Inconsistent Type Systems

Alexandre Miquel — PPS & U. Paris 7 Alexandre .Miquel@pps.jussieu.fr

Types Summer School 2005 August 15–26 — Göteborg

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction

- System *F* [Girard 1971]
- 'A theory of types' (Type:Type) [Martin-Löf 1971]
- Inconsistency of system U [Girard 1971]
 Inconsistency of Type: Types comes as a consequence
- Inconsistency of System U^- [Coquand 1991]
- Simplification of Girard's paradox (system U^-) [Hurkens 1995]
- Russell's paradox in systems U/U^- [Miquel 2000]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Terms	M, N, T, U	::=	x	$\lambda x:T.M$	MN	Туре	П <i>х</i> : Т. U
Contexts	Γ, Δ	::=	[]	Γ, <i>x</i> : <i>T</i>			

Terms M, N, T, U ::= $x \mid \lambda x : T \cdot M \mid MN \mid$ Type $\mid \Pi x : T \cdot U$
Contexts $\Gamma, \Delta ::= [] \Gamma, x : T$
$\frac{\Gamma \vdash T : Type}{\vdash \Gamma, \ x : T \ ctx} x \notin Dom(\Gamma)$
$\frac{\vdash \Gamma \operatorname{ctx}}{\Gamma \vdash x : T} (\mathbf{x}: \tau) \in \Gamma \qquad \qquad \frac{\vdash \Gamma \operatorname{ctx}}{\Gamma \vdash \operatorname{Type} : \operatorname{Type}} \qquad \qquad \frac{\Gamma, \ x: T \vdash U : \operatorname{Type}}{\Gamma \vdash \Pi x : T \cdot U : \operatorname{Type}}$
$\frac{\Gamma, x: T \vdash M: U}{\Gamma \vdash \lambda x: T \cdot M: \Pi x: T \cdot U} \qquad \frac{\Gamma \vdash M: \Pi x: T \cdot U \Gamma \vdash N: T}{\Gamma \vdash MN: U\{x := N\}}$
$\frac{\Gamma \vdash M : T \qquad \Gamma \vdash T' : Type}{\Gamma \vdash M : T'} \tau' \approx \tau$

TermsM, N, T, U::= $x : T \cdot M$ MNType $\Pi x : T \cdot U$ Contexts Γ, Δ ::=[] $\Gamma, x : T$ $\vdash []$ ctx $\frac{\Gamma \vdash T : Type}{\vdash \Gamma, x : T ctx}$ $x \notin Dom(\Gamma)$ $\vdash []$ ctx $\frac{\Gamma \vdash Ctx}{\Gamma \vdash x : T}$ $\frac{r \vdash Ctx}{\Gamma \vdash Type}$ $\frac{\Gamma, x : T \vdash U : Type}{\Gamma \vdash \Pi x : T \cdot U : Type}$ $\frac{\Gamma, x : T \vdash M : U}{\Gamma \vdash \lambda x : T \cdot M : \Pi x : T \cdot U}$ $\frac{\Gamma \vdash M : \Pi x : T \cdot U : \Gamma \vdash N : T}{\Gamma \vdash MN : U\{x := N\}}$ $\frac{\Gamma \vdash M : T : \Gamma \vdash T' : Type}{\Gamma \vdash M : T'}$ $\tau' \approx \tau$

Computationally correct: Church-Rosser, subject reduction

Terms $M, N, T, U ::= x | \lambda x : T \cdot M | MN |$ Type | $\Pi x : T \cdot U$ Contexts $\Gamma, \Delta ::= [] | \Gamma, x : T$ $\frac{\Gamma \vdash T : \text{Type}}{\vdash [] \text{ ctx}} \xrightarrow{\Gamma \vdash T : \text{Type}}_{\vdash \Gamma, x : T \text{ ctx}} x \notin \text{Dom}(\Gamma)$ $\frac{\vdash \Gamma \text{ ctx}}{\Gamma \vdash x : T} (x:T) \in \Gamma \qquad \frac{\vdash \Gamma \text{ ctx}}{\Gamma \vdash \text{ Type}} \xrightarrow{\Gamma, x : T \vdash U : \text{ Type}}_{\Gamma \vdash \Pi x : T \cdot U : \text{ Type}}$ $\frac{\Gamma, x : T \vdash M : U}{\Gamma \vdash \lambda x : T \cdot M : \Pi x : T \cdot U} \qquad \frac{\Gamma \vdash M : \Pi x : T \cdot U : \Gamma \text{ type}}{\Gamma \vdash M N : U \{x := N\}}$ $\frac{\Gamma \vdash M : T \qquad \Gamma \vdash T' : \text{ Type}}{\Gamma \vdash M : T'} \quad \tau' \approx \tau$

- Computationally correct: Church-Rosser, subject reduction
- Logically inconsistent: closed term of type $\perp \equiv \Pi X$: Type. X

Terms $M, N, T, U ::= x | \lambda x : T \cdot M | MN |$ Type | $\Pi x : T \cdot U$ Contexts $\Gamma, \Delta ::= [] | \Gamma, x : T$ $\frac{\Gamma \vdash T : \text{Type}}{\vdash [] \text{ ctx}} \xrightarrow{\Gamma \vdash T : \text{Type}}_{\vdash \Gamma, x : T \text{ ctx}} x \notin \text{Dom}(\Gamma)$ $\frac{\vdash \Gamma \text{ ctx}}{\Gamma \vdash x : T} \xrightarrow{(x:T) \in \Gamma} \frac{\vdash \Gamma \text{ ctx}}{\Gamma \vdash \text{Type} : \text{Type}} \xrightarrow{\Gamma, x : T \vdash U : \text{Type}}_{\Gamma \vdash \Pi x : T \cdot U : \text{Type}}$ $\frac{\Gamma, x : T \vdash M : U}{\Gamma \vdash \lambda x : T \cdot M : \Pi x : T \cdot U} \xrightarrow{\Gamma \vdash M : \Pi x : T \cdot U = N : T}_{\Gamma \vdash MN : U \{x := N\}}$ $\frac{\Gamma \vdash M : T}{\Gamma \vdash M : T'} \xrightarrow{\Gamma' \approx T}$

- Computationally correct: Church-Rosser, subject reduction
- Logically inconsistent: closed term of type $\perp \equiv \Pi X$: Type . X
- Non (weakly) normalising, since:

Fact: Closed terms of type $\perp \equiv \Pi X$: Type. X have no head normal form

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 めん⊙

The analogy between Type: Type and the set of all sets of Cantor-Frege's (inconsistent) set theory is erroneous, since:

The analogy between Type: Type and the set of all sets of Cantor-Frege's (inconsistent) set theory is erroneous, since:

9 Typing relation and membership relation have not the same status

- Typing belongs to the meta-language
 ⇒ Precondition for an expression to be well-formed
- Membership is a relation of the language
 ⇒ Can be used to form propositions (may be negated)

The analogy between Type: Type and the set of all sets of Cantor-Frege's (inconsistent) set theory is erroneous, since:

Typing relation and membership relation have not the same status

- Typing belongs to the meta-language
 ⇒ Precondition for an expression to be well-formed
- Membership is a relation of the language ⇒ Can be used to form propositions (may be negated)
- ② No comprehension scheme in Type: Type ⇒ Cannot form a type of the form $\{x : T \mid P(x)\}$

The analogy between Type: Type and the set of all sets of Cantor-Frege's (inconsistent) set theory is erroneous, since:

Typing relation and membership relation have not the same status

- Typing belongs to the meta-language
 ⇒ Precondition for an expression to be well-formed
- Membership is a relation of the language ⇒ Can be used to form propositions (may be negated)

Solution Soluti Solution Solution Solution Solution Solution Solution

Historically, the inconsistency of Type:Type has been derived [Girard] from the inconsistency of system ${\it U}$

The analogy between Type: Type and the set of all sets of Cantor-Frege's (inconsistent) set theory is erroneous, since:

Typing relation and membership relation have not the same status

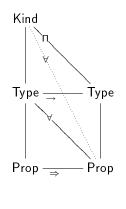
- Typing belongs to the meta-language
 ⇒ Precondition for an expression to be well-formed
- Membership is a relation of the language
 ⇒ Can be used to form propositions (may be negated)

② No comprehension scheme in Type: Type ⇒ Cannot form a type of the form $\{x : T | P(x)\}$

Historically, the inconsistency of Type:Type has been derived [Girard] from the inconsistency of system U

```
No cycle in the sorts (Prop : Type : Kind)...
... but two levels of impredicativity (Prop and Type)
```

Systems U and U^-



 $U^- = \text{copy of } F \text{ glued on top of } F\omega$ $U = \text{system } U^- + (\text{Kind}, \text{Prop})-\text{quantification}$

- Kind = sort for kinds
- Type = sort for constructors
- Prop = sort for proof-terms

Both Type and Prop are impredicative

Higher-level is isomorphic to F: Type inference/checking is decidable

$$S = \{Prop, Type, Kind\}$$

$$A = \{(Prop: Type), (Type: Kind)\}$$

$$\mathcal{R} = \{(Prop: Prop), (Type: Prop), (Type, Type), (Kind, Type), (Kind, Prop)\}$$

From system $F\omega$

$$\begin{array}{cccc} {\sf Kinds} & \tau, \sigma & ::= & {\sf Prop} \\ & & \mid & \tau \to \sigma & & & & \\ \end{array} \\ \end{array} \tag{Type, Type}$$

Constructors
$$M, N ::= \xi$$

 $| \lambda x : \tau . M | MN$ (Type, Type)
 $| M \Rightarrow N$ (Prop, Prop)
 $| \forall x : \tau . M$ (Type, Prop)

From system $F\omega$...

Constructors
$$M, N ::= \xi$$

 $| \lambda x : \tau . M | MN$ (Type, Type)
 $| M \Rightarrow N$ (Prop, Prop)
 $| \forall x : \tau . M$ (Type, Prop)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

From system $F\omega$... to system U^-

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

From system $F\omega$... to system U

S = Prop,Type, Kind $\mathcal{A} = \mathsf{Prop}: \mathsf{Type}, \mathsf{Type}: \mathsf{Kind}$ \mathcal{R} = (Prop, Prop), (Type, Prop), (Type, Type), (Kind, Type), (Kind, Prop) Kinds τ, σ ::= Prop | α $\begin{array}{c} \tau \to \sigma \\ \Pi \alpha : \mathsf{Type} \, . \, \tau \end{array}$ (Type, Type) (Kind, Type) Constructors $M, N ::= \xi$ $\begin{vmatrix} \lambda x : \tau . M & | MN & (Type, Type) \\ | \Lambda \alpha . M & | M\tau & (Kind, Type) \\ | M \Rightarrow N & (Prop, Prop) \\ | \forall x : \tau . M & (Type, Prop) \\ | \forall \alpha : Type . M & (Kind, Prop) \end{vmatrix}$ Proof-terms $t, u ::= \xi$ $\begin{vmatrix} \lambda \xi : M \cdot t & | t u & (Prop, Prop) \\ | \lambda x : \tau \cdot t & | t M & (Type, Prop) \\ | \lambda \alpha : Type \cdot t & | t \tau & (Kind, Prop) \end{vmatrix}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

(Kind, Type)	П $lpha$: Туре	Polymorphism in data types
(Type : Prop)	$\forall x : \tau \dots$	Quantification over all objects (of a given type)
(Kind, Prop)	orall lpha : Type	Quantification over all types

(Kind, Type)	П $lpha$: Туре	Polymorphism in data types
(Type : Prop)	$\forall x : \tau \dots$	Quantification over all objects (of a given type)
(Kind, Prop)	orall lpha : Type	Quantification over all types

◆□ > ◆□ > ◆三 > ◆三 > 三 のへぐ

Nat :=
$$\Pi \alpha$$
: Type. $(\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha)$: Type

(Kind, Type)	$\Pi lpha$: Type	Polymorphism in data types
(Type : Prop)	$\forall x : \tau \dots$	Quantification over all objects (of a given type)
(Kind, Prop)	orall lpha : Type	Quantification over all types

◆□ > ◆□ > ◆三 > ◆三 > 三 のへぐ

Nat :=
$$\Pi \alpha$$
: Type. $(\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha)$: Type

$$\mathsf{id} := \lambda \alpha : \mathsf{Type.} \lambda x : \alpha . x : \mathsf{\Pi} \alpha : \mathsf{Type.} (\alpha \to \alpha)$$

(Kind, Type)	$\Pi lpha$: Type	Polymorphism in data types
(Type : Prop)	$\forall x : \tau \dots$	Quantification over all objects (of a given type)
(Kind, Prop)	orall lpha : Type	Quantification over all types

Nat :=
$$\Pi \alpha$$
: Type. $(\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha)$: Type

$$\mathsf{id} \quad := \quad \lambda \alpha : \mathsf{Type.} \, \lambda x : \alpha \, . \, x \quad : \quad \mathsf{\Pi} \alpha : \mathsf{Type.} \, (\alpha \to \alpha)$$

$$x =_{\alpha} y := \forall p : (\alpha \rightarrow \operatorname{Prop}). (p x \Rightarrow p y) : \operatorname{Prop}$$

(Kind, Type)	$\Pi lpha$: Type	Polymorphism in data types
(Type : Prop)	$\forall x : \tau \dots$	Quantification over all objects (of a given type)
(Kind, Prop)	orall lpha : Type	Quantification over all types

Nat :=
$$\Pi \alpha$$
 : Type. $(\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha)$: Type

$$\mathsf{id} \quad := \quad \lambda \alpha : \mathsf{Type} \, . \, \lambda x : \alpha \, . \, x \quad : \quad \mathsf{\Pi} \alpha : \mathsf{Type} \, . \, (\alpha \to \alpha)$$

$$x =_{\alpha} y := \forall p : (\alpha \rightarrow \operatorname{Prop}). (p x \Rightarrow p y) : \operatorname{Prop}$$

$$\forall \alpha$$
: Type. $\forall x : \alpha$. id $\alpha x =_{\alpha} x$: Prop

(Kind, Type)	$\Pi lpha$: Type	Polymorphism in data types
(Type : Prop)	$\forall x : \tau \dots$	Quantification over all objects (of a given type)
(Kind, Prop)	orall lpha : Type	Quantification over all types

Nat :=
$$\Pi \alpha$$
: Type. $(\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha)$: Type

$$\mathsf{id} \quad := \quad \lambda \alpha : \mathsf{Type.} \, \lambda x : \alpha \, . \, x \quad : \quad \mathsf{\Pi} \alpha : \mathsf{Type.} \, (\alpha \to \alpha)$$

$$x =_{\alpha} y := \forall p : (\alpha \rightarrow \operatorname{Prop}). (p x \Rightarrow p y) : \operatorname{Prop}$$

 $\begin{array}{lll} \forall \alpha : \mathsf{Type.} & \forall x : \alpha . & \mathsf{id} \ \alpha \ x \ =_{\alpha} \ x & : & \mathsf{Prop} \\ \\ \lambda \alpha : \mathsf{Type.} & \lambda x : \alpha . & \lambda p : (\alpha \rightarrow \mathsf{Prop}) . & \lambda \xi : p \, x . \xi & : & \dots \end{array}$

Hurkens' paradox in system U^-

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Hurkens' paradox in system U^-

For any I	kind $ au$: Type writ	e:	$\mathfrak{P}(au)$:= $ au ightarrow Prop$
\perp	: Prop	:=	$\forall a$: Prop . a
7	$: Prop \to Prop$:=	λ a : Prop . a \Rightarrow ot
\mathbb{U}	: Туре	:=	$\Pilpha : Type . \Bigl(\bigl(\mathfrak{P}(\mathfrak{P}(lpha)) o lpha \bigr) o \mathfrak{P}(\mathfrak{P}(lpha)) \Bigr)$
i	$\mathfrak{P}(\mathfrak{P}(\mathbb{U})) ightarrow \mathbb{U}$:=	$ \begin{array}{l} \lambda q : \mathfrak{P}(\mathfrak{P}(\mathbb{U})) . \ \lambda \alpha : Type . \ \lambda f : \left(\mathfrak{P}(\mathfrak{P}(\alpha)) \to \alpha\right) . \\ \lambda p : \mathfrak{P}(\alpha) . q \ \left(\lambda x : \mathbb{U} . \ p \ (f \ (x \ \alpha \ f))\right) \end{array} $
j	$:\mathbb{U} ightarrow\mathfrak{P}(\mathfrak{P}(\mathbb{U}))$:=	$\lambda x: \mathbb{U}. x \mathbb{U} i$
Q	: $\mathfrak{P}(\mathfrak{P}(\mathbb{U}))$:=	$\lambda p: \mathfrak{P}(\mathbb{U}). \forall x: \mathbb{U}. (j \times p \Rightarrow p \times)$
С	: $\mathfrak{P}(\mathbb{U})$:=	$\lambda y : \mathbb{U} . \neg \forall p : \mathfrak{P}(\mathbb{U}) . (j \ y \ p \Rightarrow p \ (i \ (j \ y)))$
В	: U	:=	i Q
lem1	: Q C	:=	$\lambda x: U \cdot \lambda \xi^{j \times C} \cdot \lambda \zeta^{\forall p: \mathfrak{P}(\mathbb{U}) \cdot (j \times p \Rightarrow p(i(j \times)))}$
			$\zeta \ C \ \xi \ (\lambda p : \mathfrak{P}(\mathbb{U}) . \zeta \ (\lambda y : \mathbb{U} . p \ (i \ (j \ y))))$
Α	: Prop	:=	$\forall p : \mathfrak{P}(\mathbb{U}) . \ (Q \ p \Rightarrow p \ B)$
lem ₂	: ¬A	:=	$\lambda \xi^{A} \cdot \xi \ C \ lem_{1} \ (\lambda p : \mathfrak{P}(\mathbb{U}) \cdot \xi \ (\lambda y : \mathbb{U} \cdot p \ (i \ (j \ y))))$
lem3	: A	:=	$\lambda p : \mathfrak{P}(\mathbb{U}) . \lambda \xi^{Qp} . \xi B (\lambda x : \mathbb{U} . \xi (i (j x)))$
parado	× : ⊥	:=	lem ₂ lem ₃

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三里 - のへで

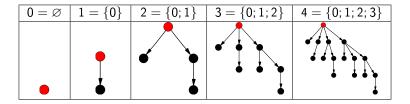
- Pointed graph = triple (X, A, a) where
 - X : Type the type of vertices
 - $A: X \rightarrow X \rightarrow Prop$ the (local) membership relation
- - a : X the root

Pointed graph=triple (X, A, a) where• X : Typethe type of vertices• A : $X \to X \to Prop$ the (local) membership relation• a : Xthe root

A(x,y) is represented by $\bullet_x \leftarrow \bullet_y$, and the root *a* by \bullet_a

Pointed graph=triple (X, A, a) where• X : Typethe type of vertices• A : $X \to X \to Prop$ the (local) membership relation• a : Xthe root

A(x,y) is represented by $\bullet_x \leftarrow \bullet_y$, and the root *a* by \bullet_a



A set can be represented by several non-isomorphic pointed graphs

A set can be represented by several non-isomorphic pointed graphs

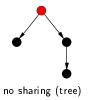
・ロト ・日 ・ モー・ ・ モー・ うへぐ

Example: the set $2 = \{\emptyset; \{\emptyset\}\}$

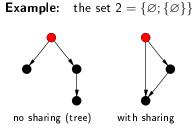
A set can be represented by several non-isomorphic pointed graphs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

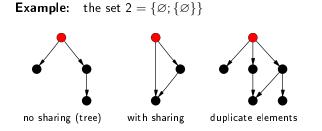
Example: the set $2 = \{\emptyset; \{\emptyset\}\}$



A set can be represented by several non-isomorphic pointed graphs

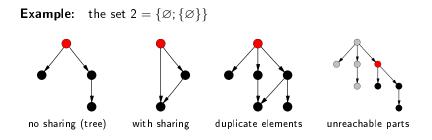


A set can be represented by several non-isomorphic pointed graphs



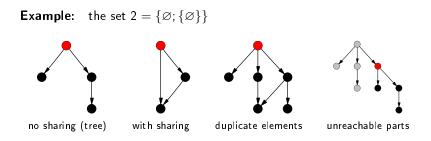
Identifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs



Identifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs



+ Problems related to (possible) non well-foundedness

Extensional equality as **bisimilarity**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Extensional equality as bisimilarity

 $R: X \rightarrow Y \rightarrow Prop$ bisimulation between (X, A, a) and (Y, B, b) if:

Extensional equality as bisimilarity

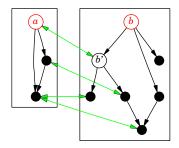
 $R: X \rightarrow Y \rightarrow Prop$ bisimulation between (X, A, a) and (Y, B, b) if:

 $(X, A, a) \approx (Y, B, b) \equiv \exists R : X \rightarrow Y \rightarrow Prop$ bisimulation

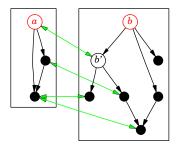
$(X, A, a) \in (Y, B, b) \equiv \exists b' : Y ((X, A, a) \approx (Y, B, b') \land B(b', b))$

$(X, A, a) \in (Y, B, b) \equiv \exists b': Y ((X, A, a) \approx (Y, B, b') \land B(b', b))$

< 日 > < 同 > < 三 > < 三 > < 三 > <

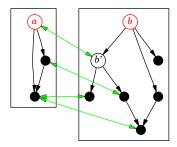


 $(X, A, a) \in (Y, B, b) \equiv \exists b' : Y ((X, A, a) \approx (Y, B, b') \land B(b', b))$



• Compatibility of \in w.r.t \approx $G_1 \approx G_2 \wedge G_2 \in G_3 \Rightarrow G_1 \in G_3$ $G_1 \in G_2 \wedge G_2 \approx G_3 \Rightarrow G_1 \in G_3$

 $(X, A, a) \in (Y, B, b) \equiv \exists b' : Y ((X, A, a) \approx (Y, B, b') \land B(b', b))$



• Compatibility of \in w.r.t \approx

$$G_1 \approx G_2 \wedge G_2 \in G_3 \Rightarrow G_1 \in G_3$$

$${\it G_1} \in {\it G_2} ~~ \wedge ~~ {\it G_2} \approx {\it G_3} ~~ \Rightarrow ~~ {\it G_1} \in {\it G_3}$$

• Extensionality of
$$\approx$$
 w.r.t. \in
 $\forall G (G \in G_1 \Leftrightarrow G \in G_2) \Rightarrow G_1 \approx G_2$

(ロ) (四) (三) (三) (三) (○)

represents a set x such that $x = \{x\}$

represents a set x such that $x = \{x\}$

represents a set y such that
$$y = \{z\}$$
 and $z = \{y\}$ for some z

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

represents a set
$$x$$
 such that $x = \{x\}$

represents a set y such that
$$y = \{z\}$$
 and $z = \{y\}$ for some z

Since there is a bisimulation, we have

$$x = y = z = \{x\} = \{y\} = \{z\}$$

represents a set x such that
$$x = \{x\}$$

represents a set y such that $y = \{z\}$ and $z = \{y\}$ for some z

Since there is a bisimulation, we have

$$x = y = z = \{x\} = \{y\} = \{z\}$$

Sets as pointed graphs + Equality as a bisimulation

 \Rightarrow Interprets the Anti-Foundation Axiom (AFA) [P. Aczel]

▲□▶ ▲圖▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

Let
$$U := (\underline{\Pi T} : \underline{\mathsf{Type}} . (T \rightarrow T \rightarrow \mathsf{Prop}) \rightarrow T \rightarrow \mathsf{Prop}) \rightarrow \mathsf{Prop}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

and
$$i$$
: ΠX : Type. $(X \rightarrow X \rightarrow \text{Prop}) \rightarrow X \rightarrow U$
:= $\lambda X, A, a \cdot \lambda f \cdot f X A a$

Let
$$U := (\underline{\Pi T} : \underline{\mathsf{Type}} . (T \rightarrow T \rightarrow \mathsf{Prop}) \rightarrow T \rightarrow \mathsf{Prop}) \rightarrow \mathsf{Prop}$$

and
$$i : \Pi X : \text{Type.} (X \rightarrow X \rightarrow \text{Prop}) \rightarrow X \rightarrow U$$

:= $\lambda X, A, a \cdot \lambda f \cdot f X A a$

• Higher-level impredicativity (Kind, Type) ensures that U : Type

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let
$$U := (\underline{\Pi T} : \underline{\mathsf{Type}} . (T \rightarrow T \rightarrow \mathsf{Prop}) \rightarrow T \rightarrow \mathsf{Prop}) \rightarrow \mathsf{Prop}$$

and
$$i : \Pi X : \text{Type.} (X \rightarrow X \rightarrow \text{Prop}) \rightarrow X \rightarrow U$$

:= $\lambda X, A, a \cdot \lambda f \cdot f X A a$

- Higher-level impredicativity (Kind, Type) ensures that U : Type
- The map *i* is an embedding of pointed graphs into *U*

$$i(X, A, a) = i(Y, B, b) \Rightarrow (X, A, a) \approx (Y, B, b)$$

Let
$$U := (\underline{\Pi T} : \underline{\mathsf{Type}} . (T \rightarrow T \rightarrow \mathsf{Prop}) \rightarrow T \rightarrow \mathsf{Prop}) \rightarrow \mathsf{Prop}$$

and
$$i : \Pi X : \text{Type.} (X \rightarrow X \rightarrow \text{Prop}) \rightarrow X \rightarrow U$$

:= $\lambda X, A, a \cdot \lambda f \cdot f X A a$

- Higher-level impredicativity (Kind, Type) ensures that U : Type
- The map *i* is an embedding of pointed graphs into *U*

$$i(X, A, a) = i(Y, B, b) \quad \Rightarrow \quad (X, A, a) \approx (Y, B, b)$$

• The map *i* is not surjective:

$$r: U = \lambda f \perp$$
 is outside the codomain of *i*

Translating equivalence and membership on \boldsymbol{U}

$$u \approx v := \exists X, A, a \exists Y, B, b (u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \approx (Y, B, b))$$

$$u \in v := \exists X, A, a \exists Y, B, b$$

$$(u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \in (Y, B, b))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$u \approx v := \exists X, A, a \exists Y, B, b (u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \approx (Y, B, b))$$

$$u \in v := \exists X, A, a \exists Y, B, b$$

$$(u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \in (Y, B, b))$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・ 豆 - 釣 < ⊙

 $set(u) := \exists X, A, a \quad u = i(X, A, a) \quad (\equiv \text{ codomain of } i)$

$$u \approx v := \exists X, A, a \exists Y, B, b (u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \approx (Y, B, b))$$

$$u \in v := \exists X, A, a \exists Y, B, b$$

($u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \in (Y, B, b)$)

 $set(u) := \exists X, A, a \quad u = i(X, A, a) \quad (\equiv \text{ codomain of } i)$

• \approx (on U) is now a partial equivalence relation

$$u \approx v := \exists X, A, a \exists Y, B, b (u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \approx (Y, B, b))$$

$$u \in v := \exists X, A, a \exists Y, B, b$$

$$(u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \in (Y, B, b))$$

 $set(u) := \exists X, A, a \quad u = i(X, A, a) \quad (\equiv \text{ codomain of } i)$

- \approx (on U) is now a partial equivalence relation
- Relations \approx and \in are defined on elements u: U s.t. set(u)

・ロト ・日 ・ モー・ ・ モー・ うへの

$$u \approx v := \exists X, A, a \exists Y, B, b (u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \approx (Y, B, b))$$

$$u \in v := \exists X, A, a \exists Y, B, b$$

($u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \in (Y, B, b)$)

 $set(u) := \exists X, A, a \quad u = i(X, A, a) \quad (\equiv \text{ codomain of } i)$

- \approx (on U) is now a partial equivalence relation
- Relations \approx and \in are defined on elements u: U s.t. set(u)
- Other properties of \approx and \in are kept (compatibility, extensionality)

$$u \approx v := \exists X, A, a \exists Y, B, b (u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \approx (Y, B, b))$$

$$u \in v := \exists X, A, a \exists Y, B, b$$

$$(u = i(X, A, a) \land v = i(Y, B, b) \land (X, A, a) \in (Y, B, b))$$

 $set(u) := \exists X, A, a \quad u = i(X, A, a) \quad (\equiv \text{ codomain of } i)$

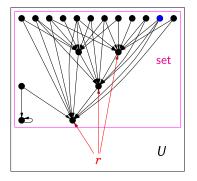
- \approx (on U) is now a partial equivalence relation
- Relations \approx and \in are defined on elements u: U s.t. set(u)
- Other properties of \approx and \in are kept (compatibility, extensionality)
- Exists some object r : U such that \neg set(r)

Let $P: U
ightarrow \mathsf{Prop}$ be a predicate over objects of type U

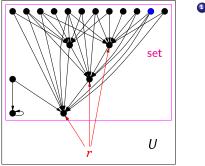


Let $P: U \to \text{Prop}$ be a predicate over objects of type UWe assume P extensional: $\forall u, u': U . (P(u) \land u \approx u' \Rightarrow P(u'))$

Let $P: U \to \text{Prop}$ be a predicate over objects of type UWe assume P extensional: $\forall u, u': U . (P(u) \land u \approx u' \Rightarrow P(u'))$

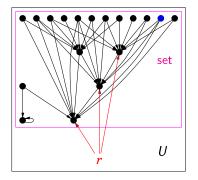


Let $P: U \to \text{Prop}$ be a predicate over objects of type UWe assume P extensional: $\forall u, u': U . (P(u) \land u \approx u' \Rightarrow P(u'))$



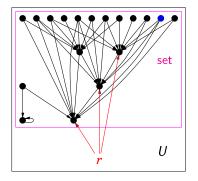
• Connect
$$r$$
 to all • s.t. $P(\bullet)$

Let $P: U \to \text{Prop}$ be a predicate over objects of type UWe assume P extensional: $\forall u, u': U . (P(u) \land u \approx u' \Rightarrow P(u'))$



• Connect
$$r$$
 to all • s.t. $P(\bullet)$

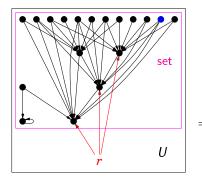
Let $P: U \to \text{Prop}$ be a predicate over objects of type UWe assume P extensional: $\forall u, u': U . (P(u) \land u \approx u' \Rightarrow P(u'))$



• Connect r to all • s.t. $P(\bullet)$

• Reflect
$$(U, R_P, r)$$
 into U , setting
fold $(P) = i(U, R_P, r) \quad (\equiv \bullet)$

Let $P: U \to \text{Prop}$ be a predicate over objects of type UWe assume P extensional: $\forall u, u': U . (P(u) \land u \approx u' \Rightarrow P(u'))$



• Connect r to all • s.t. $P(\bullet)$

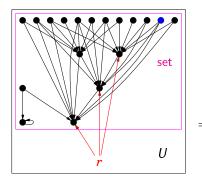
3 Let
$$R_P = \{\rightarrow\} \cup \{\rightarrow\}$$

- Reflect (U, R_P, r) into U, setting fold $(P) = i(U, R_P, r) \quad (\equiv \bullet)$
- \Rightarrow Relies on the embedding property

$$(X, A, a) \approx (U, \in, i(X, A, a))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Let $P: U \to \text{Prop}$ be a predicate over objects of type UWe assume P extensional: $\forall u, u': U . (P(u) \land u \approx u' \Rightarrow P(u'))$



• Connect r to all • s.t. $P(\bullet)$

3 Let
$$R_P = \{\rightarrow\} \cup \{\rightarrow\}$$

- Reflect (U, R_P, r) into U, setting fold $(P) = i(U, R_P, r) \quad (\equiv \bullet)$
- \Rightarrow Relies on the embedding property

$$(X, A, a) \approx (U, \in, i(X, A, a))$$

イロン 不可と イヨン トヨー ろんの

Fact (Unbounded comprehension) $\forall u : U . (u \in i(U, R_P, r) \Leftrightarrow P(u))$ (if P is extensional)

Cantor-Frege's set theory in systems U/U^-

Type U + two relations pprox and \in

Cantor-Frege's set theory in systems U/U^-

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Type U + two relations pprox and \in

ullet \in is compatible w.r.t. pprox

Cantor-Frege's set theory in systems U/U^-

Type U + two relations pprox and \in

- \in is compatible w.r.t. pprox
- \approx is extensional w.r.t. \in

Type U + two relations pprox and \in

- \in is compatible w.r.t. pprox
- \approx is extensional w.r.t. \in
- The unbounded comprehension scheme is derivable

Type U + two relations pprox and \in

- \in is compatible w.r.t. pprox
- \approx is extensional w.r.t. \in
- The unbounded comprehension scheme is derivable
- \Rightarrow An embedding of Cantor-Frege's (insonsistent) set theory into U/U^-

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- Type U + two relations pprox and \in
 - \in is compatible w.r.t. pprox
 - \approx is extensional w.r.t. \in
 - The unbounded comprehension scheme is derivable
- ⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U^- All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- Type U + two relations pprox and \in
 - ullet \in is compatible w.r.t. pprox
 - \approx is extensional w.r.t. \in
 - The unbounded comprehension scheme is derivable
- ⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U^- All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set $fold(\lambda x \, . \, x \notin x)$...

- Type U + two relations pprox and \in
 - ullet \in is compatible w.r.t. pprox
 - \approx is extensional w.r.t. \in
 - The unbounded comprehension scheme is derivable
- ⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U^- All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set $fold(\lambda x \cdot x \notin x)$...

Remark: The formalization has been presented in system UIf we only consider pointed graphs based on X = U, we can drop the (Kind, Prop)-quantification, thus restricting to system U^-

Kinds	$ au, \sigma$::=	$Prop \mid lpha$	
			$ au ightarrow \sigma$ $\Pi lpha$: Type . $ au$	(Туре, Туре)
			П $lpha$: Туре . $ au$	(Kind, Type)
Constructors	M, N	::=	ξ	
			$ \begin{array}{c c} \lambda x : \tau . M & & MN \\ \Lambda \alpha . M & & M\tau \\ M \Rightarrow N \\ \forall x : \tau . M \end{array} $	(Туре, Туре)
			$\Lambda \alpha . M \mid M \tau$	(Kind, Type)
			$M \Rightarrow N$	(Prop, Prop)
			$\forall x: \tau . M$	(Type, Prop)
Proof-terms	t, u	::=	ξ	
			$\begin{array}{c cccc} \lambda x : M \cdot t & & tu \\ \lambda x : \tau \cdot t & & tM \end{array}$	(Prop, Prop)
			$\lambda x: \tau \cdot t \mid tM$	(Type, Prop)

Kinds	$ au, \sigma$::=	$Prop \mid lpha$	
			$ au o \sigma$ $\Pi lpha$: Type . $ au$	(Туре, Туре)
			П $lpha$: Туре . $ au$	(Kind, Type)
Constructors	M, N	::=	ξ	
			$ \begin{array}{c c} \lambda x : \tau . M & & MN \\ \Lambda \alpha . M & & M\tau \\ M \Rightarrow N \\ \forall x : \tau . M \end{array} $	(Type, Type)
			$\Lambda \alpha . M \mid M \tau$	(Kind, Type)
			$M \Rightarrow N$	(Prop, Prop)
			$\forall x: \tau . M$	(Type, Prop)
Proof-terms	t, u	::=	ξ	
			$\begin{array}{c cccc} \lambda x : M \cdot t & & tu \\ \lambda x : \tau \cdot t & & tM \end{array}$	(Prop, Prop)
			$\lambda x: \tau \cdot t \mid tM$	(Type, Prop)

Kinds	$ au, \sigma$		$egin{array}{ccc} {\sf Prop} & & lpha \ au ightarrow \sigma \ {\sf \Pi}lpha : {\sf Type}. au \end{array}$	(Type, Type) (Kind, Type)
Constructors	M, N		$ \begin{cases} \xi \\ \lambda x : \tau \cdot M & & MN \\ \Lambda \alpha \cdot M & & M\tau \\ M \Rightarrow N \\ \forall x : \tau \cdot M \end{cases} $	(Type, Type) (Kind, Type) (Prop, Prop) (Type, Prop)
Proof-terms	t, u	::= 	$\xi \lambda x.t \mid t u$	(Prop, Prop)

• (Type, Prop)-abstraction/application can be erased

Kinds	$ au, \sigma$		$egin{array}{ccc} {\sf Prop} & & lpha \ au ightarrow \sigma \ {\sf \Pi}lpha : {\sf Type}. au \end{array}$	(Type, Type) (Kind, Type)
Constructors	M, N		$ \begin{cases} \xi \\ \lambda x : \tau \cdot M & MN \\ \mathbf{A} \alpha \cdot M & M\tau \\ M \Rightarrow N \\ \forall x : \tau \cdot M \end{cases} $	(Type, Type) (Kind, Type) (Prop, Prop) (Type, Prop)
Proof-terms	t, u	::= 	$\xi \lambda x.t \mid t u$	(Prop, Prop)

• (Type, Prop)-abstraction/application can be erased

Kinds	τ, σ	::=	$Prop \ \mid \ \alpha$	
			$ au o \sigma$ $\Pi lpha$: Type . $ au$	(Type, Type) (Kind, Type)
_				(Rind, Type)
Constructors	M, N			
			$\lambda x . M \mid MN$	(Туре, Туре)
				(Kind, Type)
			$ \begin{array}{l} M \Rightarrow N \\ \forall x : \tau . M \end{array} $	(Prop, Prop)
			$\forall x : \tau . M$	(Type, Prop)
Proof-terms	t,u	::=	ξ	
			$\lambda x.t \mid tu$	(Prop, Prop)

- (Type, Prop)-abstraction/application can be erased
- We can erase $\Lambda \alpha . M + M\tau +$ type in $\lambda x : \tau . M ...$

Kinds	$ au, \sigma$		$Prop \mid \alpha$	
			$ au o \sigma$ $\Pi lpha$: Type . $ au$	(Type, Type) (Kind, Type)
		I	Πα. Type. /	(Kina, Type)
Constructors	M, N			
			$\lambda x . M \mid MN$	(Туре, Туре)
				(Kind, Type)
			$ \begin{array}{l} M \Rightarrow N \\ \forall x : \tau . M \end{array} $	(Prop, Prop)
			$\forall x: \tau . M$	(Type, Prop)
Proof-terms	t, u	::=	ξ	
			$\lambda x \cdot t \mid t u$	(Prop, Prop)

- (Type, Prop)-abstraction/application can be erased
- We can erase $\Lambda \alpha . M + M\tau +$ type in $\lambda x : \tau . M ...$... but makes no sense to remove τ in $\forall x : \tau . M$

Kinds	$ au, \sigma$::= 	$\begin{array}{ll} Prop & \mid & \alpha \\ \tau \to \sigma \\ \Pi\alpha : Type . \tau \end{array}$	(Type, Type) (Kind, Type)
Constructors	M, N		$ \begin{cases} \xi \\ \lambda x \cdot M & & MN \end{cases} $ $ M \Rightarrow N \\ \forall x : \tau \cdot M \end{cases} $	(Type, Type) (Kind, Type) (Prop, Prop) (Type, Prop)
Proof-terms	t,u	::= 	$\xi \lambda x . t \mid t u$	(Prop, Prop)

- (Type, Prop)-abstraction/application can be erased
- We can erase Λα. M + Mτ + type in λx:τ. M...
 ... but makes no sense to remove τ in ∀x:τ. M
 Would identify propositions ∀x, y: Unit. x = y with ∀x, y: Bool. x = y

Kinds	$ au, \sigma$::= 	$\begin{array}{ll} Prop & \mid & \alpha \\ \tau \to \sigma \\ \Pi\alpha : Type . \tau \end{array}$	(Type, Type) (Kind, Type)
Constructors	M, N		$ \begin{cases} \xi \\ \lambda x \cdot M & & MN \end{cases} $ $ M \Rightarrow N \\ \forall x : \tau \cdot M \end{cases} $	(Type, Type) (Kind, Type) (Prop, Prop) (Type, Prop)
Proof-terms	t,u	::= 	$\xi \lambda x . t \mid t u$	(Prop, Prop)

- (Type, Prop)-abstraction/application can be erased
- We can erase Λα. Μ + Μτ + type in λx: τ. Μ...
 ... but makes no sense to remove τ in ∀x: τ. Μ
 Would identify propositions ∀x, y: Unit. x = y with ∀x, y: Bool. x = y
 - ⇒ (Kind, Type)-impredicativity is not parametric i.e. cannot be reduced to an intersection