'fed
ew

User-defined automatic journal production in MedView
Fredrik Lindahl, 2001/2002

Abstract

In order to better organize and take advantage of the large amounts of clinical knowledge
gathered every day in the field of oral medicine, the MedView project has provided away to
formalize this knowledge and to store it in a manner that makes it computationally accessible
for future visualization and analysis. The formalized knowledge is stored into a knowledge
base, which currently contains information about more than 3000 conducted oral
examinations. In order to see the contents of the knowledge base, atool for displaying and
summarizing the contained examinations by means of generated text was devel oped. After
being used for some time, various issues arose surrounding the use of thistool, resultingin a
need for anew version of the tool to be developed. The goal of this thesis has thus been to
produce such anew version of thistool, taking into account both the proficiencies and
deficiencies of the previous version.

Sammanfattning

For att béttre organisera och anvanda sig av den stora méangden klinisk kunskap som samlas
varje dag inom oral medicin, sd har MedView-projektet tillhandahallit en metod att
formalisera denna kunskap och lagra den pa ett sétt som gor den tillganglig for framtida
datoriserad analys och visualisering. Den formaliserade kunskapen lagrasi en
kunskapsdatabas, som idag innehaller information om dver 3000 utférda undersokningar. FOr
att kunna se vad som finnsi databasen sd utvecklades ett verktyg for att visa och sammanfatta
utforda undersokningar i form av genererad text. Efter att havarit i bruk ett tag, sa fanns det
behov av att utveckla en nyare version av detta verktyg. Malet med detta examensarbete har
sdledes varit att utveckla denna nya version med den tidigare versionens for- och nackdelar i
atanke.

Preface

This report summarizes my thesis at Chalmers University of Technology, which | have been
working on periodically between summer ‘01 to autumn ‘02. Theinitial work at the clinic for
Oral Medicine at Odontologen in Gothenburg was not intended to develop into my thesis —
rather, thisideawas conceived at the end of the summer (' 01) when it turned out that alot of
interesting development could be done to improve the current journal generation procedure,
especially in regardsto the user interaction. | am very interested in designing and developing
user-friendly applications that people can find appealing to work with, and that can help them
in their daily work. Furthermore, during the last couple of years | have been focusing on
learning and devel oping with the Java programming language — an object oriented language
that is gaining more and more popularity amongst developers. The work at the clinic in the
summer of ‘01 combined both of my major interests, so when presented with the opportunity
to continue this work as my thesis, my decision was not a difficult one to make.

| would like to thank all people involved in making it possible for me to do my thesis and to
write this report. Especialy, | would like to thank my supervisor Olof Torgersson at the
Department of Computer Science and Engineering at Chalmers University of Technology for
the constructive criticism and interesting discussions during my work. | would also like to
send special thanks to Professor Mats Jontell at the faculty of Odontology at Goteborg
University for giving me latitude to explore and develop my ideas, as well as providing me
with the opportunity to work within this highly interesting and exciting area.

- Fredrik Lindahl, Gothenburg 2002-10-04.

TABLE OF CONTENTS

Y 0 1] = T PSPPI 2
SaAMMANTALINING .. .cceiii e e e e e e e e e e e e e e e e e 3
e 1] = o < PSPPSRI 4
R 10T [Tod 1 o o S UESPPTPPRR 6
00 1Y =0 = 7

1.2 Natural Language GENErationuuuiiiiieeiiiiiiiiiie e ee e e eeeeee e e e e e e e eerb e e e e e e eeeens 8

1.3 lterative Development and the Unified ProCess.......c..cooeiiveviiiiiiiiieeieeeeiee e, 9

1.4 Design Patterns and GRASP ... 10

1.5 DeVvelopment GOAIS.........coouuiiiiiiii e 11

2 METNOAOIOGY ...ttt 12
2.1 DeVvelopmeENt HISIOIYuuu e e e e e e e e eeeens 12

2.2 A Unified Process REtrOfitccooeiiiiiiiiieiiieicceeee e 14

S ANAIYSIS .ttt 16
3.1 The Knowledge Base (KB)couuiiiiiii et 16

3.2 Previous Journal Generation ProCeUIe...........oooovviiiieiii e 16

TG I\ 1= To 51U T] o T TP 18

3.4 ANAlYSIS - CONCIUSIONScoiiiiieiiiie e e e et e e e e e e e e eaaaaaaas 20

7 I 1= [o 21
4.1 Text Generation Strategy and AIgOrthm ..o, 21

4.2 System Architecture and OVEIVIEW...........ccuuuuiiiiieeiiieeiee e eeaaaaaans 25

ST [] g =TV == (o 27

4.3.1 Functionality and USEr INTEITACEccuviiiiiiiiieiiie e 27

4.3.2 SOFtWAIE DESIN ..eeeieiiiiiiee ittt e e st b e e s bt e e s nabre e e e annes 30

4.3.3 MOE] (DOMIAIN) ...tettiiiiiiiiierieeeeeeseresesesesesesesasesssesesssesesesssesssssssssssssssssssssssssssnnnsssnnnrnnes 33

4.3.4 VIeW (PreSENtAtiON)uuuiiieiiieeiieieiererereseseeesessssssrersreseeesererererererereeer.. 34

Y 1= To ST U]] ¢ T P TPRR 36

4.4.1 Functionality and USer INTEIMaCE.........cuuiiiiiiiie e 36

4.4.2 SOFtWAIE DESIN ..eeeieiiiiiieeittie ettt ettt e e st bt e e st e e s anbre e e e anees 38

4.4,.3 MOAE] (DOMIAIN) ...viteiiiiiiiiieieieteuesesesesesesesessseassssesesssesesesssssssssssssssssssssssssssssssnsnsssnnnrnnes 41

4.4.4 VIeW (PreSENtAtiON)uuuiiieiiiiiiiereiereresereseeerereserrrerererereserererererereree———.. 42

SR U 1 1 A =11 G- To [T T TP 44

4.5.1 The datahandling Package............cooiiiiiiiiiiii e 44

4.5.2 The COMMON PACKAJE.viiiiiiiiiie ittt 46

4.5.3 The dialogs SUDPACKAgEuviiiiiiii e 47

4.5.4 The generator SUDPACKAgEeoiiiiiiiii e 50

5 Conclusions and Future Development ... 52
6 USEr DOCUMENTALIONcceiiiiieeiiiiiiee e e e ee ettt e e e e e e e e e e et e e e e e e e e e eeesannnneeeeeeeeeennnnnns 55
6.1 Global Application MAMEISoooiiiiiiiii i e eeeeeeeens 55

6.2 About the SummaryCreator APPlICALIoNuvuiiiiiiieiiie e, 58

6.3 SummaryCreator Application Overview and General Documentation.................... 58

6.4 About the MedSummary APPlICALIONccoiiiiiiiiiii e e, 59

6.5 MedSummary Application Overview and General Documentation......................... 60

T GlOSSAIY ..ttt 63
B RETEIBNCES. ... ittt e e e e e et e e e e e e e e e e e e atna e e e e e e eeeeannnas 66
Appendix A — Examples of Previous MedView System Resources 67

1 Introduction

In the area of Oral Medicine, large amounts of clinical data are being gathered each day from
conducted oral examinations. Recording this datain the traditional paper-based manner
results in problems when dataisto be retrieved, summarized, or in other ways processed or
analyzed quickly. Astime goes by, the vast amount of clinical data being accumulated
becomes increasingly difficult to manage, and extracting information from it can be very
cumbersome. The MedView project, initiated in 1995, aims at providing ways to formalize
and store clinical data, so that subsequent analysis can be performed computationally.

One way of utilizing such formalized dataisto let the system automatically generate patient
journals and summaries. For instance, the system could be asked to produce a summary of
previous patient visits prior to an upcoming visit, which would give the dentist a quick review
of patient status and background. The focus of this thesis has been on applications that are
used to create the environment necessary for the automatic generation of such text.

sssss
[e sutomatisk VG instalning

Figure 1.1 — The developed applications

In order for a user to produce an environment that can generate summaries, the user defines
templates containing slots where the actual content from an examination record will be
inserted at generation time. The content, in turn, istranslated from its universal format (as
specified in the examination record) to the language used in the template context, which is
done with the translator. The translator maps values in their universal format to a certain
tranglation, and may also contain various macros that are processed at generation time. To
generate ajournal, the user selects the examination(s) of interest, atemplate to use, and a
trandator to use, and the application produces ajournal consisting of the template text with
the dotsfilled with the values for the chosen examination. The system fills the slots of the
template text with the translated values from the examination, along with performing certain

simple processing of the text to make it look more like natural language. An interesting future
development aspect would be to improve the NLG aspect of the journal generation, without
making it too complicated for the end users to create their own templates and transl ators.

The intended audience of thisthesis consists of four groups: 1) people interested in object-
oriented software development and in seeing a practical example as well as various common
design patterns in use, 2) people who intend to use the applications described in this thesis,
wishing to learn more about how to use them and/or some background information
concerning their development, 3) people actively engaged in the MedView project, interested
in learning more about this part of the project and/or the ideas surrounding it, and 4) people
who are interested in the MedView project but knows nothing about object-oriented software
development, design patterns, UML etc. and that do not intend to use the described
applications.

People from the first group described above should focus on reading the *design’ part of the
thesis, which deals with the design details of the various parts that compose the applications,
including the major design patternsin use as well as how they fit into the system structure.
They could also read the * methodology’ section in order to see how using UML and design
patterns can be of great help in the devel opment of a medium-to-large-scale system. People
from the second group should focus on the ‘ user documentation’ section, describing how the
applications are used. Also, if interested in some background information on the applications,
they should read the ‘analysis’ section describing the situation surrounding the applications
and the situation as it was prior to development. People from the third group - especially
developers that are to continue development of the portrayed applications — should read all
sections of thisthesis - with emphasis on the ‘analysis’, ‘design’, and ‘conclusions’ parts. If
aready familiar with the MedView project, the parts describing it can be skipped. Finally,
people from the fourth group should read this introduction carefully — especially the parts
about MedView - aswell asthe ‘anaysis’, ‘conclusions’, and parts of the ‘design’ section
dealing with functionality and user interface design. If interested in seeing screenshots from
the devel oped applications and various scenarios of their use —which illustrate typical actual
work with applications from the MedView project - they should also read the * user
documentation’ section.

1.1 MedView

MedView isajoint project with participants from both oral medicine and computer science.
The project has been developed in close cooperation with SOMNET (Swedish Oral Medicine
NETwork) — a network consisting of dentists and practitionersin the area of oral medicine.
The aim of the project isto develop tools that can assist the clinician in his or her daily work
and to provide the opportunity to analyze the information that can be obtained from oral
examinations. In order to do this, aformalized knowledge base containing patient
examination data has been built, as well as tools to extend, view, and analyze the knowledge
base.

Figure 1.2 — A clinician entering data during an examination

One of the project’s main achievements so far has been to formalize the basic health care
activities within oral medicine in such away that examination data can be stored in this
formalized manner in the knowledge base [5]. Tools for entering examination datadirectly in
the examination room during an actual examination have been developed, as well as various
tools for viewing and analyzing the contents of the knowledge base (including the tools used
to produce textual summaries of examinations which has been the focus of thisthesis). Today,
the system has been in use for several years at various clinics throughout the country to gather
information about more than 3000 examinations, including alarge amount of digital images
associated with the various examinations. More information about MedView can be found in

[5]. [7], and [8].

1.2 Natural Language Generation

Natural Language Generation (NLG), is about generating text from avariety of sources that as
closely as possible should resemble natural language. There are two basic approaches for
natural language generation - the deep and shallow approach [7]. The deep approach usually
results in sophisticated and general NLG systems that can be used in avariety of contexts,
while the shallow approach generates text in asimpler way - usually resulting in simpler but
more context-dependent NLG systems.

Most NLG systems today divide the generation task into three functional steps[9]: 1) text
planning (also known as content determination), 2) sentence planning, and 3) linguistic
realization (also known as surface realization). The text planning step consists of determining
purpose, content, and context of the generated text, while the sentence planning step ams at
converting text plans to sentence plans by planning the structure at sentence level. The final
step - linguistic realization - converts sentence plans into surface text (the generated text)
through various processing steps. More about NLG and how it is used in the MedView project
can befoundin[7], [9], and [10].

1.3 Iterative Development and the Unified Process

When devel oping large-scale applications, it becomes necessary to follow some kind of
process that organizes the development in afeasible manner. Severa projects have been
devel oped using the so-called waterfall development process. The waterfall development
process basically breaks down development into a set of finite phases or steps, where each
step depends on work donein earlier steps. If followed in a strict fashion, the waterfall
development process prohibits you from returning to a previous step once completed — for
instance, say the first step has been completed (evaluate the problem and gather information),
you may not return to it if new information is discovered further on, say when working with
the second step (propose solution and define requirements and time plan). The waterfall
process has been shown to have considerable weaknesses - when devel oping modern object-
oriented systems, there is a high probability of discovering new aspects that had not been
considered in earlier steps. Thus, it is necessary to adopt a more iterative approach allowing
you to return to previous steps and integrate newly discovered concepts into the system. The
ideais not to make hap-hazard jumps back and forth between the different steps of
development, but instead to follow the general ideas of the ‘waterfall’ model in several
iterations, and to deal with newly discovered aspectsin the following iteration cycle.

Requirements Requirements Requirements

Analysis Analysis Analysis

Design Design Design

Implementation Implementation Implementation

Test Test Test

e e —

Figure 1.3 - Iterative development

Another important aspect of iterative development (adopted in the Unified Process, which |
will introduce below) is that you should choose to develop the most vital and critical parts of
your system early in the project, i.e. in the early iterations, in order to reduce project risk. The
ideaisto resolve the mgjor risks early and detect potential project-stoppers early on, which
will reduce both time spent and costs if the project turns out to be infeasible.

[ception Elaboration Construction T'ransition

Diesign

[rplemerntation

—

wciirol deve lapiens doited fines = iteratlons

I

|

|

I

|

.’_

|

|
—
|

|

|

The tne

Figure 1.4 — Unified Process (UP) disciplines

The Unified Process (UP) is an iterative software development process making heavy use of
the Unified Modeling Language (UML) for describing the various outputs (artifactsin UP
terminology) of each stage (discipline). For instance, during analysis you might produce use-
case diagrams and various use-case scenarios in order to describe existing and future
‘scenarios of use’ of the system or the surrounding environment. During design, class
diagrams and interaction diagrams are created, describing a more detailed view of the system
being developed. The full UML diagram set consists of a great deal of various diagram types,
it isimportant to realize that it is not necessary to use all these diagram typesin your project —
you should use the ones necessary to clarify important aspects of the system under
development. In fact, very few projects and system descriptions use all possible UML
diagram types - the subset used depends on the system being described.

In the Unified Process, each step between iterations is preceeded by atested, integrated, and
executable system release. The release is not an experimental or throw-away prototype, but
rather a production-grade subset of the final system [2]. One benefit with this approach is that
early, visible progress of the system is made, resulting in increased developer confidence and
an opportunity to systematically test releases on intended users in order to make sure you are
on the right track.

1.4 Design Patterns and GRASP

Design patterns are tried-and-true solutions to reccuring problems and problem contexts that
occur while developing software. Patterns help structure software by presenting general
problem contexts and solutions to them. The solutions suggested by design patterns are well-
established solutions crafted and used by other expert object designers. In the book ‘ Applying
UML and Patterns' [1], attempts are made to analyze the basic building blocks of object
design and well-established design patterns, and to describe nine basic design principles
called the GRASP patterns (General Responsibility Assignment Software Patterns). In the
words of the author, the GRASP patterns are described as a‘learning aid to help one
understand essential object design, and apply design reasoning in a methodical, rational,
explainable way’. By having a thorough understanding of the nine GRASP patterns as well as
other fundamental object design principles, you understand the reasons and concepts
underlying many of the established design patterns.

-10 -

1.5 Development Goals

The most frequently used application to view examination data in the knowledge base in the
previous MedView system was an application called MedSummary, developed using the
Objective-C programming language. The purpose of the application was to generate
summaries of examinationsin away that as closely as possible resembled a manually entered
summary - thiswas done by filling ‘gaps’ in atext file with values from an examination. The
format of the text file containing the gaps (also known as the template file) was rather tedious
to work with, involving manually remembering and entering specia charactersin the text. It
was also hard to see the various ‘parts' of the journal (such as what part of the template
constituted a section) when working with a standard text editor. In practice, thisled to the
situation where one expert user developed the template text files underlying the generation
and the others used this set of files. As a consequence, each user became dependant upon
another individuals concept of how ajourna should look - which may vary from individual to
individual. One of the goals of my thesis was to remove these necessities, and make it
possible for each user to produce his or her own template without any expert knowledge of
how templates are made up. An important issue that had to be kept in mind was that a
template should be easy to modify and extend - thusit was also important to visualize the
template structure to the user in an intuitive way. Since theideais that a user should be ableto
define his or her own templates, it isimportant that it is not too complicated and that the user
has an intuitive fegling of what happens with the template when the journal is generated.

In order for the knowledge base and the applications to have international use, various
languages had to be supported, both in the applications and in the generated journals. A goal
of my work was to remove as much language-specific information as possible from the
applications, and to make it easy for users to change the language in use. Also, since the
values in the knowledge base are stored in a‘ universal’ language, there had to be efficient
ways to transform the values to whatever language or journal declination the user preferred
(usually the ones used in the template context) - for instance, a user in Italy should be able to
view information contained in a knowledge base in Sweden, and a clinician should be able to
hand alayman’s summary of an examination to a patient right after the examination. This
could be done in the earlier system, but in atedious manner requiring different text files for
different languages and huge tranglation files. A goal of my work has thus been to facilitate
and make more flexible the context-dependent use of the examination knowledge base as well
as the applications used to visualize and work with the information in it.

In order for an application to be useful and productive, it isimportant that it is appealing to
the user as well as not being too complex. Thus, agoal has been to make the devel oped
applications as flexible and user-customizabl e as possible without introducing too much
complexity for the user to consider. Javais an excellent language to work with when wanting
the capability to easily switch and work with various look and feels of an application, since
this concept is an integrated part of the Java Swing GUI framework.

-11 -

2 Methodology

When starting my work at the clinic (approximately 2001-06-01), | did not expect or plan for
it to develop into my thesis. The time | had for development (approximately 2 months) was
rather short and there aready existed a previous system with alot of the major ideas and
issues surrounding it already resolved. Theinitial goal was simply to rewrite the existing
system, written in Objective-C, into a system written in the Java programming language. The
primary reason for rewriting to Java were that no more licenses for running Objective-C
applications on Windows were available, making it impossible to distribute the applications to
new users. As aconsequence, | did not initially deem it necessary to follow some large-scale
devel opment process, even though | tried to keep in mind some general and essential steps
from the waterfall development process (at the time, | had no ideawhat ‘iterative
development’ was al about). Later on, when initiating the second iteration in summer ‘02, |
knew alot more about iterative processes and object-oriented design. Thisled to agreat deal
of refactoring and restructuring of the previous code taking place, as well as introducing new
rather advanced functionality in the applications, such as being able to print styled journals
wrapped in page templatesin aWY SIWY G (What You See Is What Y ou Get) fashion.

2.1 Development History

Initially, avery short analysis of the situation was conducted (consisting of meeting some
users of the existing system and letting them demonstrate how they used it), resulting in an
amount of issues surrounding the current applications as well as ideas and suggestions on
upcoming versions. Theissues and ideas from the users were considered, followed by some
(rather ambitious, considering only 2 months of development) sketches of the proposed
applications that were presented to the users at the clinic. The users had no objections to the
proposed solutions and thought they were nice, so the sketches became the de-facto user
reguirements (the proposed applications should work as presented to the users). At the time, |
had not done too much Java application development, and was rather unsure about the time it
would take to implement the prototypes being presented as well as the time needed to learn
everything required to be able to implement them — nevertheless, the time to learn as well as
the time necessary to actually code was estimated to be sufficient, so the work began.

New suggestions and ideas were continually being added during development, and at the end
of the summer, it was decided that | would continue my work at the clinic as my thesis during
autumn ' 01. The methodol ogy used was concept-to-code, where a concept was sketched
(using no particular method for visualizing) followed by being coded. Some basic design
principles were used, such as thinking observer-observable and using a basic model-view-
controller design such that upper layers of objects should not be visible to lower layers. As
time progressed, it became notoriously difficult to see the overal structure of the applications
and references had to be passed around rather chaotically in order for the different objectsto
be able to communicate, resulting in an entangled - but working - system being presented at
christmas’ 01. Screenshots from the applications as they were christmas ‘01 are displayed in
figure 2.1.

-12 -

i _J_h.’il

AikvBedgers Fomel Hse

Bk | I i (e (2] [uéfu]2[0 [Ez=

R e e 70 =

GOS507390 B 19307 2044

GOS0 & s

- 1959-mey-

GU2550501 a TESTSEKTIONETT

GOFa19250

| GOIBGOI61 Patienten ifrdga ar en mandig 5&-Srig man, fodd 1 346, Patientkoden S GO398, och hans wk

GO3IRIDG0 aficer]

MO 119410

M4 140241 .

MO4170601 = Jpstmalll Stmmanytrentor = I5]x]

MDA 108760 dckiy Fdigern Forme Ha

et Oas(@ (4 (BEEE (o (=] u]dtqf =@ E=l=

Lwvio010470 = L) U 1=

MAD2G440 — —

| 1030541
—— spura
TESTSERTIONETT g
Patignben itsgs G em

Bl Winiken v
nnnnnnnnnn

Figure 2.1 — The applications asthey were christmas’01

Since one major goal of the MedView project is to produce applications that can be deployed
and distributed to users outside the clinic, it is of vital importance that the applications are
well-designed in order for future further development and maintenance to be feasible. The
applications presented at christmas’ 01 were not ready for such deployment and distribution
because of the lack of proper user testing as well as their rather muddied design. Furthermore,
the major application for creating the examination records (an application being developed
concurrently by other developers) was still not completein its Java version, so any use of the
system would still require running some of the previous Objective-C applications.

When attending the course ‘ Objektorienterad Systemutveckling' in spring ' 02 at Chalmers
University of Technology in Gothenburg, | discovered new approaches to object-oriented
design such as design patterns and the Unified Modelling Language (UML), as well as new
general work-flow processes structuring the devel opment process such as the iterative Unified
Process (UP). At the same time as | was taking the course, | began restructuring and
refactoring my design — both as away to facilitate my learning and as away of closing in on
the goal of being able to release an industrial-strength application system. Concurrent with the
restructuring process, issues that arose from user testing of the applications | had released at
christmas were a so attended to and integrated into the restructured solution. During summer
and early autumn 2002, | continued working with the restructuring and refactoring of the
design, aswell asimproving and adding functionality to the system (such as, for instance,
adding the option to view journalsin aWY SIWY G (What Y ou See IsWhat Y ou Get) fashion
by displaying pages and being able to print them exactly as they are displayed). Screenshots
from the applications as they were in autumn ' 02 are displayed in figure 2.2.

-13 -

| A =E)

N[Ak [t Y| [KD B © b Fg ¢ w e B a

(; ODONTOLOGISKA FAKULTETEN
£} PATIENTIOURNAL
4 Fatinlod J01 A0 Usdruethaisgetan 20020131

 en §9 kr gaumal kvirna, fodd 1943 och hemnes
4 diakbriick,

1508300 sy [Spypiaprme g bt ErpLALs e2Yipreprem rpetimyd
Lensrran 3

sz
prp—
t549230

{ izl Hi=1E3

RN R et Y[¥BB @ bru e B

rssoesn
st
is7esan .
nnnnn P ODONTOLOGISKA FAKILTETIN
4 PATIENTIOURNAL

irdy Crorsiining |
enfar

. : o n mor
----- =W Patentiod sl Usdersdiningadaun: 2002.09.26 " nef SNOLINES

Fy—— crech C san en son
crisas

Paterten trliga dr en o a #Bdd peode
ach o ners) patientko hartidigare Magat pk

Ahr avTarmity, och 5§al anser sig patenien vara vid
alth. Anledring e uppet ret-cause. Paente
remimerades av rof

o bam har patienten han el siukdomar

i aspeiten darie it att
MaERaCONSE NNRrar | IANURM MG BER3 POQPAM. DENN SAN0N innarduer aitsd inge som
halstiermer, | framiiden 54 mdste man kunna vila at denna sekicnen ska vars ‘stcky och
SRS YEE EVEN Gen inga armer Anee e dan

Term [farndy [matiple.
Ly o vt wirce.
Sepursier |, NI Separator: | ocn
] Ut etomtst V5 nstiiona G

Figure 2.2 — The applications asthey werein autumn ' 02

At the time of thiswriting, there are still some minor issues to deal with regarding the
applications, even though all major issues have been resolved. More user testing is necessary
in order to unravel and fix bugsin the system, but the major cases of use have been tested and
shown to work fine.

2.2 A Unified Process Retrofit

In retrospect, the development process used in my thesis can be seen as an iterative process
consisting of two iterations — the first during summer and autumn’ 01, and the second during
summer and early autumn *02. Initially, since applications already existed and simply were to
be rewritten, not much analysis and requirements work was deemed necessary — the
reguirements were that the new applications written in Java should be like the older ones
written in Objective-C. Seen in retrospect, it now seems like it might have been agood ideato
have performed a more detailed analysis of the situation before the actual coding began.
Coding began amost straight away after some initial light probing of the existing applications
and user suggestions. A lot of timein the first iteration was spent on learning necessary Java
techniques followed by using these techniques to implement the applications. From a Unified
Process perspective, the design step in thisfirst iteration (between the analysis and
implementation phases) basically consisted of sketching the concepts (at least the ones
complex enough to justify sketching) and then implementing based on the sketches. A large
design overview of the system was simply not feasible to sketch and continually update by
hand (later on, this was accomplished using rever se-engineering with the help of aUML

-14 -

CASE tool). After some rather sparse testing, the applications were released to the users at the
clinic at christmas ‘O1.

Treration 1 Teeration 2 jail testivig regrated i iiplamentafion steps)
r hl r hl

TEST AMD RELEASE

REQUIREMENTS
ANALYSIS
IMPLEMENTING
IMPLEMENTING
IMPLEMENTIMNG
REFACTORIMNG
(DESIGN & IMPL.y
REQUIREMENT
VERIFICATION
IMPLEMENTIMNG
IMPLEMENTIMNG

LEARNING
LEARNING
LEARNIMNG
DESIGMN
DESIGN
RELEASE

Sriminier 2001 Clirisinas 20807 Survirnier 2002

Figure 2.3 — Overview of my thesis development

With the rel ease came the opportunity for usersto test the applications and provide user
feedback. When starting the second iteration, user feedback from the earlier release was
available as well as a multitude of new knowledge in object-oriented design. The mgjor part
of the second iteration consisted of refactoring and introducing design patterns into the earlier
applications, which improved application maintainability and extensibility dramatically. Seen
from a Unified Process perspective, you could say that the requirements and analysis parts
from thefirst iteration were deemed sufficient enough for the second iteration as well, and the
main effort in the second iteration was put into the design and implementation steps. Several
minor design-implementation iterations were conducted within the second major iteration,

and unit testing occurred continually during all development.

Unit tests were performed on all refactored code and design, and parts of the system were
integrated with other parts only after being subjected to thorough unit testing. Seen from a
Unified Process perspective, each iteration should end with a user evaluation and testing
phase of the iteration release - at the time of thiswriting, the major user tests finalizing the
second iteration have not yet been performed, but the plan isto deploy the current system at
the clinic so the users can thoroughly test and evaluate before considering the second iteration
to be concluded.

-15-

3 Analysis

3.1 The Knowledge Base (KB)

The knowledge base has a structure consisting of a collection of definitions, where each
definition represents one unigque examination. An examination can be viewed as a collection
of equations defining that particular examination, such as the one shown in figure 3.1.

Occup = dentist

Ref-in = doctor

Mucos-site = tungrand hoger sida
Mucos-colr = rod

Vis-cause = kontrollundersokning
Next-app = 2 veckor

Figure 3.1 — A collection of definitions defining a small part of a fictive medical examination

The data making up the knowledge base is input by the clinician using an application called
MedRecords. The input is done during the actual examination, making it imperative that this
isdonein an efficient and easy-to-use manner. The file format used to store an examination
record is called atree-file format — signifying that it has atree structure. Figure 3.2 shows
how a part of this conceptual tree structure might look. For an example of how an actual tree
file can ook, see appendix A.

 EXAMINATION
KONKRET IDENTIFIK i A DATUM ‘ PAI\ENTUPPG\F'IER nLLMAN hNAMNES 7777777
u.mde P

.......

\-.__-"l

Figure 3.2 — The conceptual treefile structure

The information contained in the knowledge base is primarily used in two different ways— 1)
to display information about a patient to the clinician in the examination room prior to (and
during) an examination of the patient, and 2) to analyze and learn from the knowledge base
content as well as to search for patterns, which is usually performed by the clinician from his
or her desktop computer [5].

3.2 Previous Journal Generation Procedure

Prior to my development, there was no specific application for developing the template files
used to generate the examination summaries — rather, a standard text-editor was used to create
the necessary templates (usually as RTF (Rich Text Format) text files) together with atext file
defining how examination values should be trand ated. The idea was that the system should be
conceptually simple enough for a user to be able to produce his or her own template files and
experiment with them in order to find the combination that produced the best output at
generation. Since user-customizability was such a central issue, the choice of what kind of
NLG system to use fell on one using a simple approach to NLG (a shallow system), i.e. one
not requiring deep linguistic expertise. For more information about shallow and deep NLG

-16 -

systems, see the introduction section aswell as[7]. Figure 3.3 displays how parts of the
various text-files surrounding text generation could look, for alarger example of such a
collection - see appendix A.

SANAMNESS

Overkéanslighet: N.

Blodningsbenédgenhet: Q.

Allmant

AS-arig $BS F som C for D. $Notel$.

Allman anamnes

HS. $KLS. $US. Patienten har V.

Besvar fran genitala slemhinnan: X.

AS = def(P-code) (age) H = def(Health) O = def(Smoke)
B = def(P-code) (sex) I = def(Dis-now) P = def(Alcohol)
F = def(Occup) J = def(Dis-past) Q% = def(Bleed)
C = def(Ref-in) K = def(Chld-dis) R = def(Vas-life)
D = def(Ref-cause) KL = def(Checkup) S = def(Symp-other)
ES = def(Born) L = def(Drug) T = def(Symp-saliv)
G = def(Civ-stat) M = def(Allergy) U = def(Symp-head)
$Notel$ = def(Note01) N = def(Adv-drug) V = def(Skin-pbl)
$Occup

Administrativ chef administrativ chef

Arbetsstkanden arbetssokanden

Arbetslos arbetssokanden

Arbetsterapeut arbetsterapeut

Banktjansteman banktjansteman

$Ref-in

Sjalv soker sjalv

Lakare remitterats fran lakare

Tandlékare remitterats fran tandlakare

$Ref-cause

Beddvningskansla efter tandbehandling beddvningskansla efter tandbehandling

BMS BMS

Figure 3.3 — Small excerptsfrom the varioustext files necessary for journal generation

Even though the previous approach works, creating the template and the translations with a
text editor can be strenuous — especially when dealing with large files. Furthermore, viewing
the tranglations that exist for a certain value requires searching in a huge text file (over a
hundred pages long), which can also be a very tedious process. Thereis also aneed to be able
to couple more information to atrandation of a value than just the actual trangdlation, like
information about when it was last modified in order for a moderator to check newly added
trandations for correctness and that they fit into the general scheme.

Another important issue is one about letter case. It might be the case that some values always
should be in initial upper case (for instance, values for the ‘born’ term, defining in which
country a patient was born) while some should always appear ininitial lower case. The matter
of caseis aso dependent on the sentence context — for instance, if atranglation initiates a
sentence it should appear ininitial upper case, in al other cases it should appear in initial
lower case (if the values are not of any special type that always should have initial upper case
such as a country). As can be seen from figure 3.3, alot of the specified tranglations are
simply the value with initial lower case — a desirable feature would be to be ableto tell the

-17 -

system that a certain term should always have its translations adjusted to initial lower or upper
case except when in special sentence contexts - such as when the trandlation initiates a new
sentence. If done this way, the need to specify trandations that simply change the initial case
of the value would be removed - the actual value would be used at generation time and the
system would decide what kind of initial case the value should have based on the users choice
for the value' s term (also known as the value' s attribute). When discussing the matter of |etter
case in the earlier system with the users, it was clear that the case issue was a problem and
that generated journals often contained mixed case that had to be adjusted manually.
Furthermore, having to switch between the various text files back and forth with atext editor
when creating the set of template filesis tedious— it would be better if all information
somehow could be displayed at once. For more information about how text generation
previously was done in MedView as well as more general information about NLG, see[7],
[9], and [10].

3.3 MedSummary

One of the developed visualization tools for viewing data from the knowledge base is the
MedSummary application, written in Objective-C, with the purpose to view the information
collected in the MedRecords application [5]. A screenshot from the MedSummary application
isshown in figure 3.4.

gﬂedSummaw - English-myd M= i

File Edt Font Tools ‘window Services Help

= = Patient |Exammat\0n Date |

DISEASE HISTORY G01353330 2000-01-18 20:19:45 =]
Hypersensitivity: PC. 2000:01%18.20:25:28
G02359330 1898-03- 15 19:58: 14

96-02-13 10:27:40
98-03-17 11:42:33
98-05-12 16:02:57
G02E559501 1996-03-30 2 1:4 1:35
98-03-25 11:24:31
9E-10-27 09:28:37
G03919290 1995-04-06 09:26:00
1999-04-12 19:00:41

General

53 year old male officer, who is referred by a physician because of a
mucosal lesion. The patient is married and comes originally from
Sweden.

The patient is not feeling healthy. No regular medical check-ups. No

coagulation discrders. The patient does not report any headace.
19958-05-10 12:01:43

Current diseases: Psoriasis arthritis. 7 — E ;2;2];3
Previous diseases: Erythema nodosum. i E .
Current medication: Mycostatin mixt.. 4 110:18:55
Allergies: 0. 122120
Alcohol habits: 40 cl alcoholiweek. 3;:;222
Smoking habits: 0.)

o 19:30:52
The patient is complaining of a smarting sensation, numbness b 15:45:22
oral mucosa and a tingling sensation. The symptoms are locali: ; :?g:‘::

the the entire oral mucosa. On a VAS scale, the patient descril
the symptoms as being severe. The symptoms started 5 daga

gt 3 . : 1 14:18:00
The complaints constant. £ f %ﬁ' ‘la 10:33:28
STATUS ?- -
The patient is displaying an erythomatous and white mucosal |

The lesion is localised to the entire oral mucosa. The reaction
pattern is characterised by erythema and epithelial desquamation.

D 08:26:30

El

Figure 3.4 — A screenshot of the previous M edSummary application

The application is used primarily for selecting an interesting set of patients and for viewing
summaries of their associated examinations. If digital photos have been taken during the
examinations, these are also displayed. The summaries can be printed out directly from the

-18 -

application, although without any surrounding page template (i.e. atemplate containing
headers with patient- and examination information, footers, page numbers, graphics, etc.).

If the generated journal text isto be printed out in a page template format, a user will have to
manually copy the generated text from the MedSummary application and paste it into aword
processor containing the template. Furthermore, information about the patient such as the
patient code and the date of the examination will have to be manually entered in the
appropriate places of the template for every printout. Obviously, away to print out the
generated text directly from the application in such atemplate, automatically formatted with
information about the current patient, would greatly simplify the printout procedure.

When it comes to the manner in which interesting patients and their associated examinations
are displayed, amore intuitive (in my opinion) way would be to display them in atree format,
where patient nodes are branch nodes grouping the examinations for each specific patient as
child leaf nodes. Figure 3.5 illustrates this concept by showing how the patients and their
examinations are displayed in the newly devel oped application.

[T B00 29851
[2001 -ul-02 07:06

3 Bo0199531

[co2349280

T3 502409451
[1998-teb17 11:57
[1998-mar-17 08:39
[1998-apr-14 07:55
[1998-jun-09 03: 29
[1998-dec-15 0&:32
[1999-aug-25 08:15
[1999-nav-30 07:33

[mos189550

[T 01359441
[2002-jan-07 07:43
[2002jan-14 13:59
[2002-teb-04 0545
[2002-teb-04 07:01

Figure 3.5 - Grouping inter esting patients and their examinationsin a tree format

Some further minor issues regarding the application that could be improved involve how one
chooses which template files to use as well as how information about the images are
displayed. Deciding which template and translation files to use is done by opening the settings
dialog and choosing the files by browsing - it might be a better ideato display (and be able to
choose) the current template in the toolbar or in amenu. In practice, since producing different
template filesis arather tedious process for an average user (say, a dentist not used to
computers), there are not many different template filesin use, so this feature is seldom used.
When it comes to displaying the images associated with an examination, it can sometimes be
hard to see the date and patient code for an image as it is displayed in its minimized version in
the vertical panel seen in figure 3.4. Furthermore, once theimageis displayed initsfull size,

-19 -

only the name of theimage fileis shown in the title bar of the dialog — some kind of
information about the patient and examination date would be desirable to have there.

3.4 Analysis - Conclusions

Table 3.1 summarizes the major issues with the current system, as well as some ideas on how
they could be resolved or improved in an upcoming system.

Problem Solution

The need to switch between template,
trandator, and term files during their
construction is tedious.

Provide an application that provides the user
with the opportunity to edit all these three
components at once, without the need to
switch between them.

More information about a translation than just
the actual trandation is needed, such as when
the trand ation was last modified.

Model atrandation as an object containing al
desired additional information related to the
trandlation, such as the actual trandation and
last modification date.

Letter case issues leads to less reusability of a
trandlator sinceit is highly coupled to a
certain template.

Improve the text generator so that it knows
how to adjust trandation’ s case autometically
according to the textual context.

It istoo lengthy a procedure to preview
generated output from a certain template and
tranglator combination during their creation.

Provide ways to preview templates and
trandators easily and quickly during their
creation.

Printing generated journals and summaries
contained in a page template requires copying
and pasting into a a third-party application,
such as Microsoft Word. Thisis undesirable,
since it is tedious and imposes a need for
additional software.

Provide functionality to switch page templates
surrounding the generated journals and
summaries, and the means to print the
generated journals contained in such templates
directly from the application.

Table 3.1 —-Problemsin earlier system and solution suggestions

-20 -

4 Design

In the spirit of agile and iterative devel opment, the design has been revised and systematically
improved during the course of the entire project. When elaborating the design, the system was
divided into mgjor parts, followed by dividing each major part into more specific subparts
being developed one by one, including thorough unit testing and making sure that each part
worked correctly in isolation before integrating it with other parts. The major architectural
design decisions were decided before more specific component devel opment was attempted,
even though these architectural design decisions were not rigidly fixed and were often subject
to scrutiny followed by revision during development. Since | have learned large parts of the
methodology and practices of object-oriented software development in parallell with the
development of my system, restructuring and adaptation has played a central role, and
refactoring the code and design has occured on several occasions.

4.1 Text Generation Strategy and Algorithm

As described earlier, the text generation approach used in the system is based on filling the
template text with *slots’ where the actual values from an examination record — after being
processed by the translator — are inserted into the slots at generation time. The templateis
composed of styled text divided into sections, where each section may contain a number of
terms. A section represents a conceptual part of ajournal, such asthe ‘anamnesis’ part
describing the patient’s medical history or the ‘diagnosis part describing the clinician’s
diagnosis of the patient. A term isanaogousto a‘sot’ as described above, i.e. in amedical
examination record each term contains zero, one, or several values that are to be processed
and inserted into the dlot for the term in the templ ate.

At the time of thiswriting, the terms can have five different types: regular, multiple, interval,
free, or pcode. The regular type represents terms that may have only one value associated
with them, like the ‘born’ term (a person can only be born in one country). Such terms are
easy to deal with —the trandlator is simply queried for the trandlation of the value found in the
examination record, this transation is then inserted into the slot for the term. Terms that may
contain several values in the examination record have atype of ‘multiple’, for instance — the
‘family’ term may have the values ‘father’, ‘mother’, ‘son’, ‘daughter’ etc. For terms of type
‘multiple’, the user can specify how to separate the translated values when they are placed in
the generated output. There are two separators possible for the user to specify: 1) the ‘regular
separator’ used when there are more than two values, and 2) the ‘next to last’” separator
(abbreviated NTL) used to separate the two last values. Figure 4.1 displays an example of the
use of the separator and NTL separator when applied to the term ‘family’.

Template text : ‘The patient has a family consisting of <family>.’

Values: ‘a father’, ‘a son’, ‘a mother’

Separator:)

NTL separator: ‘, and’

Output: The patient has a family consisting of a father, a son, and a mother.

Figure 4.1 — Example of the use of separatorsfor a multipletypeterm

The third type of term isthe ‘interval’ type, defining terms that have a floating point value
specified in the examination record. The transator for these terms contains intervals, which
specify how floating point values contained in these intervals should be trandlated. The fourth
type of term is of the ‘derived’ type — terms with this type are special since they are not
contained in the examination records, instead the values for such terms are derived from the
patient identifier for the patient whose journal we are generating. The only place the user will

-21 -

seeterms of thistypeisin the SummaryCreator application when creating the template. The
fifth and final typeisthe ‘free’ type, which is even simpler than the ‘regular’ type —aterm
with the ‘free’ type can contain anything as a value in the examination record, and whatever it
containsisinserted into the term’s slot at generation time without being processed.

For generating journals, four components (the template, the translator, the sections of interest,
and the examination records) are passed as input to a so-called generator engine, which
processes the components and produces an output document (the generated journal). As of
date, the generator engine implementation utilizes atree structure (which | refer to asthe
parse tree) for processing the template document. The ideais based on the Composite GoF
design pattern, and consists of creating a parse tree for each examination record to be
summarized. Each parse treeis represented by its root node, and each node in the tree
contains references to the template document (i.e. the styled text content making up the
template) as well as start and end positions in the document text flow where it is alowed to
operate. Thus, the root node of a certain examination parse tree operates within its assigned
part of the document, and the children of the root operate within their assigned parts, whichin
turn are contained within the parent’ s boundaries. Once the parse trees have been constructed,
each of the root nodes is asked to process the document content they are *attached to’, which
will result in the root nodes asking their children to process their content, resulting in each
child asking its children to process their content and so on.

When creating the generator engine, you build the components onto the engine by using a
builder (an object dedicated to the task of building its product, which in this case is the
generator engine). When building the template model onto the engine, the builder class will
clone the template model and attach this cloned copy to the engine. Thus, it is safe for the
generator engine to modify the attached template model, sinceit is modifying only a copy of
the original. The same reasoning applies to the translator model — the translator model is
cloned before it is attached to the engine.

When requested to generate a document, the engine uses the document contained in the
cloned template model as a starting point. The sections not to be included in the output are
first stripped from the list of sections contained in the cloned template model, followed by
‘stamping’ the remaining template text so that multiple examinations can be summarized
based on only one template - this processis visualized in figure 4.2. After the section removal
and stamping, the parse trees are created as discussed above (one tree per examination) and
'attached’ to their respective parts of the document where they are allowed to operate. When
the parse trees have been built and their respective nodes thus attached to the document, the
nodes are asked to process their parts of the document. After all nodes have processed their
part of the document, it is returned by the generator engine to the caller.

-22 -

INCLUDE
REMOVE
INCLUDE Remowe sections Stamp document -
e —_—
Froduce parse irees
INCLUDE
REMOVE Trimmed template

Original template

Stamped template

Anamnesis

The patient is a Pcode(age) year old Pcode(female or male) Occup. Ref-in.
Status

Palpatation of Palp-site.

Tentative diagnosis

Tent-diag.

@ 5. Remove unwanted sections...

Anamnesis

The patient is a Pcode(age) year old Pcode(female or male) Occup. Ref-in.

@ 6. Samp thetext for multiple

examinations...

Anamnesis
The patient is a Pcode(age) year old Pcode(female or male) Occup. Ref-in.
Anamnesis
The patient is a Pcode(age) year old Pcode(female or male) Occup. Ref-in.
Anamnesis

The patient is a Pcode(age) year old Pcode(female or male) Occup. Ref-in.

Figure 4.2 — Theinitial processing of the template document

Each node, when asked to processit’s assigned content, returns a boolean value indicating
whether or not the content it represents should be included in the generated journal. In this

-23-

way, the parent nodes can decide whether or not they, in turn, should report to their parents
that they are to be included in the generated journal based on the return values of their
children. Delegating the responsibility of processing the template to each node in the tree
structure simplifies working with the different aspects of the text generation.

1. For each section not to be included in the generated output:
1.1. Remove the textual content that the section represents from the template document (text).

1.2. Remove the corresponding section model representing the section from the list of section models contained in
the template model.

2. For each record in the array of examination records to be summarized:

2.1. If the examination record is not the first in the array, spawn the template text and append it to the end of
existing template text (if the record is the first, the original text will represent it).

2.2. Associate the start offset of the spawned text with the record (will be O for the first).
3. For each record in the array of examination records to be summarized:

3.1. Create an examination parse node for dealing with the processing of that record’s part of the template
document (text).

3.2. For each section contained in the template model (the ones remaining after step 1):

3.2.1. Create a section parse node for dealing with the processing of that section’s corresponding text. Attach
the node as a child to the examination node.

3.2.2. Extract line (sentence) information by parsing the section’s corresponding text.
3.2.3. For each line extracted in step 3.2.2:

3.2.3.1. Create a line parse node for dealing with the processing of that line. Attach the node as a child to
the containing section node.

3.2.3.2. For each term ‘slot’ contained within the line:

3.2.3.2.1. Create a term parse node (the specific node type depends on the type of the term) for
dealing with the processing of that slot. Attach the node as a child to the containing line
node.

3.2.3.2.2. For those terms that are to be translated (have such a type): attach the term’s
corresponding translation model to the node for subsequent translation lookup.

4. For each examination parse node created in step 3.1:
4.1. For each contained section child node:
4.1.1. For each contained line child node:
4.1.1.1. For each contained term child node:
4.1.1.1.1. Retrieve the value(s) for the term as contained in the corresponding examination record.

4.1.1.1.2. Depending on the term type, process the value (like translating it if it is of such type,
perform VG adjustments, etc.).

4.1.1.1.3. Ifthe term has a translation of ‘no line’, indicate this to the containing line parse node (see
4.1.1.2 below to see how the line node deals with such an indication).

4.1.1.2. If any of the term parse nodes indicates that a ‘no line’ has been encountered, remove the line
node’s corresponding text and indicate to the containing section parse node that the line was
removed.

4.1.2. If the section parse node, based on the processing of the contained line nodes, finds out that it contains
nothing of interest, remove the node’s corresponding text from the generated output.

Figure 4.3 — Thetext generation algorithm

Say aline nodeis asked to process the template content it is responsible for - the line node, in
turn, will let all its children perform their processing and will register if any child node
indicates that it should not be included in the generated journal. If aline node’ s children
(might not be any if there are no terms on the line) al areto beincluded, it will process the
line and try to produce as natural aline as possible. Note that ‘lines’ in this context refer to

-24 -

textual sentences. The processing of the line consists of various textual processing, such as
checking that the lineisinitiated with an upper case character, and that gaps exist between al
commas and colon characters, etc. Thus, you can concentrate on the line processing when
dealing with the line node, and |eave the term processing to the term nodes (if there are any).
Thismakesit very clear where you need to work for improving textual processing of linesin
the future. When considering the processing of aline node's children - if some child node
indicates it should not be included (for example, by containing a term with a value that
trandatesto a‘no line'), the line node removes the textual content it represents (i.e. the line)
from the output, and then returns a boolean value of falseto it’s parent indicating that it is not
to be included. If the parent section node receives from all of it’s child nodes that they are not
to beincluded, it removes what it represents (special section markup characters etc.) from the
output and returns avalue of falseto its parent (the examination root node). The algorithm for
the entire process of transforming atemplate model and it’s contained template document to
the returned document is summarized in figure 4.3. For more information about the actual
object-oriented design of the generator, see the section below describing the generator
package.

4.2 System Architecture and Overview

When deciding the system architecture, the Layers [2] design pattern has been used.
Functionality is grouped in such a manner that upper layers depend on lower layers, but not
vice versa, which leads to the lower levels being more reusable and general, and the upper
levels being more application specific. Thisway of structuring the design has the advantage
that other applications developed in paralel or in the future have access to significant
functionality without having to ‘reinvent the wheel’, thus reducing development time.

view
(medview.summarycreator)

‘ PRESENTATION

(medview.

model
(medview.medsummary) domain

DOMAIN

model
(medview.summarycreator)

examination
(medview.datahandling)

text
(misc.foundation)| |(misc.foundation)|

FOUNDATION

Figure 4.4 —Logical view of the system architecture

As can be seen from figure 4.4, there is no coupling from lower layers to upper layers, and
general components have been extracted into separate packages (the packages to theright),

-25-

also divided in layers according to their logical place in system structure. The concept of a
package is very similar to the concept of a directory in afilesystem — they both group related
entities, where the entitiesin the file system are the files, and the entities in Java are interfaces
and classes. For instance, a package ‘math.pi’ contains entities dealing with mathematical pi
calculations. The various ‘misc’ packages contain components and logic that need not pertain
only to my system context (the MedView context), but can be re-used in other applications
and software. In the figure, the upper-left packages are most application specific and the least
reusable, while the lower-right packages are most reusable and not coupled to any specific
application.

The lower layer (the foundation / technical services layer) supply base foundation
functionality, such as specia data structures, being able to store settings, properties, and
preferences from the upper layers, aframework for retrieving language-dependent text,
retrieving media resources, etc. The more specific MedView base functionality is found in the
medview.datahandling package, while application-independent foundation functionality is
included in the misc.foundation package. The medview.datahandling package may use the
misc.foundation package, but not vice versa. At the time of thiswriting, there are plans to
move the medview.datahandling package into the medview.common structure since the data
handling package is a common package shared by all applications — thiswill probably be
donein the near future.

The middle layer (the domain layer) contains the core application domain logic, i.e. domain
concepts and their relationships without regard to how they are to be presented to the user.
Theideaisthat acertain visua representation of the objectsin the domain layer can be
replaced by another without having to recode core application logic. Thus, logic that does not
pertain to visual representation should be dealt with in the domain layer —this closely
resembles the ideain the MV C (Model-View-Controller) [3] design principle, which states
that model objects should not have direct knowledge of view objects. When comparing the
MV C and Layers design patterns, the domain layer can be seen as the ‘model’ part, and the
presentation layer can be seen asthe ‘view — controller’ part, where the presentation layer
fulfills ‘controller’ responsibilities by having listeners listening for events from the domain
layer and taking appropriate action when events are fired. Objects specific to the MedView
context are located in the various medview subpackages, while more general domain
components are found in the misc.domain package. The medview subpackages may depend
on the misc.domain package but not vice versa.

The upper layer (the presentation layer) isresponsible for visualizing the domain layer. It isa
relatively thin layer that is primarily responsible for receiving and sending various user input
to the appropriate domain object. Objects in the presentation layer listen to the various
domain objects for events that affect their representation, and consequently update their
appearance. The presentation layer is, generally speaking, the most application specific and
least reusable layer, and should be made as thin as possible to avoid unnecessary duplication
of work later on when a new visualization might be needed. It should be pointed out that the
misc.gui packages are reusable even though they are located in the view layer, since they
contain components and utilities that can be applied to all sorts of applications — not just
applications within the MedView context. It is when considering the presentation layer in the
MedView context that it isimportant to make the view objects as thin as possible, and place
as much application logic as possible in the domain layer.

-26 -

4.3 SummaryCreator

The SummaryCresator application is used to create the templates and translators used for
generating examination summaries and patient journals. First, | will first describe the design
and ideas behind the application’s user interface and functionality, which will be followed by
adescription of the object-oriented design of the application.

4.3.1 Functionality and User interface

When designing the user interface for the SummaryCreator application, | had no previous
application to use as reference. The general idea, though, is that the application should be
conceptually simple enough for a user to be able to create his or her own templates and
tranglators. Some shortcomings associated with the earlier method of creating the journal
generation components were:

1. Thetext editor used to enter the journal templates did not provide any support when it
came to visualizing the template structure. Rather, the user had to work with, and
remember, specia charactersin order to denote section boundaries and term slots.

2. Available terms, the values they could contain, and the tranglations for these values were
all kept in separate textfiles. This made it necessary to constantly switch between the files
when creating templates, terms, and value translations. Also, the transation file could
become very large (over a hundred pages long), making it tedious to work with.

3. Theuser had to keep a close eye on the letter case used in the translations, otherwise
mixed-case journals were produced. Since the letter case used in the translator depended
on the corresponding term’ s textual context in the template, the coupling between a
certain template and translator was rather high, making it difficult to reuse atranslator
with another template.

4. Therewas no way to obtain aquick preview of generation-time output during the creation
of template and trangdlator files. The user had to run the MedSummary application, load
the corresponding template and tranglator files, and then select from actual examination
datain order to do this.

Figure 4.6 displays how the SummaryCreator application |ooks when running on a Windows
platform (using the Windows look-and-feel, i.e. the look and feel of the application islike the
look and feel of an application run on the Microsoft Windows platform).

-27 -

SummaryCreator, Documents and Setti
Fle Edt Format
& 7 \ =
e es8a||$hpios : els ==
Translatar: | Skarp versittare. xml
Torm: Meut Load... Save |
fd-drug = Preview Value Translation |
Afraid-past
Alcohol [[Bosnien 5%
Allergy [=] Bulgarien 47
Anx-amourk r anmark e
Biopsy-site
Blecd [m] Finland 5%
Blood-APTT r Frankrke 474
::Wg'?‘ O |rarcama 573
laod-Fol
STATUS Blso-Glu 0 fran 74
Blond-HGE [Jugoslavien 7%
Duekdslatus i i i i i i Elood-Koh T [ugoslavienfd 5%
Patienten uppvisar Mucos-colr slemhinr F 1érlo il I it Blood-PK — o
Reaklionsmbnstret karaktiriseras av Mucos-tdur. Storleken &r cirka Mucos-size. Mote D8, Palpation av Blood-PTL [m] Makedonien 2%
Palp-site. Palp-cons vid palpation. Palp-musec. Palp-rel motundedaget. Storleken beddms vid palpation Blood-RBC 55755\ LI
till cirka Palp-size. Patienten Sens-site. Mote11
Blood-T4 = Norge 575
Bettiunktion i O |azesind
Occktype. Patienten uppvisar.Joint-dys. Interfer. Facetts. Patienten har odontologiskt behandlats med [Polen e
Reconstr. Som material har anvants Material. Mote] 0. Mote23 FE—— I Ey—— e
Care-gval
Indite stalus Bl T [sverige o5
Réntgen: Xray-tyne tas mot Xray-site. Rintoen visar Xray-tdur, Rintgen pd akluella tander visar Xray-testh, Care-past r Turkiet 1524
Gltik Care-resson O [ryand 524
Checku
% Histopatalogi (hf;_mf [usa 57%
@ Biopsitas i Biopsy-sile. Preparatet ulgdrs av Tiss-type. Den histopatologiska undersakningen wisar Civ-stat r Ungern 3
Epi-tdur epitelet. Intraepitelialt ses Epi-cells. Immunfluorescens visar Epi-luor reaktion i epitelst. | DS
preparatet ses Tiss-tdur. Forekomst av Tiss-cells. Immunfluoroscens visar Tiss-fluor depositioner | DS m
bindvaven. Mote13, hy
Dent-Opain
Dert-
Mikrobiclagi DZ:t—:;EZ;"t
Mikrahiologiskt prowtas i Micro-site. | provet pAvisas wést aw Micro-type. Moted 4 i
Dent-exp
Dent-patient
I Dt treat
B-HE = Elood-HGE, BWEC = Elood-WEC, B-RBEC = Blood-REC, B-PTL= Blood-FTL. §-B12 = Elood-Koh, i
§-folat= Blood-Fol. f3-Jarn = Blood-Fe. fB-Glukos = Elood-Glu, P-APTT = Blood-AFTT. P-PTK = Blood-FK, DS m
B-TSH = Blood-TSH, 5-FritiT4 = Blood-T4, MNote15, iy
Diag-def
Diag-hist
Saliwarden D
Salivsekretion = Szliva-flow, Saliv-pH = Saliva-PH. Buffringskapacitet= Saliva-buff. | sialografi syns Diag-tent
Saliva-scin. Notel & Dis-row
Dis-past
Drug
Epi-cells
S epicfluor
Epi-txtur Term: | Born | regular
Exxam-type
s add new value. | Remove valus(s)
Eve-craps Separatort |, ITL Separatars |,
=l Eye-exam = [Perform automatic ¥ adjustment [~ Gemen |7 Versal

Figure 4.6 — The SummaryCreator application

As can be seen from the figure, the template structure is visualized graphically by a sidebar
showing the section names and their corresponding extent in the template. The application
highlights the current section (the one containing the caret) by coloring the section part of the
sidebar differently than the other sections' parts, as well as dimming the corresponding text of
the other sections in the template. The user does not have to manually work with special
characters for specifying section boundaries, but simply chooses to create a new section and
enters the section name and placement in the template, by using the ‘add section’ dialog
displayed in figure 4.7.

- Add new section [=1=l=x]

Section name: |A new section

Place section: Iaﬁer 'I

Anamnes
Status
Tentativ diagnos
Histopatologisk diagnos
Diagnos

Daganteckning

Figure 4.7 — Adding a hew section

-28 -

All available terms are contained in alist placed conveniently between the template and
trandator sections of the application. By selecting aterm in the list, the possible values and
their tranglations for the current translator are displayed to the right of the list. If you double-
click (when running the applications on a Microsoft Windows platform) on atermin thelist,
the term isinserted into the template at the current caret location. Thus, there is no need for
switching between three different files anymore - one for the available terms, one for the
available term’s values and tranglations, and one for the template - all components are
displayed at once in one application.

The matter of letter caseis also adressed - the application can be instructed to automatically
adjust theinitial case of the translations by selecting the * perform automatic VG adjustment’
checkbox. Whether or not the trand ations should automatically be adjusted to initial lower
(gemen) or upper (versal) case can be selected. In this way you could specify, for instance,
that all tranglations for the term ‘born’ (which are countries, that should always appear in
initial upper case) should have an initial upper case, even if the user (by mistake perhaps)
entered initial lower-case tranglations. Figure 4.8 displays settings corresponding to the choice
of automatically forcing initial versal case adjustment to all translations for the term *born’.

Term: | Born | regular

Add new value.. | Remave walue(s) |

Separator I ITL Separator: I

[Perfarm autamatic 4G adjustment [~ Gemen [V Wersak

Figure 4.8 — Specifying automatic VG adjustment

A mgjor functional improvement is the possibility for the user to quickly generate a preview
of the currently worked-on template and translator pair. Each term contained in the translator
contains a set of values that are tagged as being ‘ preview’ values - when generating a preview,
asimulated examination record is created based on these preview values. By viewing actual
generated output during the creation of the template and/or translator, the user can quickly
adjust the components based on the output. Figure 4.9 displays how the application can ook
after apreview of the current template and translator has been generated.

-29 -

SummaryCreator - [C:iDacuments and Setting:

Fle Edt Format
b
|GaBl==4] %D El -
ANAMNES Translator: | Skarp dwerssttare, xml
New Load... Eave |
Gverkanslighet: Adv-drug. Freview Walue Translation |
Blédningshenagenhet: Bleed. [nl EBasnien =
Allmant [} Bulgarien 4
Frode(age)-arig Peodefamals or male) Ocoup so Praview of current template EEE L2
75
Allm&n anamnes pen
Health. Checkup. Symp-head. Patienten har Skin- o
s T [anamnes =l pes
Besvar fran genitala slemhinnan: Genitals. T i
Overkanslighet: 0.
Mote0z i anger enfarlangd ¥4
d 7%
Aktuella gjukdomar: Dis-now, Allmant e
Tidigare sjukdomar; Dis-past f3-arig manlia domare, ie och s0m av tandlakare for uiredning av
sl merisnering: Dru el evenlucl & ourens N
Allergier: &lleroy. ¥
Alkohol: Alcohol allmén anamnes 4
Rokning: Smoke: Patienten upplever sig inte vara fullt frisk och klagar dver nedstamdhet. Inga regelbundna lakarkantroller.
Patienten har hyperplasier i huden, ekeem och latt att 13 hematam 7
Syrmptorrelaterads uppgifer . - . } il
Patienten anger far narvarande Syrmp-now. Beswan i!«;uel\a sj.uizamar.snchlznfrem‘ manodepressivitet och cancer. 5
enligt VAS. Patienten rapporterar att besviren debul tdigare sjukdomar. | e
Syrp-trigy intierade symptormen. Besvaren upple Alguell medicinering: 0
en frekvens pé Syrmp-freq, Besvaren Symp- 24k, Uglp | Aleraier 0 %
Anger att dessa hesvar enligh VAS var Vas-past. Moj Alkohol: 0. 74
Rikning: 0 revs
P4 frdgan om vad som dkar sympiomen anger pati|
Factor-pos. Tidigare har Treat-pos givit positiv rest Symptomrelaterade uppaifier
har en negativ paverkan upplevis. Aven patientens Fatienten anger fir narvarande besvar med en domningskansla, besvar med gaspningar, psvkiska
hesvar och heswar med metallsmak, Besvaren ar lokaliserade till hela munnen, Graderas till méttiga
vavnadsforandring enligtwAS. Patienten upplever att en skilsmassa initierade symptomen. Besvaren upplewvs som
Lesionen observerades firsta gingen for Lesn-on farekommande p& sommaren, Besvaren har ingen dyansvariation. —
med debuten. Lokaliserar sjalv lesionen till Lesn-=
Wavnadsfirandring
Muntorthet
wviatska vid fidointag: Water-mea Muntarrhet
Svhrigheter att tala Speech-ph N . o
Duration av muntarrhet: Tirme-dry. o diiiarshastiog |
Andra symptorm fran runhalan S5-eXsyMm
| notikrteisvulinac: S5-swoller
2 Spottkdrtelundersdkning: Gland-exar
E Reumatisk sjukdom: S5-reum.
2| Heriditet reumnatisk sjukdom, S5-reurnfam, Dis-past
Qgontorrhet = 3 ménader: Eve-2months. Crug
Agongymptom: Eye-sand. Epi-cells
Agondroppar; Eye-drops. Epi-fluor
Ggonundersikning Eye-gxam Epi-txtur Term: | Born | reqular
Exam-type
Add new value. .. Remove value(s)
Motedf Eve-3months
Eve-drops Seperatory |, WL Separatary |,
Tandlzkarbehandling =l Eye-exam =l [¥ Perform automatic ¥& adjustment [~ Gemen [7 versal

Figure 4.9 — SummaryCreator’s preview functionality

4.3.2 Software Design

For the general structural design of the SummaryCreator application, | have used three major
design patterns and principles, namely the Mediator design pattern, the Facade Controller
GRASP pattern, and the MV C (Model-View-Controller) principle. The general (abstract,
simplified) structure of the SummaryCreator application is shown in figure 4.10.

-30 -

View

CLIENT CLIENT

CLIENT MEDIATOR CLIENT

CLIENT CLIENT

Model

SECONDARY FACADE CONTROLLER PRIMARY FACADE CONTROLLER SECONDARY FACADE CONTROLLER

Figure 4.10 — The SummaryCreator application’sabstract structure

Instead of having each client object contain references to whatever other client object it
affects, it tells the mediator that it wants to have something performed. The mediator,
containing referencesto all clients, will in turn tell the affected object(s) to perform whatever
the initiator wants to have performed. In this way, a complex relationship between clientsis
eliminated, and arelationship between the client and the mediator is al that is needed. In
order to further enhance reusability of the clients, the mediator is not referenced by the clients
as a concrete application specific mediator class — instead the mediator implements a client
mediator interface, specific to the client in question. The Mediator GoF [4] design pattern can
be seen as a special case of the more general PV (Protected Variations) GRASP pattern [1],
since it provides protection against possible variations in the structure of the view layer.

As mentioned earlier, the domain layer contains the core domain specific objects, but not the
objects that are displayed to the user - these objects are located in the presentation layer. So
when a user does something that should result in adomain object update (i.e. the user
generates a system event), the view objects need to notify the domain objects of this, so they
can deal with it accordingly. The Facade Controller GRASP pattern [1] states that a system
event message should be passed to either afacade- or a use-case controller. Here, three facade
controllers are used — one primary and two secondary. The primary facade controller is
responsible for containing the secondary controllers and providing access to them, aswell as
providing simple responsibilities that do not pertain to the responsibilities fulfilled by the
secondary controllers. The secondary facade controllers have high cohesion within acertain

-31-

domain concept, in this case the template and the translator. Furthermore, they are highly
reusable since they do not couple to anything else within the structure (see navigability of the
dependency linesin figure 4.10 between the primary and secondary facade controllers). In the
future, these secondary facades might be decoupled from the context of the SummaryCreator
application to amore general context (perhaps the medview.common structure). Because of
this loose coupling between the secondary controllers and the rest of the SummaryCreator
context, such adecoupling will be relatively easy to perform. Figure 4.11 displays the real
structure of the SummaryCreator application, which can be seen as the ‘implementation’ of
figure 4.10.

=
— | _ = —
= | | === E——_—— = I
= = =
€88 —=
———
L |
==
| I
—r = - = |
—= | [=
E = l 0%
E‘ ES
— = —
= = =
==
i [|
L

Figure4.11 — The SummaryCreator application structure

-32-

As can be seen when comparing figures 4.10 and 4.11, the genera structure is the same. The
mediator classisthe ‘SummaryCreator’ classin the view subpackage, while the clients are the
various panels composing the application. The mediator class implements one interface per
client, thus decoupling the panels from one specific view context. When, say, the term list
panel wants to obtain the termsto list, it first asks its mediator for areference to the model,
and from there queries the model for the current array of terms - thisinteraction is shown in
the sequence diagram displayed in figure 4.12.

[olsves | | ot iVewtiertztc | -Summanseatotiods |
| | |
I | |
| 1:gethodel() ol |
’H |
|
|
| |
2:getTe|'m50 . I

Figure 4.12 — A client obtaining the terms via the mediator

4.3.3 Model (Domain)

There are three major concepts in the domain of the SummaryCreator application - the
template model, the translator model, and the collection of other ‘smaller’ concepts such as
the list of terms and the location of the template and translator models. Thus, the domain layer
is composed of these three major parts — the TemplateModel class dealing with template-
related functionality, the TranslatorModel class dealing with translator-related functionality,
and the SummaryCreatorModel class acting as a central point of access down to the domain
layer as well as providing the ‘smaller’ functionality as described above. Furthermore, the
SummaryCreatorModel classis responsible for providing access to the template and translator
models. Thus, the TemplateModel class can be seen as an Information Expert [1] in matters
pertaining to the template, the TranslatorModel class as an Information Expert in matters
pertaining to the translator, and the SummaryCreatorModel class as an Information Expert in
matters pertaining to finding out where the current models are located as well as matters
dealing with various simple domain concepts, such as the keeping the list of available terms.
The model layer of the SummaryCreator application is shown in figure 4.13.

-33-

'I‘emp]nteN‘lode]Keeper interface TranslatorModelKeeper interface
— :
TemplateModel [\ o — TranslatorModel
— — = vCreatorModel —
‘ T —] I]
[| —
=| -
7 — ﬁ
= —— %
—
T | |

Figure 4.13 — The model layer of the SummaryCreator application

4.3.4 View (Presentation)

The view layer of the SummaryCreator application is divided into six mgjor parts. 1) the
central SummaryCreator class, which acts as the mediator and the ‘glue’ that references all
other major view classes, 2) the SummaryCreatorMenuHandler class, which takes care of all
things related to the menus in the application, 3) the SummaryCreatorToolbarHandler class,
which deals with the toolbars, 4) the TemplateViewWrapper, which wraps the various ways
of viewing the template (such asviewing it in a page or normal text layout), 5) the
TermListView, which displays the terms contained in the SummaryCreatorModel as well as
listens for changes in terms to display, 6) the TranslatorView, which visualizes the translator
domain structure and presents the user with options of modifying the translator. The central
SummaryCreator classimplements all of the client mediator interfaces, so each client seesit
inits own way. This fact that the SummaryCreator class implement the various mediator
interfaces enhances reusability of the clients since they can be reused in another view by
simply creating a new central mediator object implementing the client interfaces. The view
layer of the SummaryCreator application is shown in figure 4.14.

-34 -

TermListView

SummaryCreatorMenuHandler

Mediator TranslatorView
interfaces

TemplateView Wrapper : — F
= 1‘ =
e —— | ;
—
1 == = = =
——
e ————] " b _
— SummaryCreator —

% I
1
— 1 :

> =
SummaryCreatorToolbarHndler :—%

Figure 4.14 — Theview layer of the SummaryCreator application

As can be seen from the UML diagram in figure 4.14, the only point of access to the domain
layer is viathe mediator SummaryCreator object. This does not mean that the various clients
do not contain references to objectsin the domain layer, but that they obtain their references
viatheir mediator. The tranglator view, for instance, obtains areference to the current
translator model, storesit asalocal variable, and also registers itself as alistener to the class
keeping the translator model, i.e. the SummaryCreatorModel class, so that it can be told when
the tranglator model has changed and thus when it needs to change its reference. In order to
further enhance reusability of the translator view, the SummaryCreatorModel classis seen as
being a ‘keeper of atranslator model’ instead of ‘the summary creator model’ —thisis done
by letting the SummaryCreatorModel class implement a TranslatorM odel K eeper interface,
which can be seen in figure 4.13. Whenever the translator model keeper fires an event
indicating that the kept translator model has changed, the tranglator view updates its
appearance based on the changed translator model.

Since the tranglator view visualizes the translator model, and the template view visualizes the
template model, the views contain direct references to their respective models (or anull
reference if they are non-existant). | made the decision to view the respective models as
facade controllers and thus being the central point of access onto the domain layer in regard to
template and translator matters, respectively. In order to increase application performance and
lower the representational gap between the view and the model, the choice was made to
structure the various term views in such away that thereis a different type of view for each
different type of translation model possible. Note, however, that there is heavy use of
inheritance and template- and factory methods [3] in the view class structure, so the views
share alot of common functionality in their superclasses. Since modifying the translation
model viathe facade controller (the translator model) would require repetitive and
unnecessary lookups of which translation model to use, which in turn would lower application

-35-

performance, The concept of using the facade controller for al downward communication
was modified in those aspects where doing so would result in performance degradation. In
practice this means that each term view has a direct reference to the translation model it
represents, and it queries and modifies this translation model directly instead of going viathe
TransatorModel class (the facade controller). When doing it thisway, thereis a slight loss of
control, since there might be cases where the translator model needs to be notified if any of
the kept trand ation models are modified. To make up for the loss of control, the translator
model listens to the translation models for changes, and reacts when necessary (an example of
thisis when the translation model notifiesits listeners of content change).

4.4 MedSummary

The MedSummary application is used for selecting interesting patients from the knowledge
base and for viewing examination summaries and journals for the selected patients. The user
can also view the digital images taken during the examinations. In the sections that follow, the
design of the application’s user interface and functionality will be described, followed by a
description of the object-oriented design of the application.

4.4.1 Functionality and User Interface

As described in sections 3.3 and 3.4, there were some problems with the user interface and
functionality in the previous MedSummary application, more precisely:

1. It wasnot possibly to print the generated journal contained in a page template directly
from the application, the user had to copy the generated text into a page template
contained in another third-party application such as Microsoft Word.

2. Inorder to switch the components used for generation (the template and translator files),
the user had to open the settings dialog - this takes too long time if swift changes are
required. An example of when such a swift change would be necessary could be when the
standard template and translator pair needs to be switched to a specialized patient template
and translator pair, in order for the clinician to generate and provide the patient with a
summary of the examination at the end of avisit.

3. Attachments of dates and patient identifiers onto the digital photo thumbnails were hard to
see when the colors of the image matched the colors of the text. Furthermore, the large-
scale version of the images contained only the filename of the image, information about
the associated patient and examination date would be more informative,

4. The manner in which the selected patients and their associated examinations were grouped
and displayed could be improved, some means for collapsing and expanding interesting
patient examination sets would be desired when the selected set of patients grows.

Figure 4.15 displays how the newly devel oped MedSummary application looks when running
on a Windows platform (i.e. with a Windows look-and-feel). As can be seen from the figure,
all of the above mentioned problems have been addressed in the new version. The user can
now select —and easily switch between - page templates that surround the generated text.
Also, the user can easily switch the template, translator, sections of interest, and data location
in use by choosing from combo boxes in the toolbar. The combo boxesto display on the
toolbar is configurable by the user - this could depend, for instance, on the user’ s available
screen dimension. Furthermore, image thumbnails contain a transparent shadowed region
overlaid on the lower part of the thumbnail where the descriptive text is placed in white, thus
ensuring that the descriptive text can be read no matter what colors are used in the thumbnail.

-36 -

Medsummary - [1 EoEE
Fle Edt Format
Template: Skarp mallanl oo || Translator: I Skarp Gversattare xml ... ||Section; |A|\ seclions B3| ” H ¥ hs | B & w & 4 == = = |
——— = _
Search: i NIEE 2 =

e ® 1999-3ug-26 08:00
100015280 B et 1999nov-18 10:28
00029150 Le# 2000-ma23 10:22 ODONTOLOGISKA FAKULTETEN
00035260 | 1100055250 b PATIENTIOURNAL
100049610 |] 100089581 g
00053280 & 1999-nov-10 08554 + Patientkod: J00019220 Undersékningsdatma: 1995 08-26
100069301 # 199%-nov-10 14:50
100079550 * 2000mai-04 12:56 ANAMMNES
100089581 |] 200139581 . 3
100093380 Lot 1999-nov-23 06147 Overkanslighet: 0.
100109641 Lo 2000-jan-18 D657 Bdni A B i il anger pati en forkingd
100119460 |~) 00199240 blidningstid.
00129471 |] 100230630
100139581 |~) 00349501 Allmant
00149241 # 2000-mar-29 08:08
100159461 * 2000-apr-15 13:04 Allman anarmnes
100169360 Upplever sig i alltvasentligt fullt frisk. Genomgdar regelbundna kontroller hos lakare
100179430 Tidigare sjukdomar: Basedows sid, mitralisinsuff.
100189330 Aktuell medicinering: Levaxin, waran
100199240 Allergier: D
100200511 Alkahol: 0
00210270 j ﬂ Rikning: 0
100220380
100230630 j Symptomrelaterade unpoifier
00240461 Patienten anoer fir narvarande inga subjektiva symptom. Graderas till 0,0 enligt vAS. Uppger
100255380 sig tidinare ha haft nej | munslemhinnan. Anger att dessa besvar enliot VAS var 0.0,
100263401
100279461 I samband rred att patienten erhllt corsadyl har en negativ paverkan upplevts.
1002859641
100293451 Vavnadsfarandrin .
100309570 Lesionen ohsenerades firsta gdngen for 4 mUn sedan. Patienten upplever att nej har
100319290 =samband med debuten. Naj
100325651

11 Muntorrhet
100353401
100363521 Tandldkarbehandling
00379370
100339570 Tancvirdsradsla
100399410
100403460 Psykometri
100419550
100429580 STATUS
100439230
100449471 = Direkt status
J00450690, —I Patienten uppwisar rdd slemhinnefirindring. Farandringen &r lokaliserad till 1035

New dayniote | Cleat patient tree Reaktionsmanstret karaktariseras av ervthem, retikulurm. -

Figure 4.15—-The MedSummary application running on a Windows machine

As can also be seen from figure 4.15, the grouping of the selected patients with their
associated examinations is done by using atree structure, providing means to easily collapse
and expand interesting patients in order to hide unnecessary information (this feature becomes
especialy attractive when alarge set of patients has been chosen). Selecting a patient nodein
the tree automatically selects all the patient’ s examination nodes, while selecting an
examination node only selects that node. Each selected examination node in the tree displays
the associated images in the bottom part of the application, thus a ssmple way of viewing all
images taken for a patient (perhaps during different examinations) isto simply select the
patient’ s corresponding node in the tree.

-37 -

JO0029150 - 1999-okt-20 11:35

Figure 4.16 — Detailed view of an image taken during an examination

Figure 4.16 shows a frame containing a detailed view of an image, note that information
about the associated patient and examination date is provided in thetitle bar of the dialog.

4.4.2 Software Design

The general structure of the MedSummary application is very much like the structure of the
SummaryCreator application described above — namely, it is based on the Mediator, the
Facade Controller, and the MV C design patterns and principles. The difference between the
two applications’ general structuresis that the MedSummary application only uses two facade
controllers as compared to the three facade controllers used in the SummaryCreator
application. The difference in the amount of facade controllers reflect the difference in
complexity between the two applications’ respective domain models - a more complex
domain model usually results in more facade controllers being used since using a smaller
amount would result in the facade controllers becoming bloated. The conceptua structure of
the MedSummary application is shown in figure 4.17.

-38 -

View

CLIENT CLIENT

CLIENT MEDIATOR CLIENT

CLIENT CLIENT

Model

PRIMARY FACADE CONTROLLER SECONDARY FACADE CONTROLLER

Figure4.17 — The MedSummary application’s abstract structure

Asin the SummaryCreator application, the clients ask the mediator whenever they want to
send information out, and the mediator sends information to the clients whenever they need to
be updated based on changes in the domain model or the other clients. In other words, the
mediator acts asthe ‘spider in the web’, controlling access and containing referencesto all the
clients. Like the SummaryCreator application, the domain objects have no direct knowledge
of the objectsin the presentation layer (view), except as objects implementing the various
listener interfaces contained in the domain layer. The actual structure of the MedSummary
application, displayed as an UML diagram, is shown in figure 4.18.

-39 -

== 5'
:- ==
I :“:
=
= m—
= | —a [T =
 — G
o=
M1
—
L |
1 -
: C
— 1 o i —
= 8 = g
=0
1
[——
— |

Figure 4.18 — The MedSummary application structure

When comparing figures 4.17 and 4.18, you see that the general structure is the same, and that
the central object in the view layer actsas a‘spider’ class containing referencesto all clients
as well asthe primary facade controller, which is the only entry point into the domain layer
and thus controls domain layer access. The primary facade controller fulfills the non-complex
responsibilities that do not delegate well to the secondary facade controller —which in this
case is the tree model containing the patients with their associated examinations and images.

If more functionality is added to the MedSummary application in the future, more secondary

- 40 -

facade controllers might be added, fulfilling responsibilities related to the added functionality
concepts.

4.4.3 Model (Domain)

There are two major parts making up the object structure of the MedSummary domain layer.
On one hand we have the tree model, dealing with everything related to the tree of selected
patients and their associated examinations and images as well as fulfilling the role of being a
secondary facade controller as described above. On the other hand we have all other ‘smaller’
responsibilities which are fulfilled by the primary facade controller class (the
MedSummaryModel class). The model layer of the MedSummary application is shown in
figure 4.19.

- 1 MedSummaryModel (primary facade controller) Tree model (secondary facade controller)
™ ¥

Peopertios eed i the e e —
MedSummary domain -
- Current journal document

ﬁ
1 |~ PatientModel
e
ey I
ExaminationModel
/ //
Ge‘nerumr engine builder —E

Figure 4.19 — The model layer of the MedSummary application

The tree model class can be seen as an Information Expert [1] in matters dealing with the tree
of patients and associated examinations and images taken during the examinations, while the
MedSummaryModel class can be seen as an information expert in matters dealing with the
containment of the tree model as well as in everything regarding all other domain matters.
When apatient is added to the tree model, the tree model creates a patient model and adds it
to the tree model’ s set of patients. The tree model, containing the patient models, is chosen as
the Creator (another GRASP pattern) of patient models. The patient model, in turn, is chosen
asthe Creator of examination models —which in turn are Creators of image models. By
placing creation responsibility in this fashion, we follow the Creator GRASP pattern, which
states that a class should be responsible of creating instances of another classif it aggregates,
contains, records instances of, closaly uses, or has the initializing data for the other class[1].
High cohesion (where cohesion is a measure of relatedness between the various
responsibilities taken on by a certain class, see glossary) and low coupling to other classesis
maintained by the tree model class, since it only deals with matters pertaining to the patient
tree structure and does not know anything about the surrounding objects. The main model
class has acceptable medium cohesion since it deals with the various ‘smaller’ domain issues

- 41 -

—the cohesion is acceptabl e for two reasons: 1) there are not too many such issues, and 2)
they are all rather ssimple.

In the upper left corner of the model UML diagram you can see the interfaces defining the
properties used in the MedSummary domain. Since the domain layer residesin alayer above
the technical services layer, as shown in figure 4.4, it has access to the utilities provided by
the lower-level foundation layer, such as storing and retrieving properties to and from
permanent storage, respectively. Note that properties used both in the view and model
package are placed in these interfaces - the properties can be seen as pertaining to the
‘MedSummary application domain’, which includes properties used by the various view
classes.

As mentioned above, the MedSummaryModel class acts as the primary facade controller and
thus as the single point of entry into the domain of the MedSummary application. It is aso the
initial domain object instantiated when the application starts. If only one facade controller
were to be used, the class would become bloated with too many methods, which iswhy tree
matters were placed in a separate controller class (the tree model). The sequence diagram in
figure 4.20 displays the collaboration between the domain objects when adding a patient.

‘ 1L istener ‘ | : | ‘ : vidodel ‘ ‘ ._[Laamndal‘
T T T T
| | | |
| | | |
1:getTreeModel{ pCode)
| | ral |
['U I
| |
| |
‘ 2:addPatieht pCade) !
[Jcreater) =
PatientModel
‘ .
|
| ! *Inr of 1 |4createo._1 = T
I 'I_'_l
‘ U ,
‘ E—
Jizz B:patientAdded{e) D

m e — ==

Figure 4.20 — Sequence diagram showing how a patient isadded in the M edSummary domain layer

4.4.4 View (Presentation)

The view layer of the MedSummary application is divided into seven major parts: 1) the
central MedSummary class, which acts as the mediator and the ‘ glue’ that references all other
major view classes, 2) the MedSummaryMenuHandler class, which takes care of al things
related to the menus in the application, 3) the MedSummaryToolbarHandler class, which

deal s with the toolbars, 4) the MedSummaryPatientPanel class, which is responsible for
listing all patients as contained by the central model class, 5) the MedSummaryTreePanel
class, dealing with displaying the tree of chosen patients a ong with their associated
examinations and photos, 6) the MedSummarySummaryPanel class, being responsible for
visualizing the document kept by the main model class representing the currently generated
journal content, and finally 7) the MedSummarySettingsContentPanel class, which plugs into
the dialog framework as one of the settings content panels to be displayed in the settings
dialog. The centra MedSummary class implements al of the client mediator interfaces, so

=42 -

each client seesit initsown way. This further enhances reusability of the clients since they
can be reused in another view by simply creating a new central mediator object implementing
the client interfaces. The view layer of the MedSummary application is shown in figure 4.21.

= |
lij MedSummary PatientPanel ’E
:% LE— MedSummary TreePanel %
- . N
i I % i‘:lihtm N oy
3 I:l
=
] | —
5B
PQ MedSummaryMenuHandler
~ A1
— A N S S—
MedSummary
M
[I
MedSummary ToolbarHandler
=
\
]
P 1
1
| MedSummarySettingsContentPanel
— —
—
—

Figure 4.21 — Theview layer of the MedSummary application

Asin the SummaryCreator application’s view layer, there is only one object containing a
reference down to the domain layer, namely the Mediator class (MedSummary). All system
events not dealing with the tree structure of patients and examinations are sent to the primary
facade controller (MedSummaryModel). The events dealing with the tree structure are sent
directly to the tree model via areference obtained from the primary facade controller when
constructing the tree panel. The fact that the tree panel contains adirect reference to the tree
model infers aslight loss of control in the domain layer —the main model class (the primary
facade controller) does not know if system events occur that change the tree model and can
not coordinate such activities with possible other domain objects. In order to make up for this
loss of control, the main model class listensto the tree model for changes, and the tree model
notifies whenever some change occurs that updates the state of the tree model.

In order for the menu and toolbar handlersto retrieve the actions in use by the application, it

IS necessary to initialize and construct the various panels and handlersin a certain order at
application startup. First, the panels are constructed, which will result in each panel registring

-43 -

it’s contained actions with the mediator class. The registration of actionsis done by providing
aconstant identifier (defined in an interface visible to all classesin the view layer) along with
the action to the mediator, which places the action in a hashmap keyed by it’s unique
identifier. After all panels have been constructed (along with all actions contained in them),
the handler classes are constructed. The handler classes, in turn, obtain the actions previously
registered by the panels by asking the mediator to return the actions as identified by the
constants in the common action interface.

4.5 Utility Packages

There are two main utility package structures - the misc and the medview.common packages
and their subpackages. The misc (short for miscellaneous) package and it’ s subpackages
contain various components that can be used in any program, i.e. not just for use in the
MedView context. The medview.common package and it’ s subpackages contain components
that can be used in several MedView applications - these components are tightly coupled to
each other and rather specific to the MedView context, thusit may be hard to find use for
them in other situations. There is also a package called ‘datahandling’ along with several
subpackages — this packages should actually be placed in the medview.common structure (i.e.
the datahandling package should be called medview.common.datahandling), but for historical
reasons thisis not the case.

4.5.1 The datahandling Package

The datahandling package and subsystem places itself in the ‘technical services layer of the
architectural Layers[2] design pattern (see figure 4.1). The reason for the naming of the
package is historical —in the early development of the system the intent of this layer was to
handl e the possible ways to store examination data as well as to provide ways to obtain media
resources located on permanent storage. In time, it expanded to include language handling,
term and value processing, template handling, translator handling, and parsing of patient
identifiers (also known as pcodes, see glossary). The major design patternsin use in the
datahandling package structure are the Facade GoF pattern [4], the Factory GoF pattern, the
Strategy GoF pattern, and the Singleton GoF pattern.

Application

Application

Application Appiication

Services provided to upper layers

¥ ¥
/V SERWICE INTERFACE

IMAGES

Sbise

XML

|

This part is hidden

from upper layers MedViewDataHandler

,_
]
e
-
=
T

T—
HARD DRIVE

Figure 4.22 — Concept of providing application-independent lower -level services

LANGUAGE
HANDLING

- 44 -

The general structure of the datahandling package in UML can be seen in figure 4.23, while
the concept of the data handler providing general servicesto upper layersisvisualized in
figure 4.22.

Examination data handling strategy
pitN ==
ﬁ e |
- : i -
MedViewDataHandler singleton and facade H
=2 | B
N Term and value data handling strategy
-
-
LY
Visible part
j —_— i
Factory for producing
% data handlers
— = ==)
— e — -
ﬁ Template and translator data handling strategy
=2 \
7 = \
% J:| E‘ Low-level data
ijﬂ:‘ / handling, stores
% """ 7 properties and
P-code parser factory P-code parsing strategy knows locations
ete,
< Language handler
]
j Visible part —
—_—
o Media handler
|

Figure 4.23 — The general structure of the datahandling package

The MedViewDataHandler classis probably the most widely used class in the entire system,
and it istherefore imperative that it is designed in a sound way. The MedViewDataHandler
classis asingleton-accessed facade, and is the single point of access for outside packages. It
hides all other classes in the datahandling package (except the various public interfaces and
listener-related utility classes), which makesit possible to change the structure and
implementation without affecting the rest of the system as long as the service interface
remains the same. As mentioned before, since the datahandling package is placed in the
technical services/ foundation layer, it's purpose is to provide rather general servicesto the
upper layers.

The services provided by the data handler include: 1) being able to store and retrieve property

values, and listen for changes in them by registering property listeners to the data handler, 2)
being able to retrieve strings that should vary by language (for instance, a cancel button might

- 45 -

display the text “Cancel” if the current language is english, but “ Avbryt” if the current
language is swedish), and listening for language changes, 3) being able to retrieve media
resources (image icons, images, sounds etc.) by simply specifing a constant defining the
resource, 4) being able to store terms and values for terms as well as retrieving term type
information, 5) being able to parse patient identifiers for gender, year of birth, patient age,
examination date etc. and to verify that a certain identifier isvalid, 6) being able to store and
retrieve templates and trandlations.

At the time of this writing, the examinations at kliniken for Oral Medicin at Odontologen in
Gothenburg are stored in a so-called tree-file format, therefore the examination data handler
currently in use deals with tree files. In the future, the format may change — for instance, it has
been discussed many timesiif it wouldn’t be more effective with an SQL database instead.
Sincethisis apoint in the system with high probability of future change and/or evolution, it is
important not to design surrounding objects so that they are highly coupled to the current
particular way of dealing with examination data. In the words of Larman [1], when describing
the Protected Variations GRA SP design pattern, we need to “identify points of predicted
variation or instability and assign responsibilities to create a stable interface around them”. In
order to accomplish this, | decided to use a combination of the Strategy GoF design pattern

[4] (which can also be seen as a specia case of the Polymorphism GRASP pattern [1]) and
the Factory GoF design pattern. A strategy for what it means to be an examination data
handler is defined by specifying thisin an interface, and letting the concrete implementations
of thisinterface provide the specified functionality in their own way (such as atreefile
handler when dealing with examinations in the tree file format). Deciding which
implementation class to use is based on an external property value (which can be set from
within the applications), which is queried by a Factory object whenever various examination
data needs to be obtained. The following excerpt from the DataHandl erFactory class
illustrates this:

publ i c Exam nati onDat aHandl er get Exami nat i onDat aHandl er ()
{

String set EDHO ass = nVDSH. get Propert y(CURRENT_EDH CLASS PROPERTY) ;
exami nati onDat aHandl er = O ass. f or Nanme(set EDHC ass) . newl nst ance() ;

return exam nati onDat aHandl er;

}

The same reasoning that applied to the examination data handler also applies to term-,
template-, and translator datahandlers, so they are dealt with in the same way (see figure
4.23). The parsing of patient identifiers does not deal with storing and retrieving data, but the
reasoning for obtaining a specific pcode-parser (an object dealing with the parsing of patient
identifiers) is the same as for obtaining a specific datahandler, therefore a separate factory for
producing pcode-parsersis used (see figure 4.23).

4.5.2 The common Package

As discussed above, the idea behind the common package is to have a place to store
medview-related functionality and components that can be common to more than one
medview application. Thus, the components are tightly coupled to the medview context, but
they are not coupled to any specific medview application. The structure of the common
package at the time of thiswriting is shown in figure 4.24.

- 46 -

1
Actions Dialogs | Generator —

oo
=2 [FrE—

= = P/r? [=1
——l— =

:‘:‘":'“i
File views :
= J

Filg filters

smEe

Figure 4.24 — The structur e of the common package

As can be seen from figure 4.24, the various parts of the common package (as the time of
writing) are: 1) actions, 2) components, 3) text functionality, 4) file views, 5) filefilters, 6)
dialogs (amajor part), 7) journal generator (another major part), and finally 8) print
functionality. As can also be seen from the figure, the magjor parts of the common package as
of date are the dialog and the generator handling.

4.5.3 The dialogs Subpackage

The dialog subsystem is accessed through a singleton-accessed facade, namely through an
instance of the MedViewDialogs class. It provides the various applications with methods for
displaying various dialogs in use in the medview context, such as displaying a ‘load template’
dialog and for displaying an ‘add value to term’ dialog. The dialog subpackageis displayed in
more detail in figure 4.25.

- 47 -

Singleton - accessed facade (MedViewDialogs) MedViewDialog

I:‘ D e interface
o
5 — — — T)

-

: 3 T AbstractDialog
—
—— I
S— ———
—— | L ——
——— T
\ 1 —
\ = — S —
Wrapper for dealing with swing dialogs %
Settings subpackage
N\ Command queue
% Settings dialog
- . ' g
- E: _/
— R
—
J
] Settings content panel
N Global content panel

Figure 4.25 — The common dialog subsystem

The various file chooser dialogs, as well as the color chooser dialog, are obtained from the
Java Swing framework - a part of the Java2 SDK (Software Development Kit) that deals with
user interface matters and graphics. The dialogs that use the Swing framework are handled by
the SwingDialogWrapper class, which is delegated to from the MedViewDial ogs facade
whenever such adiaog is needed. Some of the other methods in the MedViewDial ogs facade
return objects implementing the MedViewDialog interface, usually the methods that require
the user to enter some non-trivial information (like the ‘add section’ dialog, which requires
the user to enter the name of the new section as well as being before or after a specified
section). This interface provides methods to extract the information from the dialog, and the

- 48 -

methods in the facade provide documentation for how to deal with the return datafor each
specific method. As seen in the structure, all actua dialog implementations subclass the
AbstractDialog class, which provides aframework for constructing dialogs in the medview
context. Among other things, it defines the dialogs visual structure, and provides factory
methods [3] for the subclasses to implement. In order to provide this framework, thereis
heavy use of template methods [3], such that the subclasses only need to ‘fill in the gaps’
(also called hot spots) to create afully functional, rather complex dialog with their specific
declination. Basically, what is required of the subclassesisto specify the button faces they
want, the title of the dialog, the button index reflecting the default button, the content panel,
and (optionally) the button listeners. The framework provides alot of default functionality for
all mentioned above that can be used or overridden in the subclasses, it also takes care of
positioning the content panel and the buttons as well as margins and dividers etc. so that all
dialogs get a consistent look. In practice, this resultsin a developer being able to produce a
new rather complex dialog in very little time. Some example dialogs are displayed in figure
4.26.

(e iyitvards %] Lty sehiion X
Pyt warce: | | Sektionens namn: || |
Placera sektion: |ff-"lrE = | | R |
Avwbiyt
Acehiryt
- o o
Indga. _3
EEs b yitintervall 3]

-
{ Avsluta SummaryCrestor - &r du ssker?

Myt intervall | |- |

| Ja I ‘ =] Anharyt

Figure 4.26 — Some dialogs produced by the dialog framewor k

For the design of the settings dialog, it is necessary for each application to be able to ‘plug in’
its own specific settings content panel sinceit is highly coupled to the application in question.
In order to maintain the application independency of the common package, it becomes
necessary to create a structure where each application can send its settings content panel to the
dialog framework, followed by the framework attaching it to the settings dialog displayed
when the user calls for the settings dialog via the facade. Thus, the facade contains methods
for attaching content panels to the settings dial og, these should be subclasses of the
SettingsContentPanel abstract classin order for the framework to recognize them as settings
content panels. When changes are made in the settings content panels, these are not
effectuated at once, instead they are placed on a command queue which places each setting
change on a queue as a command. All commands on the command queue are effectuated
when the user presses the ‘apply’ button. If the user cancels the settings dialog, the queueis
cleared and the changes are discarded. This approach is based on the Command GoF [4]
design pattern. The various settings content panels that are to be attached to the settings dialog

- 49 -

need access to the command queue in order to place their specific commands on the queue
when the user makes changes, the queue can therefore be obtained via the facade object.

4.5.4 The generator Subpackage

All things related to the journa generation are located in the medview.common.generator
package. Some of the design patterns used in the journal generator package are the Builder
GoF pattern [4], the Strategy GoF pattern, and the Composite GoF pattern. As described
above, you use a builder object for constructing the generator engine — this builder object is
an instance of the GeneratorEngineBuilder class, which thus provides ways of attaching the
necessary components for journal generation onto the generator engine. The actual generator
returned from the builder is a subclass of the GeneratorEngine abstract class, which contains
general functionality needed in all kinds of generator engines as well as methods for setting
and obtaining the various necessary parts. Figure 4.27 provides an overview of the
medview.common.generator package.

—_— s

|

E GeneratorEngine abstract class

/40

\

\ Translation parser

GeneratorEngineBuilder .
j..1

Generator utilities —_

L
‘T -

ParseNode

Branch node] Leaf node

Examination node

THE PARSETREE % %

—— C—1 £

Figure 4.27 — The common generator subpackage

-50 -

All nodes under the examination root node are instances of the ExaminationNode interface,
which contains methods for obtaining the examination date and the patient identifier. The
only node type that can be attached as a child to an examination root node is a section node,
representing one of the sections that the user has chosen to include in the generated journal.
The child nodes of the section node, in turn, are line nodes representing lines in the text flow.
The line nodes may or may not contain term nodes as child nodes - if they do not, the line
node represents aline of text that should be left ‘asis’, at least if it is not later deduced that
the section containing the line should be removed from the generated journal because of lack
of term content for the specific examination.

-51-

5 Conclusions and Future Development

During the first iteration of my thesis, | did not have much knowledge in object-oriented
methods such as UML, GRASP patterns, reverse engineering, object-oriented system
architecture (Layers), and design patterns (even though | knew afew basic ones, such as
Observer and the MV C design principle) etc. As a consequence, the system became very
difficult to grasp and overview at the end of the iteration, which led to a general belief that the
system ‘was not ready for deployment’ - future maintenance and bugfixes would become very
difficult to manage. By introducing UML design diagramming methods to visualize the
system structure, as well as using a CASE tool to reverse engineer developed code into the
diagrams, confidence increased that the system could actually be deployed and that possible
(actually, most certain) bugs would be relatively easy to fix. It has been shown that, in
general, theinitial cost of developing a system is small when considering the total cost of the
system during its entire lifetime — the mgjor part of the total cost of the system liesin
maintenance and dealing with issues occuring after the initial release. Thus, it isvery
important that a system is well-documented (in my case with the UML diagrams and this
report) so that future developers may pick up where the previous devel opers left off.

It is very important to use established design patterns and diagrams when constructing a
medium-to-large-scale system. If established design methods are not used, an overview of the
system becomes increasingly difficult as the system grows, and future maintenance and
extendability will suffer. Furthermore, by using design patterns and UML diagrams, you
become much more adept in thinking in ‘objects’ and how the objects should communicate
and hide information from each other in order to improve the overall system structure.

The practice of developing in an iterative fashion and to perform athorough initial analysis
and requirements gathering before starting to design and implement is very sound. More
specifically, you should not try to ‘implement all at once’, but instead devel op the most
critical aspectsinitially and leave other aspects for future iterations. In order to know what
parts are the ‘critical’ ones, athorough analysis is necessary before initiating development. It
has been difficult at times to know what matters were considered to be the most important to
the users - thiswould have been easier if more analysis and user interaction had taken place
initially. Especially, user requirements and wishes should have been more documented and
established before the devel opment began — some documentation and analysis was performed,
but more such activities should have been performed in order for me to have been more sure |
was putting effort into the right matters.

During the entire course of my thesis, fellow devel opers within the MedView project have
been working concurrently on other projects. Severa aspects of my devel oped applications
have shown to be reusable in the other projects as well (especialy the lower-layer data
handling and ‘common’ packages), which has led to conflicts when | have introduced changes
in my packages and classes used by the others. Thus, | have learned the importance of
designing objects using information-hiding and open-closed principles, as well asthe
importance of agreeing which parts of the system that are to be used concurrently by others.
Since devel oping reusable and generic components - that are to be used by others - take
careful planning aswell astime, it isimportant to specify which parts are worth the effort.

There are many possibilities for future development surrounding the devel oped applications.

The parts dealing with NLG can always be improved in order to produce more natural
generated text, one thing to keep in mind though is to make sure that the system is not too

-52 -

complicated to use, since the users should be able to produce their own text-generating
environment without any expert knowledge in NLG. Another possible future project could be
to create some type of ‘ page template editor’, which users can utilize to develop their own
page templates (with ‘ page templates' | mean the ones usually seen in word processors
providing frames and logotypes surrounding the actual text). Currently, these page templates
have to be developed by programmers and inserted as choices into the applications, so they
are not especially user-customizable.

Another interesting future project could be to distribute the knowledge base, the templ ates,
the tranglators, and the possible terms and term type definitions to the users via a central
server using a client-server approach, where the server is accessed by various clients over the
internet. In this scenario, clinicians, students, patients etc. are given accounts on the server,
thus making it possible for them to login and access information (moderated by some
administrator at the clinic) from anywhere as long as they have access to the Internet. The
Java programming language is well-suited for such a system, which could be implemented by
using the various Java network api’ s and technologies (like Java RM1). Of course, such a
system is amajor undertaking, requiring that the applications involved are well-designed and
documented — one of the aims of my thesis has been to devel op applications and a system
structure that will work in such a distributed system. The modular and layered structure of the
developed applications, as well as the fact that the Java programming language is used, make
them well-suited for use in adistributed environment. The concept isillustrated in figure 5.1.

CLIENT

) I

s - .
CLIENT S B

~ * e
I \J») THE INTERNET <l
T

CLIENT

& T - R
\ 1 L
(1 e g 1
/] ‘ r 1
/) SERVER \ \
| '8 LG
| V :)
—— J-E o \ (N —
;) o TRARBLEoRS] TRRES .]
& ——
I‘ } 7 (/
\ g R TRANSLATORS TEMPLATES [f
7 \ I»—_J H e J
\ LN Knowledg y r /
| L . J
? \ .
T, e J

: THE INTERNET —
i \‘\"‘k‘iﬁf\‘ﬁ\i,m = T Lo S

CLIENT

CLIENT

Figure5.1 — A possible future scenario - a distributed client-server system architecture

The clients can be clinicians sitting in an examination room somewhere in the same clinic, or
they could be dentists sitting in an examination room in New Y ork —it doesn’t matter as far as
the client has access to the Internet. The system would deal with the client in the same manner
no matter where the client islocated physically. Furthermore, different accounts could have

-B53-

access to different resources — for instance, students could have specia student accounts,
where teachers could place course-related cases, templates, and translators that the students
could study. A clinician in Gothenburg could assign a guest account to aclinician in Italy and
permit this account to have access to certain examinations and other information he wishes to
share. Clinics all over the world could enter information into the knowledge base using
applications like the ones described in thisthesis, aslong as their clinicians have registered
accounts on the central server. Furthermore, the access to the knowledge base, the terms, and
the term types (concepts used in the current system) would be wrapped and controlled by the
server, making it easier to introduce various security measures and enforce integrity and
confidentiality of the data.

-54 -

6 User Documentation

The user documentation provides some general information about using the applications — for
more detailed information you will have to read the application-specific documentation
bundled with the applications. This section is divided into three parts — the first part describes
global application matters, i.e. matters common to both the MedSummary and
SummaryCreator applications, the second part describes the newly developed
SummaryCreator application, and the third describes the improved and rewritten
MedSummary application. The parts dealing with the MedSummary and SummaryCreator
applications begin with a short introduction followed by an overview of the application’s
general GUI structure, along with some brief explanations on how the application is used.

6.1 Global Application Matters

If you are running the applications on a system using alower screen resolution than
1280x1024, or there is some other reason for not wanting to view the template or generated
journal in the default ‘ page layout’ view style, you might want to change the view style of the
template or journal to the simpler text-only style. Thisis done by switching the choice of view
stylein the ‘View’ menu as displayed in figure 6.1 (here seen in the SummaryCreator
application context, the same menu is present in the MedSummary application as well). An
example of how the SummaryCreator application can look when using the simpler text-only
view styleis shown in figure 6.3.

File Edit Format | Wiew |

| D Ragtlayhit 5 Use template: | Default journal termplate hd
3
1 Tewxt layout

Figure 6.1 — Switching template view style

Maximize term list —s==————— —— Maximize translator section
¢ Transiator |

J Termm; k
Remove term list from view ———'_'_'_'_'_._* i i T e Remove translator section from view

) : ey
Iadv-drug lzl

F Y

Figure 6.2 — Thedivider and the minimize and maximize arrows

Another way to manage the available screen areais by using the dividers to hide unnecessary
information in order for other, more interesting, information to receive alarger portion of the
display. The minimize and maximize divider arrowsin the Metal look-and-fedl (i.e. Java's
standard look-and-feel - the platform-independent graphical user interface design that isthe
default for Java applications) are shown in figure 6.2, as they can be used in the
SummaryCreator application context. For instance, say you only intend to work with the
template and don’t have a need for displaying the translator - you then minimize the translator
section by clicking on the ‘minimize’ arrow on the divider between the term list and the
tranglator section. In order to expand the translator section again, simply click on the
‘maximize arrow or click somewhere along the slider (except on the arrows). Figure 6.3
displays how the SummaryCresator application can look after the translator section has been
minimized.

-B5-

¥\ ISy eat oy AT OEramid eV el e AT ogrammennEeanbetsrel ot era i avas etV ewinTogramy oo imyd ataitemplatesismi i Bst e J .“2

File Edit Format iew

“ D‘k | B A @' e, Use template: | Default journal template v| “ % |._D @ b i u At oay ek
Anamnes h |
Tertn: ’

Patienten ifrioa 4ren poodefzge) &rgammal peodetwornan ar man), fidd peodedyear of birth) ach peodedhis or hers) patientkod ar ahv-cruy
peodeipid). peodethe or she) har tidigare klagat pd hesvar med dis-past. Patientens familj bestir av family, och sjalv anser sig | |alcahal
patienten vara vid health. Anledningen till patientens hesékvar att prodedhe or she) upplevt ref-cause. Patienten remitterades av ref-in allergy
| |bleed

| [born

| [checkup
| [chict-dis
| |civ-stat
‘| |dliz-nowe
dis-past

e

Som barn har patienten haft féljande sjukdomar: chld-dis.
[Allman anamnes

Utskrivna mediciner &r ach-drug. Allergiska besvar hestr av allergy. Angdende hlddningshesvir, 8 bleed. Livevirden anses vara
vas-life.

'Undersikning | |dug

| | factor-neg
Undersdkningen ar den viktigaste aspekden av programmet, darfdr ar det dven vikligt att MedRecords fungerar i tandem med detta | | factor-pos

program. Denna sekdion innehaller alitsd inga som helst termer, | framtiden 58 méste man kunna vilja att denna sektionen ska vara | |tamity

‘sticky' och finnas kvar Sven am inga termer finns fdr den : genitals

| |heatin

| [lesn-on

| [lesn-site

lesn-trign

lesn-var

| [natem

| [notenz

| |notenz

| |notens

| [note0s

[aletell)

poode(age)
prodelfemale or male)
| [peodethe or she)

| [peodethis or hers)
peodelpid)
PCode(sarman of mar) i
| [peoderyear of bith) z

Figure 6.3 — The SummaryCreator application when viewing the templatein atext view layout

To change the language or look-and-feel of the applications, open the preferences dial og,
choose the ‘global’ tab, and make your choice among the available languages and |ook-and-
feels contained in the combo boxes, as displayed in figure 6.4. The default look-and-feel used
by the applications is the platform-independent Metal look and feel, which is the one used in
most screenshots contained in this thesis. Note that the available list of look-and-feels may be
different depending on the current platform you are using due to copyright issues. For
instance, choosing the Macintosh look-and-feel can only be done if you are running the
applications on a Macintosh system, while choosing the Windows |ook-and-feel can only be
done if running on a Windows system. An example of how the applications might ook after
having switched to the swedish language and the Windows look-and-feel on a Windows XP
system is shown in figure 6.5

-56 -

ENCES
[Global |
Use language: |English v|
Current platform ook and feel ||Metal - "
hetal
CLEMotif
| Apply | | Cancel |

Figure 6.4 — Choosing the language and/or look and feel of the application

K Generatetransistor xml

Oversttre: |
Term: 4
Womsite | Somisstiee | ot |

Proviewls) Valus Translation |
ODONTOLO GISKA FAKULTETEN
[astma 5
PATIENTJOURNAL r ldisbetes 7%
Undersikingsdatura: 2002-10-04 ~ ardn starr %
] [N hiirt-Karlesvir %

[Patienten iftiga iren prode(age) & IM =t

[peode(his or hers) patisnthod dx peodz|_Ativ_Redigera Format
[Patientens farelj bestdr av fexily, och I
Pbestkvar att peode(he ox she) wpplevt

iou | om

el cts: | Ot | runnc faaa prier

e

Sorabamm har patienten haft fljande s

& 20004an10 1451

Allmiin anames 0D ONTOLOGISKA FAKULTETEN
Utskaivna mediciner & adv-crug. Al / PATIENTIOURNAL

skatvan mediciner & o 00043510 £
Livevirtlen anses vara ves it - “ " Patientiod: 100039260 Undersckingsdatur: 1999-10-26

00088301
Understkning 0079560
00083581

Anamnes

| e | rea|

T T O

o) T O T E
CoOEooE o =

iz il

e [el
Test mall 2 (utan Gversatiare)xml
| Test mam
m O Exempeltext Exempeliext
eyt | Merstil
100349501 ‘
100383821
Fiffrmat e (x -
o v =]
100388370

Jnazesen =

My dagarteckning Tem patiertirsd

Figure 6.5 —The applications and various dialogs in swedish with a Windows look-and-feel

-57 -

6.2 About the SummaryCreator Application

The SummaryCreator application’s main purposeis to create the necessary components
needed for the generation of patient journals. In order for ajournal to be generated there are
three necessary components:

1. A trandator, containing translations for the possible values that may occur in an
examination record.

2. A template, defining the context of the generated journal, with slots where the
translated content from the examination record is placed.

3. Theactual examination record, which can be seen as a number of equations defining
the examination’s values for the general terms as described in the *analysis' part of
thisthesis.

The terms contained in atranslator may currently be of one of five different types:

1. The‘regular’ type, corresponding to aterm that may have only one value — for
instance, a person can only be born in one country, so the *born’ term is of type
‘regular’.

2. The‘multiple’ type, corresponding to aterm that may have several values —for
instance, a person can be alergic to severa things, thusthe ‘allergy’ term has atype of
‘multiple’.

3. The‘free’ type, indicating that values for the term should not be translated or
processed in any way prior to placing them into their slotsin the template.

4. The‘pcode type, indicating that the term value is derived from the patient identifier
of the patient whose examination is being summarized.

5. The‘interval’ type, indicating that values for the term are numerical and within certain
intervals —for instance, say atranglation for valuesin theinterval ‘0-2' isgiven for a
certain term, then avalue of ‘1.5 in the examination record for this term should be
translated according to this translation.

6.3 SummaryCreator Application Overview and General Documentation

Figure 6.6 presents an overview of the SummaryCreator application, as well as giving a short
explanation of what the various parts do. Note that all various functionality found in the
application’ s toolbars and buttons may aso be found in the application’s top-level menus. The
text-edit actions (8-18) apply to the currently chosen text in the template section (19) —if no
template is currently being displayed, these actions will be disabled. The translator actions
(29-35) apply to the current translator being visualized in the translator section (26-28) and
identified by the descriptor (22). Creating, loading, and saving templates is done by using the
corresponding toolbar buttons (1-3), while creating, loading, and saving translators is done by
using the corresponding buttons in the translator section (23-25).

Certain buttons and fields in the translator section might be disabled at timesiif the currently
chosen term does not have a type matching the functionality represented by these
components. For instance, if aterm of type ‘regular’ is chosen, the components dealing with
separators are disabled since they do not apply to such aterm.

- 58 -

. Isimmenytreators] Gl ropramidevalopmentilroprammenngsarnbeterelateratiy avaimedViewinropranroptimydataltemplates e bestmal Bl
Arkiv Redigera Formet Visa
.20 13 4 15 6 Anvéndmel | Defaul jounlteTate ~l'8 ©10 11 121314 151617 = 18 =
q 4| Gversattare: Generate tr-2) 2, or xml
20 I w23 T o 25
dv-drug = Farhandsvyarden) WVarde Owersttning
ODONTOLOGISKA FAKULTETEN e astna 575
PATIENTJOURNAL ::‘:E'iv diabetes 76
Patientkod: null Undersikningsdatum: 2002-10-04 born v ardn starr 7%
. C“e“‘_"p hiartkarlbesvar 7§
Chmi: hypertoni 575
Patienten ifrdga ar en &rgammal fodd s
och patientkod ar hartidigare klagat p& ey 26 krnrf\ak L 27 X L) 28
hesvar med . Patientens familj bestdr ay L och sjaly anser sig patientsn wara vid e malignitet | urifvagar L)
Anledningen till patientens hesok var att upplevt . Patienten g v/ nej §78
remitterades av ey psoriasisartit 576
factor-pos
Som harn har patienten haft fdljande sjukdomar. Tamily E IS EEETET S
senitels nygghesvar 576
Allman anamnes heaith siGgrens syndrom 75
lesn-on
Utskrivna mediciner ar Allergizka besvar bestar av Angiende lezn-site
blédningshesvar, s& Livevarden anses vara 3 lesn-trigg
lesn-var
Undersokning 19 S 21
Undergakningen ar den vikligaste agpekien av programmet, darfar ar det awen vikdigt att :;‘ZE?
MedRecords fungerar i tandem med detta pragram. Denna seklion innehaller allted inga som i
helsttermer, i framtiden £ méste man kunna valja att denna seklionen ska wara 'sticky’ ach e
finnas kvar aven om inga termer finns for den. pEEES
ocoup
peodeage)
poode(iemale or mals)
pcodethe or she)
poocs(his of hers)
peade(pid)
peode(waman o man)
ponde(year of birth)
ref-cause
ref-in
shir-pbl
stnoke
symp-24h
s ymp-cur
symp-freg
symp-head
symp-now
symp-on
symp-nther
S Y, SRR Term: diznov D Q tiple
l 3:22:? Lagg til () srce.. 31
sy Separatar |, 32 ITL Separator: |, 0ch 33
Symma-var = v Lt autor 3§ VG instalining V| Gem 35 | versal
1. Creates a new template 13. Sets text style to italic 25. Saves current translator
2. Opens existing template 14. Sets text style to underline 26. Sets value preview status
3. Saves current template 15. Sets text style to superscript 27. Displays term values
4. Creates a new section 16. Sets text style to subscript 28. Displays term value translations
5. Removes chosen section 17. Sets text style to strikethrough 29. Displays current term name/type
6. Prints template 18. Changes paragraph alignment 30. Adds a new value to term
7. Chooses page template 19. Visualizes the template 31. Removes a value from term
8. Cuts text 20. Searches for a term 32. Displays Separator ('multiple’ terms)
9. Copies text 21. Displays the term list 33. Displays NTL sep. (‘multiple’ terms)
10. Pastes text 22. Displays the current translator 34. Performs auto-VG adjustment
11. Changes color of text 23. Creates a new translator 35. Specifies type of VG adjustment
12. Sets text style to bold 24. Opens existing translator

Figure 6.6 — Overview and explanation of the various parts of the SummaryCreator application

6.4 About the MedSummary Application

The main purpose of the MedSummary application is to provide information about
examinations by summarizing them in various ways as well as displaying the photos taken
during the examinations. A listing of the patients kept in the currently selected knowledge
base is provided, and each patient’ s associated examinations and photos taken during the
examinations can be displayed at request. The user can choose the kind of summary to be
generated by deciding the template and translator to use for generation. Furthermore, the user
can choose the sections (available in the chosen template) to include in the generated journal.
The MedSummary application acts as a‘bridge’ between displaying knowledge base content

-59 -

and adding new information to it - a new daynote can be added for a patient in the list by
selecting the patient followed by requesting a new daynote (see (20) in figure 6.7 below).

6.5 MedSummary Application Overview and General Documentation

Figure 6.7 displays an overview of the MedSummary application, as well as some short
descriptions of the various parts. Note that the translator combo box has been removed from
the application toolbar in the figure — the components that are to appear in the toolbar can be
adjusted in the ‘MedSummary’ tab in the preferences dialog. Note that all various
functionality found in the application’s toolbars and buttons may also be found in the
application’s menus.

b iedbarmmary S|

Fle Edt Format

Data location: a4 2| Template: Test m R mi 4| Section: | &l sections § - 6 17J 8 ‘-9‘ 10 11 1213 141516 = 17

seacri i 18 1| |23 o012 =
[y 1399-2ug-26 08:00

00015280 o

00029150 D 1898-nov-1810:28 ODONTOLOGISEA FAKULTETEN

S [} 2000-msj-23 10:22 TR L

JO0D48610 £

00059280 Patientkod: JOO019280 Dndersdkningsdatira: 1999-02-26

J000B301 Anamnes

JO0079550

400083581 Patienten ifrdga ar en 71 &r gemmal kvinna, £6dd 1928 och hennes

JIDESEED patientkod ar J000L. Hon har tidigare klagat pd besvar med basedows s3d

(TR ach mitralisinsuff.

100118460

400123471 Som harn har patienten haft féljande sjukdomar: reumartsk feber.

J00139581

JO0149241 AlImin anamnes

JO0159461

OB ingfiende blodningsbesvar, s bloder patienten ofta.

100173430

100183330

J00195240

100200511 19 21 23 25 26

Jo0210270

JO0220380 22

00230630

100240461

100258360

J00263401

JO0279461

J0023964

J00299451

00309570

100315290

00329651

100348501

J00359401

J00389321

JO03793T0

JO0389370

100395410

100403460

100448550

J00423560 =

Cleai D f rittree =
—

1. Displays current data location 13. Sets text style to underline 23. Displays patient examination
2. Changes current data location 14. Sets text style to superscript information
3. Displays current temlpate 15. Sets text style to subscript 24. Clears the tree from patients
4. Changes current template 16. Sets text style to strikthrough 25. Generates a summary of the
5. Changes included sections 17. Changes paragraph alignment chosen patients in the tree
6. Cuts text 18. Searches the patient list 26. Displays the generated
7. Copies text 19. Displays the patients in the summary
8. Pastes text current data location 27. Displays thumbnails of
9. Prints current journal 20. Requests new daynote for the chosen patient images
10. Changes color of text chosen patient 28. Displays examination
11. Sets text style to bold 21. Adds chosen patient to tree information of a certain
12. Sets text style to italic 22. Removes examinations from tree patient image

Figure 6.7 — Overview and explanation of the various parts of the M edSummary application

- 60 -

The lower part of the photo thumbnail (28) displays the patient code for the patient being
viewed as well as the date of the examination when the photo was taken. In order to view the
photo in full size, simply double-click on it (27). Figure 6.8 shows the photo dialog in action.
As can be seen from the figure, the photo dialog contains the patient code as well as the
examination date in the title bar. When done viewing the photo, just pressthe ‘close’ button to
close the dialog.

y

U00EI9501 7000 mar=29)0E-08 "

Figure 6.8 — The photo dialog in action

The text-edit actions (6-17) apply to text contained in the journa (26) — if no journal has been
generated, the text edit actions (as well as the print action (9)) are disabled. If you change the
datalocation (2), the patient listing is updated to reflect the patients in the new location. The
tree of chosen patients (23) will be cleared whenever the data location is changed.

If you have along list of patients, you may narrow down the list by using the text field above
the patient listing (18) — when entering text into thisfield, the patient listing is narrowed down
to one containing the entries that match the text field content. In order to add a patient to the
tree of patients (23), you can either double-click on the patient directly in thelist or use the
‘add patient’ button (21). If you wish to remove a patient from the tree, you select the patient
in the tree and press the ‘ remove patient’ button (22). If you want to add or remove severa
patients at once, hold down the control key while selecting. Furthermore, all patients

-61-

contained in the tree can be cleared in one sweep by pressing the ‘ clear patient tree’ button
(24).

The *generate journa’ button (25) isonly enabled if all components required for generating a
journal are available. Thus, you must have chosen atemplate, atranslator, and the
examination(s) you wish to summarize in order for the generator engine to be functional and
for the generate button to be enabled. After pressing the generate button, the journal area (25)
will display the generated journal. Furthermore, after ajournal has been generated, the text-
edit actions and the print action will be enabled.

— = =
‘ e Vi eI ETENCES) L_]

|/Glohal r Med S0 ary

vl Dizplay data location chooser
[w] Dizplay template chooser
] Display translator chaoser Lze (ChProgram developmentiProgrammering - arbeiD

[¥] Use last settings ot start [v] Use smart parsing

Cancel

Figure 6.9 — The MedSummary tab of the settings dialog

If you are running the application on a screen resol ution lower than 1280x1024, you might
want to remove some of the toolbar components in order to save space. To do this, you open
the preferences dialog from the file menu, select the ‘MedSummary’ tab, and deselect the
components you do not want to have displayed, as seen in figure 6.9.

-62 -

7 Glossary

AP

Application Programming Interface. A ‘contract’ defining
programming resources available to the programmer /
developer. The Java API contains a bunch of packages and
classes with corresponding methods and members that form
the foundation when devel oping Java applications.

Artifact

A general term for any work product in the UP. A certain
discipline usually produces certain artifacts.

CASE

Computer Assisted Software Engineering — general term for
any technique using computers to assist during development
of software.

CASE-tool

Some tool (usually an application, such as Rational Rose or
MagicDraw UML) used to assist in software development.

Cohesion

A measure of how ‘tight’ an object isin regard to what
responsibilitiesit fulfills. If an object only has responsibilities
within one small area, it has high cohesion. If an object takes
on responsibilities within several areas, it haslow cohesion.
Low cohesion usualy infers high coupling.

Controller

One of the nine GRASP patterns [1]. Provides guidelines for
how to place responsibilities related to receiving system
eventsin the domain layer of applications.

Coupling

A measure of how ‘connected’ aclassisto other elements.
High coupling infers a high degree of connectivity between
classes, leading to afragile system where changesin one class
has high impact on other elements, which is undesirable.

Creator

One of the nine GRASP patterns [1]. States that one should
assign the responsibility of creating an instance of another
classto a class that either aggregates, contains, records
instances of, has theinitializing datafor, or closely usesthe
created class. If initialization is complex, the Factory GoF
design pattern might be used instead.

Design pattern

Named problem-solution pair that gives good advice and
principles often related to the assignment of responsibilities

[1].

Discipline

UP terminology for one step in the iterative devel opment
process. Contains a set of activities related to the discipline.

GoF

A .k.a. *Gang of Four’, the four authors (Gamma, Helm,
Johnson, Vlissides) of the book ‘ Design Patterns’, whichis
central to the area of design patterns and object design.

GRASP

Genera Responsibility Assignment Software Patterns. A
collection of nine basic patterns forming the * building blocks
for more advanced design patterns[1].

GUI

Graphical User Interface. The interface between the
application and the user, as shown graphically on screen.

High Cohesion

One of the nine GRASP patterns [1]. States that one should
assign responsibilities between abjects in such away that
cohesion remains high, in order to make manage complexity.

Indirection

One of the nine GRASP patterns [1]. States that you can
assign responsibilities to an intermediary object if you wish to
improve the coupling aspects of your system. The objects
surrounding the intermediary are no longer coupled.

JAXP

Java Api for Xml Processing. An implementation-independent
api for java dealing with various xml processing.

-63 -

JRE

Java Runtime Environment. An environment providing the
ability to run Java programs (basically the Java Virtual
Machine along with the various Java support classes).

Information Expert

One of the nine GRASP patterns [1]. States that one should
assign responsibilities to the classes containing the
information necessary to fulfill the responsibility.

Knowledge base

An dternative name for the database containing examination
dataused in MedView.

Low Coupling

One of the nine GRASP patterns [1]. States that coupling
between classes should be low in order to avoid the negative
effects that come with high coupling (afragile system with
high change impact).

MedRecords

An application used to input information into the knowledge
base. Used by the clinician during an actual examination.

MedSummary

An application used to visualize information in the knowledge
base by providing the ability to generate a summary of chosen
examination(s) as well as displaying images associated with
the examination(s) in question.

NLG

Natural Language Generation. The process of generating text
that as closaly as possible resembles natural language.

Objective-C

An object-oriented programming language containing
similaritiesto Smalltalk.

Package

A grouping entity containing related entities. Similar to the
concept of a‘directory’ in afilesystem. Example: a package
‘math.pi’ contains entities dealing with mathematical pi
calculations.

Pcode

A.k.a. ‘patient code, identifying uniquely a patient at
Kliniken for Oral Medicin at Odontologen, Gothenburg.

Polymorphism

One of the nine GRASP patterns [1]. States that, when
behavior varies by type, you should assign responsibilities for
the behavior using polymorphic operations to the types for
which the behavior varies.

Protected Variations (PV)

One of the nine GRASP patterns [1]. States that you should
identify points of predicted instability or variation and assign
responsibilities to create a stable interface around them.

Pure Fabrication

One of the nine GRASP patterns[1]. States that you can
assign responsibilitiesto a‘made up’ class, i.e. onethat is not
present as a domain concept in the domain of your application,
if it enhances desirable qualitiesin your system such aslow
coupling or high cohesion.

Refactoring

Improving an existing design and implementation without
affecting the functionality of the existing system.

Reverse-engineering

To take existing code and construct or update UML diagrams
from it.

RTF Rich Text Format. A poorly documented format used
previously by Microsoft for styled text files.

Slot A place-holder in the template text flow that is replaced by a
value from a chosen examination during generation time.

SOMNET Swedish Oral Medicine NETwork. A network of dentists and
practitionersin the area of oral medicine.

Subsystem A discrete entity with behavior and interfaces, usually
modelled as a special kind of package or object [1].

SummaryCreator An application used to develop templates and trand ators that

are used when generating patient journals.

-64 -

Template

A styled, textual document containing slots which will be
filled with examination content during journal-generation
time.

Term

A clinical term used to represent aclinical concept (for
instance, the term ‘born’ represents the concept of where the
patient is born).

Term type

The type of aterm when considered from atext generation
context. For instance, if atermis of type ‘interva’ its
trandations look like: *0-2: mild, 2—4: moderate, 4-6: serious,
6-8: dangerous'.

Translator

Container of mappings from universal values (found in
examination records) to tranglations, which in turn may
contain macros for further expansion at journal-generation
time.

Treefile

The format used to store an examination at the time of this
writing.

Unified Modeling Language (UML)

A set of diagrams for describing the various aspects of a
system.

Unified Process (UP)

An iterative system devel opment process making heavy use of
the UML (Unified Modeling Language) for describing various
aspects of the system under devel opment.

Unit test A test of aunit (could be a simple component or a complex
subsystem) in isolation from surrounding units.

Vaue A specific examination’s value for a specific term (for
instance, the value ‘ sweden’ is a specific value for the term
‘born’).

XML eXtensible Markup Language. Provides alanguage-

independent and platform-neutral means of describing and
validating data[11].

-65 -

8 References

[1] Larman, C. Applying UML and patterns — An introduction to Object-Oriented Analysis and Design
and the Unified Process. Prentice-Hall PTR, Upper Saddle River NJ 2002.

[2] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, West Sussex England 1996.

[3] Xiaoping, J. Object-Oriented Software Development Using Java: principles, patterns, and
frameworks. Addison-Wesley, 2000.

[4] Gamma, E., HEIm, R., Johnson, R., and Vlissides, J. Design patterns. Reading, MA 1995,

[5] Falkman, G., Hallnas, L., Jontell, M., and Torgersson, O. MedView — Design and Adaption of an
Interactive System for Oral Medicine. In A. Hasman et al, editors, Medical Infobahn for Europe:
Proceedings of MIE2000 and GMD2000, |0S Press, 2000.

[6] Stelting, S., Maasen, O. Applied Java Patterns. Prentice Hall PTR, Upper Saddle River NJ 2002.

[7] Torgersson, O., Falkman, G. Using Text Generation to Access Clinical Data in a Variety of
Contexts. In: Surjan, G., Engelbrecht, R. & McNair, P. (eds.): Health Data in the Information Society,
vol. 90 of Studiesin Health Technology and Informatics, pp. 460-465. 10S Press.

[8] Youssef, A., Falkman, G., Hallnas, L., Jontell, M., Mattsson, U., Nazari, N, Torgersson, O. An
Overview of MedView.

[9] Nivre, J., Lager, T. An Integrated Approach to Multilingual Hypertext Generation.

[10] Reiter, E., Dale, R. Building Applied Natural Language Generation Systems. Cambridge
University Press, 2000.

[11] Ahmed, K., Ancha, S., Cioroianu, A., Cousins, J., Croshie, J., Davies, J., Gabhart, K., Gould, S.,
Laddad, R., Li, S., Macmillan, B., Rivers-Moore, D., Skubal, J., Watson, K., Williams, S., Hart, J.,
Professional Java XML. Wrox press, Birmingham 2001.

- 66 -

Appendix A — Examples of Previous MedView System Resources

SANANIESS

Croerkanslighet: $195.

Bladningsherdgenhet: $05.

Allrding

$£3-anz $B3 $FF som $C3 for D5 $Moteld

Allmiin anamnes
$H3. KL. U. Patierten har $7§.

Besvir frén genitala slembinnan: 3.

$Mate2f.

Symptommehierade uppgifier: Patienten anger fiir nirvarands V. Besviiten dr lokaliserade till $4C%
Ciraderas till $Z3 enligt VAS. Patienten rapporterar att besviten debnterade for cirka AT sedan. Patierten
upplever att $ 4B} initisrade symoptaren. Besvaren ar AF. Durationen anges till $A04 med en frekovers pll
$45HS. Besviren SAIS. Uppger s1 tidizare ha haft $44% 1 murslemhinnan. Anger att dessa besvir enligt VA5
var $ABS. $Hote3.

Pé fragan om vad som dkar symptomen anger patienten §415. Diremnt s4 minskar syrptomen $4K4$. Tidigare
har $ALE grvit positivt resubtt. I sardband med att patienten erhdllit BANE har enregatre piverkar gpplests
dwven patientens $ANS har haft Tknande besvir. fboted$

Vivnadsfhirindring: Lesionen ohserverades firsta gingen fiir §4P% sedan. Patienten upplever att $A0% har

sarrband med desbiten. Lokaliserar sjabv lesionen till $ARS. $453. $t7ate5.

Tiluntorrhet:

Viitska vid fidnintag: $805.

Swirigheter att tala: $LVE.

Crration av runtorthet $15.

Lindra symtorn fréin ounhdlan: $82%.

Spotthirtelmullnad: $435.

Spatthéintelundersilming: $435.

Ferurnatisk sjukdorn: $a45.

Heriditet renmatisk sjukdom: $455.

dzontorrhet = 3 rdnader 875,

tigonsyrmtom: FaTTE

dzondroppar: $uzf

dgonundersikning $Bas.

$Matecd.

Mab&EME%aE. - Har genomgitt SEBS hos tandlikare. Bettfysinlogiskt wymisar patienten $BCH. $EDS.
HoteTh.

Tandvirdsridsla

Patierten wopger $ELT ridsla vid tardlikarbesok. Regelhunden tandvird $EBS. Fullstindis tandvwind for $ECS
Senaste tandlikarhestiket upplevdes som ED. $iote 235

Patierten tror att rédslan i foista hand hénger sararnan med: $EES. Ansersig alltid varit $EF§ fir tandvird och
tandlikare. Som barm upplesdes tanchdrden som $EGS. Patierten anger att hehandlingar ofta har vart $EHS
Tror att réidsla hoe andra | oragrvningen kan ha bidragit +ill den upplevda EI. Sdrskilt anges ridsla hes ET.
Patienten upplever dessutom $FECS fiir att firlora kontrollen i samband med tandlikarbestik. Siker just nu

behandling pga att EL. Det kinns §EN$ fir patienten att & hislp med sin ridsla. Patienten uppger att det
kinns EM att 3 behardling v tinderma, Tror att méjligheten att bota radelan br EO.
Intrvationfengagemiang fir fobibehandliz beddmer patienten.som $EPF. Patierten tror att behandlingsformer
sor $EF kan vara lmpliga. & nger sirskilt att tandlikaren skall. $ER3. ES. ET. $EUS. Dessutom will
patienten girma att $EVS. Patierden woplever negativa konselvenser av tandvirdsradslan 1 forra av: JEWS
Tandvirdsridslan ger upphov till komplikation nér det galler kontakter med: $EZ5. $E:24%. Et. fndra
negattva konselovenser & : $E. §. Kérslor fitmippade med tandwirdsridsla & Ea. $FAS. $FBY. $FCH

Pavkometri

HAD-&: $BES. HAD-A m: $BFS.
HAD.D $BG. HAD.D o $BHS

D&S: $BI§. DAS m: $FD3.
DFS: $FES. DF3 1 $FF§.
GFSILL: g GFSILL 1 $FHS.
GFSEWE: $FI§ GFSEME_m3FH.
GFS50C: $FES. GFS50C_m: $FLE.
GFSFYS $FME GFSFYS m$FIS
GFSANI FOS. GFSANL o $FFS.
GFSMWMEAN: fge]

GFSMELN rm: $FRS.

GFSFOR: $F5.

$blctest.

§STATUSS

Direlit siatus

Fatierten wppvisar BK slemhinneforindring. Forandringen ar lokaliserad till BJ. Reaktioremdustret
karakiiriseras av FEIS. Storleken dr cirka $ENY. $NoteP$. Palpationav $BUS. $BVE vid palpation. $BZ5.
$B% ot mderlaget. Stofleken bedimsvid palpation till cirka BY. Patienten $C4%. $Hotel 15

Bettfimbtinn $BO%. Patienten mpprvisar $EPS. $BOS $BRS. Patierten har ndontolngiskt hehardlats med $BSF
Som material har arvints $BTH. $Hotel0F Fiote 235

Indirekt status

Rimigen: $CBS tas mot $0C%. Riirtgen visar $C03 . Rintgen pa akiuells tinder visar CE. $Notel 25
Histopaiologi: Biopsi tas 1 §CF3. Preparatet uigiirs av $C78. Den histopatologiska undersikningen visar §005
epitelet. Intraepitelialt ses $CHS. Imnmflunrescers visar $CT3 reaktion i epitelet. I preparatet ses $CK.
Fiirekomst av $CLE. Immunflnorescens visar $CWE depositioner 1 bindviven. $Hotel35

Ifikrobinlogi: Mikohiologiskt prov tes 1 $CNS. Iprovet pévisas vixt av $C06. $Hote 145

Hematologi: B-HE =$CP§. B-WEC = $C0$. B-RBC = §CR$. BPTL = $C3§. 5-B12 = $CT4. S-folat = $CUE.

WML&EM $CVE. B-Glukee = $C%$. P-APTT = $CV4. P-FTK =$CE$. B-TSH=$D4S. 5-FrttT4=3$DES.
Hotel 55,

Saltwwirden: Salveekeetion = $DCH. Salrv-pH = $0D$. Buffringskapacitet = $DES. 1 sialografi syrs $0F%. 1
scintigrafin syns $004. fioteldd.

STENTATIV DIAGNOSS: $DHS
SHISTOPATOLOGISK DIAGNOSE: $DI3.
§DIACHOSE: $DI3.

Diagnos-nummer: $0K4. $otel 74

SDACGANTECKNINGS
Besiket avser SDLY. Planerade dtzirder: $019. Idag genoraftrs $OME. Kliniskt noteras att status chjekint &
DN. Patienten upplever sig subjektivt $D0%. Patienten exhiller $DFS. $T24. $D03. $otel 253

Figure A.1—Template (rtf) filefor usein the earlier MedView system

- 67 -

4% = def(P-code) (age)
6% = def(P-code) [(sex)
$F5 = def(Occup)

0% = def(Ref-in)

g = def (Ref-cause)
$E5 = def(Born)

iG§ = def(Ciwv-atat)
fHMotels = def(NoteOl)
$H: = def(Health)

515 = def(Dis-now)
$7% = def(Dis-past)
$K4 = def (Chld-dis)
$KLs = def (Checkup)
§L§ = def(prug)

$ME = def(illergy)
Mg = def(Adw-drug)
05 = def(Zmoke)

$P§ = def(dlcohol)
0% = def(Eleed)

fRs = def(Vas-life)
55 = def(3ymp-other)
$T¢ = def(3ymp-szaliw)
iU = def (3ymp-head)
§Vg = def(Skin-pbl)
$¥5 = def(Genitals)
fNote2s = def(NotelZ)

¥4 = def(Symp-now)

$2% def (Vas-now)
hdz = def (3ymp-past
$4Bs = def(Vas-past)
$4Cs = def(Symp-site)
$aDs = def(3ywp-on)
$4E5 = def (3ymp-trigg)
$4Fs = def(3ymp-var)
fAGE = def(Symp-dur)
$4Hs = def(Symp-fredq)
$ATS = def|Symp-24h)
$Note3s = def(Notel3)
§4J5 = def(Factor-nedq)
$4K5 = def(Factor-pos)
§aLs = def(Treat-pos)
$4Ms = def(Treat-negq)
a5 = def(Family)
405 = def(Vas-hndc)
tNoteds = def(Notedd)
$4F5 = def(Lesn-on)
405 = def(Lesn-trigg)
$4F% = def(Lesn-site)
4355 = def(Lesn-war)
fNote5s = def (NotelS)
$4Ts = def(Water-nigh)
§a0s = def(Water-meal)
5415 = def(Time-dry)
495 = def(535-3months)
5425 = def(33-exsym)
435 = def(55-swollen)
$4d5 = def(35-reum)
455 = def(33-reumfam)
$475 = def(Eye-3months)
$405 = def (Eye-zand)
$4V5: = def(3peech-phl)

SAME
$AYS
GAZS
$BAg
§A8%

§Noteds = def(Notedd)

$BB§
$BCH

$BDs =def (Symp-musc)
sNoteTs

$EAg
FEBS
$ECH
$EDg
$EES
$EFs
$EGS
FEHZ
$EI%
ETS
$EEZ
$EL%
$ENg
$ENg
$E0%
$EPg
SEQ%
$ERg
FE3%
$ETS
$EUs
$EVg
SEWs
$EZ%
SEXg
FETE
SE.5
$E-5%
§Fag
$FB§
§FC%
$BE%
§BFg
FBGS
$BHg
$BI%
§FDg
§FES
§FFg
§FGs
§FHg
5FI%
§FT5
§FES
§FL%
§FMg
§ 0%
§F0%
FFP§
§FQ%
TR

def (Eye-phl)
def (Eye-on)

def (Eye-drops)
def (Eye-exan)
def (Gland-exan)

def (Dent-treat)
def (Symp-joint)

= def (Notel?7)
def (An¥-amount)
def (Care-cont)
def (Care-past)
def (Care-ewval)
def (Care-reaszon)
def (&fraid-past)
def (Care-exp)
def (Pain-past)
def (Fear-relat)
def (Fear-rel)
def (Fear-0ktr)
def (Reason-treat)
def (Treat-fear)
def (Treat-teeth)
def (Fear-treat)
def (Treat-1ife)
def (Treat-suit)
def (Dent-patient)
def (Dent-exp)
def (Dent-0Opain)
def (Dent-accon)
def (Dent-adjust)
def (Fear-Otreat)
def (Fear-fam)
def (Fear-friend)
def (Fear-work)
def (Fear-wvaria)
def (Fear-anger)
def (Fear-shame)
def (Fear-awoid)
def (Fear-depr)
def (HAD-4)

def (HAD-A m)

def (HAD-D)

def (HAD-D_m)

def (DAS)

def (DAS_m)

def (DF3)

def (DFS_m)

def (GFSILL)

def (GFEILL_m)
def (GF2EME)

def (GFREME_m)
def (GFE50C)

def (GFE50C_m)
def (GFEFYS)

def (GF3FYS_m)
def (GFEANT)

def (GF3ANT m)
def [GFEMELN)

def (GFIMELN m)

§F538 = def (GFSFOE)
sNoteds = def(Noteld)
§BJs = def (Mucos-site)
$BKs = def(Mucos-colr)
$BLy = def (Mucos-attr)
$BMs = def (Mucos-txtur)
$BNs = def(Mucos-zize)
$Note9s = def(Notel9)
§B0s = def(Occl-type)
B8P = def(Joint-dys)
$BQs = def(Interfer)
$BRs = def(Facetts)
$B35 = def (Reconstr)
BT = def(Material)

$Notelds = def(Noteld)

$BUs = def(Palp-zite)
$EBVs = def(Palp-cons)
$B¥s = def(Palp-rel)
$BTs = def(Palp-=zize)
$BZ§ = def(Palp-musc)
4CA4s = def(Sens-site)
fNotellsy = defilNotell)
$CHs = def(Xray-type)
$CCs = def(Xray-szite)
$CD0% = def (Xray-txtur)
$CEf = def(Xray-teeth)
fNotelas = def(Notell)
$CFs = def(Biopsy-site)
5065 = def (Epi-txtur)
$CHs = def (Epi-cells)
$CI§ = def(Epi-fluor)
$CT5 = def(Tis=-type)
$CEs = def(Tiss-txtur)
$CLs = def(Tiss-cells)
$CMs = def(Tisz-fluor)
#Motel3s = def(Noteld)
$CHs = def(Micro-szite)
005 = def(Micro-type)
fNotelds = defiNoteld)
§CP5 = def(Blood-HGE)
$CNs = def(Blood-WEC)
4CR5 = def(BElood-REC)
0% = def(Elood-PTL)
$CTs = def(Blond-Kob)
$CUs = def(BElood-Fol)
$CY¥% = def(Blood-Fe)
0¥ = def(Blood-Glu)
§075 = def(Blood-AFTT)
$CZg = def(Elood-PE)
§Dag = def(Elood-TEH)
$DEg =def (Elood-T4)
fNotelSs = defiNotelh)
$DCs = def(Baliva-flow)
$DDs = def(3aliva-pH)
$DE; = def(3aliva-buff)
(DFs = def(3aliva-szial)
D65 = def(3aliva-scin)
fNoteles = defiloteld)
$DH: = def (Diag-tent)
$DIf = def(Diag-hist)
$DJ% = def (Diag-def)

DE; = def(Diag-nr)

Hotel7d = def(Notel?)
DLE = def(¥is-cause)
Dlg def [Plan-next)
DMs def (Exan-type)
LS
Dog
DFg def (Treat-type)
Dzg def (Treat-drag)
g def (Next-app)

Hotelds = def(NotelS)
Hotel9s def (Notel9)
Hotezg def (Notezl)
HNoteZls def (NoteZl)
Hote2ls def (NotezZ)
Note23s def (Notel23)
Hotezds def (NoteZd)

Figure A.2 — Template definition trandation for

- 68 -

useintheearlier MedView system

def (Treat-ewal-obi)
def [Treat-ewal-subj)

$0comp
Administratie chef
Arbetssikanden
Arbetslis
Arbetsterapeut
BanktjlUnsterman
Bammorska
Bamskfterska
Besiktningsruan
Bilyazate
Biomedicinsk analytiker
Bihlintekarie
Bilhandlare

Bitr fonskare
Bokffiring
Bovllnd
Bussffirare
Byrggradssnickare
DagharrrTIrdare
Datakoreul
Datomperatéir
Dornate

Ekonom
EkonorobitTde
Florist
Lagerarhetare
LokakTrdare

Produltioreledare
Projektledare
Projekistatistiker
Professor
Paykolog
Officer

Rektor
Revisorsassistent
RinlUggare
STTljare
SUlprograreskoordinaor
Sekreterare
Servicetekniker
Servitiir
SjukpensionlTr
Sjukskriven
Sjukskiiterska
Skatterevisor
Socionor
Studerande
Tanckkiiterska
Tadchafftir

admiristrativ chef’
athetsstikanden
arthetsstikanden
artbetsterapeut
banktUnsternan
harmmorska
bamskfterska
besikiningsman
bilbygzare
biomedicinsk analytiker
hiblintekarie
bilhandlare

bitr fowrkare
kamrer

by Trd
hussfirare
birggradssnickars
dagharrrTrdare
datakoreult
datoroperatir
donare

ekonom
ekonorbit Tde
florist
lagerarhetare
lokabAlrdare
marknadschef
roaknadsundersikare
mUlare
maskinoperatér
roattlTzzare
mentalskitare
montdr

nourare
persionlr
posthassir
postsorerare
produltionsledare
projelktledare
projektstatistiker
professar
peykolog

officer

rektor
revisorsassistert
1ol ggare
slTljare
sUlprograrskoordinator
sekreterars
servicetekniker
servitie
sjubpensionTr
sukskiiven
sjukskiiterka
skatterevisor
S0Ciono
stiderande
tandskibterska
taxdchaffir

Tekrikinformatdr
TextillUrare
TiUrstetnan
Tidigare fiskare
TiTtthitTde
Undetakermontir
nderekiiterska
Vlwerska
VrdbitdTde
Verkstadsarbetare
TrkesvUgledare
Vktare
—rersTttare

$Refoin
Sillke
LiTkare

$Refcause
BedivmingskUsla efter tandbehandling
BMS

Diligt tandstatus
EmaljftirTTdnringar
Hematologisk sjukdorm
Hepatit B
Infektiorsutredning
Iuletallsraak

IlibstlUnlt allerg mot dentala material
Osgeds B Tndnng
SlernburmefSr T ndring
Sibgrensutredning
Smoakftrlndring

Smlrta

SmUrhatredning
Spotildittelsjukdom
TandvTrderTdela
Torthetsklrsla

—kad bltdnirgshenUzenhet

$Bom
Bosnien
Bulgarien
Fllrdarma
Danrnark.

teknikinforroatte
textill Trare
tillretetmnan
tidigare fiskars
AT tthitrTTde
undertakermortir
underekiiterska
wllverska
wUrdbitrUde
wetkstadsarhetare
yrkesvUgledare
Uktare
frversTHtare

stiker sjUlv

rernitterats flTn Mkare
remitterats fTn tandl Tkare
remitterats flTn tandbsrgienist
1 Tterkomaraer

bedivmingskUsla efter tandbehandling
B3

tandbehandling
roineralisationsstimingar
hematologisk sjukdom
hepatit B
infektionsutredning
srakffrTndring
materialinerklInslighet
ogsefle i Tndring
slermbirmefor Tndimg
utredning &v ett everduellt Sjdgrens syndmm
sraakffiTndring

smiira

amlina
spottliitelsjukdom
tanchTrderUdela
torrhetskTrsla

kad blidningsbenUgenhet

hiogniskt
bulgariskt
fiTrdiskt
danskt

finskt

franskt

iranskt

f'd jugoslaviskt
£ d ngnslaviskt
makedonskt
norskt

svenskt

turkiet
ungerskt
amerikansky

Figure A.3—A small part of thetrandation fileused in the earlier M edView system

- 69 -

010827102306
NEonkret_identifikation
LI:/0M.mvd/Nediiews/EO0015954]1 010527102306, nedView##
HIatun
LZ00L1-08-27 10:09: 234§
NPATIENTUPPGIFTER
NP-code
LEOOLESE41fH
NRef-in

LLakareff
HBef-cause
LTorrhetskénslaf§
HBorn

Le3verigef#
NOccoup#
NCiv-stat#

HHot 20184
WALLMEN AHAMNES
NHealth

LIag#

Hlis-now
LHepatit C#f
WDis-past
LCancerf

NDrug

LNej##

HInf-dis

LHe=] #4f

Nikin-pbl
LE1&dag#
NChld-dis#
NCheckup

LIag#

Nillergy

LHei#§

Nadv-druag

LNeifg

MNEleed

LHej##

NSmoke

LNei##

HEnuff

LHe #§

Nilecoholf
N&vup-head

LIaf#

NGenitals#
NNoteDZ#§
WALLMAN LOKAL ANAMNES
NEx-complaing#
N3TOGRENSUT REDNING
NTime-dry#
Hilater-meal

LIaf#

NES-exsym
LHeshet#§
HES5-swolleng
NEs-reunf
N3g-reunfanf
NEye-drv#
NEye-sand§

HEye-drops#
HEye-exam$
NGland-exang
NNoteD&§g
NELEMHINNEFORANDRING
HlLcokal snamnes
HEymp-nonr
LTorrhetskénslaff
NVas-now
L3.S§#
NEvmp-pastf
HNVas-pastf§
Nevyup-sitef
HSymup - ong
HEymp -t rigof
Heymp-var §
Hymp - dur §
Neyup-freq#
NSyup -2 4h§
HHote02§
NFactor-neg
LCitrus frukter§
NFactor-pos
L¥atten$f
NTreat-pos#
NTreat-neg#
NFamily#
HHoteD4§
HLesn-onff
NLesn-sitef
Nlesn-—var§
HNote05#
NMucos-site
LHela mmnengs
HMacos-colr
LRGAg#
HMacos-txtur
LErythem##
MNMucos-sizef
HPalp-sitef
NPalp-consf
NPalp-rel§
NPalp-sizef
NIMhotof
NNote09§
Niens-siteff
HNotellfg
NTANDVARDSRADSLA
NTVLocalinaunes
Nhnx-amount §
Hinx-nowf
HCare-cont§
NCare-pastf
NCare-evalff
NCare-reason#
NCare-exp#
NPain-pastf
Nifraid-past#
NFear-relat§
HFear-dent§
NFear-painf

Figure A.4 —Part of an actual tree file defining one examination

-70 -

