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Abstract. Conventional security policies for software applications are adequate
for managing concerns on the level of access control. But standard abstraction
mechanisms of mainstream programming languages are not sufficient to express
how information is allowed to flow between resources once access to them has
been obtained. In practice we believe that such control - information flow control
- is needed to manage the end-to-end security properties of applications.
In this paper we present Paragon, a Java-based language with first-class support
for static checking of information flow control policies. Paragon policies are spec-
ified in a logic-based policy language. By virtue of their explicitly stateful nature,
these policies appear to be more expressive and flexible than those used in previ-
ous languages with information-flow support.
Our contribution is to present the design and implementation of Paragon, which
smoothly integrates the policy language with Java’s object-oriented setting, and
reaps the benefits of the marriage with a fully fledged programming language.
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1 Introduction

The general goal of this work is to construct innovative design methods for the con-
struction of secure systems that put security requirements at the heart of the construc-
tion process, namely security by design. To do this we must (i) understand how we can
unambiguously formulate the policy aims for secure systems, and (ii) develop technol-
ogy to integrate these goals into design mechanisms and technologies that enable an
efficient construction or verification of systems with respect to those policies.

We address this challenge using a programming language-centric approach, present-
ing a full-fledged security-typed programming language that allows the programmer to
specify how data may be used in the system. These security policies are then enforced
by compile-time type checking, thus requiring little run-time overhead. Through this
we can guarantee that well-typed programs are secure by construction.

But which security policies might we want for our data, and why do we need spe-
cial support to express them? Certain security policies, for example access control, are
relatively easy to express in many modern programming languages. This is because
limiting access to resources is something that good programming language abstraction
mechanisms are designed to handle. However, access control mechanisms are often a
poor tool to express the intended end-to-end security properties that we wish to impose
on our applications.



Consider a travel planner “app” which permits you to plan a bus journey, and even
add your planned trip to your calendar1. In order to function, the app must have access
to the network to fetch the latest bus times, and must have access to your calendar in
order to add or remove schedules. But an app with these permissions can, for example,
send your whole calendar to anywhere on the net.

What we want is to grant necessary access, but limit the information flows. In this
case we want to at least limit the information flows from the calendar to the network
while retaining the app’s ability to read and write to both.

Research on controlling these information flows has progressed over the last decades.
In this paper we identify three generations of security properties and control mecha-
nisms for information-flow:

Information-Flow Control In the 70’s, Denning & Denning pioneered the idea of cer-
tifying programs for compliance with information flow policies based on military-style
secrecy classifications [7,8]. They used program analysis to validate that information
labelled with a given clearance level could never influence output at any levels lower in
the hierarchy – so for example a certified program could never leak top-secret informa-
tion over a channel labelled as public.

The language FlowCAML [24], a variant of ML with information-flow types and
type inference, represents the state-of-the-art in support for static Denning-style confi-
dentiality policies.

Beyond Mandatory Information Flow Control Although a rigid, static hierarchy of
security levels may be appropriate in a military message-passing scenario, it became
quickly apparent that such a strict and static information flow policy is too rigid for
modern software requirements. In practice we need a finer-grained and more dynamic
view of information flow.

The concept of declassification – the act of deliberately releasing (or leaking) sensi-
tive information – is an important example of such a requirement. Without a possibility
to leak secrets, some systems would be of no practical use.

For example an information purchase protocol reveals the secret information once
a condition (such as “payment transferred”) has been fulfilled. Yet another example is a
password checking program that inevitably leaks some information: even when a login
attempt fails the attacker learns that the guess is not the password.

With this in mind, the Jif programming language [17,20] can be seen as the next
milestone after the pure Denning-style approach. Jif is a subset of Java extended with
information flow labels.

As well as implementing an important distributed view of data ownership, the so-
called Decentralised label model [18,19], Jif included the possibility of declassification,
which provides a liberal information flow escape hatch for programs which would oth-
erwise be rejected.

1 The example is based on a family of actual Android apps
(e.g. de.hafas.android.vasttrafik).



Paragon, a Third-Generation IF Language Declassification, in many shapes and
forms, has been widely studied in the research community in recent years [23]. The
large variety of declassification concepts is testament to the fact that there is simply no
single right way to control the flow of information that goes against the grain. Moreover,
it is not always natural to view information flow policies as consisting of “good flows
plus exceptional cases” at all; in some situations there is no obvious base-line policy,
and the flows which are deemed acceptable may depend on the state of the system at
any given moment.

In earlier work [5] we introduced a new highly versatile policy language, Paralocks,
based around the idea of Flow Locks. We demonstrated its ability to model a wide
variety of policy paradigms, from classical Denning-style policies to Jif’s decentralised
label model, as well as the capability to model stateful information flow policies. But
the idea of using Paralocks as types in a statically-checked programming language was
only demonstrated for a toy language. The question whether a Flow Locks-based policy
language could feasibly scale to inclusion in a full-fledged programming language, to
allow practical programming with information flow control, was left open.

The main contribution of this paper is to answer that question with an emphatic yes.
We present the new programming language Paragon, which extends the Java program-
ming language with information flow policy specifications based on an object-oriented
generalisation of Paralocks. Not only does it turn out to be feasible, but the marriage
of our stateful policy mechanism and Java’s encapsulation facilities yields a whole that
is greater than the sum of its parts: it allows for the creation of complex policy mecha-
nisms as libraries, giving even stronger control over flows and declassification than the
policy language alone.

The remainder of the paper is structured as follows. Section 2 presents the language
Paragon: its policy language and integration in Java; followed by a simple showcase of
Paragon in Section 3. In Section 4 we give an overview of the enforcement mechanism
and details of our implementation. Section 5 discusses our experience from two larger
case studies. Related work in Section 6 and conclusions in Section 7 round out the
paper.

2 The Language Paragon

Paragon is largely an extension to the Java language and type system. Our choice for
Java is motivated by its relatively clear semantics and the wide adoption of Java in
both commercial and academical settings. In addition, it allows us to reuse existing
ideas from, and simultaneously compare Paragon with, Jif [17,20], the only (other) java-
based full-fledged security-typed programming language to date. We discuss Paragon’s
relation to Jif in more detail in § 6. We do not, however, rely on any particular features of
Java for the integration of our policy language to work, and posit that it would be equally
feasible to do this for other statically typed languages with safe memory management,
e.g. ML or Scala.

In this section we give a high-level overview of Paragon and its various components,
leaving more technical features, such as extending Java Generics, to the technical report
version of this paper [1].



2.1 The Paragon Policy Language

The subjects of Paragon policies are the information-flow relevant entities, which we
refer to as actors. An actor could be a user, a resource, a system component, an infor-
mation source or sink, etc.; any entity that has an information-flow concern.

In Paragon, these entities are represented by object references. For instance, the code
fragment below creates regular instances of the User and File class, where alice and
f1 can play a dual role; both as program variables, and as actors in Paragon policies.

User alice = new User();
User bob = new User();
File f1 = new File();
File f2 = new File();

A paragon policy is used to label information containers in the program (fields, local
variables), and specifies to which actors the information in that container is allowed to
flow. A policy consists of a set of clauses, each specifying one particular actor, or one
group of actors of a particular type.

For example, the policy p1 states that information may flow to the specific users
Alice and Bob, while the policy p2 states that information may flow to any file:

policy p1 = { alice: ; bob: };
policy p2 = { File f: };

This makes the policy { Object o: } the most permissive, and the policy with no
clauses (denoted {:}) the most restrictive paragon policy.

A clause may have a body that constrains the states in which the information may
flow to the actors specified in the head. These constraints come in the form of locks;
typed predicates representing the policy-relevant state of the system.

A lock can be opened or closed for given actor arguments. Viewing a lock as a
predicate, opening a lock corresponds to assigning it the value true. Below we define
two locks, one for modelling the ownership of files, and another for the organisational
hierarchy among users.

lock Owns(File, User);
lock ActsFor(User, User);
policy p3 = { File f: Owns(f, alice) } ;
policy p4 = { (User u) File f: Owns(f, u), ActsFor(u, alice) };

The policy p3 expresses that information can flow to any file owned by Alice, while
the policy p4 states that u ranges over users, and that information having this policy
may flow to any file f for which f is owned by some u such that u acts for alice.
Note that variables that are mentioned in the head of a clause are universally quantified,
whereas those only appearing in the body are existentially quantified.

A lock can be declared to have properties. A property specifies conditions under
which some locks are implicitly open. For example, we might want to express that the
acts-for relation is transitive and reflexive.

This requirement can be stated at the point of declaration by replacing line 2 in the
above with:



lock ActsFor(User, User)
{ (User x) ActsFor(x,x):
; (User x y z) ActsFor(x,y): ActsFor(x,z), ActsFor(z,y) }

Transitivity and reflexivity properties (as well as symmetry) are a common pattern, so
Paragon provides syntactic sugar for these:

reflexive transitive lock ActsFor(User, User);

The Paragon Policy Language is an object-based generalisation of Paralocks [5,29],
and is described in more detail in the technical report [1].

2.2 Information-flow policies in Paragon

The various flows of information that need to be controlled in Paragon are essentially
the same as the ones occurring in Java. As is common in information-flow analysis we
make a distinction between direct and indirect information flows.

Direct flows The typical direct flow is an assignment, where information flows directly
from one location to another. Direct flows also happen at method calls (arguments flow
to parameters), returns (the return value flows to the caller) and exception throws (an
exception value flows to its enclosing catch clause).

Continuing in the style of the examples from the previous section, let x be a variable
with the policy {File f:Owns(f, alice)} and y a variable with the policy {f1:}

in the assignment y = x;. Whether or not the assignment will be flagged as an error
by the Paragon compiler depends on the lock state in which the direct flow occurs.

If the Owns(f1,alice) lock is statically determined to be closed the compiler
raises an error, since the information stored in x, according to its policy, should only
flow into file f1 when the file is owned by Alice, whereas the information in y can
always flow to f1. In other words, the assignment has insecure information flow because
it moves information to a place where it becomes visible to more actors than its policy
declares. If, however, the lock is determined to be open, i.e. declaring that alice owns
f1, the assignment occurs in a state where f1 can already read the information in x,
and so the program compiles successfully.

Indirect flows An indirect flow is one where the effect of evaluating one term reveals
information about a completely different term that was evaluated previously. The typ-
ical indirect flow is a side-effect happening in a branch that reveals which branch was
chosen, which in turn reveals the value of the conditional expression that was branched
on. Indirect flows also arise from other control flow constructions (including loops and
exceptions), and field updates or instance method-calls (possibly revealing the object
they belonged to).

Due to the delayed nature of these information flows, the lock state in effect at the
time of the indirect flow might be different to that in effect at the point at which it is
revealed. Therefore, indirect flows are handled conservatively, by not allowing the lock
state to affect which of these flows are considered secure.



2.3 Policy annotations

When integrating the policy language into Java, the two core design issues are (i) how
policies are to be associated to data, and (ii) how the lock state is specified, updated,
and queried.

Policies as modifiers In Paragon every information container (field, variable, param-
eter, lock) has a policy detailing how the information contained therein may be used.
Every expression has an effective policy which is (an upper bound on) the conjunction
of all policies on all containers whose contents affect its resulting value – we refer to
this as the expression’s read effect.

Paragon separates policies from base (Java) types syntactically by having all policy
annotations as modifiers. A modifier ?pol denotes a policy on an information container,
and the read effect of accessing that container. When used on a method we refer to it
as the return policy, as it is the read effect on the value returned by the method. Using
modifiers for policies allows for a clean separation of concerns, allowing us to analyse
base types and policies separately.

Similarly, every expression (and statement) has a write effect, which is (a lower
bound on) the disjunction of all policies on all containers whose contents are modified
by the expression. Write effects allow us to control implicit information flows, by lim-
iting the contexts in which expressions with side-effects may occur. A modifier !pol
denotes a write effect, and is used to annotate methods.

Policy modifiers are also placed on exceptions declared to be thrown by a method.
A read effect modifier on an exception denotes the read effect of inspecting the thrown
and caught exception object. More interesting is the write effect modifier, which serves
two purposes in relation to indirect flows. First, it restricts the contexts in which the
exception may be thrown within the method. Second, it imposes a restriction of its own
on all subsequent side-effects until the point where the exception has been caught and
handled. Together, these two restrictions ensure that no information leaks can occur by
observing whether or not an exception has been thrown.

All exceptions in Paragon must be checked, i.e. declared to be thrown by methods
that may terminate with such exceptions. This implies the need for analyses that can
rule out the possibility of exceptions, in particular for null pointers, to avoid a massive
blow-up in the number of potential exceptions that must be declared. Paragon adds the
modifier notnull for fields, variables and method parameters that may never be null,
to aid the null-pointer analysis.

To reduce the burden on the programmer to put in policy annotations, Paragon at-
tempts either to infer, or to supply clever defaults for, policies on variables, fields and
methods. We omit the details of policy defaulting, and discuss the inference mechanism
in § 4.

Lock state analysis Manipulation of the lock state is done programmatically through
the use of the Paragon-specific statements open and close. The compiler performs a
lock state analysis which conservatively approximates the set of locks guaranteed to be
open at any given program point.

In cases where we cannot know statically that a lock is open, we allow runtime lock
queries to guide the analysis: A lock can be used syntactically as an expression of type



boolean, with the value true if the lock is currently open. If a lock query appears
as the condition to e.g. an if statement, the analysis can include the knowledge of the
lock’s status when checking the respective branches.

To facilitate modularity, Paragon introduces three modifiers, used on methods and
constructors, to specify their interaction with the lock state:

• +locks says that the annotated method will open the specified lock(s), for every
execution in which the method returns normally. We call this the opens modifier.
• -locks, dubbed the closes modifier, says that the method may close the specified

lock(s), for some execution.
• ˜locks, the expects modifier, says that the specified lock(s) must be open whenever

the method is called.

The opens and closes modifiers are also used to annotate each exception type thrown
by a method, to signal to the analysis what changes to the lock state can be assumed if
the method terminates by throwing an exception of that type.

As a middleground between private and public locks, Paragon introduces the mod-
ifier readonly for locks, indicating that outside the class the lock can be queried, but
not opened or closed.

3 Brief Example

To illustrate the language features of Paragon we present the scenario of a simple social
network. In the network, users can befriend each other and share messages in the form
of posts that can be read by their friends. The scenario contains two information flow
policies that we want Paragon to enforce.

First, posts can only be read by a direct friend of the poster or, if the poster so
indicates, by friends of friends of the poster. A user can decide, per post, whether it
should be shared with friends-of-friends or not. Paragon should thus enforce that the
network properly checks the friendship relations before allowing a user to read a post.

Second, to prevent injection or scripting attacks, a message should be properly sani-
tised before it is stored in the network. That is, we want to enforce the policy that all
posted messages first pass through a sanitising function.

The Paragon implementation of this network is shown in Figure 1. Some policy
annotations are omitted in the implementation, since Paragon provides default policies
in these cases. For example, all fields that do not specify a read effect automatically get
the least restrictive policy {Object x:}.

To establish the first policy we define the Friend lock to model friendships. Sim-
ilarly we create a lock FoFriend to model friend-of-friend relations. Since the User

class does not explicitly open or close this lock and exports it as readonly we know
that it models a purely derived property of the Friend lock, and thus one that will
evolve correctly as the friendship status changes over time.

With the locks in place we can now create the desired policy as messagePol, which
we use for the read-effect on a post’s content. We assume that the correct Friend
instances are opened elsewhere in the program. Turning sharing with friends-of-friends
on per post is handled in the post method by opening the ShareFoF lock for that post.



1 public class User {
2 public reflexive symmetric lock Friend(User, User);
3 public readonly lock FoFriend(User, User)
4 { (User x y z) FoFriend(x,y) : Friend(x,z), Friend(z,y) };
5 public void receive(?{this:} String data) {
6 ... // User receives provided data
7 }
8 }
9

10
11 public class Post {
12 public lock ShareFoF(Post);
13 public final User poster;
14 public static final policy messagePol =
15 { User x : User.Friend(x, poster)
16 ; User x : User.FoFriend(x, poster), ShareFoF(this) };
17 public final ?messagePol String message;
18 public Post(?{Object x:} User p, ?messagePol String m) {
19 this.poster = p;
20 this.message = m;
21 }
22 }
23
24
25 public class Sanitiser {
26 private lock Sanitised;
27 public static final policy unsanitised = {Object x : Sanitised};
28 public static ?{Object x:} String sanitise (?unsanitised String s) {
29 open Sanitised {
30 return /* Sanitised string */ ;
31 }
32 }
33 }
34
35
36 public class Network {
37 private static Post[] posts = new Post[10]; // Shifting list of posts
38 private static int index = 0; // Where to place the next post
39
40 !{Object x:} static void post( ?{Object x:} User user
41 , ?Sanitiser.unsanitised String message
42 , ?{Object x:} boolean shareFoF ) {
43 String sM = Sanitiser.sanitise(message);
44 Post p = new Post(user, sM);
45 if (shareFoF)
46 open Post.ShareFoF(p);
47 posts[index] = p;
48 index = (index + 1) % posts.length; // Next time overwrite oldest post
49 }
50
51 static void read(?{Object x:} User user, ?{Object x:} int i) {
52 ?{user:} String res = null;
53 Post p = posts[i];
54 if (p != null) {
55 if (User.Friend(user, p.poster))
56 res = p.message;
57 if (Post.ShareFoF(p))
58 if (User.FoFriend(user, p.poster))
59 res = p.message;
60 }
61 user.receive(res);
62 }
63 }

Fig. 1. A simple social network application written in Paragon.



As an effect of calling this method the array posts is changed (among others). Any
observer that may notice this change (i.e. of level {Object x:} and above) may thus
notice that this method has been called. To prevent this method from being called in a
context where these side-effects result in implicit flows, we are required to annotate the
method with the corresponding write effect.

The user’s receive method lets the user read the provided information, therefore
arguments to this method should be allowed to flow to that user. All combined, we
get Paragon’s enforcement ensuring that the policy-relevant state is properly checked
before sharing a post with another user.

Leveraging on Java’s encapsulation mechanism we are able to provide the ingredi-
ents for the sanitisation policy entirely as a separate library. The lock Sanitised is
private to the class, meaning that no code outside the class is able to open, close or even
mention the lock. Therefore, any data labelled with the unsanitised policy cannot
lose its Sanitised constraint, other than by actually sanitising the data by calling the
exported sanitise method. With this library we can thus easily enforce our second
policy by labelling each newly incoming message as unsanitised.

The example demonstrates the three different generations of information-flow con-
trol policies and how Paragon models them.

As per traditional non-interference, some flows are never allowed in the network.
For example, Paragon enforces that a posted message can only flow to users in the net-
work, and not to any other channel. We see an example of the exceptional information
declassification pattern in the sanitiser library: the sanitise function serves as a de-
classifier, deliberately allowing the provided argument to flow to more actors. Finally,
the locks used to model friendships exemplify third-generation information-flow poli-
cies. There is no explicit declassification of information, rather flows are allowed or not
depending on the state of the system – in this case the state of the social network.

4 Enforcement of Paragon Policies

Enforcement of information flow policies in Paragon is no small task, and presenting the
information flow type system in its entirety is beyond the scope of this paper. Instead,
we sketch a high-level overview of the most important analyses involved, presented as a
sequence of phases, and focus on the last phase in which information flows are tracked.

Phase 1: Type checking The first phase roughly corresponds to ordinary Java type
checking, albeit with some additions for Paragon-specific constructs. Particularly, we
must assure that arguments to locks are type correct, and that policy expressions used
in modifiers are indeed of type policy. This phase also checks that potential (runtime)
exceptions are properly handled.

Phase 2: Policy type evaluation Locks, policies, and object references all play a dual
role, both as type-level and value-level entities. In this phase the values of each of
these entities are statically approximated. For locks we ensure that, whenever a lock is
queried, the information in the query is propagated to the respective branch (or loop
body).



For fields and variables holding actors, i.e. object references, approximating their
runtime values means performing an alias analysis. Our present analysis is simple but
has performed well enough in practice. However, work is in progress to improve its
precision by adapting the work by Whaley and Rinard [30].

Since policies can be used as values at runtime, and dynamically hoisted to the
type level, our analysis needs to approximate policies as singleton types, similar to
the analysis of actors. For each field or variable storing a policy, and for each policy
expression appearing in a modifier, we thus calculate upper and lower bounds on the
policy held by that variable at runtime.

Further, we need ways to relate policies that are not known statically to other (static
or dynamic) policies, to improve precision. Similar to runtime lock queries, we thus let
our policy analysis be guided by inequality constraints between policies appearing as
the condition in if statements and conditional ?: expressions. This problem has been
studied by Zheng and Myers in the context of Jif [32], and our solution closely follows
theirs.

Phase 3: Lock state evaluation The next sub-phase approximates the lock state, i.e.
it calculates the set of locks which we can statically know to be open, at each program
point. This amounts to a dataflow analysis over the control flow graph, to properly
capture the influence of method calls and exceptions, and to handle loops. Each program
point where a direct flow takes place is annotated with the lock state in effect at that
point.

Phase 4: Policy constraint generation The constraint generation phase will result in
a set of constraints on the form p vLS q where p and q are policy expressions and
LS is the lock state (calculated in Phase 3) at the program point where the constraint
was generated (omitted if empty). As argued in §2.2 the lock state is only taken into
account for direct flows. Policy expressions possibly contain meta-variables, for which
the constraint solving phase then solves.

Phase 5: Policy constraint solving The last phase solves the generated constraints,
on a per-method basis. A solution to a set of constraints is an assignment of policies to
constraint variables that satisfies all the policy comparison constraints. The algorithm
needs only determine whether there exists a solution, and does not need to actually
produce one. The constraint solver is based on the algorithm presented by Rehof and
Mogensen [21].

4.1 Paragon implementation

We have implemented Paragon in a compiler that performs type checking for policies,
and compiles policy-compliant programs into vanilla Java code. Once we know that a
given program satisfies the intended information flow properties, we can safely remove
all Paragon-specific type-level aspects of policies, locks and actors.

We must still retain the runtime aspects, such as querying the lock state and perform-
ing inequality comparisons between policies. The Paragon runtime library provides Java
implementations for locks and properties, including operations for opening, closing and



querying locks to which the Paragon open, close and query statements are compiled.
Similarly, the library provides Java implementations for policies and operations for per-
forming runtime inequality comparisons between them.

Compiler statistics Our Paragon compiler is written in Haskell and comprises roughly
16k lines of code, including comments. Approximately half of that code is due to our
policy type checker, and only a small fraction, just over 600 lines of code, deals with
generation of Java code and the Paragon interface files needed for modular compilation.
On top of that, some 1500 lines of Java code are written for our runtime representations
of Paragon entites. The compiler can be downloaded from our Paragon website [1], or
from the central Haskell “hackage” repository using the command cabal install

paragon.

Runtime overhead Supporting lock queries and policy comparisons at runtime yields
a negligible overhead on Paragon programs. Most of the additional generated code han-
dles the initalisation of policies and locks upon class or object instantiation, as well
as the opening and closing of locks, which should not give any significant perfor-
mance penalty. More involved are the lock queries and policy comparisons themselves
since they resemble essentialy Datalog program evaluation and respectively contain-
ment [29]. However, our experience shows that clause bodies consist of just a few
atoms, and have yet to find an example involving locks with arity higher than two,
so in practice we posit that this overhead is negligible as well.

5 Case Studies

We put the compiler to the test with two case studies, both based on applications written
in the Jif programming language, to which we further relate in §6.

Mental Poker In [3], a non-trivial cryptographic protocol for playing online poker
without a trusted third party is implemented in Jif. During the distribution of the cards,
players communicate cards encrypted with a per-player, per-game symmetric key. That
is, the receiving player cannot decrypt the received card. At the end of the game the
players reveal their symmetric key such that the other player may verify the outcome
of the card distribution. For the purpose of non-repudiation each player signs outgoing
messages with her private key.

From an information-flow perspective we desire an implementation of this protocol
to satisfy various policies. The public key of a player is visible to everyone, as it is
used to verify the player’s signatures, but the private key should never leave the player’s
client. The cards to be communicated should not be sent before they are encypted with
the symmetric key and then signed. The symmetric key should remain confidential to
the player until the end of the game.

The value of the symmetric key leaks partially when performing encryption. In our
Paragon implementation (6.5k lines) this leak is controlled by a lock private to the class
performing the encryption, similar to the approach taken in the sanitiser class from the
example in §3. That is, the class ensures that only the result of the operation is released



and not the value of the key involved. The symmetric key is protected with a policy
guarded by this private lock. A similar approach is used to protect the private key, to
only reveal the outcome of the signing operation in which it was involved. The cards to
be encrypted are protected with both the private locks of the encryption and the signing
operation, indicating that they have to go through both declassifiers before they can be
sent to the other player. The symmetric key is also allowed to be released when the
EndGame lock is open. That is, this lock is used to represent a policy-relevant state of
the application.

By constrast, Jif uses owner-based policies. The Jif policies here can simply state
whether the data is owned by a given player or not, and cannot, in an obvious way,
express anything beyond that. The fact that a Jif program has access to exactly one de-
classification mechanism prevents it from distinguishing or controlling different forms
of declassification. In this case study it cannot make a distinction between declassifi-
cations that are allowed due to encryption, and those due to signing. In addition, Jif
does not provide a means to write temporal policies and needs to rely on programming
patterns to prevent declassifications occuring in a state where they are not supposed to
be allowed.

JPMail The second case study implements a functional e-mail client based on JPMail
[11]. In JPMail the user can specify a mail-policy file, partly dictating the information-
flow policies that the mail client has to enforce.

JPMail ensures that an e-mail is only sent if its body has been encrypted under an
algorithm that is trusted by the receiver of the e-mail. Which encryption algorithms
are trusted by what JPMail users is specified in the mail-policy file. In addition JPMail
needs to enforce more static policies, e.g. preventing the login credentials from flowing
anywhere else than to the e-mail server.

In the Paragon implementation (2.6k lines) these latter, static policies are easily
modelled as specifying only the e-mail server as a receiving actor. The partly dynamic
policy on the e-mail body is represented by a set of clauses of the form:

(User u) server: Receiver(mail, u), AESEncrypted(mail), TrustsAES(u)

That is, the e-mail can be sent to the mail server only if it has been encrypted un-
der AES and the receiver of that e-mail trusts AES encryption. The TrustsAES and
similar locks representing the user-specific policies are opened after parsing the mail-
policy file, during initialisation of the client. The Receiver lock is opened based on
the To-field information, and the AESEncrypted lock is encapsulated analogous to the
encryption / signing locks of the previous case study.

The issues for the Jif implementation in the mental poker case study show up in the
JPMail example [11] as well. Moreover, stateful policies are central to this example and
are challenging to model in Jif; Hicks et al’s solution involves generating the policy part
of the Jif source code from the mail-policy file, hardcoding the user-specific policies
in the client. This implies that if a mail-policy file changes, the only way for the Jif
solution to handle it is by recompilation of the code. By contrast, Paragon handles
policy change mechanisms naturally (by opening and closing locks) without stopping
the code or recompiling.



6 Related Work

In this section we consider the related work on languages and language support for ex-
pressive information flow policies. We focus on actual systems rather than theoretical
studies on policy mechanisms and formalisms. We note, however, that there are several
policy languages in the access control and authorisation area which have some superfi-
cial similarity with the Paragon Policy Language, since they are based on datalog-like
clauses to express properties like delegation and roles, see e.g. [4,9,13,14]. Key differ-
ences are (i) the information flow semantics that lies at the heart of Paragon, and (ii) the
fact that the principal operation in Paragon is comparison and combination of policies,
whereas in the aforementioned works the only operation of interest is querying of rules.

Languages with explicit information-flow tracking Two “real-sized” languages stand
out as providing information-flow primitives as types, namely FlowCAML and Jif – as
discussed in the introduction.

Comparing Paragon to Jif is inevitable, being at the same time a competitor and
a source of inspiration. Due to the unique position Jif has enjoyed in the domain of
information flow research over many years, much research has been done using Jif for
context and examples. It is thus natural to ask how research done on or with Jif can
carry over to Paragon.

The main advantage of Paragon over Jif is undoubtedly the flexibility of the con-
cept of locks, including their stateful nature. Where Jif has a single declassify con-
struct, Paragon can provide different declassifying methods to work on different data,
as needed by the domain at hand, and relate that declassification to the state of the pro-
gram. Jif rigidly builds in some stateful aspects in the form of authority and delegations,
which in Paragon would just be special cases of working with locks.

In many aspects, our work on Paragon has greatly benefitted from Jif’s trailblazing,
as well as research done in the context of Jif. Policy defaulting mechanisms, handling
of runtime policies, and having all exceptions checked, are all features where we have
been able to adopt Jif’s solution directly.

In separate work, as of yet unpublished, we have conducted a complete and in-depth
comparison between the two languages and all their features, including a Paragon li-
brary that gives a complete implementation of Jif, but the full details of that comparison
are out of scope for this paper.

Compilers performing IF tracking Information flow tracking can be performed in
a language which has no inherent security policies, lattice-based or otherwise. In such
a setting one tracks the way that information flows from e.g. method parameters to
outputs. Examples of tools performing such analysis are the Spark Examiner operating
over a safety-critical subset of Ada [6], and Hammer and Snelting [10] explain how
state-of-the-art program slicing methods can support a more accurate analysis of such
information flows in Java (e.g. both flow sensitive and object sensitive).

Dynamic Information Flow Tracking with Expressive Policies Runtime informa-
tion flow tracking systems have experienced a recent surge of interest. The most rele-
vant examples from the perspective of the present paper are those which perform full



information flow tracking (rather than the semantically incomplete “taint analysis”),
and employ expressive policies. The first example is Stefan et al’s embedding of in-
formation flow in Haskell [25]. In principle one could also use Paralocks in a dynamic
context, and we are currently investigating a stateful extension of their LIO framework
which could be instantiated with the generalised Paralocks described in this work.

Yang et al’s Jeeves language [31] focusses on confidentiality properties of data ex-
pressed as context-dependent data visibility policies. The Jeeves approach is notewor-
thy in it’s novel implementation techniques and greater emphasis on the separation of
policy and code.

Encoding Information Flow Policies with Existing Type Systems With suitably ex-
pressive type systems and abstraction mechanisms, static information flow constraints
can be expressed via a library [15,16,22].

A number of recent expressive languages are aimed at expressing a variety of rich
security policies, but do not have information flow control as a primitive notion (as
Paragon or Jif) [12,28]. F* [27], a full-fledged implementation of a dependently typed
programming ML-stye programming language, is perhaps the most successful in this
class, with a large number of examples showing how security properties can be encoded
and verified by typing.

Typestate The way that Paragon tracks locks is related to the concept of typestate [26].
Typestate acknowledges that the runtime state of e.g. an object often determines which
methods are safe to call. For example, for a Java File object, the method read() can
only be called if the file has first been opened with the open() method. Systems with
typestate, such as Plaid [2], support formal specification of typestate properties, and
enforce that programs correctly follow the specifications. In Paragon, typestate prop-
erties can be specified through the use of lock state modifiers. Paragon cannot express
features that depend on Plaid’s first-class states, e.g. “an array of open files”, but can
otherwise express solutions to their motivating examples.

7 Conclusions and Further Work

It is our expectation that one day programming languages with built-in support for ex-
pressing and enforcing information-flow concerns become widely deployed. Paragon’s
strong integration with Java and its relatively natural yet expressive policy specification
language lowers the threshold for adopting information-flow aware programming out-
side the research community. Still, much work is left to be done before Paragon can
become a serious competitor to existing programming.

One notable direction for future work in the Paragon language is concurrency sup-
port. This direction requires both theoretical and practical work, in particular if de-
classification mechanisms are shared among threads. Another planned direction is to
present a more substantial formalisation of Paragon’s type system, including a proof of
soundness with respect to information flow security.
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