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Introduction - What is a set?

The iterative notion of set (G. Cantor 1890, E. Zermelo 1930)

- sets built up by collecting objects, or other sets, according to some selec-
tion criterion Q(x)

{x | Q(x)}

Frege’s “naive” set theory is inconsistent (Russell’s paradox). Remedy: in-
troduce size limitations, use explicit set constructions as power sets, products
or function sets, start from given sets X

{x ∈ X | Q(x)}
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Encoding of mathematical objects as iterative sets

All mathematical objects are built from the empty set (E. Zermelo 1930)

Natural numbers are for example usually encoded as

0 = /0 1 = 0∪{0} = { /0} 2 = 1∪{1} = { /0,{ /0}} · · · .

Pairs of elements can be encoded as 〈a,b〉 = {{a},{a,b}}. Functions are
certain sets of pairs objects ... etc.

Quotient structures are constructed by the method of equivalence classes
— only one notion of equality is necessary.

(J.Myhill and P.Aczel (1970s): constructive versions of ZF set theory.)
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What is a set? A more basic view

“A set is not an entity which has an ideal existence: a set exists only when
it has been defined. To define a set we prescribe, at least implicitly, what we
(the constructing intelligence) must do in order to construct an element of the
set, and what we must do to show that two elements are equal” (Errett Bishop,
Foundations of Constructive Analysis, 1967.)

Martin-Löf type theory conforms to this principle of defining sets.
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Abstraction levels

One may disregard the particular representations of set-theoretic construc-
tions, and describe their properties abstractly (in the spirit of Bourbaki).

For instance, the cartesian product of two sets A and B may be described
as a set A×B together with two projection functions

π1 : A×B → A π2 : A×B → B,

such that for each a ∈ A and each b∈ B there exists a unique element c ∈ A×B
with π1(c) = a and π2(c) = b. Thus πk picks out the kth component of the
abstract pair.

Reference to the particular encoding of pairs is avoided. This is a good
principle in mathematics as well as in program construction.
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Some references using Bishop’s set theory

E. Bishop and D.S. Bridges (1985). Constructive Analysis. Springer-Verlag.

D.S. Bridges and F. Richman (1987). Varieties of Constructive Mathematics.
London Mathematical Society Lecture Notes, Vol. 97. Cambridge University
Press.

R. Mines, F. Richman and W. Ruitenburg (1988). A Course in Constructive
Algebra. Springer.

Among constructivists, one often says that constructive mathematics is
mathematics based on intuitionistic logic.
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Plan of lectures

(Based on Ch. 3 and 4 of Type-theoretic foundation of constructive mathematics
by T. Coquand, P. Dybjer, E. Palmgren and A. Setzer, version August 5, 2005.)

1. Introduction

2. Terminology for type theory

3. Intuitionistic logic

4. Sets and equivalence relations

5. Choice sets and axiom of choice
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6. Relations and subsets

7. Finite sets and relatives

8. Quotients

9. Universes and restricted power sets

10. Categories

11. Relation to categorical logic

Exercises: see lecture notes.
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2. Terminology for type theory

later Martin-Löf lect. notes Bishop early M.-L. other

type sort category kind
set type preset type
extensional set set set setoid, E-set
function operation operation function
extensional function function function setoid map, E-function

(Thanks for the table, Peter!)

The application of an operation f : A → B to an element a : A is denoted

f a
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Recall: A proposition may be regarded as a type according to the following
translation scheme

(∀x : A)P x (Πx : A)P x
(∃x : A)P x (Σx : A)P x
P∧Q P×Q
P∨Q P+Q
P ⇒ Q P → Q
> N1

⊥ N0
¬P (= P ⇒⊥) P → N0

The judgement
A is true

means that there is some p so that p : A.
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Relations and predicates on types

A predicate P on a type X is a family of propositions P x (x : X ).

A relation R between types X and Y is a family of propositions R x y (x :
X ,y : Y ). If X = Y , we say that R is a binary relation on X .

A binary relation R on X is an equivalence relation if there are functions ref ,
sym and tra with

ref a : R a a (a : X),

sym a b p : R b a (a : X ,b : X , p : R a b),

tra a b c p q : R a c (a,b,c : X , p : R a b,q : R b c).
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We may suppress the proof objects and simply write, for instance in the last line

R a c true (a,b,c : X ,R a b true,R b c true),

which is equivalent to

(∀a : X)(∀b : X)(∀c : X)(R a b∧R b c ⇒ R a c) true.
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3. Intuitionistic logic

The logic governing the judgements of the form

A true

is intuitionistic logic. It is best described by considering the derivation rules for
natural deduction and then remove the Reductio Ad Absurdum rule (principle of
indirect proof):

Derivation rules:

A B
A∧B

(∧I)
A∧B

A
(∧E1)

A∧B
B

(∧E2)
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A
h

...
B

A → B
(→ I,h)

A → B A
B

(→ E)

A
A∨B

(∨I1)
B

A∨B
(∨I2)

A
h1 Bh2

... ...
A∨B C C

C
(∨E,h1,h2)

A
(∀x)A

(∀I)
(∀x)A
A[t/x]

(∀E)
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A[t/x]
(∃x)A

(∃I)

A
h

...
(∃x)A C

C
(∃E,h)

⊥

A
(⊥E)

¬A
h

...
⊥
A (RAA,h)
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4. Sets and equivalence relations

Definition A set X is a type X together with an equivalence relation =X on
X . Write this as

X = (X ,=X).

We shall also write x ∈ X for x : X .

Remark

In Bishop (1967) X is called a preset, rather than a type.

In the type theory community X = (X ,=X) is often known as a setoid.
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Examples Let N be the type of natural numbers. Define equivalence relations

x =N y iff Tr (eqN x y)

(Here eqN : N → N → Bool is the equality tester for N and Tr tt = > and
Tr ff = ⊥)

x =n y iff x− y is divisble by n

Then

• N = (N,=N) is the set of natural numbers

• Zn = (N,=n) is the set of integers modulo n.
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Functions vs operations

What is usually called functions in type theory, we call here operations.

Definition. A function f from the set X to the set Y is a pair ( f ,ext f ) where
f : X → Y is an operation so that

(ext f a b p) : f a =Y f b (a,b : X , p : a =X b).

To conform with usual mathematical notation, function application will be written

f (a) =def f a

Two functions f ,g : X →Y are extensionally equal, f =[X→Y ] g, if there is e with

e a : f (a) =Y g(a) (a ∈ X).
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Set constructions

The product of sets A and B is a set P = (P,=P) where P = A×B (cartesian
product as types) and the equality is defined by

(x,y) =P (u,v) iff x =A u and y =B v.

Standard notation for this P is A×B. Projection function are π1(x,y) = x and
π1(x,y) = y. This construction can be verified to satisfy the abstract property
(page 5). (It can as well be expressed by the categorical universal property for
products.)

The disjoint union A∪̇B (or A+B) is definied by considering the correspond-
ing type construction.
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The functions from A to B form a set BA defined to be the type

(Σ f : A → B)(∀x,y : A)[x =A y → f x =B f y],

together with the equivalence relation

( f , p) =BA (g,q) ⇐⇒def (∀x : A) f x =B gx.

The evaluation function evA,B : BA ×A → B is given by

evA,B(( f , p),a) = f a

Proposition. Let A, B and X be sets. For every function h : X ×A → B there is
a unique function ĥ : X → BA with

evA,B(ĥ(x),y) = h(x,y) (x ∈ X ,y ∈ A).
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A set X is called discrete, if for all x,y ∈ X

(x =X y) ∨ ¬ (x =X y).

In classical set theory all sets are discrete. This is not so constructively, but we
have

Proposition. The unit set 1 and the set of natural numbers N are both discrete.
If X and Y are discrete sets, then X ×Y and X +Y are discrete too.

However, the assumption that N
N is discrete implies a nonconstructive prin-

ciple (WLPO):
(∀n ∈ N) f (n) = 0 ∨ ¬(∀n ∈ N) f (n) = 0
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Coarser and finer equivalences

An equivalence relation ∼ is finer than another equivalence relation ≈ on a
type A if for all x,y : A

x ∼ y =⇒ x ≈ y.

It is easy to prove by induction that =N is the finest equivalence relation on N.

If there is a finest equivalence relation =A on a type A, the set A = (A,=A)
has the substitutivity property

x =A y =⇒ (Px ⇔ Py)

for any predicate P on the type A.

22



Sets are rarely substitutive, and the notion is not preseved by isomorphisms.
Zn as constructed above is not substitutive; an isomorphic construction yields
substitutivity.

Theorem. To any type A, the identity type construction Id assigns a finest
equivalence Id A. The resulting set, also denoted A, is substitutive.

Remark. Substitutive sets are however very convenient for direct formalisation
in e.g. Agda, as extensionality proofs can be avoided.
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5. Choice sets and axiom of choice

A set S is a choice set, if for any surjective function f : X → S, there is right
inverse g : S → X , i.e.

f (g(s)) = s (s ∈ S).

Theorem. Every substitutive set is a choice set.

(Zermelo’s) Axiom of Choice may be phrased thus:

Every set is a choice set.

Theorem. Zermelo’s AC implies the law of excluded middle.
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Though Zermelo’s AC is incompatible with constructivism, there is related
axiom (theorem of type theory) freely used in Bishop constructivism.

Theorem. For any set A there is a choice set A and surjective function p : A →
A. (In categorical logic often referred to as “existence of enough projectives”.)

As a consequence, Dependent Choice is valid (see notes, p. 76).

Theorem. If A and B are choice sets, then so are A×B and A+B.
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6. Relations and subsets

Definition A (extensional) property P of the set X is a family of propositions P x
(x ∈ X) with

x =X y,P x =⇒ P y.
We also say that P is a predicate on X .

A relation R between sets X and Y is a family of propositions R x y (x ∈
X ,y ∈ Y ) such that

x =X x′,y =Y y′,R x y =⇒ R x′ y′.

The relation is univalent if y =Y y′, whenever R x y and R x y′.

Write P(x), R(x,y) etc. in the extensional situation.
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Restatement of choice principles for relations.

The following is the theorem of unique choice.

Thm. Let R be a univalent relation between the sets X and Y . It is total if, and
only if, there exists a function f : X → Y , called a selection function, such that

R(x, f (x)) (x ∈ X).

(This function is necessarily unique if it exists.)

An alternative characterisation of choice sets is

Thm. A set X is a choice set iff for every set Y , each total relation R between X
and Y has a selection function g : X → Y so that

R(x,g(x)) (x ∈ X).
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Dependent choice

Dependent choice. Let A be a set which is the surjective image of a choice
set. Let R be a binary relation on A such that

(∀x ∈ A)(∃y ∈ A)R(x,y).

Then for each a ∈ A, there exists a function f : N → A with f (0) = a and

R( f (n), f (n+1)) (n ∈ N).

Proof. Let p : P → A be surjective, where P is a choice set. By surjectivity, we
have

(∀u ∈ P)(∃v ∈ P)R(p(u), p(v)).
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Since P is a choice set we find h : P → P with R(p(u), p(h(u))) for all u ∈ P.

For a ∈ A, there is b0 ∈ P with a = p(b0).

Define by recursion g(0) = b0 and g(n + 1) = h(g(n)), and let f (n) =
p(g(n)). Thus R(p(g(n)), p(g(n+1))), so f is indeed the desired choice func-
tion. �

Remark Thus we have proved the general dependent choice theorem in type
theory with identity types. We also get another proof of countable choice, with-
out requiring a particular subsititutive construction of natural numbers.
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Subsets as injective functions

Let X be a set. A subset of X is a pair S = (∂S, ιS) where ∂S is a set and
ιS : ∂S → X is an injective function.

An element a ∈ X is a member of S (written a ∈X S) if there exists d ∈ ∂S
with a =X ιS(d).

Inclusion ⊆X and equality ≡X of subsets of X can be defined in the usual
logical way.

Prop. For subsets A and B of X , the inclusion A⊆X B holds iff there is a function
f : ∂A → ∂B with ιB ◦ f = ιA. (Such f are unique and injective.)

The subsets are equal iff f is a bijection.
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Separation of subsets

For a property P on a set X , the subset

{x ∈ X | P(x)} =
(
{x ∈ X : P(x)}, ι

)

is defined by the data:

{x ∈ X : P(x)} =def (Σx ∈ X)P(x)

and
〈x, p〉 ={x∈X : P(x)} 〈y,q〉 ⇐⇒def x =X y

and ι(〈x, p〉) =def x.

(Note the pedantic syntactic distinction of “:” and “|”.)

31



Note that

a ∈X {x ∈ X | P(x)} ⇔ (∃d ∈ {x ∈ X : P(x)}) a = ι(d)

⇔ (∃x ∈ X)(∃p : P x) a = ι(〈x, p〉)

⇔ P a

⇔ P(a)

The usual set-theoretic operations ∩, ∪, ( ) can now be defined “logically”
for subsets.

A subset S of X is decidable, or detachable, if for all a ∈ X

a ∈X S ∨ ¬(a ∈X S).
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Union of subsets: logical definition.

Let A = (∂A, ιA) and B = (∂B, ιB) be subsets of X .

Their union is the following subset of X

A∪B = {z ∈ X | z ∈X A or z ∈X B}.

Taking U = A∪B apart as U = (∂U, ιU) we see that ∂U is

(Σz : X)(z ∈X A or z ∈X B) = (Σz : X)((z ∈X A)+(z ∈X B)).

whereas ιU(z, p) = z.
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Complement

The complement of the subset A of X is defined as

A = {z ∈ X | ¬z ∈X A}.

For A = (∂C, ιC) we have

∂C = (Σz : X)((z ∈X A) →⊥).

That A is a decidable subset of X can be expressed as A∪A = X .

The decidable subsets form a boolean algebra.
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Partial functions

A partial function f from A to B consists of a subset (D f ,d f ) of A, its domain
of definition (denoted dom f ) and a function m f : D f → B. We write this with a
special arrow symbol as f : A ⇁ B.

Such f : A ⇁ B is total if its domain of definition equals A as a subset, or
equivalently, if d f is an isomorphism.

Another partial function g : A ⇁ B extends f , writing f ⊆ g : A ⇁ B, if for
each s ∈ D f there exists t ∈ Dg with d f (s) = dg(t) and m f (s) = mg(t). If both
f ⊆ g and g ⊆ f , we define f and g to be equal as partial functions.
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Example. Let F = (F, ·,+,0,1) be a field, and let

U = {x ∈ F | (∃y ∈ F)x · y = 1}

be the subset of invertible elements. Define a function mr : ∂U → F to be
mr(x) = y, where y is unique such that x · y = 1. Thus the reciprocal is a partial
function r = (·)−1 : F ⇁ F .

In fact, for any univalent relation R between sets X and Y there is partial
function fR = (D,d,m) given by

∂D = {u ∈ X ×Y : R(π1(u),π2(u))}

d = π1 ◦ ιD and m = π2 ◦ ιD.
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Example For any pair of subsets A and B of X that are disjoint A∩B = /0, we
may define a partial characteristic function

χ : X ⇁ {0,1}

satisfying

χ(z) = 0 iff z ∈X A,

χ(z) = 1 iff z ∈X B,

by considering the univalent relation R(z,n):

(z ∈X A∧n = 0)∨ (z ∈X B∧n = 1).
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Partial functions are composed in the following manner: if f : A ⇁ B and
g : B ⇁ C, define the composition h = g◦ f : A ⇁ C by

Dh = {(s, t) ∈ D f ×Dg : m f (s) = dg(t)}

The function dh : Dh → A given by composing the projection to D f with dd is in-
jective. The function mh : Dh →C is defined by the composition of the projection
to Dg and dg.
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7. Finite sets and relatives

The canonical n-element set is

Nn = {k ∈ N : k < n} ↪→ N.

Any set X isomorphic to such a set is called finite. It may be written

{x0, . . . ,xn−1}

where k 7→ xk : Nn → X is the isomorphism.

Since x j = xk iff j = k, we can always decide whether two elements of a
finite set are equal by comparison of indices.
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A related notion is more liberal:

A set X is called subfinite, or finitely enumerable, if there is, for some n ∈ N,
a surjection x : Nn → X .

Here we are only required to enumerate the elements, not tell them apart.

We can always tell whether a subfinite set is empty by checking if n = 0.

Remark. A subset of a finite set need not be finite, or even subfinite. Consider

{0 ∈ N1 : P}

where P is some undecided proposition.
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Some basic properties

Let X and Y be sets. Then:

(i) X finite ⇐⇒ X subfinite and discrete

(ii) X subfinite, f : X → Y surjective =⇒ Y subfinite

(iii) Y discrete, f : X → Y injective =⇒ X discrete

(iv) Y discrete, X ↪→ Y =⇒ X discrete

(v) Y finite, X ↪→ Y decidable =⇒ X finite.
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8. Quotients

Let X = (X ,=X) be a set and let ∼ be a relation on this set. Then by the
extensionality of the relation

x =X y =⇒ x ∼ y. (1)

Thus if ∼ is an equivalence relation on X

X/∼ = (X ,∼)

is a set, and q : X → X/∼ defined by q(x) = x is a surjective function.
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We have the following extension property. If f : X → Y is a function with

x ∼ y =⇒ f (x) =Y f (y), (2)

then there is a unique function f : X/∼→ Y (up to extensional equality) with

f (i(x)) =Y f (x) (x ∈ X).

We have constructed the quotient of X with respect to ∼: q : X → X/∼

Remark. Every set is a quotient of a choice set. Namely, X is the quotient of X
w.r.t. =X .

Proposition. A set is subfinite iff it is the quotient of a finite set.
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9. Universes and restricted powersets

A general problem with (or feature of) predicative theories like Martin-Löf
type theory is their inability to define a set of all subsets of a given set. It is,
though, often sufficient to consider certain restricted classes of subsets in a
certain situation.

A set-indexed family F = (F, I) of subsets of a given set X consists of an
index set I = (I,=I) and a subset Fi of X for each i : I, which are such that if
i =I j then Fi and Fj are equal as subsets of X .

A subset S of X belongs to the family F , written S ∈ F , if S = Fi (as subsets
of X ) for some i ∈ I.

44



Consider any family of types U = (T,U), where T i is a type for each i : U .
It represents a collection of sets, the U-sets, as follows.

First, a U-representation of a set is a pair r = (i0,e) where i0 : I and e :
T i0×T i0 →U is an operation so that

a =r b ⇔def T (e a b)

defines an equivalence relation on the type T i0. Then this is a set

r̂ = (T i0,=r).

A set X is U-representable, or simply a U-set, if it is in bijection with r̂ for
some U-representation r. The U-sets defines, in fact, a full subcategory of the
category of sets, equivalent to a small category.

Example For U = N and T n = Nn, the (N,N(−))-sets are the finite sets.

45



Restricted power sets

For any set X and any family of types U, define the family RU(X) of subsets
of X as follows.

• Its index set I consists of triples (r,m, p) where r is a U-representation,
m : r̂ → X is a function and p is a proof that m is injective.

• Two such triples (r,m, p) and (s,n,q) are equivalent, if (r̂,m) and (ŝ,n) are
equal as subsets.

• For index (r,m, p) ∈ I, the corresponsing subset of X is F(r,m,p) = (r̂,m).

Proposition A subset S = (∂S, ιS) of X belongs to RU(X) iff ∂S is a U-set.
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Unless U has some closure properties, RU(X) will not be closed under
usual set-theoretic operations. We review some common such properties below.
Suppose that U is a type-theoretic universe.

• If U is closed under Σ, then RU(X) is closed under binary ∩, and
S

i∈I
indexed by U-sets I.

• If U is closed under Π, then RU(X) is closed under
T

i∈I indexed by U-sets
I, and the binary set operation

(A ⇒ B) = {x ∈ X : x ∈ A ⇒ x ∈ B}.

• If U is closed under +, then RU(X) is closed under binary ∪.

• If U contains an empty type, then RU(X) contains /0.
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Standard Martin-Löf type universes U (see Martin-Löf 1984) satisfies indeed
the conditions above. Recall from Dybjer’s lecture how such universes are de-
fined:

N̂ : U T N̂ = N

N̂0 : U T N̂0 = N0

N̂1 : U T N̂1 = N1
(+̂) : U →U →U T (a+̂b) = T a+T b

Σ̂ : (a : U) → (T a →U) →U T (Σ̂ a b) = Σ (T a) (λx.T (bx))
Π̂ : (a : U) → (T a →U) →U T (Π̂ a b) = Π (T a) (λx.T (bx))

... ...
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10. Categories

We use a definition of category where no equality relation between objects
is assumed, as introduced in type theory by P. Aczel 1993, P. Dybjer and V.
Gaspes 1993. Such categories are adequate for developing large parts of ele-
mentary category theory inside type theory (Huet and Saibi 2000).

A small E-category C consists of a type Ob of objects (no equivalence rela-
tion between objects is assumed) and for all A,B : Ob there is a set Hom(A,B)
of morphisms from A to B. There is a identity morphism idA ∈ Hom(A,A) for
each A : Ob. There is a composition function ◦ : Hom(B,C)×Hom(A,B) →
Hom(A,C). These data satisfy the equations id ◦ f = f , g ◦ id = g and
f ◦ (g◦h) = ( f ◦g)◦h.

For a locally small E-category we allow Ob to be a sort.
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Example. The category of sets, Sets, has as objects sets. The set of functions
from A to B is denoted Hom(A,B). The category Sets is locally small, but not
small.

Example. The discrete category given by a set A = (A,=A). The objects of
the category are the elements of A. Define Hom(a,b) as the type (of proofs
of) a =A b. Any two elements of this type are considered equal. (The proofs
of reflexivity and transitivity provide id and ◦ respectively. Also the proof of
symmetry, gives that two objects a and b are isomorphic if, and only if, a =A b.)
Denote the discrete category by A#. This is a small category.
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Families of sets

Families of sets have more structure than in set theory.

A family F of sets indexed by a set I is a functor F : I# → Sets.

Explication:

For each element a of I, F(a) is a set.

For any proof object p : a =I b, F(p) is function from F(a) to F(b), a so-
called transporter function.

Moreover, since any two morphisms p and q from a to b in I# are identi-
fied, we have F(p) = F(q). The functoriality conditions thus degenerate to the
following:
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(a) F(p) = idF(a) for any p : a =I a.

(b) F(q)◦F(p) = F(r) for all p : a =I b, q : b =I c, r : a =I c.

Note that each F(p) is indeed an isomorphism, and that F(q) is the inverse of
F(p) as soon as p : a =I b and q : b =I a.

Remark. If each set in the family F is a subset of a fixed set X , i.e. ia : F(a) ↪→X
and so that ia ◦F(r) = ib for r : a =I b, then (F(a), ia) = (F(b), ib) as subsets
of X , if a =I b.

Remark. Families of sets are treated in essentially this way in (Bishop and
Bridges 1985, Exercise 3.2).
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Example. Let β : B → I be any function. Define for each a ∈ I a set

β−1(a) ≡ {u ∈ B : β(u) =I a},

the fiber of β over a. Then β−1 extends to a functor I# → Sets.

This example indicates another way of describing a families of sets indexed
by I: as the fibers of a function β : B → I. These are in turn precisely the objects
of the slice category Sets/I. We have the following equivalence of categories

Thm.
SetsI# ∼= Sets/I.
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Constructions:

Given β : B → I. Construct functor β−1 : I# → Sets. Define for r : a =I b a
function β−1(r) : β−1(a) → β−1(b) by

β−1(r)(u, p) = (u,kβ(u),a,b(r, p)).

Here ka,b,c is the proof object for b =I c → a =I b → a =I c,

For F ∈ SetsI#
, define B = (Σi ∈ I)F(i), where (a,x) =B (b,y) iff a =I b and

F(r)(x) =F(b) y and r : a =I b. Let βF : B → I be the first projection.
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11. Relation to categorical logic

Category theory provides an abstract way of defining the essential mathe-
matical proporties of sets, in terms of universal constructions.

An elementary topos is a category with properties similar to the sets, though
neither classical logic (discreteness of sets), or axioms of choice are assumed
among these properties.

C. McLarty: Elementary Categories, Elementary Toposes. Oxford University
Press 1992.

J. Lambek and P.J. Scott: Introduction to Higher-Order Categorical Logic. Cam-
bridge University Press 1986.
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Also predicative versions of toposes have been developed

I. Moerdijk and E. Palmgren: Type Theories, Toposes and Constructive Set
Theory, Annals of Pure and Applied Logic 114(2002).

The syntactical category of a type theory

Given is any type theory T including the constructions Σ, Π and + and
constants N0,N1. (This can be precised using a logical framework.)

Build a category ST of closed terms for sets and functions of T . In this
category the standard (Heyting-) algebraic method of interpreting logic can be
used.

We associate to any first order formula ϕ with free variables among x1 :
X1, . . . ,xn : Xn a subobject [[ϕ]]x1,...,xn of X1×·· ·×Xn in ST .
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Completeness Theorem. For any first-order formulas ϕ and ψ whose types
are in ST :

[[ϕ]]x1,...,xn ≤ [[ψ]]x1,...,xn in ST iff

`T (∀x1 : X1) · · ·(∀xn : Xn)(ϕ → ψ).
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