
A Datalog Semantics for Paralocks

Bart van Delft, Niklas Broberg, and David Sands

Chalmers University of Technology, Sweden

Abstract. Broberg and Sands (POPL’10) introduced a logic-based pol-
icy language, Paralocks, suitable for static information-flow control in
programs. Although Paralocks comes with a precise information-flow se-
mantics for programs, the logic-based semantics of policies, describing
how policies are combined and compared, is less well developed. This
makes the algorithms for policy comparison and computation ad-hoc,
and their security guarantees less intuitive. In this paper we provide a
new semantics for Paralocks policies based on Datalog. By doing so we
are able to show that the ad-hoc semantics from earlier work coincides
with the natural Datalog interpretation. Furthermore we show that by
having a Datalog-inspired semantics, we can borrow language extensions
and algorithms from Datalog for the benefit of Paralocks. We explore
how these extensions and algorithms interact with the design and imple-
mentation of Paragon, a language combining Paralocks with Java.

1 Introduction

Information flow is at the heart of many security policies. One way to build secure
software is to ensure that all information flows conform to an intended policy
– for example that trusted data is only influenced by trusted sources, or that
confidential data never flows to public channels. Paralocks is a policy language
for specifying flexible and dynamic information flow policies [4]. The language
allows for the formulation of simple but expressive policies that are dynamic in
the sense that they vary over time, but are still statically known at compile time.
The Paragon [3] programming language is an integration of Paralocks policies
with the Java programming language. The Paragon compiler’s main job is to
check that information will only flow according to the specified policies.

It is noted in [3, 4] that certain parts of Paralocks show great similarities
with Datalog, a well-known query language for deductive databases. Datalog is
a popular language for formalising access control and authorisation policies [10,
11, 15], but as far as we know no other work has used Datalog for information
flow policies. A key difference is that we are mainly interested in comparing
and combining policies, rather than in simply answering queries. In this work
we reify the correspondence with Datalog and replace the original semantics1 of
Paralocks with one that is directly inspired by Datalog. In this paper we show

1 The term “semantics” can be interpreted to mean two different things: either the
dynamic semantics of information flow, or the semantics of operations on policies.
What we deal with in this paper is the latter: the semantics of the Paralocks lattice
and its operations. While the information-flow dimension of the semantics builds on
the policy lattice, it is largely orthogonal to the issues studied in this paper.



1. how this new Datalog semantics for Paralocks can be related to the original
semantics from [4],

2. how Paralocks can benefit from its new semantics by incorporating results
from the extensive Datalog literature, and

3. what impact extensions imported from Datalog would have in a practical
enforcement of Paralocks (i.e. Paragon).

The Paralocks semantics from [4] is mainly of an algorithmic nature, making
its security guarantees less intuitive. A relation between Horn clauses and policy
evaluation is made, but this relation was rather informal, and led to an unclear
and inaccurate connection between the logical connectives (conjunction, disjunc-
tion and implication) and the policy operations (meet, join and comparison). We
demonstrate that the Datalog semantics provides a more natural specification
from which we are able to show the soundness and completeness of the original
implementation-oriented definitions of the policy operations (Section 3).

For point 2, we identify two ways in which results from Datalog research can
positively be adopted in information flow analysis: language extensions (Sec-
tion 4) and algorithms (Section 5).

The Datalog language has been extended in several directions and for some
of these extensions it seems natural to include these in a policy specification
language as well. In this work we investigate two extensions, known as Datalog
with negation [19] (Section 4.1) and Datalog with constraints [14] (Section 4.3),
and discuss what effect these extensions have on the Paralocks language.

On a different tack, several algorithms have been proposed in Datalog lit-
erature that operate on Datalog programs. One operation that is of particular
interest is the containment operation, since it resembles the problem of policy
comparison in Paralocks. This operation checks if one policy is less restrictive
than another, and is thus at the core of the whole information flow analysis.
We identify two sub-classes of containment problems for Datalog programs that
relate to Paralocks policies, and show (Section 5) that in general problems of one
of these classes, uniform containment, can also be solved by algorithms from the
other, conjunctive query containment. We also show how the discussed language
extensions require the adoption of other Datalog results in the algorithms for
policy comparison.

Finally, with point 3 we consider each of the extensions and algorithms in the
practical context of Paragon. Since they affect what expectations are placed on
the information flow analysis, not all of them are as easily deployable in practice
as they are in theory.

These developments are preceded by a more detailed summary of the Paragon
policy language, which follows in the next section.

2 Paralocks

Paralocks is a language for specifying dynamic information flow policies for data
in a program. The intended usage is to annotate data sinks and sources in a
program with policies that specify how data may flow between them. The flows



in the program can then be validated using a static analysis, to ensure that
they adhere to the policies as specified. Paralocks itself is inherently agnostic to
the underlying programming language in which it is deployed. An integration of
Paralocks with Java is currently being developed under the name Paragon, and
we will use Java as our example throughout this section. We begin by presenting
Paralocks, both intuitively and formally. We then continue by pointing out some
of the practical issues that arise when integrating Paralocks with Java.

2.1 Information flow basics

Denning and Denning [9] pioneered a static (compile-time) approach to speci-
fying and verifying the information flows occurring in a program. The core idea
is that program variables (inputs, outputs, etc) are each labelled with a policy,
where the set of all policies forms a complete lattice. A simple and standard
example would be a trivial lattice consisting of two security levels, Public and
Secret, and the policy comparison ordering Public v Secret. Information flows
in a program must follow the policy. Consider a simple assignment x = y. Here
the data contained in variable y flows to x, a so called direct flow. For this as-
signment to be secure we require the policy on y to be no more restrictive than
the policy on x. The intuition is that the data in y should not be allowed to flow
anywhere via x that it would not already be allowed to flow to without going
via x. To validate this flow, we need to determine that policy(y) v policy(x).

If data is computed from several different sources, and is then assigned to
a variable, e.g. x = y+z, then none of the policies on y and z respectively may
be more restrictive than that on x. To simplify such comparisons we take the
effective policy of an expression to be the least upper bound of all the policies
on the various sources it is computed from. To validate this flow, we thus need
to determine that policy(y) t policy(z) v policy(x).

The same operations are needed to track indirect flows, such as in the pro-
gram if (x) { y=0; }. Here the value of y is indirectly affected by the value of
x, causing a flow that must be validated by checking that policy(x) v policy(y).

Finally, if data is written to several different sinks within a conditional
branch, e.g. if (x) { y=0; z=0; }, then none of the policies on y and z respec-
tively may be less restrictive than the one on x. To simplify such comparisons
we compute the greatest lower bound of all the policies on the various sinks.
To validate the flows in the above program, we thus need to determine that
policy(x) v policy(y) u policy(z).

The use of the Paralocks policy language follows this general approach. What
sets Paralocks apart is the specific lattice used – a much richer language for spec-
ifying policies than the simple Denning-style lattice – together with a component
that allows for a much-needed dynamic interpretation of policies.

2.2 Paralocks

Labelling a data source with a Paralocks policy specifies to whom the data may
flow, and under what conditions. The two basic building blocks of policies are



thus actors to whom the data may flow, and locks, which represent conditions
(typically security-relevant properties of the system). A lock is said to be open
when the condition it represents is fulfilled, and closed when it is not. As an
example, the policy {A,B ⇒ x} specifies that data with this policy may flow to
actor x, assuming locks A and B are open. Locks thus provide the possibility for
a dependence between the dynamic system state and the policy to be enforced.

At any given point in a program we can conservatively approximate the set
of locks that are known to be open (via a static analysis such as a type system).
We denote this set the current lock state. All policy comparisons are then done
in the context of this lock state. Thus, as an example, if the lock A is known to
be open, then the policies {A⇒ x} and {x} (short for {⇒ x}) are equivalent.

Locks may be parameterised over actors, forming lock families (hence the
name Para(-meterised) locks). Clauses in a policy may quantify over actor pa-
rameters; for example, the policy {∀x.A(x) ⇒ x} specifies that the data may
flow to any actor a for whom the corresponding lock A(a) is open.

With these intuitions in hand, we can now go on and define Paralocks policies
and operations formally.

Definition 1. Paralocks policies.

• Policies are built from actor identifiers a, b, etc. referring to concrete actors,
and parametrised locks, ranged over by σ, σ′ etc. Each parameterised lock
has a fixed arity, arity(σ) ≥ 0.
• A lock is a term σ(a1, . . . , an) where arity(σ) = n. The symbols Σ,Σ′ range

over sets of locks, and a lock state LS is a set of locks without free variables.
• A clause c is a term of the form ∀a1, . . . , an.Σ ⇒ a, in which a and zero

or more actor identifiers in Σ may have been replaced with the quantified
variables a1, . . . , an. We call a the head of the clause, and Σ its body.
• A policy is a set of clauses, written {c1; . . . ; cn}.

Each Paralocks policy can be read as a conjunction of definite first-order
Horn clauses. That is, each policy clause ∀a1, . . . an.{σ1(~b1); . . . ;σm(~bm)} ⇒ a

can be read as the Horn clause ∀a1, . . . an.(σ1(~b1) ∧ · · · ∧ σm(~bm)) ⇒ Flow(a),
where Flow is a special reserved lock that does not occur anywhere else2.

A policy p allows information to flow to actor a in lock state LS if the Horn
clause representation implies the validity of Flow(a), denoted p∪LS � Flow(a).
The set of all allowed information flows according to a policy under a given lock
state is p(LS) = {Flow(a) | p ∪ LS � Flow(a)}. The restrictions on the Flow
parametrised lock ensure that it cannot be opened directly, and no recursive
clauses are possible.

In the original Paralocks work, the meet and join operations were viewed
intuitively from a logical perspective as relating to conjunction and disjunction
respectively. With that perspective the join operation is viewed as an approxima-
tion of logical disjunction of Horn clauses, since (conjunctions of) Horn clauses

2 ~bi are vectors of actor identifiers and variables, their lengths depending on the arity
of the locks in which they appear.



are not closed under disjunction. This mismatch of semantic domains led to an
algorithmic, ad-hoc definition of the join and meet operations. In section 3 we
will show, using Datalog to provide the desired semantics for policies, that these
definitions of meet and join are in fact the desired ones, not just approximations.

Paralocks can be extended by generalising the lock state to allow recursive
rules. A recursive rule is very similar to a policy clause as defined above, but
where the head can be an arbitrary lock predicate. This allows for convenient
definitions of properties of lock families; one useful example is transitivity, e.g.
{L(a, b), L(b, c) ⇒ L(a, c)}. An ordinary open lock is then equivalent to a rule
with that lock as the head and an empty body. Policies are interpreted as before,
only now interpreted in the context of a generalised, possibly recursive lock state.
For the rest of this paper we will assume the existence of recursive rules.

Paragon Paragon [3] is an extension of Java that integrates Paralocks policies.
In Paragon, fields and variables are annotated with Paralocks policies to specify
how they may be used in a program.

Paragon allows recursive rules but with the restriction that a recursive rule
may only be introduced when a lock is declared, and then only with that lock
as the head of the rule. This allows the use of global lock properties, guaranteed
to hold throughout the program, but will not allow e.g. transitivity to be turned
on and off during program execution.

For convenience we define a specialised notation for policy semantics for this
scenario, where the global recursive rules are separated from the lock state:
p(G,LS) = {Flow(a) | p ∪ G ∪ LS � Flow(a)}. In a given program, all policies
will be interpreted in the context of the same G.

3 A Datalog Semantics for Paralocks

In this section we introduce Datalog, a well-established deductive database query
language, based on logic programming [6, 8, 19]. We demonstrate how its seman-
tics can be used as an alternative semantics for Paralocks.

3.1 Datalog

We start with some definitions and terminology of a basic variant of Datalog
found in literature, see e.g. [6, 12, 19]. In this paper a, b, c, . . . are constants,
X,Y, Z, . . . are variables and p, q, r, . . . are predicates. Each predicate has a fixed
arity ≥ 0. A term t is either a constant or a variable and A = p(t1, . . . , tn) is an
atom provided that p is an n-ary predicate. A ground atom, i.e. one containing
no variables, is called a fact. A rule r is of the form A0 :− A1, . . . , Am with
m ≥ 0 and each A an atom. A0 is called the head of the rule, A1, . . . , Am the
body of the rule. A rule is called safe if all variables occurring in A0 occur at
least once in the body of that rule. A set of rules is called a database schema.

Predicates that appear in the head of a rule are called intensional predi-
cates, whereas those appearing only in the body of rules are called extensional



predicates. A set of ground atoms (facts) on extensional predicates is called an
extensional database or EDB.

A query Q is a set of rules that together define a predicate q, i.e. all rules have
the predicate q as their head and q does not occur anywhere else than within Q.

Definition 2 (Answer sets). The answer set to a query Q on an EDB with
database schema D, written Q(D,EDB), is the set of all facts on q that can be
derived using the deductive rules in both Q and D.

We omit a formal definition of “the facts that can be derived”. The standard
operational version of the definition is obtained by iterating an immediate con-
sequence operator, starting with the set EDB. The immediate consequence oper-
ator, given a set of facts DB, computes DB plus all facts which are an instance
of the head of a rule in Q ∪ D, and for which the corresponding instance of
the body is contained in DB. Provided that the rules in Q and D are all safe,
a fixed point can be reached in a finite number of iterations of the immediate
consequence operator, and this is the set of derivable facts.

Assume two queries Q1 and Q2 defining the same predicate q. The query Q1

is contained in Q2 in the presence of a database schema D if for all EDBs each
fact on q that can be derived by Q1 can also be derived by Q2. Similar, Q1 is
uniformly contained in Q2 in the presence of a database schema D if for all DB
(i.e. facts on both extensional and intensional atoms) each fact on q that can be
derived by Q1 can also be derived by Q2 [16].

Definition 3 (Datalog Containment).
Regular containment
Q1 � Q2 in database schema DS iff ∀EDB.Q1(DS,EDB) ⊆ Q2(DS,EDB).
Uniform containment
Q1 �u Q2 in database schema DS iff ∀DB.Q1(DS,DB) ⊆ Q2(DS,DB).

3.2 Paralocks and Datalog

It is fairly straightforward to see how the different elements of Paralocks can
be related to Datalog. Lock families correspond to predicates, the lock state
to an EDB, clauses are just a different syntax for rules, and the global policy
is equivalent to a database schema. The information flow policies themselves
correspond to Datalog queries, and therefore the policy evaluation p(G,LS) can
be translated into the query evaluation Q(D,EDB) where each policy p can be
seen as a query defining the distinguished predicate Flow .

The policy ordering is slightly tricky. As is common in information flow lat-
tices, Paralocks defines the top element to be the most restrictive policy. In
Datalog ordering, the query with the largest answer set is considered to be the
top element. Thus the policy ordering corresponds to the inverse of Datalog
query containment.

Two complications need to be addressed in this translation. To ensure termi-
nation of query evaluation or containment, all rules have to be safe. This does



not hold for Paralocks, but by adding the distinguished atom IsActor(X) to the
body of a rule if the head is Flow(X) we can make the each clause safe. We then
add the guarantee that IsActor(a) is opened at the point that actor a is created.

A second issue arises from the explicit difference in Datalog between exten-
sional and intensional predicates. By direct translation, the Paralocks lock state
is a set of both extensional and intensional predicates, whereas the algorithms
for query evaluation and containment are defined explicitly only on EDBs.

Somewhat surprisingly, it turns out there is no absolute need for our trans-
lation to completely resemble Datalog in this respect. Instead of considering
regular containment, we identify our policy ordering as being an instance of uni-
form containment (Definition 3). In general, uniform containment is considered
to be just an approximation to real containment, but for our purpose it closely
matches policy ordering. A similar situation is found by Dougherty et al. [11] who
use Datalog and uniform containment for formalising dynamic access policies.

3.3 A Datalog Semantics

We show how the three policy operations of Paralocks – meet, join and policy
ordering – can be semantically defined. The original definitions of meet and join,
being of a more algorithmic nature, are shown to be correct computations of
these operations. The original ordering check is replaced with an algorithm for
uniform containment originating from Datalog, discussed further in Section 5.

Definition 4 (Policy operations). Suppose that t and u are total binary
operations of type Policy × Policy → Policy. Then we say that u is the meet
operation if for any policies p1, p2 and global policy G it holds that ∀LS.(p1 u
p2)(G,LS) = p1(G,LS) ∪ p2(G,LS). Similarly, t is the join operation if ∀LS.
(p1 t p2)(G,LS) = p1(G,LS) ∩ p2(G,LS).

In the context of global policy G, the binary ordering relation v on policies
is defined as follows: p1 at most as restrictive as p2, written p1 v p2 ⇐⇒
∀LS.p2(G,LS) ⊆ p1(G,LS).

Note that the meet and join operations are specifications of the desired oper-
ations, but a priori we do not know whether they exist. There are two things to
note in the definition of policy ordering. First, as mentioned in Section 3.2, the
direction of the relation is inversed compared to the original Datalog one from
Definition 3. Second, it quantifies over all possible lock states. However when
policies are compared in programs we must be able to take advantage of our
knowledge about what locks are known to be open at a given program point,
and the standard Datalog ordering is too static for our needs. We therefore adapt
this last definition so that it uses the additional knowledge that at least locks
L will be open at the point of comparison; p1 vL p2 means that p1 is no more
restrictive than p2 when at least locks L are open:

Definition 5 (Lock state aware ordering). In the context of a global policy
G, and for any lock state L, let vL be the partial ordering on policies defined as:
p1 vL p2 ⇐⇒ ∀LS.L ⊆ LS ⇒ p2(G,LS) ⊆ p1(G,LS).



An algorithm for computation of the meet is straightforward since Datalog
queries are effectively closed under conjunction.

Theorem 1. The meet of two policies, p1 u p2, can be computed as p1 ∪ p2.

Proof. Both p1 and p2 only define rules on the predicate Flow , therefore the
immediate consequence operator derives the same set of facts F for all other
predicates in both p1(G,LS) and p2(G,LS), for any lock state LS. Since Flow
does not appear in the body of any rule, the union of the facts on Flow that
p1 and p2 derive individually from F , is the same that the policy p1 ∪ p2 would
derive on F , hence p1(G,LS) ∪ p2(G,LS) = (p1 ∪ p2)(G,LS).

For the crucial join operation it is not as obvious that there exists a compu-
tation exactly matching the semantics. In the original work an ad-hoc definition
was argued to be sound but not complete [4]. By working with Datalog rather
than arbitrary Horn clauses we can now show it to be both sound and complete:

Theorem 2. The join of two policies, p1 t p2, can be computed as

p1 t p2 = {Σ1 ∪Σ2 ⇒ x | Σ1 ⇒ x ∈ p1;Σ2 ⇒ x ∈ p2}
∪ {Σ1 ∪Σ2 ⇒ a | Σ1 ⇒ a ∈ p1;Σ2 ⇒ a ∈ p2}
∪ {Σ1 ∪Σ2[x 7→ a]⇒ a | Σ1 ⇒ a ∈ p1;Σ2 ⇒ x ∈ p2}
∪ {Σ1[x 7→ a] ∪Σ2 ⇒ a | Σ1 ⇒ x ∈ p1;Σ2 ⇒ a ∈ p2}

Proof. We have to show that for any lock state LS, actor a:

Flow(a) ∈ p1(G,LS)
Flow(a) ∈ p2(G,LS)

⇐⇒ Flow(a) ∈ (p1 t p2)(G,LS)

=⇒ : In order for Flow(a) ∈ p1(G,LS) and Flow(a) ∈ p2(G,LS) to hold
there must be a clause in p1 and a clause in p2 that allow for the derivation of
Flow(a). It is clear from the definition of t that for each combination of two
clauses in p1 and p2 that agree on their heads (after possible substitution), there
exists a single clause in p1 t p2 that derives the same fact.
⇐= : Similarly, each clause in p1 t p2 can be split into two clauses with one

in p1 and one in p2, possibly with a variable in the head instead of a constant.

That the policy ordering can be given a complete algorithm as well is however
not directly obvious. Since recursion is possible in general, Datalog literature
tells us that the question of containment is undecidable [17]. The relatively mild
restriction that Paralocks places on the query predicate, i.e. Flow , as shown in
Section 2, to appear only as the head of policy clauses and nowhere else, gives
us both a decidable problem and an algorithm to compute the ordering.

Theorem 3. The ordering check whether a policy p1 is at most as restrictive
as a policy p2, p1 v p2, can be computed using the uniform containment check
from Sagiv [16] as p2 �u p1.



Proof. The correctness of the algorithm has been demonstrated by Sagiv [16].

A sound and complete computation for the policy ordering in the presence
of a lock state can be obtained via a small modification to Sagiv’s algorithm,
which we demonstrate in Section 5.2.

This gives us a natural Datalog semantics for Paralocks, and at the same
time demonstrates that we can use the same algorithmic implementations for
meet and join operations as before. For policy ordering we actually find a better-
suited method from Datalog containment which we discuss in detail in Section 5,
incorporating the extensions made to the policy language in Section 4.

4 Adopting Datalog Extensions into Paralocks

With a Datalog semantics for Paralocks in place, a whole area of research be-
comes available to enrich the information flow framework. In this section we
consider two popular extensions to regular Datalog: Datalog with negation, and
Datalog with constraints. We describe how they could be incorporated into Par-
alocks, and what consequences they would have on the Paragon compiler.

4.1 Datalog with Negation

One common extension to regular Datalog is the inclusion of negation in the
body of rules. For example, consider a Chinese-wall information policy [2] in
which consultants may work for company A or company B, but not both at
the same time. To model this company A’s data would be given the policy
{∀x.ConsultsForA(x),¬ConsultsForB(x)⇒ x} (symmetrically for company B).

To ensure termination and decidability of Datalog queries it is well-known
that negation cannot be added arbitrarily. Rules need to be safe with respect
to negation, meaning that each variable occurring in a negated atom should
appear in at least one positive atom in the same body. In the same way we
ensured safety of rules in Section 3.2, we can add a positive IsActor(X) atom
for each variable in the body of a rule to make it safe. In addition, the set of rules
defining a predicate needs to be stratified. That is, if a recursive path occurs in
the definition of a predicate, negation should not be included in that path. For
example, consider the database schema (or: global policy):

{ A(X) :− B(X),¬D(X) D(X) :− B(X),¬A(X) }

and an EDB {B(a)}. Under the query Q = {F (X) :− A(X)} there are two
possible answer sets depending on whether the first or second rule in the database
schema gets evaluated first. Stratification of rules is required to prevent this
non-determinism3. These concepts could be translated directly into Paralocks.
Inclusion of negation is however only straightforward if we ignore the practical
issues stemming from the information-flow analysis itself.

3 Technically, this still does not suffice and some additional restriction on the evalua-
tion algorithm applies [19].



The main complication arises from the particular property we have on policy
ordering with respect to the lock state. Before introducing negation, this property
was easily formulated: the policy ordering has to hold in each lock state at least
containing the current one (Definition 5). In the presence of negation we loose
monotonicity; the absence of a lock can now make a policy more liberal as well as
more restrictive, making the notion of a ‘more permissive lock state’ complicated.

4.2 Datalog with Negation and Paragon

The effects of negation on the Paragon compiler would be numerous. To under-
stand why we must understand a bit more about methods-handling in Paragon.
Methods are annotated in several ways, including annotations that specify the
policies of the method’s arguments, returned value and side-effects. Of particu-
lar relevance here, is that methods must specify how they interact with the lock
state, to allow the analysis to conservatively approximate the current lock state
across method calls. Each method should thus detail what locks it may close,
what locks it will definitely open.

To provide enough information for the ordering check, the analysis would
need to track both an upper and a lower bound on the set of opened locks.
Method signatures then also need to specify which locks are definitely closed
and which might be opened. This would result in an additional burden to the
programmer and error messages from the compiler would presumably become
so complicated that they would only confuse the user. Finally, although we do
not have any concrete evidence to support this, the conservative approximation
of the lower and upper bound on opened locks is likely to result in the compiler
becoming very conservative as well. This means that writing programs involving
negation that actually type-check would become a tedious assignment.

These practical considerations make us reject the idea of adopting negation
from Datalog directly into Paragon, despite the two languages being so similar.
Instead we consider a different tack and attempt to simulate negation with a
dual lock. During type-checking we replace each occurrence of a negated lock ¬L
with a (fresh) lock nL. Any statement that opens or closes L is extended with
a statement that performs the inverse operation on nL. Starting the analysis
with a lock state in which all nL locks are open, the type system matches the
expectations from the programmer.

To give the formal guarantee that both locks will never be open at the same
time we can adopt the “Datalog with integrity constraints” extension [19]. This
extension allows for the specification of rules without heads; if a database satisfies
its body that integrity constraint is violated. For each lock L used in negated
form we add the integrity constraint ← L,nL.

What we cannot guarantee is that at least (and in combination with the
paragraph above: exactly) one of the two locks is open. If we could, this would
imply that we are able to express negation without having the stratification
requirement. That is why the analysis starts with the nL locks being open at
the start of the analysis. There is clearly a practical issue associated with this.
Suppose we have a lock L of arity k, When we create a new actor we must open



all of the negative locks that can involve that actor. For nL alone this means
that we must open k(m+ 1)(k−1) locks where m is the number of other actors.
In examples of Paralocks policies encountered so far k is at most 2 but this
still seems too costly. One reasonable compromise would be to limit negation to
unary locks (as used in the Chinese wall policy sketched previously). This would
mean that creation of a new actor would entail opening n (negative) locks, where
n is the number of unary locks.

In this way we can extend our policy language with some negation possibil-
ities, without obtaining the complications that would arise from adopting the
natural negation from Datalog.

4.3 Datalog with Constraints

Another interesting extension to Datalog is called Datalog with Constraints, or
Datalogc [14]. This extension allows the bodies of rules to be extended with con-
straints on the domain elements. For example, for natural numbers one could
have the rule A(X) :− B(X), X > 11. Li and Mitchell [14] present several ex-
amples of constraint domains. In our scenario we are considering a constraint
domain that is only indirectly included by Li and Mitchell; the only two con-
straints applicable on actors are that they are either equal or unequal. Having
constraints on the inequality of actors (the equality constraint is already implic-
itly present in standard Datalog) allows for separation-of-interest policies:

{∀x, y, z.WorksFor(y, x),WorksFor(z, x), y 6= x, z 6= x, y 6= z ⇒ IsBoss(x)}

i.e. an actor is a boss if at least two different actors are working for her. This
notion of difference is not expressible in the current definition of Paralocks.

Concretely, we can include the notion of a constraint rule, which is of the
Datalog / Paragon form:

A0 :− A1, . . . , Am, φ A1, . . . , Am, φ⇒ A0

where φ is a conjunction of what is called primitive constraints, i.e. of the forms
x = y and x 6= y. A rule is safe if all variables occurring in φ occur also in
A0, . . . , Am. This implies that facts are no longer ground atoms, but can contain
constrained variables, e.g. IsBoss(X) :− X 6= Alice. These are called constraint
facts. The evaluation of a query thus no longer returns an answer set consisting
of facts, but one of constraint facts. p1 is now at most as restrictive as p2 if any
constraint fact derivable by p2 is logically entailed by at least one fact in p1. The
definition for the ordering check needs to be updated accordingly:

Definition 6 (Lock state aware ordering with constraints). In the context
of global policy G, and for any lock state L, vc

L is the constraints and lock state
aware ordering relation defined by p1 vc

L p2 ⇐⇒ ∀LS.L ⊆ LS ⇒ ∀f2 ∈
p2(G,LS).∃f1 ∈ p1(G,LS).f1 � f2.

As for Datalog with negation, the area of Datalog with constraints is well
studied and can easily be incorporated into Paralocks. The algorithm for checking
the policy ordering is easily modified to work with constraints using results from
Datalog literature, as we will show in Section 5.



4.4 Datalog with Constraints and Paragon

As with negation the story becomes more involved when considering the practical
application of constraints in Paragon. In Paragon, actors can be referred to by
variables and may therefore be aliased. For example, whether the opening of
lock L(a) followed by the closing of lock L(b) results in lock L(a) being open
depends on whether or not the program variables a and b are aliases for the same
concrete actor. In the current implementation without constraints Paragon takes
the conservative approach and assumes that a close statement on L(b) closes lock
L for all potential aliases of b. The current analysis only needs to track whether
two program variables may alias or not. When constraints on actors can be added
in policies we need to have an aliasing analysis that also tracks whether program
variables are must-aliases.

5 Algorithms for Policy Ordering

In the previous section we explored how the Datalog semantics provided us
with extension possibilities to the Paralocks policy language. In this section we
consider the use of algorithms developed for Datalog. In one direction this can
give us policy evaluation algorithms with a lower average complexity than the
standard operational semantics (see e.g. [1]). More importantly, though, is that
an algorithm for policy ordering can be found in Datalog query containment
algorithms.

5.1 Uniform and Conjunctive Query Containment

We consider two Datalog containment relations that correspond to policy or-
dering: uniform containment and conjunctive query containment. We already
mentioned uniform containment as a candidate in Section 3.2. In this section we
introduce conjunctive query containment as a second option.

A conjunctive query (CQ) is a query that only has extensional predicates in
the bodies of its rules. The decision whether a conjunctive query is (regularly,
Definition 3) contained in another, possibly non conjunctive query, is known as
the CQ containment problem.

Sagiv already noted in his introduction of uniform containment [16] that any
CQ containment problem can be solved with a uniform containment algorithm.
We show that the opposite direction holds as well. That is, each uniform con-
tainment problem, such as the policy ordering for Paralocks, can be addressed
with a CQ containment algorithm. Since there is a much larger body of work
on algorithms for CQ containment [5, 7, 12] than there is for uniform contain-
ment, this increases the collection of containment algorithms for any uniform
containment problem. We can transform a uniform containment problem into a
CQ containment problem as follows:

Definition 7 (Uniform containment problem transformation).



Suppose that we have a uniform containment problem Q1 �u Q2 with database
schema DS such that the predicate defined by Q1 does not occur in the body of
any rule. The CQ transformed version τ(Q1, Q2,DS ) = (R1, R2,DS ′, θ, θ−1)
where

• ~p is the set of all intensional predicates in DS,
• θ is a substitution mapping each predicate p ∈ ~p to a fresh predicate pE,
• θ−1 is the inverse of θ,
• R1 = Q1θ,
• R2 = Q2, and
• DS ′ = DS ∪ {p( ~X) :− pE( ~X) | p 7→ pE ∈ θ}.

Note that the resulting R1 only has atoms on pE predicates, i.e. extensional
atoms in its body. We show that the transformed problem holds in a regular
containment check iff the original problem holds in a uniform containment check:

Theorem 4. Given a transformation τ(Q1, Q2,DS ) = (R1, R2,DS ′, θ, θ−1)

Q1 �u Q2 ⇐⇒ R1 � R2

Proof. =⇒ : We have ∀DB .Q1(DS ,DB) ⊆ Q2(DS ,DB). For any EDB, we need
to show that R1(DS ′,EDB) ⊆ R2(DS ′,EDB). Let δ = EDB∪EDBθ−1. Since R1

is only defined on extensional predicates, all facts are derived directly from the
EDB; DS ′ is not used. Q1 = R1θ

−1, so R1(DS ′,EDB) ⊆ Q1(DS , δ). By assump-
tion, R1(DS ′,EDB) ⊆ Q2(DS , δ). And also R1(DS ′,EDB) ⊆ Q2(DS ′,EDB)

since the p( ~X) :− pE( ~X) rules in DS ′ can derive the set EDBθ−1. Since Q2 = R2,
we obtain R1(DS ′,EDB) ⊆ R2(DS ′,EDB).
⇐= : We have ∀EDB.R1(DS ′,EDB) ⊆ R2(DS ′,EDB). Let q be the predicate

defined by both Q1 and Q2. For any DB , we need to show that for any fact q(~y)
such that q(~y) ∈ Q1(DS ,DB), it also holds that q(~y) ∈ Q2(DS ,DB). q(~y) is
derived using a rule r ∈ Q1. Consider s = the set of (intensional) p(~x) facts used
in r to derive q(~y). Safely ignoring the filtering of q predicate on the definition of
an answer set, this means that s ⊆ Q1(DS ,DB), and since Q1 cannot contribute
to this also s ⊆ Q2(DS ,DB) (*). Let δ = sθ, i.e. δ is an EDB. It follows that
q(~y) ∈ R1(∅, δ), since R1 = Q1θ; therefore also q(~y) ∈ R1(DS ′, δ). By assumption
follows q(~y) ∈ R2(DS ′, δ) and R2 = Q2 thus q(~y) ∈ Q2(DS ′, δ). Combining this
with (*) gives us q(~y) ∈ Q2(DS ,DB).

5.2 Checking Policy Ordering

Since uniform containment appears as the most natural Datalog interpretation
for policy ordering we adopt the algorithm from Sagiv [16] as our basic im-
plementation. The connection with CQ containment allows us to switch to a
different algorithm in the future if that becomes favourable for reasons of flexi-
bility or complexity, and already we incorporate some ideas borrowed from CQ



algorithms (Section 5.3). The algorithm from Sagiv works by testing all canonical
databases4 and can be summarised as follows:

To check if p1 �u p2 (i.e. p2 v p1), consider each rule r = head :− body in p1
individually. Let θ be a substitution such that all distinct variables in body are
mapped to distinct fresh constants, i.e. constants not yet present in p1, p2 or the
global policy G. Uniform containment holds iff for each rule the iterated check
headθ ∈ p2(G, bodyθ) holds. That this algorithm tests all relevant (canonical)
databases and therefore should only succeed if the containment holds over all
databases should be quite intuitive. For a proof we refer to [16].

This algorithm checks for ordering as per Definition 4. Converting it into an
ordering check as per Definition 5 that takes the current lock state into account
requires not that much alteration; given the current lock state L we simply
replace the iterated check by headθ ∈ p2(G,L ∪ bodyθ).

The complexity of the algorithm is directly influenced by the number of rules
in p1 and the complexity of deciding whether headθ ∈ p2(G,L ∪ bodyθ). That
is, the complexity of the ordering algorithm is in the same order of complexity
as query evaluation, which has worst case complexity EXPTIME-complete [8].
This complexity is dictated by the (maximum) sum of all arities of the predicates
in the bodies of all clauses. In our use of Paralocks to model information flow
policies and idioms so far we have not come across any predicates with an arity
greater than two or clauses with more than three atoms in the body, which gives
the indication that the impact of this complexity is still low. Further practical
studies are required to confirm this suspicion.

5.3 Policy Ordering with Extensions

In this section we consider how the ordering operation based on uniform contain-
ment as described above needs to be adapted to include the extensions discussed
in Section 4.

Negation For the inclusion of negation we do not use the natural Datalog nega-
tion but instead simulate negation by giving each lock L a counterpart nL (Sec-
tion 4.1), therefore no changes to the ordering operation are required.

Constraints Extending the work by Sagiv, Ullman briefly considers constraint
domains [18] using results on CQ containment from Klug [13]. Here we instead
choose to translate the method deployed by Farré et al. [12]. The essence of
both methods [12, 13] is however the same. To quantify over all databases the
algorithms enumerate, as in Section 5.2, all relevant canonical databases. The
Constructive Query Containment (CQC) method introduced by Farré et al. [12]
incorporates so-called Variable Instantiation Patterns (VIPs) for this purpose5.

4 A canonical database is a representative of the family of databases that can be
obtained by all possible one-to-one replacements of constants.

5 The entire CQC method seems a tempting candidate to be used instead of uniform
containment, but unfortunately does not perform well in the presence of recursive
rules.



Since in our domain actors are only equal or unequal we adopt the negation VIP
into our ordering check. The resulting algorithm is as follows:

Given K the set of all constant actors appearing in p1, p2 and G, for each
rule r = head :− body in p1 let ~x be the set of all variables. Let Θ = s(~x,K) be
a set of substitutions, where:

s({x} ∪ ~x,K) =
⋃
k∈K

{{x 7→ k} ∪ θ | θ ∈ s(~x,K)}

∪ {{x 7→ kn} ∪ θ | θ ∈ s(~x,K ∪ {kn})} kn 6∈ K
s(∅,K) = ∅

p2 is at most as restrictive as p1 iff for each rule, each θ ∈ Θ, the iterative check
headθ ∈ p2(G,L ∪ bodyθ) holds.

Textually, Θ is a list of substitution-combinations in which each variable in
body is mapped to one of the existing constants or a fresh constant. This ensures
that the algorithm tests all canonical databases. The number of iterative checks
that needs to be performed increases with a factor V K where V is the number
of variables in a rule, and K the total number of constants. In general we expect
this cost increase to be modest, since the (small) cases we encountered so far
almost never had more than one concrete actor in a policy or global rule.

6 Conclusions

By changing the semantics for Paralocks policies from its original ad-hoc ver-
sion to one based on Datalog, we have provided a more natural and intuitive
understanding of the language. Still, the original semantics coincides with the
Datalog version, and due to its algorithmic nature provides a good guidance for
implementation. Another advantage is that we can transfer language extensions
and algorithms from Datalog into Paralocks, although practical considerations
arising from the use of Paralocks in a type checker must be taken into account.

The algorithms and extensions discussed in this work are to be added to the
next generation of Paragon, an information-flow aware compiler for Java. We also
aim to improve the feedback from the compiler by incorporating the discussed
algorithm for policy ordering, since it allows us not only to say where in the
program an illegal information flow occurs, but also to provide more feedback
as to why this flow is illegal.

Acknowledgments This work has been partly funded by the Swedish research
agencies VR and SSF, and the European Commission EC FP7-ICT-STREP
WebSand project. Thanks to the ProSec group at Chalmers, in particular to
Wolfgang Ahrendt and Pablo Buiras for discussions and feedback.

References

1. Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. Magic
sets and other strange ways to implement logic programs (extended abstract).



In Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of
database systems, PODS ’86, pages 1–15, New York, NY, USA, 1986. ACM.

2. David F.C. Brewer and Micheal J. Nash. The Chinese Wall Security Policy. In
Proceedings of the 1989 IEEE Symposium on Security and Privacy, pages 206–214,
1989.

3. Niklas Broberg. Practical, Flexible Programming with Information Flow Control.
PhD thesis, Chalmers, Göteborg University, Göteborg, Sweden, 2011.

4. Niklas Broberg and David Sands. Paralocks – Role-Based Information Flow Con-
trol and Beyond. In POPL’10, Proceedings of the 37th Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, 2010.

5. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decid-
ability of query containment under constraints. In Proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
PODS ’98, pages 149–158, New York, NY, USA, 1998. ACM.

6. Stefano Ceri, Georg Gottlob, and Letizia Tanca. What You Always Wanted to
Know About Datalog (And Never Dared to Ask). IEEE Trans. on Knowl. and
Data Eng., 1(1):146–166, 1989.

7. Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revis-
ited. Theoretical Computer Science, 239(2):211 – 229, 2000.

8. Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity
and expressive power of logic programming. ACM Computing Surveys, 33:374–425,
September 2001.

9. Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Comm. of the ACM, 20(7):504–513, July 1977.

10. John DeTreville. Binder, a logic-based security language. In IEEE Symposium on
Security and Privacy, pages 105–113, 2002.

11. Daniel Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Specifying and Rea-
soning About Dynamic Access-Control Policies. In Automated Reasoning, volume
4130 of Lecture Notes in Computer Science, pages 632–646. Springer, 2006.

12. Carles Farré, Ernest Teniente, and Toni Urp̀ı. Checking query containment with
the CQC method. Data & Knowledge Engineering, 53(2):163–223, 2005.

13. Anthony Klug. On Conjunctive Queries Containing Inequalities. J. ACM,
35(1):146–160, January 1988.

14. Ninghui Li and John C. Mitchell. Datalog with Constraints: A Foundation for Trust
Management Languages. In Proceedings of the Fifth International Symposium on
Practical Aspects of Declarative Languages, January 2003.

15. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based
trust-management framework. In IEEE Symposium on Security and Privacy, pages
114–130, 2002.

16. Yehoshua Sagiv. Optimizing Datalog Programs. In Foundations of Deductive
Databases and Logic Programming, pages 659–698. Morgan Kaufmann, 1988.

17. Oded Shmueli. Decidability and expressiveness aspects of logic queries. In Pro-
ceedings of the sixth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, PODS ’87, pages 237–249, 1987.

18. Jeffrey Ullman. Information integration using logical views. In Foto Afrati and
Phokion Kolaitis, editors, Database Theory ICDT ’97, volume 1186 of Lecture
Notes in Computer Science, pages 19–40. Springer Berlin / Heidelberg, 1997.

19. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume
I. Computer Science Press, 1988.


