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Introduction

System F [Girard 1971]

`A theory of types' (Type:Type) [Martin-Löf 1971]

Inconsistency of system U [Girard 1971]
Inconsistency of Type:Types comes as a consequence

Inconsistency of System U− [Coquand 1991]

Simpli�cation of Girard's paradox (system U−) [Hurkens 1995]

Russell's paradox in systems U/U− [Miquel 2000]



System λ∗ (Type:Type) [Martin-Löf 71]

Terms

Contexts

M,N,T ,U ::= x | λx :T .M | MN | Type | Πx :T .U

Γ, ∆ ::= [] | Γ, x : T

` [] ctx
Γ ` T : Type
` Γ, x : T ctx x /∈Dom(Γ)

` Γ ctx
Γ ` x : T (x :T )∈Γ

` Γ ctx
Γ ` Type : Type

Γ, x : T ` U : Type
Γ ` Πx :T .U : Type

Γ, x : T ` M : U
Γ ` λx :T .M : Πx :T .U

Γ ` M : Πx :T .U Γ ` N : T
Γ ` MN : U{x := N}

Γ ` M : T Γ ` T ′ : Type
Γ ` M : T ′ T′≈T

Computationally correct: Church-Rosser, subject reduction
Logically inconsistent: closed term of type ⊥ ≡ ΠX :Type .X
Non (weakly) normalising, since:

Fact: Closed terms of type ⊥ ≡ ΠX :Type .X have no head normal form
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Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

1 Typing relation and membership relation have not the same status

Typing belongs to the meta-language
⇒ Precondition for an expression to be well-formed
Membership is a relation of the language
⇒ Can be used to form propositions (may be negated)

2 No comprehension scheme in Type:Type
⇒ Cannot form a type of the form {x : T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

No cycle in the sorts (Prop : Type : Kind)...
... but two levels of impredicativity (Prop and Type)
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Systems U and U−

Kind
Π

??

??
??

??
??

?

∀

Type →

∀
???

??
??

??
??

?

Type

Prop ⇒ Prop

U− = copy of F glued on top of Fω

U = system U− + (Kind,Prop)-quanti�cation

Kind = sort for kinds
Type = sort for constructors
Prop = sort for proof-terms

Both Type and Prop are impredicative

Higher-level is isomorphic to F :
Type inference/checking is decidable

S = {Prop, Type,Kind}
A = {(Prop : Type), (Type : Kind)}
R = {(Prop : Prop), (Type : Prop), (Type,Type), (Kind,Type)| {z }

system U−
, (Kind,Prop)| {z }

U only
}



From system Fω

... to system U−U

S = Prop, Type

, Kind

A = Prop : Type

, Type : Kind

R = (Prop,Prop), (Type,Prop), (Type,Type)

, (Kind,Type), (Kind,Prop)

Kinds τ, σ ::= Prop

| α

| τ → σ (Type, Type)

| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
| λx : τ .M | MN (Type, Type)

| Λα .M | Mτ (Kind, Type)

| M ⇒ N (Prop, Prop)

| ∀x : τ .M (Type, Prop)

| ∀α :Type .M (Kind, Prop)

Proof-terms t, u ::= ξ
| λξ :M . t | tu (Prop, Prop)

| λx : τ . t | tM (Type, Prop)

| λα :Type . t | tτ (Kind, Prop)
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From system Fω... to system U−

U
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From system Fω... to system

U−

U
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Examples

(Kind,Type) Πα :Type . .. Polymorphism in data types
(Type : Prop) ∀x : τ . .. Quanti�cation over all objects (of a given type)
(Kind,Prop) ∀α :Type . .. Quanti�cation over all types

Nat := Πα :Type . (α→ (α→α)→ α) : Type

id := λα :Type . λx :α . x : Πα :Type . (α→ α)

x =α y := ∀p : (α→Prop) . (p x ⇒ p y) : Prop

∀α :Type . ∀x :α . id α x =α x : Prop

λα :Type . λx :α . λp : (α→Prop) . λξ : p x . ξ : ...
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Hurkens' paradox in system U−

For any kind τ : Type write: P(τ) := τ → Prop

⊥ : Prop := ∀a :Prop . a
¬ : Prop→ Prop := λa :Prop . a⇒ ⊥

U : Type := Πα :Type .
“`

P(P(α)) → α
´
→ P(P(α))

”
i : P(P(U)) → U := λq : P(P(U)) . λα :Type . λf :

`
P(P(α)) → α

´
.

λp : P(α) . q (λx : U . p (f (x α f )))
j : U → P(P(U)) := λx : U . x U i
Q : P(P(U)) := λp : P(U) . ∀x : U . (j x p ⇒ p x)
C : P(U) := λy : U . ¬∀p : P(U) .

`
j y p ⇒ p (i (j y))

´
B : U := i Q
lem1 : Q C := λx :U . λξjxC . λζ∀p : P(U) . (jxp⇒p(i(jx))) .

ζ C ξ
`
λp : P(U) . ζ (λy : U . p (i (j y)))

´
A : Prop := ∀p : P(U) . (Q p ⇒ p B)

lem2 : ¬A := λξA . ξ C lem1
`
λp : P(U) . ξ (λy : U . p (i (j y)))

´
lem3 : A := λp : P(U) . λξQp . ξ B (λx : U . ξ (i (j x)))
paradox : ⊥ := lem2 lem3
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Encoding sets as pointed graphs

Pointed graph = triple (X ,A, a) where
X : Type the type of vertices
A : X → X → Prop the (local) membership relation
a : X the root

A(x , y) is represented by •x ← •y , and the root a by •a

0 = ∅ 1 = {0} 2 = {0; 1} 3 = {0; 1; 2} 4 = {0; 1; 2; 3}
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Identifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {∅; {∅}}

no sharing (tree) with sharing duplicate elements unreachable parts

+ Problems related to (possible) non well-foundedness
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Extensional equality as bisimilarity

R : X→Y→Prop bisimulation between (X ,A, a) and (Y ,B, b) if:

1 ∀x , x ′:X ∀y :Y
“
A(x ′, x) ∧ R(x , y) ⇒ ∃y ′:Y

`
R(x ′, y ′) ∧ B(y ′, y)

´”
2 ∀x :X ∀y , y ′:Y

“
B(y ′, y) ∧ R(x , y) ⇒ ∃x ′:X

`
R(x ′, y ′) ∧ A(x ′, x)

´”
3 R(a, b)

(1)

x

x’

y

y’

(2)

x

x’

y

y’

(X ,A, a) ≈ (Y ,B, b) ≡ ∃R : X→Y→Prop bisimulation
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Membership as shifted bisimilarity

(X ,A, a) ∈ (Y ,B, b) ≡ ∃b′ : Y
(
(X ,A, a) ≈ (Y ,B, b′) ∧ B(b′, b)

)
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b’

b
Compatibility of ∈ w.r.t ≈

G1 ≈ G2 ∧ G2 ∈ G3 ⇒ G1 ∈ G3

G1 ∈ G2 ∧ G2 ≈ G3 ⇒ G1 ∈ G3

Extensionality of ≈ w.r.t. ∈

∀G (G ∈ G1 ⇔ G ∈ G2) ⇒ G1 ≈ G2
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Non well-founded sets

represents a set x such that x = {x}

represents a set y such that y = {z} and z = {y} for some z

Since there is a bisimulation, we have

x = y = z = {x} = {y} = {z}

Sets as pointed graphs + Equality as a bisimulation

⇒ Interprets the Anti-Foundation Axiom (AFA) [P. Aczel]
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The universal type for representing pointed graphs

Let U :=
(
ΠT : Type . (T→T→Prop)→ T → Prop

)
→ Prop

and i : ΠX :Type . (X→X→Prop)→ X → U
:= λX ,A, a . λf . f X A a

Higher-level impredicativity (Kind,Type) ensures that U : Type

The map i is an embedding of pointed graphs into U

i(X ,A, a) = i(Y ,B, b) ⇒ (X ,A, a) ≈ (Y ,B, b)

The map i is not surjective:

r : U = λf .⊥ is outside the codomain of i
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Translating equivalence and membership on U

u ≈ v := ∃X ,A, a ∃Y ,B, b`
u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ≈ (Y ,B, b)

´
u ∈ v := ∃X ,A, a ∃Y ,B, b`

u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ∈ (Y ,B, b)
´

set(u) := ∃X ,A, a u = i(X ,A, a) (≡ codomain of i)

≈ (on U) is now a partial equivalence relation

Relations ≈ and ∈ are de�ned on elements u : U s.t. set(u)

Other properties of ≈ and ∈ are kept (compatibility, extensionality)

Exists some object r : U such that ¬set(r)
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The unbounded comprehension scheme

Let P : U → Prop be a predicate over objects of type U

We assume P extensional: ∀u, u′ :U . (P(u) ∧ u ≈ u′ ⇒ P(u′))

r

set

U

1 Connect r to all • s.t. P(•)

2 Let RP = {→} ∪ {→}

3 Re�ect (U,RP , r) into U, setting
fold(P) = i(U,RP , r) (≡ •)

⇒ Relies on the embedding property

(X ,A, a) ≈
(
U,∈, i(X ,A, a)

)
Fact (Unbounded comprehension)

∀u :U . (u ∈ i(U,RP , r) ⇔ P(u)) (if P is extensional)
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Cantor-Frege's set theory in systems U/U−

Type U + two relations ≈ and ∈

∈ is compatible w.r.t. ≈
≈ is extensional w.r.t. ∈
The unbounded comprehension scheme is derivable

⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U−

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(λx . x /∈ x). . .

Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind,Prop)-quanti�cation, thus restricting to system U−
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Why is system U− inconsistent?

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
| λx : τ .M | MN

λx : τ .M | MNλx .M | MN

(Type, Type)
| Λα .M | Mτ

Λα .M | Mτ

(Kind, Type)
| M ⇒ N (Prop, Prop)

| ∀x : τ .M

∀x : τ .M

(Type, Prop)

Proof-terms t, u ::= ξ
| λx :M . t | tu

λx :M . t | tuλx . t | tu

(Prop, Prop)

| λx : τ . t | tM

λx : τ . t | tM

(Type, Prop)

(Type,Prop)-abstraction/application can be erased

We can erase Λα .M + Mτ + type in λx : τ .M...
... but makes no sense to remove τ in ∀x : τ .M

Would identify propositions ∀x , y :Unit . x = y with ∀x , y :Bool . x = y

⇒ (Kind,Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection
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