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Abstract Security is rarely a static notion. What is considered to be confidential or untrusted data
varies over time according to changing events and states. The static verification of secure information
flow has been a popular theme in recent programming language research, but information flow policies
considered are based on multilevel security which presents a static view of security levels. In this paper
we introduce a very simple mechanism for specifying dynamic information flow policies, flow locks,
which specify conditions under which data may be read by a certain actor. The interface between the
policy and the code is via instructions which open and close flow locks. We present a type and effect
system for an ML-like language with references which permits the completely static verification of flow
lock policies, and prove that the system satisfies a semantic security property generalising noninterfer-
ence. We show that this simple mechanism can represent a number of recently proposed information
flow paradigms for declassification.

1 Introduction

Unlike access control policies, enforcing an information flow policy at run time is difficult
because information flow is not a runtime property; we cannot in general characterise when
an information leak is about to take place by simply observing the actions of a running system.
From this perspective, statically determining the information-flow properties of a program
is an appealing approach to ensuring secure information flow. However, security policies, in
practice, are rarely static: a piece of data might only be untrusted until its signature has been
verified; an activation key might be secret only until it has been paid for.

This paper introduces a simple policy specification mechanism based on the idea that the read-
ing of storage location ` by certain actors (principals, levels) is guarded by boolean flags, which
we call flow locks. For example, the policy `{High;paid ⇒Low} says that ` can always be read by an
actor with a high clearance level, and also by an actor with a low clearance level providing the
“paid” lock is open.

∗This is an extended version of an article in the 15th European Symposium on Programming, ESOP 2006, LNCS
3924
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The interface between the flow lock policies and the security relevant parts of the program is
provided by simple instructions for opening and closing locks. The program itself does not
depend on the lock state, and the intention is that by statically verifying that the dynamic flow
policy will not be violated, the lock state does not need to be computed at run time.1

In addition to the introduction of flow locks, the main contributions of this paper are:

• The definition of a type system for an ML-like language with references which permits
the completely static verification of flow lock policies

• A formulation of the semantics of secure information flow for flow locks, and a proof that
well typed programs are flow-lock secure (the reader is referred to the extended version
of this article for the details).

• The demonstration that flow lock policies can represent a number of recently proposed
information flow paradigms.

Regarding the last point, the work presented here can be viewed as a study of declassification
mechanisms. In a recent study by Sabelfeld and Sands [18], declassification mechanisms are
classified along four dimensions: what information is released, who releases information, where
in the system information is released, and when information can be released. One of the key
challenges stated in that work is to combine these dimensions. In fact, combination is perhaps
not difficult; the real challenge is to combine these dimensions without simply amassing the
combined complexities of the contributing approaches. Later in this paper we argue that flow
locks can encode a number of recently proposed “declassification” paradigms, including the
lexically scoped flow policies introduced by Almeida Matos and Boudol [2], Chong and Myers’
notion of noninterference until declassification [5], and Zdancewic and Myers robust declassification
[22, 13]. These examples, represent the “where”, “when” and “who” dimensions of declassifi-
cation, respectively, suggesting that flow locks have the potential to provide a core calculus of
dynamic information flow policies.

The remainder of the paper is organised as follows. Section 2 gives an informal introduction
to flow locks by showing a few motivating examples. In Section 3 we then present the system
formally, and outline a semantic security condition in Section 4. Section 5 discusses related
systems, with an emphasis on how we can use flow locks to encode them. Finally Section 6
concludes.

2 Motivating Examples

First let us assume we have a simple imperative language without any security control mech-
anisms of any kind. Borrowing an example from Chong and Myers [5], suppose we want to
implement a system for online auctions with hidden bids in this language. We could write part
of this system as the code on the right.

1 int aBid = getABid();
2 int bBid = getBBid();
3 makePublic(aBid);
4 makePublic(bBid);
5 . . . decide winner + sell item

This surely works, but there is nothing in the language that pre-
vents us from committing a serious security error. We could for
instance accidently switch the lines 2 and 3, resulting in A’s bid

1 The term dynamic flow policy could have different interpretations. We use it in the sense that the flow policies
vary over time, but they are still statically known at compile time.
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being made public before B places her bid, giving B the chance
to tailor her bid after A’s.

Flow locks are a mechanism to ensure that these and other kinds of programming errors are
caught and reported in a static check of the code.

The basic idea is very similar to what many other systems offer. To deny the flow of data
to places where it was not meant to go, we annotate variables with policies that govern how
the data held by those variables may be used. Looking back on our example, a proper policy
annotation on the variable aBid could be {A; BBid⇒B}. The intuitive interpretation of this
policy is that the data held by variable aBid may always be accessed by A, and may also be
accessed by B whenever the condition BBid, that B has placed a bid, is fulfilled. BBid here
is a flow lock — only if the lock is open can the data held by this variable flow to B. To know
whether the lock is open or not we must look at how the functions for getting the bids could
be implemented.

function getABid(){
int {A; BBid⇒B} x

= bidChanFromA;
open ABid;
return x;

}

The function shown on the right first fetches the bid sent by A. We
model the incoming channel as a global variable that can be read
from, one with the same policy as aBid . When the bid has been
read, the function signals this by opening the ABid lock—A has now
placed a bid and the program can act accordingly. The implementa-
tion of getBBid follows the same pattern, and will result in BBid being open.

function makePublic(bid){
publicChannel = bid;

}

Now both bids have been placed and can thus be released.
The makePublic function would be implemented as shown
on the left. The outgoing publicChannel is also modelled

as a global variable that can be written to. This one has the policy {A;B} attached to it, de-
noting that both A and B will be able to access any data written into it. At the points in the
program where makePublic is applied, both A and B will have placed their bids, the locks
ABid and BBid will both be open, and the flows to the public channel will both be allowed.
However, if the lines 2 and 3 were now accidently switched, it would be a different story. Then
we would attempt to release A’s bid, guarded by the policy {A; BBid⇒B}, onto the public
channel with policy {A;B}. Since the flow lock BBid will then not yet be opened, this flow is
illegal and the program can be rejected.

1 auctionItem(firstItem);
2 aBid = getABid();
3 bBid = getBBid();
4 makePublic(aBid);
5 makePublic(bBid);
6 . . . decide winner + sell item
7 auctionItem(secondItem);
8 aBid = getABid();
9 bBid = getBBid();

10 makePublic(aBid);
11 makePublic(bBid);
12 . . . decide winner + sell item

Taking the example one step further, assume that we
have two items up for auction, one after the other. We
can implement this rather naively as the program to the
right. The locks ABid and BBid will both be opened on
the first calls to the getXBid functions. But unless we
have some means to reset them, there is again nothing to
stop us from accidently switching lines to make our pro-
gram insecure, this time lines 9 and 10. The same prob-
lem could also be seen from a different angle: what if
the locks were already open when we got to this part of
the program? Clearly we need a closing mechanism to
go with the open. The function auctionItem could then be implemented as shown here.
By closing the locks when an auction is initiated, we can rest assured that both A and B must
place new bids for the new item before either bid is made public.
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function auctionItem(item){
close ABid, BBid;
... present item ... }

It should be fairly easy to see that what we have here is a
kind of state machine. The state at any program point is
the set of locks that are open at that point, and the open
and close statements form the state transitions. A clause

σ ⇒ A in a policy means that A may access any data guarded by that policy in any state where
σ is open.

Our lock-based policies also give us an easy way to separate truly secret data from data that is
currently secret, but that may be released to other actors under certain circumstances. Assume
for instance that payment for auctioned items is done by credit card, and that the server stores
credit card numbers in memory locations aCCNumand bCCNumrespectively. Assume further
that the line aBid := aCCnum; is inserted, either by sheer mistake or through malicious
injection, just before where aBid is made public. This would release A’s credit card number
to B, however, the natural policy on aCCNumwould be {A}, meaning only A may view this
data, ever. Thus when we attempt the assignment above, it will be statically rejected since the
policy on aBid is too permissive.

All the above are examples of policies to track confidentiality. The dual of confidentiality is
integrity, i.e. deciding to what extent data can be trusted, and it should come as no surprise
that flow locks can handle both kinds.

Returning to the example with the credit card, we assume that when A gives her credit card
number, it must be validated (in some unspecified way) before we can trust it. To this end we
introduce a “pseudo” actor T (for “trusted”) who should only be allowed to read data that is
fully trusted. We then use an intermediate location tmpACCNumto hold the credit card number
when it is submitted by A. This location is given the policy {A; ACCVal⇒T}, stating that this
data is trusted only if the lock ACCVal is open, which is done when the submitted number has
been validated. Once validated we can transfer the value to aCCNum, which now has the policy
{A;T} stating that this data is trusted.2

3 A Secure Type and Effect System

In the previous section we used a simple imperative language to give an easy introduction to
the concept of flow locks. In this section we define the type system for flow locks in the more
general context of an ML-like language with recursion and references (but without polymor-
phism).

3.1 The language λFL

The terms and types of our language, dubbed λFL, are listed in Figure 1.

The policy language is worth some extra attention. The flow lock policies with which we work
assumes a set of actors (or levels, principals) ranged over by A, B, and a set of flow locks ranged
over by σ, with Σ for sets of locks. Both actors and flow locks are global in a program. A
policy is a set of clauses, where each clause of the form Σ ⇒ A states the circumstances (Σ)
under which A may view the data governed by this policy. Σ is a set of locks which we name

2 In order to prevent overwriting this data with a new number that hasn’t been validated, we should also be
sure to close the lock ACCVal once the assignment is done.

4



Policies: p ::= { c1; . . . ; cn} c ::= { σ1, . . . , σk}⇒A

Values and types: v ::= n | b | () | λx.M | `p,τ

τ ::= int | bool | unit | (τ, p)
Σ,p,p,Σ−−−−→ τ | ref p τ

Terms: M ::= v | x | MM | if M then M else M | rec x.M
| refp,τ M | !M | M := M | open σ | close σ

Derived forms: let x = M1 in M2 ≡ (λx.M2)M1 M1;M2 ≡ (λ .M2)M1

Figure 1: The λFL language

the guard of the clause, and interpret it as a conjunction. Thus for the guard to be fulfilled,
all the locks in Σ must be open. We can however have more than one clause for the same A,
in which case the separate clauses also form a conjunction — A may read the data if either of
the guards are fulfilled. In the special case where the guard contains no locks, signifying that
the corresponding actor A may always view the data, we write the clause as only A instead of
{}⇒A. From a logical perspective a policy is just a conjunction of definite Horn clauses, i.e.∧

i{σi1 ∧ · · · ∧ σin⇒Ai}. We implicitly identify policies up to logical equivalence.3

Now we can continue with the language itself. Apart from the terms from standard λ calculus
with recursion, λFL has constructs for creating (ref), dereferencing (!) and assigning to (:=)
memory locations (`p,τ ) through references. In addition to the core terms, we can also derive a
few useful language constructs as is also shown in Figure 1.

The reference creation construct takes an extra parameter p which is the policy that the con-
tents should be governed by. The same parameter also shows up on the memory locations
themselves, together with the base type τ of the contents. In many cases this τ is irrelevant,
or clear from the context, and in those cases we omit it and just write `p. Function types are
annotated with read and write policies, and start and end states, and arguments are annotated
with a reading policy. We discuss the meaning of these when we define the type system. There
are also the open and close terms for manipulation flow locks, thereby changing the state of
the program.

The semantics of the language is standard, but apart from the term M and a memory µ, the
configurations include the current state Σ. This state is the set of currently open locks, which
are effected by the execution of open and close expressions. The small-step semantics of
these are simply:

〈Σ,open σ, µ〉 → 〈Σ ∪ {σ}, (), µ〉 〈Σ, close σ, µ〉 → 〈Σ \ {σ}, (), µ〉

It is important to note that the only interaction between a program and the lock state is via the
open and close instructions. This is because we are aiming for a completely static verification
— we include the lock state in the semantics only to be able to prove properties about flows,
but the state is not actually represented at runtime. For this reason we also do not need to
consider potential covert channels introduced by the flow lock state.

3It is worth noting that we do not allow negative flow policies. Our policy language is monotonic, i.e. the more
locks that are open, the more flows are allowed.
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3.2 Some intuitions about flow-lock security

Before we define our type system, it is useful to get some intuitions about which programs we
deem secure/insecure. At this point we only concern ourselves with information leaks arising
from direct or indirect data flows. In particular we will not consider timing or termination
sensitivity.

`{A} := !m{B}(1)
`{A;B} := !m{B}(2)
`{A} := !m{A;B}(3)
`{σ⇒A;B} := !m{B}(4)
`{A} := !m{σ⇒A}(5)

A few small example programs are presented on the right. All of
these contain insecure direct data flows, except (3). In (1) the con-
tents of m{B} may only be read by B, but we are attempting to leak
them into a location readable by A. Same thing goes for (2) — even
though B can read the contents of the target location, we are still
leaking the contents of m{B} to A. The simple pattern is that we
may not write data to a memory location if that location may be read by someone who can-
not already access the data. What’s more, this should hold for future time as well. Thus if
a reader could access the data from the location we are writing to in some future state, that
reader must also have access to the data that is being written, in that same state. Thus the
example m{σ⇒A} :=!`{σ⇒A} is secure while program (4) is not. In program (5) we attempt to
take data not yet readable by A, and put it in a location where A could read it right away. This
should clearly not be allowed for the same reasons as for (4).

open σ; `{A} := !m{σ⇒A}(6)
`{A} := (open σ; !m{σ⇒A})(7)

The lock state in effect at the point of the assignment deter-
mines its validity, so the programs (6) and (7) are secure.

However, we also want a program like (8) below to be con-
sidered secure, so we should take the policy of data read from some memory location to be the
policy on the location, but taking into account the current state.

(8) `{A} := let x = (open σ; !m{σ⇒A}) in (close σ;x)

In program (8) above, the data read from the reference will thus have the policy {A} and not
{σ⇒A}, since it is read in a state where σ is open.

Putting all this slightly more formally, data may be written to a memory location if and only
if the policy on the location is at least as restrictive as the one on the data, with respect to the
state in effect at the point of the assignment. We give a formal definition of this in the next
section.

We must also handle indirect flows that arise from various branching situations. A very simple
example program containing an invalid indirect flow is

(9) if !`{A} then m{B} := true else m{B} := false

This program is obviously insecure since it will leak the value of `{A} into m{B}, but for some
programs it is not so easy to tell. Consider the three programs

if !`{σ⇒A} then (open σ;m{A} := true) else (open σ;m{A} := false)(10)

if !`{σ⇒A} then (open σ;m{A} := true; close σ) else ()(11)

if (open σ; !`{σ⇒A}) then (close σ;m{A} := true) else ()(12)

Program (10) could be argued correct since at the points where we leak the information to A,
i.e. the assignments, the state allows A to access the result of the branching conditional directly,
and hence the leak is secure.
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However, as program (11) shows it is not that simple. If the second branch in (11) is chosen,
the value of the condition is still leaked to A by the absence of a write, but at no point does the
state allow the flow. The leaks come from knowing which of the two branches is taken, which
suggests that the leak actually occurs at the branch point. Thus it is the policy of the condition,
taken in the state in effect at the branch point, that decides what writes the branches may
perform. This means that (9), (10) and (11) are all insecure, while (12) is secure even though
the lock is closed again before the write.

(!`{A}) ()(13)

(!`{σ⇒A}) ()(14)

(!`{σ⇒A}) (open σ; ())(15)

(!`{A}) := 0(16)

(!`{σ⇒A}) := (open σ; 0)(17)

(λx.`{B} := x) (!m{A})(18)

(λx.`{B} := 0) (!m{A})(19)

Another possible source of indirect leaks is function appli-
cation. If the function itself is secret, an attacker could still
get information about what that function is by observing its
effects, just like he could know which branch was taken by
observing the effects of a conditional expression. Thus in a
sense we can view function application as a kind of branch-
ing.

Consider the programs (13) – (19). In the program (13) we
must ensure that the function read from the reference does
not write to locations visible by anyone other than A, oth-
erwise we could leak information about which function that was used. As an example, if the
function read from `{A} in (13) is (λx.m{B} := 1) or (λx.m{B} := 2), B can determine which
of the two that was used by reading m{B}. We treat the application point in the same way as
the branch point of a conditional, so in program (14) the body of the function must not write to
a location directly visible to A, even if it first opens σ. However, since we have a call-by-value
semantics, in program (15) the function body may perform writes to locations directly visible
to A, even if it first closes σ, since σ will be open at the application point.

A similar situation is assignment to a reference that in turn has been read from a reference, as
illustrated in program (16) which should be disallowed if the reference read from `{A} is visible
to anyone other than A. In particular, the contents of `{A} could be m{B} or n{B}, in which case
B can determine the contents of `{A} by checking which of the two latter locations that contain
the value 0. However, just as for application, program (17) is secure if the reference assigned
to has policy {A}, or any policy that is more restrictive than {A}, since σ is opened before the
assignment takes place.

We also need to look at how functions handle the values passed to them as arguments. Clearly
we want to rule out a direct leak in the function body, as the one in example (18). One solution
attempt could be to rule out all functions that write to “low” memory, i.e. locations with less
restrictive policies that the one placed on the argument. But this also rules out perfectly secure
programs such as (19) which in particular would mean that we could not derive a sequential
composition form as in figure 1 without placing too heavy restrictions on the writing capabil-
ities of the second sub-program. Thus we want our type system to treat these two programs
differently — (18) should be deemed insecure, but not (19).

Other issues such as whether our system is termination sensitive or timing sensitive (see [16]
for an overview of these concepts) are orthogonal to the above discussion. We choose to de-
velop a type system and semantics for termination and timing insensitive security. Termination
insensitivity makes the type system simpler but the semantics more complex.
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3.3 The Type System

Now we have all the intuition needed to construct the type system. We choose to model our
system as a type and effect system in the style of Almeida Matos and Boudol [2]. This means
in particular that all expressions will be given a reading effect and a writing effect. In our system
the reading effect of an expression is a policy which states who may read the result of that
expression, and in what lock states they may do so. The writing effect is also a policy, which
records which actors and in what lock states they can see the memory effect of the expression’s
execution. Type judgments then have the form

Γ;Σ ` M : τ, (r, w)⇒ Σ′

• Γ is a typing environment for variables giving a type and policy for each variable.

• Σ is the state, i.e. the set of locks currently open.

• τ is the type of the term

• (r, w) are the reading and writing effects of the term, both on the form of policies

• Σ′ is the state the program will be in after evaluating the term

First we need to define a few operators on policies that we will use in the typing rules. The
aforementioned ordering of how restrictive policies are is defined as

p1 � p2 ≡ ∀(Σ2 ⇒ A) ∈ p2.∃(Σ1 ⇒ A) ∈ p1.Σ1 ⊆ Σ2

Read out, we say that p1 is less restrictive than p2 if and only if every clause in p2 is matched by
a clause in p1 for the same A with a less restrictive guard (one with no additional locks). From
the logical perspective, this ordering corresponds directly to implication. The most restrictive
policy is {}, also written >, and data with this policy can never be accessed by anyone. On the
other end of the spectrum is ⊥, defined as the set of all actors in the system. In other words,
data marked with ⊥ can be read by everyone at all times.

To join two policies means combining their respective clauses, thereby forming the logical
disjunction. We define

p1 t p2 ≡ {Σ1 ∪ Σ2 ⇒ A | Σ1 ⇒ A ∈ p1, Σ2 ⇒ A ∈ p2}

It should be intuitively clear that the join of two policies is at least as restrictive as each of the
two operands, i.e. p � p t p′ for all p, p′. In contrast, forming the union of two policies, i.e. the
meet, corresponding to u or logical conjunction, makes the result less restrictive, so we have
p u p′ � p for all p, p′. Both u and t are clearly commutative and associative.

Finally we need to define using a policy with respect to a particular state, or normalising to a
state. We say that policy p normalised at state Σ is

p(Σ) ≡
{
Σ′ \ Σ ⇒ A | Σ′ ⇒ A ∈ p

}
Informally, we remove all open locks from all guards in p, since these no longer restrict data
governed by p. This function is antimonotonic, so Σ ⊆ Σ′ =⇒ p(Σ′) � p(Σ), and in particular
p(Σ) � p for all Σ. Logically this operation is a partial evaluation, where all variables (locks)
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Γ;Σ ` n : int, (⊥,>)⇒ Σ Γ;Σ ` b : bool, (⊥,>)⇒ Σ

Γ;Σ ` `p,τ : refp τ), (⊥,>)⇒ Σ Γ;Σ ` () : unit, (⊥,>)⇒ Σ

Γ, x : (τ, rα);∆ ` M : τ ′, (r, w)⇒ ∆′

Γ;Σ ` λx.M : (τ, rα)
∆,r,w,∆′
−−−−−→ τ ′, (⊥,>)⇒ Σ

x : (τ, r) ∈ Γ
Γ;Σ ` x : τ, (r(Σ),>)⇒ Σ

Γ;Σ ` open σ : unit, (⊥,>)⇒ Σ ∪ {σ} Γ;Σ ` close σ : unit, (⊥,>)⇒ Σ \ {σ}

Γ, x : (τ, r); Σ ` M : τ, (r, w)⇒ Σ
Γ;Σ ` rec x.M : τ, (r, w)⇒ Σ

Γ;Σ ` M : τ, (r, w)⇒ Σ′

Γ;Σ ` refp M : refp τ , (⊥, w u p)⇒ Σ′
Γ;Σ ` M : refp τ , (r, w)⇒ Σ′

Γ;Σ ` !M : τ, (r t p(Σ′), w)⇒ Σ′

Γ;Σ ` M1 : refp τ , (r1, w1)⇒ Σ′ Γ;Σ′ ` M2 : τ, (r2, w2)⇒ Σ′′

Γ;Σ ` M1 := M2 : unit, (⊥, w1 u w2 u p)⇒ Σ′′ r1(Σ′′) t r2(Σ′′) � p

Γ;Σ ` M0 : bool, (r0, w0)⇒ Σ′ Γ;Σ′ ` Mi : τ, (ri, wi)⇒ Σi r0(Σ′) � w1 u w2

Γ;Σ ` if M0 then M1 else M2 : τ, (r0 t r1 t r2, w0 u w1 u w2)⇒ Σ1 ∩ Σ2

r1(Σ2) � wf

Γ;Σ ` M1 : (τ, r2)
Σ2,rf ,wf ,Σ3−−−−−−−−→ τ ′, (r1, w1)⇒ Σ1 Γ;Σ1 ` M2 : τ, (r2, w2)⇒ Σ2

Γ;Σ ` M1 M2 : τ ′, (r1 t rf , w1 u w2 u wf )⇒ Σ3

Figure 2: Type and Effect system

that appear in Σ are set to true in p.

The type and effect system is presented in Figure 2. The rules for literal values are straight-
forward, giving all such values the reading effect bottom. However, from the variable rule we
see that variables are given a reading policy. This is used to keep track of the reading policies
of function arguments, as can be seen from the rules for abstraction and application, and the
purpose is to disallow programs like (18) while still allowing (19). It is important to note that
we do not check that r2(Σ2) � wf in the application rule, since doing so would invalidate
program (19). Instead we rely on the type checking of the body of the function to find any
leaks inside it, with the help of the annotation on its parameter.

In the rule for abstractions, we annotate the function arrow with the latent read and write
effects that will be accurate for the function body once it is applied. We also annotate the arrow
with the state that the program will be in at the application point, and the state the program will

be in after evaluating the body. The interpretation of a function with type (τ, rα)
∆,r,w,∆′
−−−−−→ τ ′ is

thus that when applied in state ∆ on an argument of type τ and with reading policy rα, it will
produce a result of type τ ′ with reading policy r. The writing policy w states who could see
that the function has been applied, and the whole program will be in state ∆′ afterwards. This
is all mirrored by the appropriate states in the application rule.
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Direct leaks, like the ones in programs (1), (2), (4) and (5), are handled by the check r2(Σ′′) � p
in the rule for assignment. Since we normalise the policy r2 of the assignee to the state in
effect at the point of the assignment, program (5) would be secure if run in a state where σ is
open, which is exactly what happens in programs (6) and (7). Also the normalisation to the
current state in the dereferencing rule, i.e. p(Σ′) in the reading effect of the conclusion, means
that program (8) will be deemed secure. The same kind of normalisation also appears in the
variable rule.

The check r0(Σ′) � w1 uw2 in the conditional rule will ensure that an indirect leak like the one
in (9) will not be allowed. The normalisation of r0 to Σ′ means that it is the state at the branch
point that is important, which disallows (10) and (11) but lets (12) through. The branches may
open and close different locks, so the end states can differ. Since policies are monotonic, we
can use the intersection of the end states as a safe approximation for the following program.

The checks r1(Σ′′) � p in the assignment rule, and the corresponding r1(Σ2) � wf in the
application rule handle indirect flows like in (13), (14) and (16), but allow (15) and (17).

In the assignment rule, the reading effect in the conclusion is ⊥. The reason is that the result
of an assignment is always (), independent of the result values of the two expressions M1 and
M2, so no information is leaked by making the () result public. For similar reasons, r2 does
not show up in the reading effect in the conclusion of the application rule. Since function
arguments are annotated with their reading effects, if the result of M2 has any effect on the
result of the whole application expression, this fact will be seen through rf .4

4 Semantic Security Properties

In this section we define the semantic security property appropriate for flow locks, and outline
the proof that the flow lock type system does indeed satisfy this property.

4.1 COREFL

The first observation we make, which we will explain in more depth in section 4.5, is that
the λFL language and the given substitution semantics are not well suited when defining the
semantic security property. In order to assert the properties we require, we need to be able
to reason about values resulting from evaluating each subterm, and λFL does not give us the
means to do this.

To this end we define a monadic core language, COREFL, defined in figure 3. The main dif-
ference from λFL is that we have made sequential computation explicit in the language by the
introduction of a bind construct. All other terms in the language have been syntactically re-
stricted to contain no subterms other than variables in positions suited for reduction. Another
difference is that variables are now annotated with a policy and a type, just like locations.
This means that references need not be typed since their type is given by the annotion on the
variable argument. We use boldface metavariables x, y etc., to range over policy- and type-
annotated variables of the form xp,τ , yp′,τ ′ .

4 The rules involving functions are fairly restrictive as they are formulated here. One could easily imagine vari-
ous forms of subsumption, both for lock states and argument policies, that would make the system less restrictive.
However, adding subsumption would complicate the overall formulation of the type system, so we leave it for the
full version of the paper.
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Annotated variables x ::= xp,τ

Values and types: v ::= n | b | () | λx.M | `p,τ

τ ::= int | bool | unit | (τ, p)
Σ,p,p,Σ−−−−→ τ | ref p τ

Terms: M ::= v | x | x y | if x then M else M | rec x.v
| refp x | !x | x := y | open σ | close σ
| bind x = M in M

Figure 3: The COREFL language

4.2 Semantics

The semantics for COREFL, presented in figure 4, and is given by single-step labelled transitions
of the form

〈Σ,M, S〉 p→ 〈Σ′, N, S′〉

where

• Σ is the set of flow locks currently open,

• M is the term being computed,

• S is the store: a finite mapping from annotated values and locations to COREFL values.

• p records the policy relating to any store access that that takes place during that step (and
is simply > if there is no memory access in that step).

We assume the usual well-formedness conditions for configurations 〈Σ,M, S〉, namely that the
free variables and the locations in M and in the range of S are in the domain of S.

We will write 〈Σ,M, S〉 → 〈Σ′, N, S′〉 to mean ∃p.〈Σ,M, S〉 p→ 〈Σ′, N, S′〉, and 〈Σ,M, S〉 ⇑ to
mean that the configuration diverges – i.e. can be reduced indefinitely

〈Σ,M, S〉 → 〈Σ0, N0, S0〉 → · · · → 〈Σi, Ni, Si〉 → · · ·

4.3 Type System for COREFL

The type system for λFL is valid also for COREFL terms with the addition of a typing rule for
the bind construct. However, since COREFL terms are simpler than their λFL counterparts, we
can specialise the type rules for COREFL terms, and use the simpler formulations to good effect
in our proofs. The result of this specialisation can be found in figure 5. Note that the type
environment is now redundant since each variable carries its type.

We can establish some standard properties relating well-typed programs and reduction: progress,
which says that well-typed programs do not get “stuck”, and preservation (subject reduction),
which says roughly that well-typed terms reduce to well-typed terms. We simply state these
properties as lemmas here while the proofs are given in appendix A.1.
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〈Σ, xp,τ , S〉
p→ 〈Σ, S(xp,τ ), S〉

〈Σ, ref xp,τ , S〉
>→ 〈Σ, `p,τ , S[`p,τ 7→ S(xp,τ )]〉 `p,τ /∈ dom(S)

〈Σ, !xp,τ , S〉
pup′→ 〈Σ, S(S(xp,τ )), S〉 where S(xp,τ ) = `p′,τ ′

〈Σ, x := y, S〉 >→ 〈Σ, (), S[S(x) 7→ S(y)]〉

〈Σ, if xp,τ then M0 else M1, S〉
p→ 〈Σ,M0, S〉 if S(xp,τ ) = true

〈Σ, if xp,τ then M0 else M1, S〉
p→ 〈Σ,M1, S〉 if S(xp,τ ) = false

〈Σ, xp,τ y, S〉 p→ 〈Σ,M [y/z], S〉 where S(xp,τ ) = λz.M , z fresh

〈Σ,open σ, S〉 >→ 〈Σ ∪ {σ}, (), S〉

〈Σ, close σ, S〉 >→ 〈Σ \ {σ}, (), S〉

〈Σ, rec x.v, S〉 >→ 〈Σ, v, S[x 7→ v]〉

〈Σ,bind x = v in M,S〉 >→ 〈Σ,M, S[x 7→ v]〉 x /∈ dom(S)

〈Σ,M, S〉 p→ 〈Σ′,M ′, S′〉

〈Σ,bind x = M in N,S〉 p→ 〈Σ′,bind x = M ′ in N,S′〉

Figure 4: Store-based semantics for COREFL

Lemma 1 (Progress). If Σ ` M : τ, (r, w)⇒ ∆ then either

• M ∈ Val, or

• for all S such that dom(S) ⊇ fv(M) ∪ loc(M) and ` S
then ∃Σ′,M ′, S′.〈Σ,M, S〉 → 〈Σ′,M ′, S′〉.

Lemma 2 (Preservation). If Σ ` M : τ, (r, w)⇒ ∆ and ` S and dom(S) ⊇ fv(M) ∪ loc(M) and
〈Σ,M, S〉 → 〈Σ′,M ′, S′〉 then ` S′ and Σ′ ` M ′ : τ, (r′, w′)⇒ ∆ where r′ � r and w � w′.

4.4 Semantic security property

To prove standard noninterference one needs to show that the observable behaviour of a pro-
gram, from the perspective of a given actor, does not change when the values of secrets (things
not readable by that actor) are changed. At the top level we may settle for a notion of “observ-
able behaviour” to mean the results of computations — the final state or values.

In the next section we will show that our notion of flow lock security does indeed imply a
standard noninterference property. However, since we have dynamic policies we are forced
to consider the intermediate states of a computation, because it is at such state that the policy
may change.

Visibility An actor α can directly observe the contents of a memory location `p,τ in lock state
Σ, when there is a clause Σ′⇒α ∈ p such that Σ′ ⊆ Σ, or equivalently, when {}⇒α ∈ p(Σ).
In this case we sometimes say that α can see p at Σ. This kind of property is used often, so we
introduce some specific notations:
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Σ ` n : int, (⊥,>)⇒ Σ Σ ` b : bool, (⊥,>)⇒ Σ

Σ ` `p,τ : ref p τ , (⊥,>)⇒ Σ Σ ` () : unit, (⊥,>)⇒ Σ

∆ ` M : τ, (rf , wf )⇒ ∆′

Σ ` λxp′,τ ′ .M : (τ ′, p′)
∆,rf ,wf ,∆′

−−−−−−−→ τ , (⊥,>)⇒ Σ
Σ ` xp,τ : τ, (p(Σ),>)⇒ Σ

Σ ` open σ : unit, (⊥,>)⇒ Σ ∪ {σ} Σ ` close σ : unit, (⊥,>)⇒ Σ \ {σ}

Σ ` v : τ, (⊥,>)⇒ Σ
Σ ` rec x⊥,τ .v : τ, (⊥,>)⇒ Σ

p(Σ) � p′

Σ ` refp′ xp,τ : refp′ τ , (⊥, p′)⇒ Σ Σ ` !xp,ref p′ τ : τ, (p(Σ) t p′(Σ),>)⇒ Σ

p(Σ′′) t p′(Σ′′) � p′′

Σ ` xp,ref p′′ τ := yp′,τ ′ : unit, (⊥, p′′)⇒ Σ

Σ′ ` Mi : τ, (ri, wi)⇒ Σ′ p(Σ) � w0 u w1

Σ ` if xp,bool then M0 else M1 : τ, (r0 t r1 t p(Σ), w0 u w1)⇒ Σ′

p(Σ) � wf

Σ ` xp,τf
yp′,τ ′ : τ, (p(Σ) t rf , wf )⇒ Σ′ where τf = (τ ′, p′)

Σ,rf ,wf ,Σ′

−−−−−−−→ τ

Σ ` M0 : τ, (r0, w0)⇒ Σ′ Σ′ ` M1 : τ ′, (r1, w1)⇒ Σ′′ r0(Σ′) � p

Σ ` bind xp,τ = M0 in M1 : τ ′, (r1, w0 u w1)⇒ Σ′′

Figure 5: Specialized Type and Effect system for COREFL

Definition 1 (Visibility).

α ·̂ p
def= ({}⇒α) ∈ p (α can see p)

α 6 ·̂ p def= ¬(α ·̂ p) (α can’t see p)

α 6 ·̂Ωp
def= ∀Θ.α 6 ·̂ p(Θ \ Ω) (α can’t see p without Ω)

guardsα(p) def=
{
{{}} if α ·̂ p
{Φ | Φ ⇒ α ∈ p} otherwise

(The guards of α in p)

The last of these definitions, the guards of an actor α in policy p, definies the sets of locks which
have an influence on the visibility of the policy to α. We can connect the guards of a policy and
its visibility through the following lemma:

Lemma 3 (Guard lemma). If α 6 ·̂ p, then α 6 ·̂Ωp where Ω =
⋃

guardsα(p).

The proof of this lemma can be found in appendix A.2

For the visibility operators we note that the α ·̂ p relation is anti-monotonic in its policy
argument, i.e.

α ·̂ p & p′ � p =⇒ α ·̂ p′
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Clearly α 6 ·̂ p and α 6 ·̂Ωp are then monotonic. Also α 6 ·̂Ωp is monotonic in its lock-set argument,
i.e.

α 6 ·̂Ωp & Ω′ ⊇ Ω =⇒ α 6 ·̂Ω′
p

Actor indistinguishable stores In order to charactersise when information has leaked we
first need to characterise when two stores are indistinguishable for a given actor. In order to
do this we need to take into account which locks are open. Once we know wich locks are open
we can compute which parts of the store are visible to the actor.

Definition 2 (α-indistinguishable stores =Θ
α ). Define two stores S and T to be indistinguish-

able by α at lock state Θ, written S =Θ
α T , if the location domains of S and T are the same, and

for all policies p such that α ·̂ p(Θ),

1. for all locations `p,τ in S and T we have S(`p,τ ) = T (`p,τ ), and

2. for all variables xp,τ ∈ dom(S) ∩ dom(T ) we have S(xp,τ ) = T (xp,τ ).

The definition asserts the equality, in S and T respectively, of locations `p,τ and variables xp,τ

which are visible to actor α at lock state Θ. The stronger requirement on locations – that S
and T have the same locations – is due to the fact that locations are first class values that can
be passed around and inspected, and their values can be updated, so an actor can potentially
observe the presence or absence of a given memory location in a store. Variables on the other
hand can never be observed directly.

The relation =Θ
α is not transitive in general since the domains may vary freely in the parts that

deal with variables. As an example of this we could have {x⊥,τ 7→ v} =Θ
α {} and {x⊥,τ 7→

v′} =Θ
α {}, but clearly not {x⊥,τ 7→ v} =Θ

α {x⊥,τ 7→ v′}.

However, we are going to need to argue about transitivity in our proofs, so we need to assert
that transitivity holds for a certain domain of memories. In particular we can show that S =Θ

α

S′ and S =Θ
α T gives S′ =Θ

α T , assuming that dom(S′)\dom(S)∩ dom(T ) = {}. We would then
have that dom(S′) ∩ dom(T ) ⊆ dom(S) ∩ dom(T ), and thus for all variables xp,τ ∈ dom(S′) ∩
dom(T ) we have S′(xp,τ ) = T (xp,τ ) as required.

Whenever we argue transitivity in our proofs, we implicitly mean this restricted form, but the
condition on domains will always be true in the contexts where we use it.

Flow lock security Our definition of flow-lock security follows the “self-bisimulation” ap-
proach from [17], whereby security is characterised by a more general property of two pro-
grams being bisimilar with respect the the observable parts of memory. One particular feature
of the definition from [17] is that the bisimulation is defined over programs and not config-
urations (program-memory pairs). The idea is that at each step of the bisimulation the pair
of programs under comparison are inspected in all pairs of memory states which are indis-
tinguishable to the attacker. This very strong requirement was needed to make the definition
of security compositional with respect to parallel composition. But this approach of “reset-
ting” the store at each step has another very useful property: it enables us to reset the state
in the event of a policy change. For example, one particular difficulty is that when the cur-
rent policy becomes more restrictive — in our case when locks are closed — then we need a
way to reestablish a stronger security requirement at that point in the execution. It is notable
that two previous semantic accounts of temporary policy weakening mechanisms, Mantel and
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Sands’s language based intransitive noninterference condition [8], and Almeida Matos and
Boudol’s nondisclosure policy [2], both rely on such a “resetting” bisimulation not only to deal
with threads, but more importantly to provide a semantics to local policy change mechanisms.
Our definition is close in spirit to Almeida Matos and Boudol’s definition, although our less
structured (more general) policy-change mechanism creates additional problems.

Without further ado, we now provide the definition of bisimulation upon which our notion of
security is based.

Definition 3 (∼Ω
α ). For any actor α let {∼Ω

α} be the lock-set indexed family (i.e. Ω is a set of
locks) of relations defined to be the largest symmetric relations on preconfigurarions (lockstate-
term pairs) such that if

〈Σ,M〉 ∼Ω
α 〈∆, N〉 & 〈Σ,M, S〉 p→ 〈Σ′,M ′, S′〉

& Θ ⊇ Σ & S =Θ
α T & dom(S′)\dom(S) ∩ dom(T ) = {}

then there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & S′ =Θ\Ω
α T ′ & 〈Σ′,M ′〉 ∼Ω′

α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

where Ω′ = Ω ∪
⋃

guardsα(p(Θ))

Now we can state that a program is secure if and only if it is bisimilar to itself:

Definition 4 (Flow-lock security). We say that a term M is flow-lock secure, written M ∈ FL,
if and only if 〈{},M〉 ∼{}

α 〈{},M〉

4.5 The bisimulation definition explained

We will try to explain our definition using a sequence of “attempts”, each of which introduces
parts of the final solution. These are:

1. Bisimulation up to nontermination – adding termination insensitivity to a configuration-
level bisimulation-based noninterference condition.

2. A location-resetting bisimulation – adding lock states to the bisimulation, and motivating
the “resetting” style of bisimulation.

3. A store-resetting bisimulation – motivating why we have to reset not only the locations
but also the variables

4. Future-sensitive bisimulation – why we have to quantify over all lock states which in-
clude the current lock state;

5. Past-sensitive bisimulation – why we have to add the lockset Ω.
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Let us begin with a view of an attacker (an actor) who can observe intermediate states of
computation, but not the speed of computation. Let us further suppose a simple semantics
without lockstate, and in which the state is just a mapping for locations (ranged over by µ and
ν), and that there are no free variables in the term (i.e. we have a suubstitution semantics).
Intuitively, any program when run with two inputs which are indistinguishable to an actor
should produce intermediate states indistinguishable to that actor. With no flow locks and
only static policies, a possible bisimulation formulation could be of the form:

Attempt 1 (Bisimulation up to nontermination). For any actor α, define ∼α to be the largest
symmetric relation such that if 〈M,µ〉 ∼α 〈N, ν〉 then µ =α ν, and if 〈M,µ〉 → 〈M ′, µ′〉 then
there exists N ′, ν ′ such that either 〈N, ν〉 →∗ 〈N ′, ν ′〉 and 〈M ′, µ′〉 ∼α 〈N ′, ν ′〉, or 〈N, ν〉 ⇑.

We use here the obvious notion of low-equivalence of stores, =α, which ensures that we start
with inputs that do not differ in the public parts, i.e. locations visible to α. To match a single
computation step from the first configuration we can take zero or more steps. This makes
the definition insensitive to timing issues. The divergence clause is added simply to make the
definition termination insensitive, so that we cannot (by choice) detect leaks which are encoded
in the termination behaviour alone.

This definition is clearly inadequate in the presence of locks. Our next step is to observe that
we need to define the bisimulation relation over 〈Σ,M〉 pairs, which we call preconfigurations.
This is because in order to characterise which states are indistinguishable to a given actor α we
need to know the lock state. With dynamic policies we need to take into account the fact that
when the policy changes, memory locations that were previously considered secret could now
be public, and vice versa. We handle this, as mentioned previously, by resetting the memory
at each computation step. This brings us to our second attempt:

Attempt 2 (Memory-resetting bisimulation). For any actor α, define∼α to be the largest sym-
metric relation on preconfigurations such that if

〈Σ,M〉 ∼α 〈∆, N〉 & 〈Σ,M, µ〉 p→ 〈Σ′,M ′, µ′〉 & µ =Σ
α ν

then there exists ∆′, N ′, ν ′ such that

either 〈∆, N, ν〉 →∗ 〈∆′, N ′, ν ′〉 & µ′ =Σ
α ν ′ & 〈Σ′,M ′〉 ∼α 〈∆′, N ′〉,

or 〈∆, N, ν〉 ⇑,

This definition is somewhat similar in spirit to non-disclosure [2]. For the moment we still
view stores as containing memory locations only, and thus assume a semantics which avoids
free variables altogether. This attempt takes into account that the effective secrecy status of
memory locations can change during program execution, but this is not enough. In this rich
language it is also possible to do the same for values that have been computed in the term, as
shown by program (16) in section 3:

(!`{σ⇒A}) := (open σ; ())

In this example, we first compute a value on the left-hand side, which will be given the reading
policy {σ⇒A}). From the point of view of A, this is a secret value, and could thus be different
values in different runs of the program. However, when we compute the right-hand side, the
value on the left-hand side is declassified, though it can still be different values in different
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runs, which means we could have an α-observable difference in the output of the two pro-
grams. This difference is fine though, since we explicitly changed the state to allow the flow
to α, but we must still ensure that there are no other observable differences that do not arise
from the newly opened lock. To check this, we want to continue the bisimulation but assume
that we in fact had the same value on the left-hand side, and continue as before. This is the
same thing that we do when “resetting” the memories, but we need to do the same thing for
values in the term. In order to do this for values, we need a handle on those values, which
is the motivation behind using the monadic COREFL language and the store-based operational
semantics. Thus we arrive at our third attempt:

Attempt 3 (Store-resetting bisimulation). For any actor α, define ∼α to be the largest sym-
metric relation on preconfigurations such that if

〈Σ,M〉 ∼α 〈∆, N〉 & 〈Σ,M, S〉 p→ 〈Σ′,M ′, S′〉
& S =Σ

α T where dom(S′)\dom(S) ∩ dom(T ) = {}

then there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & S′ =Σ
α T ′ & 〈Σ′,M ′〉 ∼α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

The main difference from the previous attempt is not in the formulation itself, but rather in the
use of stores S and T ranging over both variables and locations instead of memories µ and ν,
and the corresponding different formulation of the =Σ

α relation.

The condition dom(S′)\dom(S) ∩ dom(T ) = {} is just a hygiene condition that states that new
variables introduced in S′ are chosen to be distinct from the variables already present in T .
Since the operational semantics is free to choose any locations this is not a restriction per se. In
the “attempts” that follow we will tacitly elide this hygiene condition, but it is needed in all
cases.

This definition of bisimulation is still not strong enough. It is not enough to require only that
memories should be α-indistinguishable in the current state. A program such as `{σ⇒A} :=
!m{σ′⇒A} is not secure (unless σ′ is open), but with the above definition both locations would
be considered unobservable by α, and hence no α-observable differences could be observed.
The problem is that this insecure flow might only be revealed at some future time. To capture
this problem we need to check the α-indistinguishability of the two memories in a state where
σ is open but σ′ is not. More generally, we must take into account all possible (more permissive)
future lock states. Thus our fourth attempt at a definition is:

Attempt 4 (Future-sensitive bisimulation). For any actor α, define ∼α to be the largest sym-
metric relation on preconfigurations such that if

〈Σ,M〉 ∼α 〈∆, N〉 & 〈Σ,M, S〉 p→ 〈Σ′,M ′, S′〉 & Θ ⊇ Σ & S =Θ
α T

then there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & S′ =Θ
α T ′ & 〈Σ′,M ′〉 ∼α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,
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Now we will rule out programs like the one above, but we’re still not quite there. The fi-
nal problem is that the definition is now actually too strong – it rules out some (well-typed)
programs that should be considered secure, such as (somewhat simplified)

if x{σ⇒α},τ then `{σ⇒α} := 0 else ().

The indirect flow from x to ` should be fine since they have the same policy, but since x is
considered secret to α, the above definition requires us to show (after one computation step)
that 〈{}, `{σ⇒α} := 0〉 ∼α 〈{}, ()〉, which clearly does not hold ∀Θ ⊇ Σ; in particular it will not
hold when σ ∈ Θ.

The problem is that opening σ means that the condition that we branched on becomes visible
to α as well, but we’ve passed that point in the program and don’t have access to the condition
any more. To be sure we don’t rule out programs such as these we must remember what
branches we have taken, and in particular what possible future states that could make any of
the branches visible to α, and make sure that we ignore leaks in those states. Thus our fifth
and final attempt is formulated by parameterising the bisimulation relation by the set of locks
that were closed at earlier branching points, to ensure that we are not future-sensitive to these
locks.

Attempt 5 (Past-aware bisimulation). For any actor α let {∼Ω
α} be the lock-set indexed family

of relations defined to be the largest symmetric relations on preconfigurarions such that if

〈Σ,M〉 ∼Ω
α 〈∆, N〉 & 〈Σ,M, S〉 p→ 〈Σ′,M ′, S′〉 & Θ ⊇ Σ & S =Θ

α T

then there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & S′ =Θ\Ω
α T ′ & 〈Σ′,M ′〉 ∼Ω′

α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

where Ω′ = Ω ∪
⋃

guardsα(p(Θ))

The difference to the previous attempt is that we allow stores to differ after computation as
long as those differences are only visible in certain states — in particular those states in which
a previous branching point would not have led to a branch at all.

This definition is less restrictive than the former in order to not rule out programs with indirect
flows like the one presented above. There might be some concern as to whether this definition
is now too weak, since we allow stores to differ in certain states. In particular, what of a
direct leak observable only in such a state, like in the program if x{σ⇒α},τ then `{σ⇒α} :=
y>,τ ′ else (). This leak will indeed not be caught when we are working with Ω = {σ}, so we
have 〈{}, `{σ⇒α} := y>,τ ′〉 ∼

{σ}
α 〈{}, ()〉. But recall that we still quantify over all Θ ⊇ {} when

considering the conditional expression. Then for any Θ ⊇ {σ} the variable whose value we
branch on will be considered public, and we will continue with the same branch in both cases.
Also since the variable was public, there will be no states in which we allow future memories
to differ in what α can see, and we must have 〈{}, `{σ⇒α} := y>,τ ′〉 ∼

{}
α 〈{}, `{σ⇒α} := y>,τ ′〉

which cannot hold.

This fifth attempt is our actual definition of a bisimulation.
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4.6 Non-circular reasoning for bisimulation

As the sharp-eyed reader may well have noticed, our notion of a bisimulation implicitly con-
strains the stores used to be well-typed, i.e. if a location or variable is said to hold an integer
value, it does indeed hold an integer value. This is not an unreasonable assumption to make in
general, and since we reset the stores before each computation step and require the bisimula-
tion properties to be fulfilled for any stores that are equal, it is an assumption that is crucial for
this to work at all. It would be impossible for all but the simplest programs to be considered
secure otherwise.

But unfortunately this assumption leads to a circular reasoning when we want to prove that
our type system guarantees flow lock security. We allow the store to contain not only simple
values like ints, but also functions with arbitrary terms as their bodies. In order to show that
such a value is well-typed we need to use the full power of the type system.

Thus we end up in a situation where we want to show that well-typed terms are bisimilar to
themselves, but the notion of bisimilarity already depends on the type system. To break this
loop we can give a more general definition of a bisimulation where we parametrise the relation
on some well-formedness predicate on stores:

Attempt 6 (Parametrised bisimulation). For any actor α, let∼Ω
α be the lock-set indexed family

of relations defined to be the largest symmetric relations on preconfigurations such that if

〈Σ,M〉 ∼Ω
α 〈∆, N〉 & P(S) & 〈Σ,M, S〉 p→ 〈Σ′,M ′, S′〉 & P(S′) & Θ ⊇ Σ & S =Θ

α T & P(T )

then there exits ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & P(T ′) & S′ =Θ\Ω
α T ′ & 〈Σ′,M ′〉 ∼Ω′

α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

where Ω′ = Ω ∪
⋃

guardsα(p(Θ))

We would then prove that well-typed terms are bisimilar to themselves, assuming they start
off in well-typed, well-formed stores, i.e. P(S) = ` S. Subject reduction gives us that the
typeability of stores is retained, so this would not complicate the proofs the least.

This is the complete, most general definition of a bisimulation. The previous definition, which
we actually use, can be seen as an instantiation of this definition for the proper P , and we will
use that one for simplicity.

4.7 Well-typed Programs are Flow-Lock Secure

We now want to prove that all programs typeable with our type system are indeed secure. The
proof follows a similar structure to the corresponding proof from Almeida Matos and Boudol
[2].

The basic approach is to utilise the coinductive nature of the bisimulation definition. We
show that for well-typed closed M , 〈∅,M〉 ∼α 〈∅,M〉 by construction of a candidate rela-
tion Rα

α, that in particular contains the pair (〈∅,M〉, 〈∅,M〉), and which can be shown to be an
α-bisimulation. This gives us that (〈∅,M〉, 〈∅,M〉) ∈ Rα

α ⊆ ∼α.
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To be able to define the candidate relation RΩ
α we need the notion of programs that are high

with respect to some actor α. We say that a program is α-Ω-high if it does not modify any
locations that α could see while all the locks in Ω remains closed. However, this operational
notion of being high is a bit akward to work with, so instead we use a stronger, syntactic notion
stating that a program is syntactically α-Ω-high if it does not write to any locations that α could
see while the locks in Ω remain closed.

Definition 5 (Syntactically α-Ω-high programs: HΩ
α ). Let HΩ

α be the set of all terms M such
that Σ ` M : τ, (r, w)⇒ Σ′ and α 6 ·̂Ωw.

Now we can define our candidate relation:

Definition 6 (Candidate relation RΩ
α ). Let RΩ

α be a symmetric relation on well-typed precon-
figurations, inductively defined as follows:

1
〈Σ,M〉RΩ

α〈∆,M〉
2

M,N ∈ HΩ
α

〈Σ,M〉RΩ
α〈∆, N〉

3
〈Σ,M〉RΩ

α〈Σ, N〉 α 6 ·̂Ωp

〈Σ, E[bind xp,τ = M in M ′]〉RΩ
α〈∆, E[bind xp,τ = N in M ′]〉

where E[·] are the evaluation contexts for COREFL, given by

E[·] ::= [·] | bind x = E[·] in M

In words, two well-typed preconfigurations are related by RΩ
α if the programs in them are

either equal, both are high, or they are two sub-programs related by RΩ
α inside nested (equal)

bind constructs, where the results of those sub-computations are secret to α. The lock-state
components constrain what preconfigurations are in the relation only through the typeability
requirement.

The final piece of the puzzle is now to show that this candidate relation is indeed a bisimula-
tion.

Lemma 4 (
⋃
Ω

RΩ
α is a bisimulation). If 〈Σ,M〉RΩ

α〈∆, N〉 and ` S and

〈Σ,M, S〉 p→ 〈Σ′,M ′, S′〉 & Θ ⊇ Σ & S =Θ
α T & ` T

then ` S′, and there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & ` T ′ & S′ =Θ\Ω
α T ′ & 〈Σ′,M ′〉RΩ′

α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

where Ω′ = Ω ∪
⋃

guardsα(p(Θ))

We prove this by induction on the size of the typing derivation of 〈Σ,M〉. The details of this
proof can be found in appendix A.2.
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p =
⊔

`∈E level(`).

ǸI E : p
ǸI E : q p t q v level(`)

p ǸI u := E

p ǸI C1 p ǸI C2

p ǸI C1;C2

ǸI E : q p t q ǸI Ci i = 1, 2
p ǸI if E then C1 else C2

ǸI E : q p t q ǸI C

p ǸI while (E) C

Figure 6: Standard Noninterference Type System

5 Relating to Other Systems and Idioms

Standard Noninterference As a first example of the expressiveness of our system, consider
a standard termination insensitive noninterference property for a lattice-based security model
in the standard Denning style [6].

In this setting we have a lattice of security levels 〈L,v,t〉, and a policy level : Loc → L that
fixes the intended security level of the storage locations in the program (and of variables).
Given such a policy we can define noninterference. To do this let us first assume that all
policies are made up of sets of clauses of the form {}⇒α, and that programs do not use lock
open/close operations. Furthermore, for simplicity we consider programs of unit type which
do not perform any allocation of new references (locations). In what follows let metavariables
P and Q range over such programs.

Definition 7 (Noninterference). Given two stores S and T , and a level k ∈ L, define S and T
to be location indistinguishable at level k, written S =k T , iff the location domains of S and T are
the same, and for all ` ∈ dom(S) such that level(`) v k we have S(`) = T (`).

Then we say that variable-free program P is noninterfering if for all k, whenever 〈P, S〉 →∗

〈(), S′〉, and 〈P, T 〉 →∗ 〈(), T ′〉, then S =k T implies S′ =k T ′.

To represent a lattice policy we do not need any locks; we represent the reading level of a
variable by the set of levels at which it may be read. Thus the policy for a storage location ` is
the upwards closure of its lattice level, written ↑level(`), where ↑k = {{}⇒ j | j w k}.

In what follows we will implicitly identify lattice levels k with the corresponding flow lock
policy ↑k

Given this, we have the following:

Theorem 1. If P is flow lock secure then P is noninterfering.

The details of the proof are given in Appendix A.3.

But it is perhaps not too surprising that our security specification is stronger than standard
noninterference. A reasonable concern might be that the definition, or indeed the type system,
is too strong to be useful. Here we show that despite being stronger, we are still able to type
just as much as “typical” systems for regular noninterference.

Figure 6 presents a simple type system for a while language which can be seen as a straight-
forward reformulation of the typing system presented by Volpano, Irvine and Smith [21].

21



Define the following translation d·e from terms in the while language to λFL:

dwhile (E) Ce = rec x.if dEe then dCe;x else ()
dif E then C1 else C2e = if dEe then dC1e else dC2e

dC1;C2e = dC1e; dC2e
d` := Ee = `p := dEe where p = ↑level(`)

dEe = E′ where E′ is the result of replacing
each location ` in E with `↑level(`).

To make our formulations easier, let us restrict the language of expressions to booleans (so
we do not have to consider typing issues). Now we can state that whenever something is
typeable in the simple noninterference system, a corresponding derivation holds for the flow
locks system:

Theorem 2. Let Γ0 be the type environment that maps every storage location to bool . Then

1. If ǸI E : k then Γ0; ∅ ` dEe : bool , (r,>)⇒ ∅ where r = ↑k

2. If pc ǸI C then Γ0; ∅ ` dCe : unit , (r, w)⇒ ∅ where w ⊆ ↑pc

We also expect that a similar theorem holds for some suitable termination-insensitive version
of DCC [1], although we have not attempted to show this formally.

Simple Declassification We can encode a simple declassification mechanism in the same
Denning-style setting as used in the previous example. The needed extra step is to extend all
policies with clauses to allow declassification. For each level j not in the policy already, we
introduce a flow lock σj representing a declassification to that level. The new policies then
look like

{k | k w level(`)} ∪ {σj ⇒ k | j 6w level(`), k w j}

We can now define a declassification operator to level j as

declassifyj ≡ (λv.let x = (open σj ; v) in (close σj ;x))

It is easy to verify from the type system that the only effect of applying this function to some
value is that the value will then be readable also at level j, as was our intention.

Lexically Scoped Flows In the setting of a multilevel security model, Almeida Matos and
Boudol describe how to build a system with lexically scoped dynamic flow policies [2]. They
start from a λ-calculus with recursion and references like we do, and introduce a construct
“flow α ≺ β in M” that extends the current global flow policy to also allow flows from level α
to β in the scope of M. These flows are transitive, so if the current policy already allows flows
from say β to γ, flows from α to γ would also be allowed in M.

Modelling scoped flows using flow locks is easy, but the global nature of policies in Almeida
Matos and Boudol’s system, as opposed to our local policies on memory locations, needs spe-
cial treatment. We introduce a lock σα≺β for each pair of levels α and β that data could flow
between. Each policy on some data must record the fact that a future flow declaration could
allow that data to flow to many new locations due to the transitive nature of flows. Thus if a
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location in Almeida Matos and Boudol’s system would have level A, we could represent that
as

A ∪
{
σα≺β0 , σβ0≺β1 , . . . , σβk−1≺βk

⇒ βk | α ∈ A, βi /∈ A
}

where the /∈ is taken with respect to some universal set of levels. In effect, each location records
all possible future transitive flows from it. We then derive our representation of the “flow”
construct that opens a lock in the scope of some subprogram:

flow σ in M ≡ let x = (open σ;M) in (close σ;x)

Almeida Matos and Boudol also include parallel execution in their system, and as a conse-
quence make their type system and semantic security definition, called non-disclosure, sensitive
to possible non-termination. Our system has no parallel execution so we cannot model their
full system, only the sequential subset.

Intransitive Noninterference Flow locks represent a lower level abstraction than lattice-
based information flow models in the sense that the lattice ordering is not “built in” but must
be represented explicitly. One advantage of such a lower level view is that it can also represent
intransitive noninterference policies [15, 14] — i.e. ones in which the flow relation is intentionally
not transitive. Since intransitive policies are the default case for flow locks, it is straightforward
to represent simple language-based intransitive policies such as the one described by Mantel
and Sands [8].

Noninterference Until Declassification Chong and Myers’ [5] introduce a class of tempo-
ral declassification policies. This is achieved by annotating variables with types of the form
k0

c1 · · · cn kn, which intuitively means that a variable with such an annotation may be suc-
cessively declassified to the levels k1, . . . , kn, and that the conditions c1, . . . , cn will hold at
the execution of the corresponding declassification points. The exact nature of the conditions
are left unspecified, and it is assumed in the type system that these conditions are verified at
certain key program points by some external tool.

We can achieve a similar effect fairly naturally using flow locks, where we would use a distinct
lock Ci for each condition ci. One should then insert open Ci constructs in the program at
points where the intended declassification takes place, and verify (with an external tool) that
the corresponding condition ci does indeed hold at these points, and that lock Ci−1 has been
opened (we assume that locks are never closed in this encoding). The policy above could then
be represented as

{k0; {C1}⇒ k1; · · · ; {C1, . . . , Cn}⇒ kn}.

Robust Declassification Information flow may be used to verify integrity properties, to en-
sure that untrusted (low integrity) data does not influence the values of trusted (high integrity)
data. Since flow lock policies are neutral with respect to whether we are dealing with confiden-
tiality or integrity properties it is no problem to add such integrity policies to data, and we can
easily have clauses for integrity and confidentiality in the same policy. The interesting case,
however, is the interaction between confidentiality and integrity in the presence of dynamic
policies.
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Zdancewic and Myers [22] introduced the concept of robust declassification to characterise the
property that an attacker (who controls low integrity data) cannot influence what is declassi-
fied. This guarantees that the attacker cannot manipulate the amount of information which is
released through declassification.

In the setting of flow lock policies, “declassification” can be thought of as the process of open-
ing locks, since whenever a lock is opened more flows are enabled. Thus we can interpret
robust declassification as the question of whether low integrity data can influence the decision
to open locks. 5

One possible way of enforcing robust declassification using flow locks is to observe the follow-
ing: since we cannot perform any computation with locks, the only way that an open operation
can be influenced by low integrity data is via indirect information flow from low integrity data.
Suppose that our policies use an indexed set of locks σi, i ∈ I to control confidentiality. These
are unguarded (i.e. we ignore endorsement). Let us assume that in addition to the actors of the
system we have the pseudo-actor trusted used to track integrity information, just as we did in
Section 2.

In order to prevent indirect flow from low integrity data to the opening of locks, we will log
each use of an open operation by writing to a variable log . An obvious way to enforce this is
to define a “robust” version of open:

ropen σi ≡ open σi; log := i

Now we give log the policy {trusted}. This ensures that the assignment is always safe from a
confidentiality perspective (since normal actors can never read it anyway), and that the open
operation can never have taken place in a low integrity context (since otherwise the assignment
would cause information to flow from untrusted to trusted data). Finally, to additionally pre-
vent the declassification of low integrity data we can syntactically enforce that lock-guarded
policies are only used on high integrity data.

The Decentralized Label Model In the Decentralized Label Model (DLM) [10, 11, 12], data is
said to be owned by a set of principals. These principals may allow other principals to read the
data, and the effective reader set is those principals that all owners agree may read the data.
Allowing a new reader roughly corresponds to declassification, and we can model it similarly.
The DLM also defines a global principal hierarchy, where one principal may allow another
principal to act for it, which means it may read all the same things. This is very similar in spirit
to introducing a new flow in the system by Almeida Matos and Boudol, including transitivity,
and we can model it in the same way. Apart from clauses for declassification and hierarchic
flows, the policies must also include clauses for the combination of the two, e.g. A can read the
data if B owns it, has declassified it for C to read it, and A acts for C.

A common extension of the DLM [22, 20, 19] deals with integrity and trust. The interesting
part for us is the integration with the principal hierarchy, where if A trusts some data and A
acts for B, then B also trusts that data. This can be modelled as the reverse of the normal
clauses for transitive flows, and the clauses will be very similar to those for forward flows.

The complete general policy for a DLM variable encoded with flow locks would be fairly large
and awkward, so we do not show it here.

5If we also take the view from [13], then we extend this concept with the requirement that we should not be able
to declassify low integrity data
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Other Related Work The JFlow language [9], as well as several recent papers [19, 23, 7], sup-
ports runtime mechanisms to enforce security in situations where this cannot be determined
statically, e.g. permissions on a file that cannot be known at compile time. Our flow locks is a
static, compile-time mechanism only, and thus cannot handle these issues.

Banerjee and Naumann [4] describe a combination of stack-based access control and informa-
tion flow types to allow the static checking of policies such as “the method returns a result at
level L unless the caller has permission p”. It may be possible to encode these kinds of policies
in a straightforward way using flow locks, but this remains a topic for future work.

6 Conclusions and Future Work

Flow locks are a very simple mechanism that generalises many existing systems and idioms for
dynamic information flow policies. We have only just started looking at flow locks however,
and much remains to be done.

To really establish flow locks as a core calculus, we need to show more formally how to embed
other systems and idioms, and prove that our semantic condition is sufficiently strong com-
pared to the semantic conditions of these other systems. It would also be worthwhile to look
at extensions of our core system, in order to handle systems that we definitely cannot model
at this point. Examples of such systems include the parallel execution of Almeida Matos and
Boudol [2], and also systems that use various runtime mechanisms [19, 23, 7].

Furthermore, we would need to investigate how to implement the flow locks system as a pro-
gramming language, and to determine what kinds of inference would be needed for policies
and locks. Also, flow locks are fairly low-level in nature, being a raw mechanism for control-
ling data flows in a program. As such it is nontrivial to write and maintain correct flow lock
programs. It would therefore be useful to look at what higher-level abstractions and design
patterns that could be used together with flow locks. There exists some work specifically tar-
geting the question of patterns, for instance the seal pattern by Askarov and Sabelfeld [3].
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A Appendix

A.1 Proofs that the type system guarantees semantic soundness

Lemma 1 (Progress). If Σ ` M : τ, (r, w)⇒ ∆ then either

• M ∈ Val, or

• for all S such that dom(S) ⊇ fv(M) ∪ loc(M) and ` S
then ∃Σ′,M ′, S′.〈Σ,M, S〉 → 〈Σ′,M ′, S′〉.

Proof. In COREFL the syntax restricts the terms of the language to be in a reductive form,
except the bind construct. This is thus the only case for which the lemma does not trivially
hold. By induction on the size of the typing derivation for M we get for the bind case from the
induction hypothesis that it holds for the bound expression, and thus it holds for M .

Lemma 2 (Preservation). If Σ ` M : τ, (r, w)⇒ ∆ and ` S and dom(S) ⊇ fv(M) ∪ loc(M) and
〈Σ,M, S〉 → 〈Σ′,M ′, S′〉 then ` S′ and Σ′ ` M ′ : τ, (r′, w′)⇒ ∆ where r′ � r and w � w′.

Proof. We prove this by induction on the typing derivation for M , and by cases according to
the structure of M .

Case: M ∈ Val. The statement is vacuously true.

Case: M = xp,τ . The reduction has the form 〈Σ, xp,τ , S〉 → 〈Σ, S(xp,τ ), S〉, and the typing
derivation is of the form Σ ` xp,τ : τ, (p(Σ),>)⇒ Σ. Since ` S this means that Σ ` S(xp,τ ) :
τ, (⊥,>)⇒ Σ. We have ⊥ � p(Σ) and > � > as required.

Case: M = refp′ xp,τ . The reduction has the form

〈Σ, refp′ xp,τ , S〉 → 〈Σ, `p′,τ , S[`p′,τ 7→ S(xp,τ )]〉

and the typing derivation is of the form

p � p′

Σ ` refp′ xp,τ : refp′ τ , (⊥, p′)⇒ Σ
.

Since ` S we have that Σ ` S(xp,τ ) : τ, (⊥,>)⇒ Σ, so we have ` S[`p′,τ 7→ S(xp,τ )] and Σ `
`p′,τ : refp′ τ , (⊥,>)⇒ Σ. We have ⊥ � ⊥ and p′ � > as required.

Case: M =!xp,refp′ τ . The reduction has the form

〈Σ, !xp,refp′ τ , S〉 → 〈Σ, S(S(xp,τ )), S〉
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and the typing derivation is of the form Σ ` !xp,refp′ τ : τ, (p(Σ) t p′(Σ),>)⇒ Σ. Since ` S this
means that Σ ` S(xp,τ ) : refp′ τ , (⊥,>)⇒ Σ, and thus that Σ ` S(S(xp,τ )) : τ, (⊥,>)⇒ Σ. We
have ⊥ � p(Σ) t p′(Σ) and > � > as required.

Case: M = xp,refp′′ τ := yp′,τ ′ . The reduction has the form

〈Σ, xp,refp′′ τ := yp′,τ ′ , S〉 → 〈Σ, (), S[S(xp,refp′′ τ 7→ S(yp′,τ ′)]〉

and the typing derivation has the form

p(Σ) t p′(Σ) � p′′

Σ ` xp,refp′′ τ := yp′,τ ′ : unit , (⊥, p′′)⇒ Σ
.

Since ` S this means that Σ ` S(xp,ref p′′ τ ) : refp′′ τ , (⊥,>)⇒ Σ, and that Σ ` S(yp′,τ ′) :
τ, (⊥,>)⇒ Σ, and thus we have that ` S[S(xp,refp′′ τ 7→ S(yp′,τ ′)]. We have Σ ` () : unit , (⊥,>)⇒ Σ,
and ⊥ � ⊥ and p′′ � > as required.

Case: M = if xp,bool then M0 else M1. The reduction has the form

〈Σ, if xp,bool then M0 else M1, S〉 → 〈Σ,Mi, S〉

and the typing derivation is of the form

Σ ` Mi : τ, (ri, wi)⇒ ∆ p(Σ) � w0 u w1

Σ ` if xp,τ then M0 else M1 : τ, (p(Σ) t r0 t r1, w0 u w1)⇒ ∆
.

We have ri � p(Σ) t r0 t r1 and w0 u w1 � wi as required.

Case: M = xp,τf
yp′,τ ′ where τf = (τ ′, p′)

Σ,rf ,wf ,Σ′

−−−−−−−→ τ . The reduction has the form

〈Σ, xp,τf
yp′,τ ′ , S〉 → 〈Σ,M, S[zp′,τ ′ 7→ S(yp′,τ ′)〉,

where S(xp,τf
) = λzp′,τ ′ .M . The typing derivation is of the form

p(Σ) � wf

Σ ` xp,τf
yp′,τ ′ : τ, (p(Σ) t rf , wf )⇒ Σ′ .

Since ` S this means that

Σ ` M : τ, (rf , wf )⇒ Σ′

Σ ` λzp′,τ ′ .M : (τ ′, p′)
Σ,rf ,wf ,Σ′

−−−−−−−→ τ , (⊥,>)⇒ Σ

and that Σ ` S(yp′,τ ′) : τ ′, (⊥,>)⇒ Σ, so we can show that ` S[zp′,τ ′ 7→ S(yp′,τ ′)]. We have
rf � p(Σ) t rf and wf � wf as required.

Case: M = open σ. The reduction has the form 〈Σ,open σ, S〉 → 〈Σ ∪ {σ}, (), S〉. By typ-
ing we know Σ ` open σ : unit , (⊥,>)⇒ Σ ∪ {σ}, and we can show Σ ∪ {σ} ` () : unit , (⊥,>)⇒ Σ ∪ {σ}.
We have ⊥ � ⊥ and > � > as required.

Case: M = close σ. Similar to the previous case.
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Case: M = bind xp,τ = M ′ in N . Here we have two cases: either M ′ ∈ Val, or we can do a
reduction in M ′.

Subcase: M ′ = v. The reduction and type derivations respectively have the form

〈Σ,bind xp,τ = v in N,S〉 → 〈Σ, N, S[xp,τ 7→ v]〉

Σ ` v : τ, (⊥,>)⇒ Σ Σ ` N : τ ′, (r, w)⇒ ∆
Σ ` bind xp,τ = v in N : τ ′, (r, w)⇒ ∆

.

We thus have ` S[xp,τ 7→ v], and r � r and w � w as required.

Subcase: M ′ /∈ Val. The type derivation for M must have the form

Σ ` M ′ : τ, (r′, w′)⇒ Σ′′ Σ′′ ` N : τ ′, (rN , wN )⇒ ∆ r′(Σ′′) � p

Σ ` bind xp,τ = M ′ in N : τ ′, (rN , w′ u wN )⇒ ∆
.

and by progress that we can reduce M ′. We can thus perform the reduction 〈Σ,M ′, S〉 →
〈Σ′,M ′′, S′〉, and by the induction hypothesis we know Σ′ ` M ′′ : τ, (r′′, w′′)⇒ Σ′′ where r′′ �
r′, w′ � w′′ and ` S′. We can thus show that

Σ′ ` M ′′ : τ, (r′′, w′′)⇒ Σ′′ Σ′′ ` N : τ ′, (rN , wN )⇒ ∆ r′′(Σ′′) � p

Σ ` bind xp,τ = M ′′ in N : τ ′, (rN , w′′ u wN )⇒ ∆
,

and we have rN � rN and w′ u wN � w′′ u wN as required.

A.2 Proof that Well-typed Programs are Flow-Lock Secure

In this section we prove our claim that all programs typeable with our type system are indeed
secure.

The basic approach is to utilise the coinductive nature of the bisimulation definition. We
show that for well-typed closed M , 〈∅,M〉 ∼α 〈∅,M〉 by construction of a candidate rela-
tion RΩ

α , that in particular contains the pair (〈∅,M〉, 〈∅,M〉), and which can be shown to be an
α-bisimulation. This gives us that (〈∅,M〉, 〈∅,M〉) ∈ R∅

α ⊆ ∼α.

A.2.1 The candidate relation RΩ
α

To be able to define the candidate relation RΩ
α we need the notion of programs that are high

with respect to some actor α. (A similar concept is introduced by Almeida Matos and Boudol
[2]). We say that a program is α-Ω-high if it does not modify any locations that α could see
while all the locks in Ω remain closed. However, this operational notion of being high is a bit
awkward to work with, so instead we use a stronger, syntactic notion stating that a program is
syntactically α-Ω-high if it does not write to any locations that α could see while the locks in Ω
remain closed.

Definition 5 (Syntactically α-Ω-high programs: HΩ
α ). Let HΩ

α be the set of all terms M such
that Σ ` M : τ, (r, w)⇒ Σ′ and α 6 ·̂Ωw.
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Now we can define our candidate relation as follows:

Definition 6 (Candidate relation RΩ
α ). Let RΩ

α be a symmetric relation on well-typed precon-
figurations, inductively defined as follows:

1
〈Σ,M〉RΩ

α〈∆,M〉
2

M,N ∈ HΩ
α

〈Σ,M〉RΩ
α〈∆, N〉

3
〈Σ,M〉RΩ

α〈Σ, N〉 α 6 ·̂Ωp

〈Σ, E[bind xp,τ = M in M ′]〉RΩ
α〈∆, E[bind xp,τ = N in M ′]〉

where E[·] are the evaluation contexts for COREFL, given by

E[·] ::= [·] | bind x = E[·] in M

We can identify a useful property of this set, namely that if two preconfigurations are related
and one of the programs is high, then so is the other.

Lemma 5 (RΩ
α relates high terms to other high terms). If 〈Σ,M〉RΩ

α〈∆, N〉 and M ∈ HΩ
α , then

N ∈ HΩ
α .

Proof. By induction on the size of the typing derivation of M .

If 〈Σ,M〉RΩ
α〈∆, N〉 by rule 1, then M = N and we have N ∈ HΩ

α .

If 〈Σ,M〉RΩ
α〈∆, N〉 by rule 2, then N ∈ HΩ

α by construction.

If 〈Σ,M〉RΩ
α〈∆, N〉 by rule 3, then we have

M = E[bind xp,τ = M0 in M1] and N = E[bind xp,τ = N0 in M1],

where 〈Σ,M0〉RΩ
α〈∆, N0〉.

By typing we have
Σ ` M0 : τ, (r0, w0)⇒ Σ′ Σ′ ` M1 : τ ′, (r1, w1)⇒ Σ′′

Σ ` bind xp,τ = M0 in M1 : τ ′, (r1, w0 u w1)⇒ Σ′′ .

Since M ∈ HΩ
α we have α 6 ·̂Ωw0 u w1, which means that M0,M1 ∈ HΩ

α . We apply the induction
hypothesis on M0 to get that N0 ∈ HΩ

α , and thus that bind xp,τ = N0 in M1 ∈ HΩ
α . Continuing

the same argument for all binds in E[], we get that N ∈ HΩ
α as required.

A.2.2 Proof that RΩ
α is a bisimulation

Now that we have our candidate relation, the final step is to prove that it is indeed a bisimula-
tion. In order to do this, we first need to state a number of helper lemmas.

We begin by proving that syntactically high programs are also operationally high, i.e. that they
never produce any α-observable changes to the store. We do this in three separate steps. First
we prove that syntactically high terms reduce to syntactically high terms. Second, we prove
that reducing a syntactically high term will not result in any α-observable changes to the store.
Finally we put these two together to form a notion of uninterrupted high computation.

Lemma 6 (HΩ
α is closed under reduction). If Σ ` M : τ, (r, w)⇒ ∆ and α 6 ·̂Ωw and ` S and

〈Σ,M, S〉 → 〈Σ′,M ′, S′〉 then ` S′ and Σ′ ` M ′ : τ, (r′, w′)⇒ ∆ and α 6 ·̂Ωw′.
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Proof. Preservation gives us w � w′, so if α 6 ·̂Ωw then α 6 ·̂Ωw′.

Lemma 7 (HΩ
α is α-Ω-high).

If Σ ` M : τ, (r, w)⇒ ∆ and α 6 ·̂Ωw and ` S and 〈Σ,M, S〉 → 〈Σ′,M ′, S′〉 then ∀Θ.S =Θ\Ω
α S′.

Proof. By induction on the size of the typing derivation. For terms that do not update or cre-
ate a location in the store when reduced, the above is trivially true. The remaining cases are
reference creation, assignment and the recursive case of bind:

Case: M = refp′ xp,τ . In this case the reduction and typing derivation are of the following
form:

〈Σ, refp′ xp,τ , S〉 → 〈Σ, `p′,τ , S[`p′,τ 7→ S(xp,τ )]〉

p � p′

Σ ` refp′ xp,τ : ref p′ τ , (⊥, p′)⇒ ∆

and we know α 6 ·̂Ωp′. Thus the newly created location is secret to α, and we have ∀Θ.S =Θ\Ω
α

S[`p′,τ 7→ S(xp,τ )].

Case: M = xp,ref p′′ τ := yp′,τ . The reduction and typing derivation have the form

〈Σ, xp,ref p′′ τ := yp′,τ , S〉 → 〈Σ, (), S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )]〉

p(Σ) t p′(Σ) � p′′

Σ ` xp,ref p′′ τ := yp′,τ : unit , (⊥, p′′)⇒ Σ

and we know α 6 ·̂Ωp′′. Since ` S we know that Σ ` S(xp,ref p′′ τ ) : ref p′′ τ , (⊥,>)⇒ Σ and thus

S =Θ\Ω
α S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )].

Case: M = bind xp,τ = M0 in N . If M0 ∈ Val the reduction step will not change the value of
any memory location so the conclusion trivially holds. Otherwise we can apply the induction
hypothesis on M0 to get that if 〈Σ,M0, S〉 → 〈Σ′,M ′

0, S
′〉 then ∀Θ.S =Θ\Ω

α S′. From this we can
conclude that if 〈Σ,bind xp,τ = M0 in N,S〉 → 〈Σ′,bind xp,τ = M ′

0 in N,S′〉 then ∀Θ.S =Θ\Ω
α

S′.

Lemma 8 (Uninterrupted high evaluation). If Σ ` M : τ, (r, w)⇒ Σ′ and α 6 ·̂Ωw and ` S and
〈Σ,M, S〉 →∗ 〈Σ′, v, S′〉 then ∀Θ.S =Θ\Ω

α S′.

Proof. We prove this by induction on the length of the derivation. We have two cases: Either
(1) M is a value, or (2) we can reduce M .

Case: 1. If M is a value, then by typing we have Σ′ = Σ, so we can take 0 steps to get S = S′

and the conclusion holds.
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Case: 2. M is not a value, so by progress we can reduce it further. By preservation and α-
Ω-high, since Σ ` M : τ, (r, w)⇒ Σ′ and ` S and 〈Σ,M, S〉 → 〈Σ′′,M ′, S′′〉 then ∀Θ.S =Θ\Ω

α S′′

and M ′ ∈ HΩ
α . We can then do 〈Σ′′,M ′, S′′〉 →∗ 〈Σ′, v, S′〉 and the induction hypothesis gives

us ∀Θ.S′′ =Θ\Ω
α S′. By transitivity we can conclude that ∀Θ.S =Θ\Ω

α S′.

Apart from these lemmas pertaining to high programs, we need to prove the lemma from
section 4 that connects the visibility of a policy to its guards. We first give a helper lemma that
gives an alternative interpretation of visibility:

Lemma 9. α ·̂ p(Θ) ⇔ ∃(Φ ⇒ α) ∈ p.Φ ⊆ Θ

Proof. If α ·̂ p(Θ) then by definition we have {} ⇒ α ∈ p(Θ), which in turn means that we
have {} ⇒ α ∈ {Φ \Θ ⇒ β | Φ ⇒ β ∈ p}. For this to be true we must have ∃Φ ⇒ α.Φ\Θ = {},
which means Φ ⊆ Θ.

Now we can prove the guard lemma:

Lemma 3 (Guard lemma). If α 6 ·̂ p, then α 6 ·̂Ωp where Ω =
⋃

guardsα(p).

Proof. By contradiction. Assume that ∃Θ.α ·̂ p(Θ \ Ω). This means that ∃Φ ⇒ α ∈ p.Φ 6= {}
and Φ ⊆ Θ \ Ω. But if Φ ⇒ α ∈ p then Φ ⊆ Ω, so we have a contradiction.

With these lemmas in hand, we can finally move on to prove the main lemma, that our candi-
date relation is a bisimulation.

Lemma 4 (
⋃
Ω

RΩ
α is a bisimulation). If 〈Σ,M〉RΩ

α〈∆, N〉 and ` S and

〈Σ,M, S〉 p→ 〈Σ′,M ′, S′〉 & Θ ⊇ Σ & S =Θ
α T & ` T

then ` S′, and there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & ` T ′ & S′ =Θ\Ω
α T ′ & 〈Σ′,M ′〉RΩ′

α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

where Ω′ = Ω ∪
⋃

guardsα(p(Θ))

Proof. We will conduct the proof by induction on the size of the typing derivation of 〈Σ,M〉.

By preservation, we already know that if we reduce a well-typed term in the presence of a
well-typed store, the resulting term and store are going to be well-typed as well, so we will not
bother about controlling either of those facts in the rest of this proof.

In many cases we will implicitly make use of properties of the relations =Θ
α and �, such as

transitivity and monotonicity, which we discussed in the main body of the paper.

Case: 〈Σ,M〉RΩ
α〈∆, N〉 by rule 1. We have that M = N . Without loss of generality we will

assume that M,N /∈ HΩ
α , since we will cover that when considering rule 2. This means that

32



M cannot be a variable, a value, a dereferencing, a recursion, an open or a close. Remains a
reference creation, an assignment, a conditional, an application or a bind.

Subcase: M ≡ refp′ xp,τ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, refp′ xp,τ , S〉
>→ 〈Σ, `p′,τ , S[`p′,τ 7→ S(xp,τ )]〉 and

〈∆, refp′ xp,τ , T 〉
>→ 〈∆, `p′,τ , T [`p′,τ 7→ T (xp,τ )]〉

By typing we have
p(Σ) � p′

Σ ` refp′ xp,τ : ref p′ τ , (⊥, p′)⇒ Σ

Suppose that α ·̂ p(Θ). Then S(xp,τ ) = T (xp,τ ) and we have S[`p′,τ 7→ S(xp,τ )] =Θ\Ω
α T [`p′,τ 7→

T (xp,τ )]. If on the other hand we have that α 6 ·̂ p(Θ), then S(xp,τ ) = T (xp,τ ) is not guaranteed,
so to assure that S[`p′,τ 7→ S(xp,τ )] =Θ\Ω

α T [`p′,τ 7→ T (xp,τ )] we require that α 6 ·̂ p′(Θ \ Ω). This
follows from p(Σ) � p′. We can finally conclude 〈Σ, `p′,τ 〉RΩ

α〈∆, `p′,τ 〉 by rule 1.

Subcase: M ≡ xp,ref p′′ τ := yp′,τ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, xp,ref p′′ τ := yp′,τ , S〉
>→ 〈Σ, (), S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )]〉 and

〈∆, xp,ref p′′ τ := yp′,τ , T 〉
>→ 〈∆, (), T [T (xp,ref p′′ τ ) 7→ T (yp′,τ )]〉

By typing we have
p(Σ) t p′(Σ) � p′′

Σ ` xp,ref p′′ τ := yp′,τ : unit , (⊥, p′′)⇒ Σ

Now we reason by cases according to the following three exhaustive conditions: (i) α ·̂ p(Θ)
and α ·̂ p′(Θ), (ii) α 6 ·̂ p(Θ), and (iii) α 6 ·̂ p′(Θ).
In case (i) we have that S(xp,ref p′′ τ ) = T (xp,ref p′′ τ ) and S(yp′,τ ) = T (yp′,τ ) and thus we have

S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )] =Θ\Ω
α T [T (xp,ref p′′ τ ) 7→ T (yp′,τ )]

as required.
In case (ii) then S(xp,ref p′′ τ ) = T (xp,ref p′′ τ ) is not guaranteed, so to assure that

S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )] =Θ\Ω
α T [T (xp,ref p′′ τ ) 7→ T (yp′,τ )]

we require that α 6 ·̂ p′′(Θ \ Ω). This follows from p(Σ) � p′′.
In case (iii) then S(yp′,τ ) = T (yp′,τ ) is not guaranteed, so to assure that

S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )] =Θ\Ω
α T [T (xp,ref p′′ τ ) 7→ T (yp′,τ )]

we again require that α 6 ·̂ p′′(Θ \ Ω). This follows from p′(Σ) � p′′.

We can finally conclude 〈Σ, ()〉RΩ
α〈∆, ()〉 by rule 1.

Subcase: M ≡ if xp,bool then M0 else M1. For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, if xp,bool then M0 else M1, S〉
p→ 〈Σ,Mi, S〉 and

〈∆, if xp,bool then M0 else M1, T 〉
p→ 〈∆,Mj , T 〉
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where i, j ∈ {0, 1}. By typing we have

Σ ` Mi : τ, (ri, wi)⇒ Σ′ p(Σ) � w0 u w1

Σ ` if xp,bool then M0 else M1 : τ, (p(Σ) t r0 t r1, w0 u w1)⇒ Σ′

Assume that α ·̂ p(Θ). Then S(xp,bool ) = T (xp,bool ) which means that i = j and
⋃

guardsα(p(Θ)) =
{}. We have Mi = Mj and we can conclude 〈Σ,Mi〉RΩ

α〈∆,Mj〉 by rule 1.

Assume now instead that α 6 ·̂ p(Θ). Then S(xp,bool ) = T (xp,bool ) is not guaranteed, and thus
possibly Mi 6= Mj . But since α 6 ·̂ p(Θ), by the guard lemma we have that α 6 ·̂Ω′

p(Θ) where
Ω′ =

⋃
guardsα(p(Θ)), and further since p(Σ) � wi and Θ ⊇ Σ we have that α 6 ·̂Ω′

(wi). This
means that Mi,Mj ∈ HΩ∪Ω′

α and we can conclude 〈Σ,Mi〉RΩ∪Ω′
α 〈∆,Mj〉 by rule 2.

Subcase: M ≡ xp,τf
yp′,τ ′ where τf = (τ ′, p′)

Σ,rf ,wf ,Σ′

−−−−−−−→ τ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, xp,τf
yp′,τ ′ , S〉

p→ 〈Σ,M0, S[zp′,τ ′ 7→ S(yp′,τ ′)]〉, and

〈∆, xp,τf
yp′,τ ′ , T 〉

p→ 〈∆,M1, T [wp′,τ ′ 7→ S(yp′,τ ′)]〉

where S(xp,τf
) = λzp′,τ ′ .M0 and T (xp,τf

) = λwp′,τ ′ .M1. By typing we have

p(Σ) � wf

Σ ` xp,τf
yp′,τ ′ : τ, (p(Σ) t rf , wf )⇒ Σ′

Assume that α ·̂ p(Θ). Then S(xp,τf
) = T (xp,τf

), which in turn means that zp′,τ ′ = wp′,τ ′ and
M0 = M1. It also means that

⋃
guardsα(p(Θ)) = {}, and we can conclude 〈Σ,M0〉RΩ

α〈∆,M1〉
by rule 1. We have S[zp′,τ ′ 7→ S(yp′,τ ′)] =Θ\Ω

α T [zp′,τ ′ 7→ T (yp′,τ ′)] since if α ·̂ p′(Θ) then
S(yp′,τ ′) = T (yp′,τ ′).

Assume now instead that α 6 ·̂ p(Θ). Then S(xp,τf
) = T (xp,τf

) is not guaranteed, and thus
possibly M0 6= M1. But since α 6 ·̂ p(Θ), by the guard lemma we have that α 6 ·̂Ω′

p(Θ) where
Ω′ =

⋃
guardsα(p(Θ)), and further since p(Σ) � wf and Θ ⊇ Σ we have that α 6 ·̂Ω′

(wf ). This
means that M0,M1 ∈ HΩ∪Ω′

α and we can conclude 〈Σ,M0〉RΩ∪Ω′
α 〈∆,M1〉 by rule 2. We have

S[zp′,τ ′ 7→ S(yp′,τ ′)] =Θ\Ω
α T [wp′,τ ′ 7→ S(yp′,τ ′)] since the equivalence relation doesn’t care about

variables not in the intersection of the domains of the two stores.

Subcase: M ≡ E[bind xp,τ = M0 in M1]. Here we must proceed by inspection of M0. For
all terms we have by typing of the inner term that

Σ ` M0 : τ, (r0, w0)⇒ Σ′ Σ′ ` M1 : τ1, (r1, w1)⇒ Σ′′ r0(Σ′) � p

Σ ` bind xp,τ = M0 in M1 : τ1, (r1, w0 u w1)⇒ Σ′′

Subsubcase: M0 ≡ v. For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = v in M1], S〉
>→ 〈Σ, E[M1], S[xp,τ 7→ v]〉 and

〈∆, E[bind xp,τ = v in M1], T 〉
>→ 〈∆, E[M1], T [xp,τ 7→ v]〉

We have that S[xp,τ 7→ v] =Θ\Ω
α T [xp,τ 7→ v] and we can conclude 〈Σ, E[M1]〉RΩ

α〈∆, E[M1]〉 by
rule 1.
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Subsubcase: M0 ≡ yp′,τ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = yp′,τ in M1], S〉
p′→ 〈Σ, E[bind xp,τ = S(yp′,τ ) in M1], S〉 and

〈∆, E[bind xp,τ = yp′,τ in M1], T 〉
p′→ 〈∆, E[bind xp,τ = T (yp′,τ ) in M1], T 〉

Assume α ·̂ p′(Θ). Then S(yp′,τ ) = T (yp′,τ ) and we can conclude (by rule 1) that

〈Σ, E[bind xp,τ = S(yp′,τ ) in M1]〉RΩ
α〈∆, E[bind xp,τ = T (yp′,τ ) in M1]〉.

Assume now instead that α 6 ·̂ p′(Θ). Then S(yp′,τ ) = T (yp′,τ ) is not guaranteed, so we could
end up with two different values. By the guard lemma we know that α 6 ·̂Ω′

p′(Θ) where Ω′ =⋃
guardsα(p′(Θ)). By typing we know that p′(Σ) � p, so this means that α 6 ·̂Ω′

p(Θ), and we
can conclude (by rule 3) that

〈Σ, E[bind xp,τ = S(yp′,τ ) in M1]〉RΩ
α〈∆, E[bind xp,τ = T (yp′,τ ) in M1]〉.

Subsubcase: M0 ≡ refp′′ yp′,τ ′ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,ref p′′ τ ′ = refp′′ yp′,τ ′ in M1], S〉
p′→

〈Σ, E[bind xp,ref p′′ τ ′ = `p′′,τ ′ in M1], S[`p′′,τ ′ 7→ S(yp′,τ ′)]〉

and

〈∆, E[bind xp,ref p′′ τ ′ = refp′′ yp′,τ ′ in M1], T 〉
p′→

〈∆, E[bind xp,ref p′′ τ ′ = `p′′,τ ′ in M1], T [`p′′,τ ′ 7→ T (yp′,τ ′)]〉

We reason that we have the required equality on the memories like we did for the reference
creation at top level. We can conclude (by rule 1) that

〈Σ, E[bind xp,ref p′′ τ ′ = `p′′,τ ′ in M1]〉RΩ
α〈∆, E[bind xp,ref p′′ τ ′ = `p′′,τ ′ in M1]〉.

Subsubcase: M0 ≡!yp′,ref p′′ τ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = !yp′,ref p′′ τ in M1], S〉
p′up′′→ 〈Σ, E[bind xp,τ = S(S(yp′,ref p′′ τ )) in M1], S〉

and

〈∆, E[bind xp,τ = !yp′,ref p′′ τ in M1], T 〉
p′up′′→ 〈∆, E[bind xp,τ = T (T (yp′,ref p′′ τ )) in M1], T 〉

By typing we know that

Σ ` !yp′,ref p′′ τ : τ, (p′(Σ) t p′′(Σ),>)⇒ Σ

35



Assume α ·̂ p′(Θ) and α ·̂ p′′(Θ). Then S(S(yp′,ref p′′ τ )) = T (T (yp′,ref p′′ τ )) and we can
conclude (by rule 1) that

〈Σ, E[bind xp,τ = S(S(yp′,ref p′′ τ )) in M1]〉RΩ
α〈∆, E[bind xp,τ = T (T (yp′,ref p′′ τ )) in M1]〉.

Assume now instead that α 6 ·̂ p′(Θ) or α 6 ·̂ p′′(Θ). Then we cannot guarantee
S(S(yp′,ref p′′ τ )) = T (T (yp′,ref p′′ τ )), so we could end up with two different values. By the

guard lemma we know that α 6 ·̂Ω′
p′(Θ) and α 6 ·̂Ω′′

p′′(Θ) where Ω′ = guardsα(p′(Θ)) and Ω′′ =
guardsα(p′′(Θ)). But since p′(Σ) t p′′(Σ) � p and Θ ⊃ Σ we know that α 6 ·̂Ω′∪Ω′′

p and thus we
can conclude (by rule 3) that

〈Σ, E[bind xp,τ = S(S(yp′,ref p′′ τ )) in M1]〉RΩ∪Ω′∪Ω′′
α

〈∆, E[bind xp,τ = T (T (yp′,ref p′′ τ )) in M1]〉.

Subsubcase: M0 ≡ yp′,ref p′′ τ := zp′,τ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,unit = yp′,ref p′′ τ := zp′,τ in M1], S〉
>→

〈Σ,bind xp,unit = () in M1, S[S(yp′,ref p′′ τ ) 7→ S(zp′,τ )]〉

and

〈∆, E[bind xp,unit = yp′,ref p′′ τ := zp′,τ in M1], T 〉
>→

〈∆,bind xp,unit = () in M1, T [T (xp′,ref p′′ τ ) 7→ T (zp′,τ )]〉

We reason that we have the required equality on the memories like we did for the assignment
at top level. We can conclude (by rule 1) that

〈Σ, E[bind xp,unit = () in M1]〉RΩ
α〈∆, E[bind xp,unit = () in M1]〉.

Subsubcase: M0 ≡ if yp′,bool then N0 else N1. For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = if yp′,bool then N0 else N1 in M1], S〉
p′→ 〈Σ, E[bind xp,τ = Ni in M1], S〉

and

〈∆, E[bind xp,τ = if yp′,bool then N0 else N1 in M1], T 〉
p′→ 〈∆, E[bind xp,τ = Nj in M1], T 〉

Assume α ·̂ p′(Θ). Then Ni = Nj and we conclude (by rule 1) that

〈Σ, E[bind xp,τ = Ni in M1]〉RΩ
α〈∆, E[bind xp,τ = Nj in M1]〉

Assume now instead that α 6 ·̂ p′(Θ), then possibly Ni 6= Nj . By the guard lemma we know
α 6 ·̂Ω′

p′(Θ) where Ω′ =
⋃

guardsα(p′(Θ)). By the same reasoning as for a conditional at top
level we know that 〈Σ, Ni〉RΩ∪Ω′

α 〈∆, Nj〉.
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By p′(Σ) � p and Θ ⊇ Σ we know α 6 ·̂Ω′
p, and we can conclude (by rule 3) that

〈Σ, E[bind xp,τ = Ni in M1]〉RΩ∪Ω′
α 〈∆, E[bind xp,τ = Nj in M1]〉.

Subsubcase: M0 ≡ yp′,τf
zp′′,τ ′ where τf = (τ ′, p′′)

Σ,rf ,wf ,Σ′

−−−−−−−→ τ . For Θ ⊇ Σ we have
S =Θ

α T and

〈Σ, yp′,τf
zp′′,τ ′ , S〉

p′→ 〈Σ, N0, S[wp′′,τ ′ 7→ S(zp′′,τ ′)]〉 and

〈∆, yp′,τf
zp′′,τ ′ , T 〉

p→ 〈∆, N1, T [w′
p′′,τ ′ 7→ T (zp′′,τ ′)]〉

where S(yp′,τf
) = λwp′′,τ ′ .N0 and T (yp′,τf

) = λw′
p′′,τ ′ .N1.

We reason that we have the required equality on memories like we did for application at top
level.

Assume α ·̂ p′(Θ). Then N0 = N1 and we conclude (by rule 1) that

〈Σ, E[bind xp,τ = N0 in M1]〉RΩ
α〈∆, E[bind xp,τ = N1 in M1]〉.

Assume now instead that α 6 ·̂ p′(Θ), then possibly N0 6= N1. By the guard lemma we know
α 6 ·̂Ω′

p′(Θ) where Ω′ =
⋃

guardsα(p′(Θ)). By the same reasoning as for an assignment at top
level we know that 〈Σ, N0〉RΩ∪Ω′

α 〈∆, N1〉.

By p′(Σ) � p and Θ ⊇ Σ we know α 6 ·̂Ω′
p, and we can conclude (by rule 3) that

〈Σ, E[bind xp,τ = N0 in M1]〉RΩ∪Ω′
α 〈∆, E[bind xp,τ = N1 in M1]〉.

Subsubcase: M0 ≡ open σ. For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = open σ in M1], S〉 → 〈Σ ∪ {σ},bind xp,τ = () in M1, S〉 and
〈∆, E[bind xp,τ = open σ in M1], T 〉 → 〈∆ ∪ {σ},bind xp,τ = () in M1, T 〉

We can conclude (by rule 1) that

〈Σ ∪ {σ}, E[bind xp,τ = () in M1]〉RΩ
α〈∆ ∪ {σ}, E[bind xp,τ = () in M1]〉.

Subsubcase: M0 ≡ close σ. Similar to the previous case.

Subsubcase: M0 ≡ rec y⊥,τ .v. For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = rec y⊥,τ .v in M1], S〉 → 〈Σ ∪ {σ},bind xp,τ = v in M1, S[y⊥,τ 7→ v]〉

and

〈∆, E[bind xp,τ = rec y⊥,τ .v in M1], T 〉 → 〈∆ ∪ {σ},bind xp,τ = v in M1, T [y⊥,τ 7→ v]〉

By typing of M0 we know
Σ ` v : τ, (⊥,>)⇒ Σ

Σ ` rec y⊥,τ .v : τ, (⊥,>)⇒ Σ

37



and we have S[y⊥,τ 7→ v] =Θ\Ω
α T [y⊥,τ 7→ v]. We can conclude (by rule 1) that

〈Σ, E[bind xp,τ = v in M1]〉RΩ
α〈∆, E[bind xp,τ = v in M1]〉.

Case: 〈Σ,M〉RΩ
α〈∆, N〉 by rule 2. We have that M,N ∈ HΩ

α , For Θ ⊇ Σ we have S =Θ
α T

and 〈Σ,M, S〉 p→ 〈Σ′,M ′, S′〉. By the highness lemma we know that S′ =Θ\Ω
α S, and so we can

choose to match this by taking 0 steps for N , i.e. 〈∆, N, T 〉 →0 〈∆, N, T 〉, and since S =Θ\Ω
α T

, by transitivity we have S′ =Θ\Ω
α T as required. By lemma ? we know that subject reduction

preserves the highness property, so we have M ′ ∈ HΩ
α , and thus M ′, N ∈ HΩ′

α where Ω′ =
Ω ∪

⋃
guardsα(p(Θ)) and we conclude 〈Σ′,M ′〉RΩ′

α 〈∆, N〉 by rule 2.

Case: 〈Σ,M〉RΩ
α〈∆, N〉 by rule 3. We have that M = E[bind xp,τ = M0 in M1] and N =

E[bind xp,τ = N0 in M1] and that 〈Σ,M0〉RΩ
α〈∆, N0〉 and α 6 ·̂Ωp.

Here we can separate two cases — either M0 is a value, or we can reduce in M0.

Subcase: M0 ≡ v. For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = v in M1], S〉
>→ 〈Σ, E[M1], S[xp,τ 7→ v]〉

If M0 is a value, then by lemma 5 we have N0 is high. We have that either 〈∆, N0, T 〉 ⇑, in which
case we have 〈∆, N, T 〉 ⇑, or 〈∆, N0, T 〉 →∗ 〈∆′, v′, T ′〉. In the latter case we have ∀Θ.T =Θ\Ω

α T ′

by lemma bigstep high and by transitivity that S =Θ\Ω
α T ′. This means we can match the step

in M by

〈∆, E[bind xp,τ = N0 in M1], T 〉 →∗ 〈∆′, E[bind xp,τ = v′ in M1], T ′〉 →
〈∆′, E[M1], T ′[xp,τ 7→ v′]〉

Since we know α 6 ·̂Ωp we have S[xp,τ 7→ v] =Θ\Ω
α T ′[xp,τ 7→ v′]. We can conclude (by rule 1)

that 〈Σ, E[M1]〉RΩ
α〈∆′, E[M1]〉. Subcase: M0 /∈ Val. By the progress lemma this means we

can reduce M0, so for Θ ⊇ Σ we have S =Θ
α T and 〈Σ,M0, S〉

p′→ 〈Σ′,M ′
0, S

′〉. By the induction
hypothesis we have that either ∃∆′, N ′

0, T
′.〈∆, N0, T 〉 →∗ 〈∆′, N ′

0, T
′〉 and S′ =Θ\Ω

α T ′ and
〈Σ′,M ′

0〉RΩ′
α 〈∆′, N ′

0〉 where Ω′ = Ω∪ guardsα(p′(Θ)), or 〈∆, N0, T 〉 ⇑. In the latter case we have

〈∆, E[bind xp,τ = N0 in M1], T 〉 ⇑

For the former case we can choose to match the reduction in M by

〈∆, E[bind xp,τ = N0 in M1], T 〉 →∗ 〈∆′, E[bind xp,τ = N ′
0 in M1], T ′〉

and we conclude

〈Σ′, E[bind xp,τ = M ′
0 in M1]〉RΩ′

α 〈∆′, E[bind xp,τ = N ′
0 in M1]〉

by rule 3.
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A.3 Proofs that Flow Lock Security Implies Noninterference

In this appendix we provide details of the proof that flow lock security implies noninterference.
The strategy is to

• Strengthen the definition of location indistinguishability at a given level to include vari-
ables;

• Generalise the definition of noninterference to a binary relation between pairs of pro-
grams, and strengthen to include variables in the store;

• Specialise the definition of α indistinguishability to lock-free policies.

• Specialise the definition of flow lock bisimulation to lock-free programs and stores.

Recall that we consider a lattice of security levels 〈L,v,t〉, and a policy level : Loc → L that
fixes the intended security level of the storage locations in the program.

We assume that these locations are typed, but we will elide typing issues in the following
discussion. Programs P and Q operate over these locations, and are assumed to be of unit
type, and are assumed not to perform any location allocation.

To be precise we need to define the lock-free semantics for configurations of the form 〈P, S〉.
But it is easy to see that if P is lock free then the lock part of the state can simply be ignored
since it neither influences computation nor does it change, so transitions for 〈P, S〉 re derived
by simply projecting out the lock state in the transition system.

Definition 8 (Noninterference (Generalised)). Given two stores S and T , and a level k ∈ L,
define S and T to be indistinguishable at level k, written S ≡k T , iff the location domains of S
and T are the same, and for all ` ∈ dom(S) and for all x ∈ domS ∩ domT such that level(`) v k
we have S(`) = T (`). and S(x) = T (x).

Now define, for each level k, the binary relation ∼NI
k on lock-free programs as follows: P ∼NI

k Q
if for all S and T such that S ≡k T , whenever 〈P, S〉 and 〈Q,T 〉 are terminating configurations,
〈P, S〉 →∗ 〈(), S′〉 and dom(S′)\dom(S) ∩ dom(T ) = {} and S ≡k T , then there exists a T ′ such
that 〈Q,T 〉 →∗ 〈(), T ′〉, and S′ ≡k T ′.

The following lemma states that these definitions are indeed generalisations, and can be seen
by inspection of the definitions:

Lemma 10. 1. For all lock free stores S and T , S ≡k T implies S =k T .

2. For all closed (i.e. variable free) lock free programs P , if P ∼NI
k P for all k, then P is noninterfer-

ing.

Now we build a bridge from the opposite side, by specialising the definition of flow lock se-
curity to lock-free programs. Firstly we note that for lock free stores, level indistinguishability
≡k given above coincides with the indistinguishability relation =Θ

k for any Θ, i.e.

Lemma 11. S =Θ
k T ⇐⇒ S ≡k T

The proof is again just by inspection of the definition, so we omit a detailed argument. Now
we turn to the definition of bisimulation for lock-free programs.
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Lemma 12. Define the largest symetric relation between lock-free programs, ≈k, such that whenever

P ≈k Q & S ≡k T & dom(S′)\dom(S) ∩ dom(T ) = {} & 〈P, S〉 → 〈P ′, S′〉

then there exits Q′, T ′ such that

either 〈Q,T 〉 → 〈Q′, T ′〉 & S ≡k T & P ′ ≈k Q′,

or 〈Q,T 〉 ⇑,

Then we have that 〈Σ, P 〉 ∼Ω
α 〈∆, Q〉 implies P ≈k Q.

The proof is again straightforward by specialisation of the bisimulation definition, and using
the preceeding lemma.

Now we can provide the proof that if P is flow lock secure then P is noninterfering.

Proof. (Theorem 1) Suppose that closed program P is flow lock secure. I.e. for all levels k
〈{}, P 〉 ∼k 〈{}, P 〉. By lemma 12 this implies that P ≈k P . We will prove that P ≈k P implies
P ≡k P , from which it follows that P is noninterferring by lemma 10.

In order to prove that P ≈k P implies P ≡k P we will prove the more general statement,
namely that

∀P,Q.P ≈k Q =⇒ P ≡k Q

i.e. we prove this for open P and Q.

Assume that P ≈k Q and that 〈P, S〉 →n 〈(), S′〉, 〈Q,T 〉 is terminating, S ≡k T and
dom(S′)\dom(S)∩dom(T ) = {}. We are then required to show that 〈Q,T 〉 →n 〈(), T ′〉 for some
T ′ such that S′ ≡k T ′, and we do so by induction by induction on n

Base case: n = 0. In this case P = () and hence S = S′. By the convergence assumption
we know that 〈Q,T 〉 → · · · → 〈Qi, Ti〉 → · · · → 〈(), Tm〉 for some stores Ti, and since we are
free to choose store variable names, we can assume that dom(Ti) \ dom(T ) ∩ dom(S) = {}. By
symmetry Q ≈k P , and thus from the definition of ≈k, each of these computation steps from
can only be matched by taking zero steps from 〈P, S〉, and hence S ≡k Tm as required.

Inductive case: 〈P, S〉 → 〈P1, S1〉 →∗ 〈(), S′〉. Since dom(S′)\dom(S) ∩ dom(T ) = {}, and
since computation only increases the domain of the store, dom(S′) ⊆ dom(S1), and hence
dom(S1)\dom(S)∩dom(T ) = {}. Given this, by assumption that P ≈k Q and from the fact that
〈Q,T 〉 does not diverge, we know that 〈Q,T 〉 →∗ 〈Q1, T1〉 for some T1 such that S1 ≡k T1. Since
dom(S′)\dom(S) ∩ dom(T ) = {} and dom(S1) ⊇ dom(S) it follows that dom(S′)\dom(S1) ∩
dom(T ) = {}. Now we know that dom(T1) = dom(T ) ∪ X for some set of variables X . We
can assume that X is chosen to be disjoint from dom(S′)\dom(S1), and hence we have that
dom(S′)\dom(S1) ∩ dom(T1) = {}. Now we can apply the induction hypothesis to obtain the
existance of a T ′ such that 〈Q1, T1〉 →∗ 〈(), T ′〉 S1 ≡k T1 as required.
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