global policies
	Filling the remaining gap ?

	Null-pointer analysis
	Leaks through exception
	Our analysis



