Inconsistent Type Systems

Alexandre Miquel — PPS & U. Paris 7

Alexandre.Miquel@pps.jussieu.fr

Types Summer School 2005
August 15-26 — Goteborg

Introduction

System F [Girard 1971]

‘A theory of types’ (Type:Type) [Martin-L6f 1971]

Inconsistency of system U [Girard 1971]

Inconsistency of Type:Types comes as a consequence
@ Inconsistency of System U~ [Coquand 1991]

e Simplification of Girard’s paradox (system U~) [Hurkens 1995]

Russell's paradox in systems U/U~ [Miquel 2000]

System A« (Type:Type) [Martin-Lof 71]

Terms M,N, T, U == x | Mx:T.M | MN | Type | MNx:T.U
mn1rx:T

Contexts rA

System A« (Type:Type) [Martin-Lof 71]

Terms M,N, T, U == x | Mx:T.M | MN | Type | MNx:T.U
Contexts LA == [| ILx:T
Fr=T:T
e x¢Dom(IN)
=[] etx FT,ox: T ctx
T ctx e F T ctx I, x: THU:Type
Fr=x:T ' I = Type : Type FETMx:T.U: Type
N x:TEM:U r’EM:Nx:T.U r=EN:T
FEX:T.M:Nx:T.U e MN : U{x := N}

r=EM: T I T : Type
r=M: T’

T =~

System A« (Type:Type) [Martin-Lof 71]

Terms M,N, T, U == x | Mx:T.M | MN | Type | MNx:T.U
Contexts LA == [| ILx:T
Fr=T:T
e x¢Dom(IN)
=[] etx FT,ox: T ctx
T ctx e F T ctx I, x: THU:Type
Fr=x:T ' I = Type : Type FETMx:T.U: Type
N x:TEM:U r’EM:Nx:T.U r=EN:T
FEX:T.M:Nx:T.U e MN : U{x := N}

r=EM: T I T : Type
r=M: T’

T ~

@ Computationally correct: Church-Rosser, subject reduction

System A« (Type:Type) [Martin-Lof 71]

Terms M,N, T, U == x | Mx:T.M | MN | Type | MNx:T.U
Contexts LA == [| ILx:T
Fr=T:T
e x¢Dom(IN)
=[] etx FT,ox: T ctx
T ctx e F T ctx I, x: THU:Type
Fr=x:T ' I = Type : Type FETMx:T.U: Type
N x:TEM:U r’EM:Nx:T.U r=EN:T
FEX:T.M:Nx:T.U e MN : U{x := N}

r=EM: T I T : Type
r=M: T’

T'=T

@ Computationally correct: Church-Rosser, subject reduction
o Logically inconsistent: closed term of type L =X :Type. X

System A« (Type:Type) [Martin-Lof 71]

Terms M,N, T, U == x | Mx:T.M | MN | Type | MNx:T.U
Contexts LA == [| ILx:T
Fr=T:T
e x¢Dom(IN)
=[] etx FT,ox: T ctx
T ctx e F T ctx I, x: THU:Type
Fr=x:T ' I = Type : Type FETMx:T.U: Type
N x:TEM:U r’EM:Nx:T.U r=EN:T
FEX:T.M:Nx:T.U e MN : U{x := N}

r=EM: T I T : Type
r=M: T’

T ~

@ Computationally correct: Church-Rosser, subject reduction
o Logically inconsistent: closed term of type L =X :Type. X

@ Non (weakly) normalising, since:

Fact: Closed terms of type | =TX:Type.X have no head normal form

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

© Typing relation and membership relation have not the same status

o Typing belongs to the meta-language
= Precondition for an expression to be well-formed

o Membership is a relation of the language
= Can be used to form propositions (may be negated)

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

© Typing relation and membership relation have not the same status

o Typing belongs to the meta-language
= Precondition for an expression to be well-formed

o Membership is a relation of the language
= Can be used to form propositions (may be negated)

© No comprehension scheme in Type: Type
= Cannot form a type of the form {x: T | P(x)}

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

© Typing relation and membership relation have not the same status

o Typing belongs to the meta-language
= Precondition for an expression to be well-formed

o Membership is a relation of the language
= Can be used to form propositions (may be negated)

© No comprehension scheme in Type: Type
= Cannot form a type of the form {x: T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

© Typing relation and membership relation have not the same status
o Typing belongs to the meta-language
= Precondition for an expression to be well-formed

o Membership is a relation of the language
= Can be used to form propositions (may be negated)

© No comprehension scheme in Type: Type
= Cannot form a type of the form {x: T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

No cycle in the sorts (Prop : Type : Kind)...
... but two levels of impredicativity (Prop and Type)

Systems U and U~

Kind U~ = copy of F glued on top of Fw
N U = system U~ + (Kind, Prop)-quantification

@ Kind = sort for kinds

Type H Type @ Type = sort for constructors
\v @ Prop = sort for proof-terms
\ Both Type and Prop are impredicative
Prop — Prop
Higher-level is isomorphic to F:
Type inference/checking is decidable
S = {Prop, Type,Kind}
A = {(Prop: Type), (Type : Kind)}
R = {(Prop: Prop), (Type: Prop), (Type, Type), (Kind, Type), (Kind,Prop)}
————

system U— U only

From system Fw

S Prop,

A = Prop: Type
R = (Prop, Prop),
Kinds

Constructors

Proof-terms

Type

(Type, Prop),

T, 0 =

M,N =

;"‘
IS
|

(Type, Type)

Prop
T—0

Mx:Tt.M | MN

M= N
Vx:17. M

MMt | tu
Ax:T.t | tM

(Type, Type)

(Type, Type)

(Prop, Prop)
(Type, Prop)

(Prop, Prop)
(Type, Prop)

From system Fw...

S Prop,

A = Prop: Type,
R = (Prop, Prop),
Kinds

Constructors

Proof-terms

Type,
Type : Kind
(Type, Prop),

T,0 u=
\

M,N =

;"‘
IS
|

Kind

(Type, Type)

Prop
T—0

| «

Mx:Tt.M | MN

M= N
Vx:17. M

MMt | tu
Ax:T.t | tM

(Type, Type)

(Type, Type)

(Prop, Prop)
(Type, Prop)

(Prop, Prop)
(Type, Prop)

From system Fw...

(Type, Prop),

S = Prop, Type,

A = Prop: Type, Type:Kind
R = (Prop, Prop),

Kinds T, O
Constructors M, N
Proof-terms t,u

Kind

(Type, Type),

Prop |
T—o0

Mo Type. T

3
Ax:1. M

Ao M
M= N
Vx:17. M

3
XM .t
AX:T.t

to system U~

(%

MN
Mt

tu
tM

(Kind, Type)

(Type, Type)
(Kind, Type)

(Type, Type)
(Kind, Type)
(Prop, Prop)
(Type, Prop)

(Prop, Prop)
(Type, Prop)

From system Fw... to system U

S = Prop, Type, Kind
A = Prop:Type, Type: Kind
R = (Prop,Prop), (Type,Prop), (Type, Type), (Kind, Type),
Kinds 7,0 == Prop e
| T—0o (Type, Type)
‘ Mo Type . T (Kind, Type)
Constructors M,N == ¢
‘ Ax:1. M | MN (Type, Type)
‘ Ao M | Mt (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:17. M (Type, Prop)
Proof-terms t,u ¢
)\gi M.t | tu (Prop, Prop)

AX:T.t | tM (Type, Prop)

Examples

(Kind, Type) Ma:Type... Polymorphism in data types
(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types

Examples

(Kind, Type) Ma:Type... Polymorphism in data types
(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types

Nat := Tla:Type.(a — (a—a) —«a) : Type

Examples

(Kind, Type) Ma:Type... Polymorphism in data types

(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types

Nat := Tla:Type.(a — (a—a) —«a) : Type

id = Ja:Type.dAx:a.x : [Na:Type. (e — «)

Examples

(Kind, Type) Ma:Type... Polymorphism in data types
(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types

Nat := Tla:Type.(a — (a—a) —«a) : Type
id = Ja:Type.dAx:a.x : [Na:Type. (e — «)

X =y = Vp:(a—Prop). (px=py) : Prop

Examples

(Kind, Type) Ma:Type... Polymorphism in data types

(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types

Nat := Tla:Type.(a — (a—a) —«a) : Type

id = Ja:Type.dAx:a.x : [Na:Type. (e — «)

X =0y = Vp:(a—Prop). (px=py) : Prop

Vx:oo. ddax =, x : Prop

Examples

(Kind, Type) Ma:Type... Polymorphism in data types
(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types
Nat := Tla:Type.(a — (a—a) —«a) : Type
id = Ja:Type.dAx:a.x : [Na:Type. (e — «)
X =0y = Vp:(a—Prop). (px=py) : Prop
Vx:oo. ddax =, x : Prop

MAx:a. Ap:(a—Prop). X :px.&

Hurkens' paradox in system U~

For any kind 7 : Type write:

€L

-

U

Iemz

lems

: Prop
: Prop — Prop

: Type

P(P(U)) - U

U — P(P(V))
: PR(L))

- PU)

:U

:QC

: Prop

A

paradox : L

Br) =
Va:Prop.a
Aa:Prop.a= L

Mo : Type. ((POR(@)) — @) — B(P(a)))

Aq: P(P(V)) Ao Type A : (F(P() = a)
Ap:P(a). g (Ax:U.p (f (x a f)))

Mx:U. xUi

Ap:PU). Vx:U.(jxp=px)

Ay:U. ~Vp:BU).(Jyp=p(i(y)

iQ

Ax: U AERC AP B(U) - (kp=p(i(ix))) |
¢CE(Mp:BU).COy:U.p (i ()

Vp:P(U). (@ p=>p B)

AEA € Clemi (Ap:P(U).€ Ay U.p (i (y))))

Ap:P(U). AP £ B (Ax:U.€ (i (j x)))

lemy lems

7 — Prop

Encoding sets as pointed graphs

Pointed graph = triple (X, A, a) where
o X : Type the type of vertices
@ A: X — X — Prop the (local) membership relation

e a: X the root

Encoding sets as pointed graphs

Pointed graph = triple (X, A, a) where
o X : Type the type of vertices
@ A: X — X — Prop the (local) membership relation
@ a: X the root

A(x,y) is represented by e, < e,, and the root a by e,

Encoding sets as pointed graphs

Pointed graph = triple (X, A, a) where
o X : Type the type of vertices
@ A: X — X — Prop the (local) membership relation
@ a: X the root

A(x,y) is represented by e, < e,, and the root a by e,

0=w2 | 1={0} | 2={0;1} | 3={0;1;2} | 4={0;1;2;3}

.

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

no sharing (tree)

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

no sharing (tree) with sharing

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

no sharing (tree) with sharing duplicate elements

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

S SN

no sharing (tree) with sharing duplicate elements unreachable parts

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

S SN

no sharing (tree) with sharing duplicate elements unreachable parts

+ Problems related to (possible) non well-foundedness

Extensional equality as bisimilarity

R : X—Y—Prop bisimulation between (X,A,a) and (Y,B,b) if:

Q@ Vx,xX'X VyY (A(x’,x)/\R(X,y) = Iy (R(x/,y’)/\B(y’,y))>
Q@ VxX Vy,y:Y (B(y’,y)/\R(x,y) = Ix:X (R(X’,y’)/\A(X’,x)))
Q R(ab)

(1) i{i (2) .

A

Extensional equality as bisimilarity

R : X—Y—Prop bisimulation between (X,A,a) and (Y,B,b) if:

Q@ Vx,xX'X VyY (A(x’,x)/\R(X,y) = Iy (R(x/,y’)/\B(y’,y))>
Q@ VxX Vy,y:Y (B(y’,y)/\R(x,y) = Ix:X (R(X’,y’)/\A(X’,x)))
Q R(ab)

(1) i{i (2) Y

™ “A

(X,A,a)~ (Y,B,b) = 3R:X—Y—Prop bisimulation

(X,A,a) e (Y,B,b) =

I Y ((X,Aa)~(Y,B,b) A B(b,b))

«O» «Fr (= « = = Qe

v

Membership as shifted bisimilarity

(X,Aa)e(Y.B,b) = 3b:Y ((X,Aa)~(Y,B,b) A B(b,b))

Membership as shifted bisimilarity

(X,A,a) e (Y.B.b) = 3b:Y ((X,Aa)=(Y,B,b) A B(b,b))

o Compatibility of € w.rt =
Gi~Gy N Gz €G3 = G: € G3
Gie G A GQRG3 = G1€G3

Membership as shifted bisimilarity

(X,A,a) e (Y.B.b) = 3b:Y ((X,Aa)=(Y,B,b) A B(b,b))

o Compatibility of € w.rt =
Gi~Gy N Gz €G3 = G: € G3
Gie G A Gz%G3 = G1€G3

o Extensionality of ~ w.rt. €

VG (GeGL & GeG) = Gi=G

El represents a set x such that x = {x}

«Or «Fr o4 = A

Non well-founded sets

EI represents a set x such that x = {x}
@ represents a set y such that y = {z} and z = {y} for some z

Non well-founded sets

@ represents a set x such that x = {x}
@ represents a set y such that y = {z} and z = {y} for some z

Since there is a bisimulation, we have ﬂ
A

x—y—z={x) =y} = {2} (o]

Non well-founded sets

@ represents a set x such that x = {x}
@ represents a set y such that y = {z} and z = {y} for some z

Since there is a bisimulation, we have ﬂ
A

x—y—z={x) =y} = {2} (o]

Sets as pointed graphs + Equality as a bisimulation

= Interprets the Anti-Foundation Axiom (AFA) [P. Aczel]

The universal type for representing pointed graphs

The universal type for representing pointed graphs

Let U = (m.(-r—)T—ﬂDrop) ST Prop) — Prop

and i : MX:Type.(X—=X—Prop) = X = U
MX,A;a. M. f X Aa

The universal type for representing pointed graphs

Let U = (m.(-r—)T—ﬂDrop) ST Prop) — Prop

and i : MX:Type.(X—=X—Prop) = X = U
MX,A;a. M. f X Aa

@ Higher-level impredicativity (Kind, Type) ensures that U : Type

The universal type for representing pointed graphs

Let U = (N7 :Type.(T—T—Prop) — T — Prop) — Prop

and i : MX:Type.(X—=X—Prop) = X = U
= M,Aa. M .fXAa

@ Higher-level impredicativity (Kind, Type) ensures that U : Type

@ The map i is an embedding of pointed graphs into U

i(X,A,a)=i(Y,B,b) = (X,Aa) ~ (Y,B,b)

The universal type for representing pointed graphs

Let U = (m.(rﬁrﬁmp) ST Prop) — Prop

and i : MX:Type.(X—=X—Prop) = X = U
MX,A;a. M. f X Aa

@ Higher-level impredicativity (Kind, Type) ensures that U : Type

@ The map i is an embedding of pointed graphs into U

i(X,A,a)=i(Y,B,b) = (X,Aa) ~ (Y,B,b)

@ The map i is not surjective:

r:U = M .L isoutside the codomain of i

Translating equivalence and membership on U

b
A v=i(Y,B,b) A (X,A a)=~(Y,B,b))

, b
u=i(X,Aa) A v=i(Y,B,b) A (X,Aa) € (Y,B,b))

Translating equivalence and membership on U

b
A v=i(Y,B,b) A (X,A a)=~(Y,B,b))

, b
u=i(X,Aa) A v=i(Y,B,b) A (X,Aa) € (Y,B,b))

set(u) = 3IX,Aa u=1i(X,A,a) (= codomain of i)

Translating equivalence and membership on U

ux~v = 3X,Aa 3Y,B,b

(u=i(X,Aa) A v=1i(Y,B,b) A (X,A a)~(Y,B,b))
ucyv IX,A,a 3Y,B,b

(u=i(X,Aa) A v=i(Y,B,b) A (X,A a) € (Y,B,b))
set(u) = 3IX,Aa u=1i(X,A,a) (= codomain of i)

@ =~ (on U) is now a partial equivalence relation

Translating equivalence and membership on U

b

A v=i(Y,B,b) A (X,Aa)~ (Y,B,b))
, b

u=i(X,Aa) A v=i(Y,B,b) A (X,A a) e (Y,B,b))
set(u) = 3IX,Aa u=1i(X,A,a) (= codomain of i)

@ =~ (on U) is now a partial equivalence relation

o Relations ~ and € are defined on elements v: U s.t. set(u)

Translating equivalence and membership on U

ux~v = 3IX,Aa 3Y,B,b

(u=i(X,A,a) A v=i(Y,B,b) A (X,Aa)~(Y,B,b))
ucyv IX,A,a 3Y,B,b

(u=i(X,A,a) A v=i(Y,B,b) A (X,A,a) € (Y,B,b))

set(u) = 3IX,Aa u=1i(X,A,a) (= codomain of i)

@ ~ (on U) is now a partial equivalence relation
o Relations ~ and € are defined on elements v: U s.t. set(u)

o Other properties of =~ and € are kept (compatibility, extensionality)

Translating equivalence and membership on U

ux~v = 3IX,Aa 3Y,B,b

(u=i(X,A,a) A v=i(Y,B,b) A (X,Aa)~(Y,B,b))
vev = 3IX,A,a 3Y,B,b

(u=i(X,A,a) A v=i(Y,B,b) A (X,A,a) € (Y,B,b))

set(u) = 3IX,Aa u=1i(X,A,a) (= codomain of i)

@ ~ (on U) is now a partial equivalence relation
o Relations ~ and € are defined on elements v: U s.t. set(u)
o Other properties of =~ and € are kept (compatibility, extensionality)

o Exists some object r : U such that —set(r)

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,uv’:U.(P(u)Au=u = P(u'))

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,uv’:U.(P(u)Au=u = P(u'))

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,uv’:U.(P(u)Au=u = P(u'))

© Connect r to all e s.t. P(e)

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,uv’:U.(P(u)Au=u = P(u'))

© Connect r to all e s.t. P(e)

Q Let Rp = {—=}U{—>}

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,u’:U.(P(u) Au=u = P(u'))

© Connect r to all e s.t. P(e)
Q Let Rp = {—}U{—}

@ Reflect (U, Rp, r) into U, setting
fold(P) = i(U,Rp,r) (=)

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,u’:U.(P(u) Au=u = P(u'))

© Connect r to all e s.t. P(e)
Q Let Rp = {—}U{—}

@ Reflect (U, Rp, r) into U, setting
fold(P) = i(U,Rp,r) (=)

= Relies on the embedding property

(X,A,8) ~ (U, €,i(X, A, a))

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,u’:U.(P(u) Au=u = P(u'))

© Connect r to all e s.t. P(e)
Q Let Rp = {—}U{—}

@ Reflect (U, Rp, r) into U, setting
fold(P) = i(U,Rp,r) (=)

= Relies on the embedding property

(X,A,8) ~ (U, €,i(X, A, a))

Fact (Unbounded comprehension)
Vu:U.(u€i(URp,r) < P(u)) (if P is extensional)

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =

@ = is extensional w.r.t. €

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =
@ = is extensional w.r.t. €

@ The unbounded comprehension scheme is derivable

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =
@ = is extensional w.r.t. €

@ The unbounded comprehension scheme is derivable

= An embedding of Cantor-Frege's (insonsistent) set theory into U/U~

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =
@ = is extensional w.r.t. €

@ The unbounded comprehension scheme is derivable

= An embedding of Cantor-Frege's (insonsistent) set theory into U/U~

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =
@ = is extensional w.r.t. €
@ The unbounded comprehension scheme is derivable

= An embedding of Cantor-Frege's (insonsistent) set theory into U/U~
All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(Ax.x ¢ x). ..

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =
@ = is extensional w.r.t. €

@ The unbounded comprehension scheme is derivable

= An embedding of Cantor-Frege's (insonsistent) set theory into U/U~
All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(Ax.x ¢ x). ..
Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind, Prop)-quantification, thus restricting to system U~

Why is system U~ inconsistent?

Kinds

Constructors

Proof-terms

M, N

Prop |

T —0

Ma: Type. T

13
Ax:T. M
Ao M
M= N
Vx:17.M

13
Ax: M.t

Ax:T.t

«

MN
Mt

tu
tM

(Type, Type)
(Kind, Type)

(Type, Type)
(Kind, Type)
(Prop, Prop)
(Type, Prop)

(Prop, Prop)
(Type, Prop)

Why is system U~ inconsistent?

Kinds

Constructors

Proof-terms

M, N

Prop |

T —0

Ma: Type. T

13
Ax:T. M
Ao M
M= N
Vx:17.M

13
Ax: M.t

Ax:T.t

«

MN
Mt

tu
tM

(Type, Type)
(Kind, Type)

(Type, Type)
(Kind, Type)
(Prop, Prop)
(Type, Prop)

(Prop, Prop)
(Type, Prop)

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax:t. M | MN (Type, Type)
‘ Ao M ‘ M (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:t. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax.t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction /application can be erased

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax:T7. M | MN (Type, Type)
‘ Ao M ‘ Mt (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:7. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax .t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction/application can be erased

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax. M | MN (Type, Type)
‘ (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:7. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax.t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction /application can be erased

o Wecanerase Aa.M + M7t 4+ typein Ix:7.M..

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax. M | MN (Type, Type)
‘ (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:7. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax.t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction /application can be erased

o Wecanerase Aa.M 4+ M7 + typein Ax:7.M..
... but makes no sense to remove 7 in Vx:7.M

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax. M | MN (Type, Type)
‘ (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:7. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax.t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction /application can be erased

o Wecanerase Aa.M 4+ M7 + typein Ax:7.M..
... but makes no sense to remove 7 in Vx:7.M
Would identify propositions Vx,y:Unit.x =y with Vx,y:Bool.x=y

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax. M | MN (Type, Type)
‘ (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:7. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax.t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction /application can be erased

o Wecanerase Aa.M 4+ M7 + typein Ax:7.M..
... but makes no sense to remove 7 in Vx:7.M
Would identify propositions Vx,y:Unit.x =y with Vx,y:Bool.x=y

= (Kind, Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

