System F

Alexandre Miquel — PPS & U. Paris 7

Alexandre.Miquel@pps. jussieu.fr

Types Summer School 2005
August 15-26 — Goteborg

B o

@ System F: independently discovered by
«O>» «Fr «=)» «=)» = DA
e 4 4 444

Introduction

e System F: independently discovered by
Girard: System F (1970)

Introduction

e System F: independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic A-calculus (1974)

Introduction

e System F: independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic A-calculus (1974)

@ Quite different motivations. ..

Girard: Interpretation of second-order logic
Reynolds: Functional programming

... connected by the Curry-Howard isomorphism

Introduction

e System F: independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic A-calculus (1974)

@ Quite different motivations. ..

Girard: Interpretation of second-order logic
Reynolds: Functional programming

... connected by the Curry-Howard isomorphism

e Significant influence on the development of Type Theory

— Interpretation of higher-order logic [Girard, Martin-L6f]
— Type:Type [Martin-Lo6f 1971]

— Martin-L6f Type Theory [1972, 1984, 1990, ...]
— The Calculus of Constructions [Coquand 1984]

Part |
«O>» «Fr «=)» «=)» = DA
e 4 4 444

System F syntax

Definition

Types

Terms

A B

t,u

a| A-B | YaB

X
A:At | tu
N .t | tA

(term abstr./app.)
(type abstr./app.)

System F syntax

Definition

Types A B

Terms t,u = X
| Ax
| A
Notations
@ Set of free (term) variables:
@ Set of free type variables:
@ Term substitution:
@ Type substitution:

a| A—-B | VaB

tu (term abstr./app.)
tA (type abstr./app.)
FVv(t)
TV(t), TV(A)
u{x:=t}

u{a:= A}, Bl{a:=A}

Perform a-conversion to prevent captures of free (term/type) variables!

System F typing rules

Contexts

Typing judgments

System F typing rules

Contexts M = xx:A1, ..., xp: A,
Typing judgments FrEt: A
Thx:A 0O
N x:A-t:B r-t:A—B Fr~-uv:A
r'EXx:A.t: A— B l-tu: B
Fr'=t: B wg TV(T) l-t:Va B

N-Aa.t:VaB I tA: B{a:= A}

System F typing rules

Contexts N o= x1:A1, ..., xp: A
Typing judgments FrEt: A
TFx:A O
N x:A-t:B r-t:A—B Fr~-uv:A
M- Ax:A.t: A—B MN-tu:B
Fr'-t: B wg TV(T) -t:Va B
N-Aa.t:VaB I tA: B{a:= A}

@ Declaration of type variables is implicit (for each oo € TV/(I))
@ Type variables could be declared explicitly: «: % (cf PTS)

@ One rule for each syntactic construct = System is syntax-directed

o Set: 4

N IA\x: o .x

it
v

«gOr «Fr < < o

Example: the polymorphic identity

o Set; id = Aa.Xx:a.x

@ One has:

id : Vo (o — a)

Example: the polymorphic identity

o Set; id = Aa.Xx:a.x

@ One has:
id : Vo (o — a)
dB : B—B for any type B

Example: the polymorphic identity

o Set: id = Aa.Ax:a.x
@ One has:
id : Vo (o — a)
dB : B—B for any type B

dBu : B for any term v : B

Example: the polymorphic identity

@ Set: id = Aa.Xx:a.x

@ One has:
id : Vo (o — a)
dB : B—B for any type B
dBu : B for any term v : B

@ In particular, if we take B = Va (o« —«) and u = id

Example: the polymorphic identity

o Set; id = Aa.Xx:a.x

@ One has:
id . Va (o — «a)
dB : B—B for any type B
dBu : B for any term v : B

@ In particular, if we take B = Va (o« —«) and u = id

id (Va (a — «)) : Va (oo —a) — YVa (o— «a)

Example: the polymorphic identity

o Set; id = Aa.Xx:a.x

@ One has:
id . Va (o — «a)
dB : B—B for any type B
dBu : B for any term v : B

@ In particular, if we take B = Va (o« —«) and u = id

id (Va (a — «)) : Va (oo —a) — YVa (o— «a)

id (Vo (0 — @))id : Vo (a— a)

Example: the polymorphic identity

o Set: id = Aa.Xx:a.x
@ One has:
id . Va (o — «a)
dB : B—B for any type B
dBu : B for any term v : B
@ In particular, if we take B = Va (o« —«) and u = id
id (Va (a — «)) : Va (oo —a) — YVa (o— «a)

id (Vo (0 — @))id : Vo (a— a)

= Type system is impredicative (or cyclic)

o T o

B o

ol ku: B

=

Mo = A} - u{a:= A} : B{a = A}

«Or «F>r «Er «EHr» EF DA

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type
M=t:A, ret: A = A=A (a-conv.)

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type
M=t:A, ret: A = A=A (a-conv.)

Decidability of type checking / type inference

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type
M=t:A, ret: A = A=A (a-conv.)

Decidability of type checking / type inference
O Given I, t and A, decide whether [t: A is derivable

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type
M=t:A, ret: A = A=A (a-conv.)

Decidability of type checking / type inference

@ Given I, t and A, decide whether T -t : A s derivable

@ Given I and t, compute a type A such that T ¢t: A
if such a type exists, or fail otherwise.

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type
M=t:A, ret: A = A=A (a-conv.)

Decidability of type checking / type inference
O Given I, t and A, decide whether [t: A is derivable

@ Given I and t, compute a type A such that T ¢t: A
if such a type exists, or fail otherwise.

Both problems are decidable

Two kinds of redexes:

it
v

«Or «Fr < < r = QX

Two kinds of redexes:
(M A t)u >

t{x = u}

1st kind redex

«O0>» «4F)r «=>» «) = Q>

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(Aa.t)A = t{a:= A} 2nd kind redex

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(Aa.t)A = t{a:= A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(Aa.t)A = t{a:= A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(A . t)A = t{a:= A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

@ One step (-reduction t =t =
contextual closure of both rules above

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(A . t)A = t{a:= A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

@ One step (-reduction t =t =
contextual closure of both rules above

o [-reduction t =t =
reflexive-transitive closure of >

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(A . t)A = t{a:= A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

@ One step (-reduction t =t =
contextual closure of both rules above

o [-reduction t =t =
reflexive-transitive closure of >

o [-convertibility t~t =
reflexive-symmetric-transitive closure of >~

o T o

@ The polymorphic identity, again
«0>» «Fr «Z»>» «E>» = QU
e 4 4 444

Examples

o The polymorphic identity, again

idBu = (Aa.Xx:a.x)Bu

Examples

o The polymorphic identity, again

idBu = (Aa.Xx:a.x)Bu » (Ax:B.x)u

Examples

o The polymorphic identity, again

idBu = (Aa.Xx:a.x)Bu » (M:B.x)u > u

Examples

o The polymorphic identity, again
idBu = (Aa.Xx:a.x)Bu » (M:B.x)u > u

id (Va (a—a)) id (Va (a—a)) -+ id (Va (e—a))idBu ¥ u

Examples

o The polymorphic identity, again
idBu = (Aa.Xx:a.x)Bu » (M:B.x)u > u

id (Va (a—a)) id (Va (a—a)) -+ id (Va (e—a)) idBu ¥

@ A little bit more complex example. ..

Examples

o The polymorphic identity, again
idBu = (Aa.Xx:a.x)Bu » (M:B.x)u > u

id (Va (a—a)) id (Va (a—a)) -+ id (Va (e—a))idBu ¥ u

@ A little bit more complex example. ..

32 times
——
(/\a.)\x:a.)\f:a—u. f(-- (fx)))

(Vo (a—(a—a)—a)) (Aa.Ax:a. M :a—a.fx)
(An:Va (a—(a—a)—a) . Aa. Ax:a. Af a—a.na(naxf)f)

Examples

o The polymorphic identity, again

dBu = (Aa.Xx:a.x)Bu > (x:B.x)u > u

id (Va (a—a)) id (Va (a—a)) -+ id (Va (e—a)) idBu ¥

@ A little bit more complex example. ..

32 times
——
(Ao dAx:a M ia—a. £ (- (Fx)--))
(Vo (a—(a—a)—a)) (Aa.Ax:a. M ra—a.fx
(An:Va (a—(a—a)—a) . Aa. Ax:a. Af a—a.na(naxf)f)

*

= A dxra A Afra—al (F - (Fx)---)

——
4294 967 296 times

o T o

t=th At = 3 (=t A Pt

«O>r «Fr o« e

i
v

t=th At = 3 (=t A Pt
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)

«O>» «4F»r « > < » = Q>

Properties

Confluence

tH Attt = (=t A t)
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)
Church-Rosser

ti~t, & It (=t At t)

Properties

Confluence

tH Attt = (=t A t)
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)
Church-Rosser

ti~t, & It (=t At t)

Subject-reduction
If THt:A and t>t then TH¢t:A

Properties

Confluence

tH Attt = (=t A t)
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)
Church-Rosser

ti~t, & It (=t At t)

Subject-reduction
If THt:A and t>t then TH¢t:A

Proof. By induction on the derivation of I I t : A, with t = t’ (one step reduction)

Properties

Confluence

tH Attt = (=t A t)
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)
Church-Rosser

ti~t, & It (=t At t)

Subject-reduction

If THt:A and t>*t then THt:A

Proof. By induction on the derivation of I I t : A, with t = t’ (one step reduction)
Strong normalisation

All well-typed terms of system F are strongly normalisable

Properties

Confluence

tH Attt = (=t A t)
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)
Church-Rosser

ti~t, & It (=t At t)

Subject-reduction

If THt:A and t>*t then THt:A

Proof. By induction on the derivation of I I t : A, with t = t’ (one step reduction)
Strong normalisation

All well-typed terms of system F are strongly normalisable

Proof. Girard and Tait’s method of reducibility candidates (postponed)

Part Il
«Or «Fr «=r «=)r» = 9HQE
e 4 4 444

o T o

Bool

o O

«Or «F>r <) (=) = 9OQQ

Bool

o (g — 20—)
e =

Ay dx.y iy x

Bool

«Or «F>r <) (=) = 9OQQ

Booleans (1/3)

Encoding of booleans

Bool

Vv (v = =)
true Ay.dx,y:v.x : Bool

false = Ay.Ax,y:v.y : Bool

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)
true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifgy v then t; else &b = uUAH b

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)

true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifgy v then t; else &b = uUAH b

Correctness w.r.t. typing

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)
true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifg u then t; else b uAt b

Correctness w.r.t. typing

[+ u: Bool =t : A FlEt: A
'+ if4, u then t; else t, : A

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)
true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifg u then t; else b uAt b

Correctness w.r.t. typing

[+ u: Bool =t : A FlEt: A
'+ if4, u then t; else t, : A

Correctness w.r.t. reduction

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)

true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifgy v then t; else &b = uUAH b

Correctness w.r.t. typing

[+ u: Bool =t : A FlEt: A
'+ if4, u then t; else t, : A

Correctness w.r.t. reduction

if4 true then t; else b, = 1

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)

true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifgy v then t; else &b = uUAH b

Correctness w.r.t. typing

[+ u: Bool =t : A FlEt: A
'+ if4, u then t; else t, : A

Correctness w.r.t. reduction

if4 true then t; else b, = 1
ifs false then t; else tp = t

Obje(:tion:

i
v

«O> «Fr <) } o

Booleans (2/3)

Objection: We can do the same in the untyped A-calculus!

Booleans (2/3)

Objection: We can do the same in the untyped A-calculus!
true = Ax,y.x
false = Mx,y.y

if u then t; else tpb = ut; b

Booleans (2/3)

Objection: We can do the same in the untyped A-calculus!
true = Ax,y.x .
false = Mx,y.y Same reduction

rules as before
if

u then t1 else &b = ut b

Booleans (2/3)

Objection: We can do the same in the untyped A-calculus!
true = Ax,y.x .
false = Mx,y.y Same reduction

rules as before
if u then t; else tpb = ut; b

But nothing prevents the following computation:

if Ax.x thent;jelsety; = (Ax.x)t;ty >
1 2 ()t ta

t1t
~—
bad bool

meaningless result

Booleans (2/3)

Objection: We can do the same in the untyped A-calculus!
true = Ax,y.x .
false = Mx,y.y Same reduction

rules as before
if u then t; else tph = ut b

But nothing prevents the following computation:

if Ax.x thent;jelsety; = (Ax.x)t;ty > t1 t:
1 2 ()t ta 1t2
bad bool

meaningless result

Question: Does the type discipline of system F avoid this?

= o

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it suffices to check that in system F:

Lemma (Canonical forms of type bool)

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it suffices to check that in system F:

Lemma (Canonical forms of type bool)

The terms true =Ay.\x,y:v.x and false=Ay.Ax,y:v.y
are the only closed normal terms of type Bool = Vv (y—v—7)

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it suffices to check that in system F:

Lemma (Canonical forms of type bool)

The terms true =Ay.\x,y:v.x and false=Ay.Ax,y:v.y
are the only closed normal terms of type Bool = Vv (y—v—7)

Proof. Case analysis on the derivation.

B o

Cartesian product

Encoding of the cartesian product A x B

Ax B

(t1, t2)

fst
snd

vy ((A=B—7) —7)
A’y.)\f:A—>B—>'y.f t) t

Ap:AxB.pA(Ax:A. \y:B.x)
Ap:AxB.pB (M:A.\y:B.y)

AxB— A
AxB—B

Cartesian product

Encoding of the cartesian product A x B

AxB = ¥y ((A=B—7) —1)

<t1,t2> = A’y.)\f:A—>B—>’)/.ft1 [5)

fst = M AXxB.pA(MXx:Ady:B.x) : AxB—A
snd = Mp:AxB.pB(M:A.\y:B.y) : AxB—B

Correctness w.r.t. typing and reduction

Fr-t:A l-t:B fst <t1,t2> P =1
(I <t17f2> :Ax B snd <t1,t2> PRI %

Cartesian product

Encoding of the cartesian product A x B

AxB = ¥y ((A=B—7) —1)

<t1,t2> = A’y.)\f:A—>B—>’y.ft1 [5)

fst = M AXxB.pA(MXx:Ady:B.x) : AxB—A
snd = Mp:AxB.pB(M:A.\y:B.y) : AxB—B

Correctness w.r.t. typing and reduction

Fr-t:A l-t:B fst <t1,t2> P =1
(I <t17f2> :Ax B snd <t1,t2> PRI %

Lemma (Canonical forms of type A x B)

The closed normal terms of type A x B are of the form (t1, t2), where t; and t>
are closed normal terms of type A and B, respectively.

o T o

Disjoint union

Encoding of the disjoint union A+ B

A+B = Vv ((A—7y) = (B—=v)—1)

inllv) = M. M:A—-~y.Xg:B—~y.fv : A+B (with v : A)
inrlv) = M. AM:A—-~vy.Xg:B—~v.gv : A+B (with v : B)
casec uof inl(x)—t | inr(y)—to = uvC (M:A.t1) (A\y:B.t)

Disjoint union

Encoding of the disjoint union A+ B

A+B = Vv ((A—7y) = (B—=v)—1)

inllv) = M. M:A—-~y.Xg:B—~y.fv : A+B (with v : A)
inrlv) = M. AM:A—-~vy.Xg:B—~v.gv : A+B (with v : B)
casec uof inl(x)—t | inr(y)—to = uvC (M:A.t1) (A\y:B.t)

Correctness w.r.t. typing and reduction
Fr-uv:A+B M x:AkFt:C My:BFt:C
' - casec uof inl(x)—t1 | inr(y)—t : C

casec inl(v) of inl(x) —t1 | inr(y)—ta > t{x:=v}
casec inr(v) of inl(x)—t1 | inr(y)—t ¥ t{y:=v}

Disjoint union

Encoding of the disjoint union A+ B

A+B = Vv ((A—7y) = (B—=v)—1)

inllv) = M. M:A—-~y.Xg:B—~y.fv : A+B (with v : A)
inrlv) = M. AM:A—-~vy.Xg:B—~v.gv : A+B (with v : B)
casec uof inl(x)—t | inr(y)—to = uvC (M:A.t1) (A\y:B.t)

Correctness w.r.t. typing and reduction
Fr-uv:A+B M x:AkFt:C My:BFt:C
' - casec uof inl(x)—t1 | inr(y)—t : C

casec inl(v) of inl(x) —t1 | inr(y)—ta > t{x:=v}
casec inr(v) of inl(x)—t1 | inr(y)—t ¥ t{y:=v}

+ Canonical forms of type A+ B (works as expected)

o T o

Finite types

Encoding of Fin, (n > 0)

Fing, = ¥y (y—=-—7—1)
——
n times
e; = Ay dxgiy. o Ay X

Finite types

Encoding of Fin, (n > 0)

Finp = Vy(y—---—=7—17)
5,—/
n times
e = M. Axg:iy...A\xp:v.x; : Fing (1<i<n)

Again, e, ..., e, are the only closed normal terms of type Fin,,.

Finite types

Encoding of Fin, (n > 0)

Fing, = ¥y (y—=-—7—1)
————
n times
e = M. Axg:iy...A\xp:v.x; : Fing (1<i<n)
Again, e, ..., e, are the only closed normal terms of type Fin,,.
In particular:
Fing Vy(y—=~v—7) = Bool (type of booleans)

Finite types

Encoding of Fin, (n > 0)

Fing, = ¥y (y—=-—7—1)
————
n times
e = M. Axg:iy...A\xp:v.x; : Fing (1<i<n)
Again, e, ..., e, are the only closed normal terms of type Fin,,.
In particular:
Fing Yy (y —v—v) = Bool (type of booleans)

Finp, = Yy (y—17) = Unit (unit data-type)

Finite types

Encoding of Fin, (n > 0)

Fing, = ¥y (y—=-—7—1)
————
n times

e; = M. A3 :v...X:v.x; : Fin, (1<i<n)
Again, e, ..., e, are the only closed normal terms of type Fin,,.
In particular:

Finp, = Vv(y—~v—1) Bool (type of booleans)

Finp, = Yy (y—17) = Unit (unit data-type)

Fing = Vv~ = 1 (empty data-type)

Finite types

Encoding of Fin, (n > 0)

Fing, = ¥y (y—=-—7—1)
————
n times

e; = M. A3 :v...X:v.x; : Fin, (1<i<n)
Again, e, ..., e, are the only closed normal terms of type Fin,,.
In particular:

Finp, = Vv(y—~v—1) Bool (type of booleans)

Finp, = Yy (y—17) = Unit (unit data-type)

Fing = Vv~ = 1 (empty data-type)

(Notice that there is no closed normal term of type L.)

B o

Natural numbers

Encoding of the type of Church numerals

Nat = Vy(vy—=(v—=7)—")

Natural numbers

Encoding of the type of Church numerals

Nat = Vy(v—=>(v—v)—7)

0 = M. dx:y M iy—oy.x

1 = M. Xy M:iy—y.fx

2 = Ay . dAx:iy M iy—y. f (f x)

n = M. Axiy AMiy—y (- (Fx)---) : Nat
—_——

n times

Natural numbers

Encoding of the type of Church numerals

Nat = Vy(v—=>(v—v)—7)

0 = M. dx:y M iy—oy.x

1 = M. Xy M:iy—y.fx

2 = Ay . dAx:iy M iy—y. f (f x)

n = M. Axiy AMiy—y (- (Fx)---) : Nat
\—Y—/
n times

Lemma (Canonical forms of type Nat)

The terms 0, 1, 2, ... are the only closed normal terms of type Nat.

B o

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

@ Successor

succ = An:Nat. Ay . Ax:y. A :y—vy.f (nyxf)

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

@ Successor

succ = An:Nat. Ay . Ax:y. A :y—vy.f (nyxf)

e Addition

pluss = An,m:Nat. Ay . dx:y M :y—=y.my(nyxf)f

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

@ Successor

succ = An:Nat. Ay . Ax:y. A :y—vy.f (nyxf)

e Addition

plus
plus’

An,m:Nat Ay Ax:y M iy—=y.my(nyxf)f
An, m:Nat. m Nat n succ

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

@ Successor

succ = An:Nat. Ay . Ax:y. A :y—vy.f (nyxf)
e Addition
pluss = An,m:Nat. Ay . dx:y M :y—=y.my(nyxf)f
plus’ = An,m:Nat.m Nat n succ

@ Multiplication

mult = An,m:Nat.Ay. Ax:y. M :y—=v.nyx (Ay:v.m~yf)

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

@ Successor

succ = An:Nat. Ay . Ax:y. A :y—vy.f (nyxf)
e Addition
pluss = An,m:Nat. Ay . dx:y M :y—=y.my(nyxf)f
plus’ = An,m:Nat.m Nat n succ

@ Multiplication

mult
mult’

An,m:Nat Ay . dAx:y. AMfiy—=y.nyx (Ay:y.myyf)
An,m:Nat.n Nat 0 (plus m)

B o

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat

pred 0 ~
pred (n+1) =~

3l Ol

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat
pred 0 ~ 0
pred (n+1) ~ 7
fst = Ap:NatxNat.p Nat (Ax,y:Nat.x) : NatxNat — Nat
snd = Ap:NatxNat.p Nat (Ax,y:Nat.y) : NatxNat — Nat
step = Ap:NatxNat. (snd p, succ (snd p)) : NatxNat — NatxNat
pred = An:Nat.fst (n (NatxNat) (0,0) step) : Nat — Nat

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat
pred 0 ~ 0
pred (n+1) ~ 7
fst = Ap:NatxNat.p Nat (Ax,y:Nat.x) : NatxNat — Nat
snd = Ap:NatxNat.p Nat (Ax,y:Nat.y) : NatxNat — Nat
step = Ap:NatxNat. (snd p, succ (snd p)) : NatxNat — NatxNat
pred = An:Nat.fst (n (NatxNat) (0,0) step) : Nat — Nat

@ Ackerman function ack : Nat — Nat — Nat

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat
pred 0 ~ 0
pred (n+1) ~ 7
fst = Ap:NatxNat.p Nat (Ax,y:Nat.x) : NatxNat — Nat
snd = Ap:NatxNat.p Nat (Ax,y:Nat.y) : NatxNat — Nat
step = Ap:NatxNat. (snd p, succ (snd p)) : NatxNat — NatxNat
pred = An:Nat.fst (n (NatxNat) (0,0) step) : Nat — Nat
@ Ackerman function ack : Nat — Nat — Nat
ack 0 m ~ m+1
ack (n+1) 0 ~ acknl
ack (n+1) (m+1) =~ ackn (ack (n+1)m)

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat
pred 0 ~ 0
pred (n+1) ~ 7
fst = Ap:NatxNat.p Nat (Ax,y:Nat.x) : NatxNat — Nat
snd = Ap:NatxNat.p Nat (Ax,y:Nat.y) : NatxNat — Nat
step = Ap:NatxNat. (snd p, succ (snd p)) : NatxNat — NatxNat
pred = An:Nat.fst (n (NatxNat) (0,0) step) : Nat — Nat
@ Ackerman function ack : Nat — Nat — Nat
ack 0 m ~ m+1
ack (n+1) 0 ~ acknl
ack (n+1) (m+1) =~ ackn (ack (n+1)m)
down Af:(Nat—Nat). Ap:Nat.p Nat (f I) f : (Nat—Nat) — (Nat—Nat)

ack An, m:Nat.n (Nat—Nat) succ down m : Nat — Nat — Nat

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat
pred 0 ~ 0
pred (n+1) ~ 7
fst = Ap:NatxNat.p Nat (Ax,y:Nat.x) : NatxNat — Nat
snd = Ap:NatxNat.p Nat (Ax,y:Nat.y) : NatxNat — Nat
step = Ap:NatxNat. (snd p, succ (snd p)) : NatxNat — NatxNat
pred = An:Nat.fst (n (NatxNat) (0,0) step) : Nat — Nat
@ Ackerman function ack : Nat — Nat — Nat
ack 0 m ~ m+1
ack (n+1) 0 ~ acknl
ack (n+1) (m+1) =~ ackn (ack (n+1)m)
down = Af:(Nat—Nat).Ap:Nat.p Nat (f 1) f : (Nat—Nat) — (Nat—Nat)
ack = An,m:Nat.n (Nat—Nat) succ down m : Nat — Nat — Nat

> SN theorem guarantees that all well-typed computations terminate

Part [l
«O>» «Fr «=)» «=)» = DA
e 4 4 444

B o

System F polymorphism

ML /Haskell polymorphism

Types AB = «a| A— B | --- (userdatatypes)
Schemes S = VaB

The type scheme Va B is defined after its particular instances B{a:= A}

System F polymorphism

ML /Haskell polymorphism

Types AB = «a| A— B | --- (userdatatypes)
Schemes S = VaB

The type scheme Va B is defined after its particular instances B{a:= A}
= Type system is predicative

System F polymorphism

ML /Haskell polymorphism

Types AB = «a| A— B | --- (userdatatypes)
Schemes S = VaB

The type scheme Va B is defined after its particular instances B{a:= A}
= Type system is predicative

System F polymorphism

Types AB = a| A—-B | YaB

The type Va B and its instances B{a:=A} are defined simultaneously

System F polymorphism

ML /Haskell polymorphism

Types AB = «a| A— B | --- (userdatatypes)
Schemes S = VaB

The type scheme Va B is defined after its particular instances B{a:= A}
= Type system is predicative

System F polymorphism

Types AB = a| A—-B | YaB

The type Va B and its instances B{a:=A} are defined simultaneously

Vo (a — a) and Va (@ — a) — Va (a — «a)

System F polymorphism

ML /Haskell polymorphism

Types AB = «a| A— B | --- (userdatatypes)
Schemes S = VaB

The type scheme Va B is defined after its particular instances B{a:= A}
= Type system is predicative

System F polymorphism

Types AB = a| A—-B | YaB

The type Va B and its instances B{a:=A} are defined simultaneously
Vo (a — a) and Va (@ — a) — Va (a — «a)

= Type system is impredicative, or cyclic

B o

Extracting pure A-terms

In Church-style system F, polymorphism is explicit:
id = Aa. MAx:a.x and id Nat 2

e Two kind of redexes (Ax:A.t)u and (Aa.t)A

Extracting pure A-terms

In Church-style system F, polymorphism is explicit:
id = Aa. MAx:a.x and id Nat 2

e Two kind of redexes (Ax:A.t)u and (Aa.t)A

Idea: Remove type abstractions/applications/annotations

Extracting pure A-terms

In Church-style system F, polymorphism is explicit:

id = Aa. \Xx:a.x and id Nat 2

e Two kind of redexes (Ax:A.t)u and (Aa.t)A

Idea: Remove type abstractions/applications/annotations
Erasing function t — |t

x| = x
IAx:A.t| = Ax.|t| N t| = [t
tu] = [t]]u] |tA| t]

Extracting pure A-terms

In Church-style system F, polymorphism is explicit:
id = Aa. MAx:a.x and id Nat 2
e Two kind of redexes (Ax:A.t)u and (Aa.t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t — |t

x| = x
IAx:A.t| = Ax.|t| N t| = [t
tu] = [t]]u] Al = [t]

o Target language is pure \-calculus

@ Second kind redexes are erased, first kind redexes are preserved

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:

@ The whole syntax

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:
@ The whole syntax

@ The judgements

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:
@ The whole syntax
@ The judgements
@ The typing rules

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:
@ The whole syntax

The judgements

The typing rules

e o6 o

The derivations

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:
@ The whole syntax

The judgements

The typing rules

e o6 o

The derivations

= Induces a new formalism: Curry-style system F

Church-style system F

Types AB = a| A-B | YaB

Terms tbu = x | M:A.t | tu | At | tA
Judgments r==1 | T, xA

Reduction (M A t)u = t{x :=u}

(A t)A = t{a:= A}

Church-style system F

Types AB = a| A-B | YaB

Terms tbu = x | M:At | tu | Nt | tA
Judgments r==1 | T, xA

Reduction (M A t)u = t{x :=u}

(A t)A = t{a:= A}

Curry-style system F

Types A B
Terms t,u
Judgments r
Reduction

[Leivant 83]

= a | A-B | YaB
t= x| Ax.t | tu
= | T, xA

(M. t)u = t{x:=u}

Curry-style system F [Leivant 83]

Types AB = a| A-B | YaB
Terms t,bu = x | Ax.t | tu
Judgments r==1 | T, xA
Reduction (M. t)u = t{x:=u}
Remarks:

@ Types (and contexts) are unchanged
@ Terms are now pure A-terms

@ Only one kind of redex

Church-style system F: typing rules

TEx-A A
I x:A-t:B 't A— B TFu:A
I Mx:A.t:A—B +~tu: B
r-t: B ag TV(F) =¢t:Va B

N-Aa.t:vVa B [+ tA: B{a:=A}

Curry-style system F: typing rules

Trx: A A

I x:A-t:B rM-t:A—B MrM-u:A
lNXx.t:A— B Ftu:B

[-t:B [Ft:VaB
rre:vaB “F770 [Ft:Bla:=A)

Curry-style system F: typing rules

FEx:A XA
I x:A-t:B rM-t:A—B MrM-u:A
lNXx.t:A— B Ftu:B
lr-t: B agd TV(F) +t:Va B

r-t:va B MN-t: B{a:=A}

= Rules are no more syntax directed

Curry-style system F: properties

Things that do not change

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A = Mx.xx

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A= Xx.xx : Va(a—a) — Va(a—a)

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A= Xx.xx : Va(a—a) — Va(a—a)
Vaa — YVa o

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types
A= Xx.xx : Va(a—a) — Va(a—a)

Vaa — Va o
Va o — Va (@ — a)

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A= Xx.xx : Va(a—a) — Va(a—a)
. Vaa — Vaa
Va o — Va (@ — a)
Bool — Bool — Bool

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A= Xx.xx : Va(a—a) — Va(a—a)
D Voo — Vaao
Va o — Va (@ — a)
Bool — Bool — Bool (‘or’ function!)

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types
A= Xx.xx : Va(a—a) — Va(a—a)
i Yaa — YVaa

Va o — Va (@ — a)
Bool — Bool — Bool (‘or’ function!)

@ No principal type (cf later)

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A= Xx.xx : Va(a—a) — Va(a—a)
D Voo — Vaao
Va o — Va (@ — a)
Bool — Bool — Bool (‘or’ function!)

@ No principal type (cf later)
e Type checking/inference becomes undecidable [Wells 94]

B o

= o

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)

QIf THt:A (Curry), then Tkt : A (Church)
forsome t; st || =t

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)

QIf THt:A (Curry), then Tkt : A (Church)
forsome t; st || =t

The erasing function maps:

Church’s world Curry’s world

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)

QIf THt:A (Curry), then Tkt : A (Church)
forsome t; st || =t

The erasing function maps:

Church’s world Curry’s world

1. derivations to derivations (isomorphism)

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)

QIf THt:A (Curry), then Tkt : A (Church)
forsome t; st || =t

The erasing function maps:

Church’s world Curry’s world

1. derivations to derivations (isomorphism)

2. valid judgements to valid judgements (surjective only)

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)
QIf THt:A (Curry), then Tkt : A (Church)
forsome t; st || =t

The erasing function maps:

Church’s world Curry’s world
1. derivations to derivations (isomorphism)

2. valid judgements to valid judgements (surjective only)

@ On valid judgements, erasing is not injective:

Va (a—a) — Vo (a—a)

A (Vo (a—a)). f(Va (a—a))f
Va (a—a) — Va (a—a)

A (Va (a—a)) . A f(a — a)(fa)
~ M. ff : Va(a—a) — Va (a—a)

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

(Church) (AN Mx:a.x)By > (Ax:B.x)y > vy

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

(Church) (AN Mx:a.x)By > (Ax:B.x)y > vy
| Erasing
(Curry) (MAx.x)y = (M&x.x)y > vy

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

(Church) (AN Mx:a.x)By > (Ax:B.x)y > vy
| Erasing
(Curry) (MAx.x)y = (M&x.x)y > vy

Fact 1 (Church to Curry):
If to,t) € Church, then

t="t = |to| =" |t} (with p < n)

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

(Church) (Aa.Xx:a.x)By = (M:B.x)y > vy
| Erasing
(Curry) (MAx.x)y = (M&x.x)y > vy

Fact 1 (Church to Curry):
If to,t) € Church, then

t="t = |to| =" |t} (with p < n)

Fact 2 (Curry to Church):
If to € Church, t' € Curry and ty well-typed, then

o] =Pt = 3t (Il =t A to =" 1) (with n > p)

B o

= o

Normalisation equivalence

Fact 3 (Combinatorial argument):

© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase

Normalisation equivalence

Fact 3 (Combinatorial argument):
© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase
@ During the contraction of a 2nd-kind redex

Normalisation equivalence

Fact 3 (Combinatorial argument):
© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase
@ During the contraction of a 2nd-kind redex
e the number of 1st-kind redexes may increase

Normalisation equivalence

Fact 3 (Combinatorial argument):
© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase
@ During the contraction of a 2nd-kind redex

e the number of 1st-kind redexes may increase
o the number of 2nd-kind redexes does not increase

Normalisation equivalence

Fact 3 (Combinatorial argument):

© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase
@ During the contraction of a 2nd-kind redex

e the number of 1st-kind redexes may increase
o the number of 2nd-kind redexes does not increase
o the number of type abstractions (A« . t) decreases

Normalisation equivalence

Fact 3 (Combinatorial argument):

© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase
@ During the contraction of a 2nd-kind redex

e the number of 1st-kind redexes may increase
o the number of 2nd-kind redexes does not increase
o the number of type abstractions (A« . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
O All typable terms of syst. F-Church are strongly normalisable
@ All typable terms of syst. F-Curry are strongly normalisable

o T o

A<B

In Curry-style system F, subtyping is introduced as a macro:

x:AF x: B

«0>» «Fr «Z»>» «E>» A

Subtyping

In Curry-style system F, subtyping is introduced as a macro:
A<B = x:AF x : B

Admissible rules

Subtyping

In Curry-style system F, subtyping is introduced as a macro:
A<B = x:AF x : B

Admissible rules

IN

(Reflexivity, transitivity)

Subtyping

In Curry-style system F, subtyping is introduced as a macro:
A<B = x:AF x : B

Admissible rules

A<

B B <C
A< A AL C

(Reflexivity, transitivity)

A< B
Va B < B{a:= A} A < VaB

(Polymorphism) ag¢ TV(A)

Subtyping

In Curry-style system F, subtyping is introduced as a macro:
A<B = x:AF x : B

Admissible rules

Reflexivi . A< B B<C
(Reflexivity, transitivity) A< A A< C

Pol hi AsB FTV(A)
(Polymorphism) Va B < B{a:= A} A< VaB

Fr=t: A A< B
Mr=t:B

(Subsumption)

= o

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A-=B

is not admissible

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A-=B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A- B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool
but if we n-expand: f:Nat—-V3 8 F Ax.fx : Va a — Bool

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A- B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool
but if we n-expand: f:Nat—-V3 8 F Ax.fx : Va a — Bool

@ This shows that:

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A- B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool
but if we n-expand: f:Nat—-V3 8 F Ax.fx : Va a — Bool

@ This shows that:
© Curry-style system F does not enjoy 7n-subject reduction

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A-=B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool
but if we n-expand: f:Nat—-V3 8 F Ax.fx : Va a — Bool

@ This shows that:

© Curry-style system F does not enjoy 7n-subject reduction
@ This problem is connected with subtyping in arrow-types

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A-=B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool
but if we n-expand: f:Nat—-V3 8 F Ax.fx : Va a — Bool

@ This shows that:

© Curry-style system F does not enjoy 7n-subject reduction
@ This problem is connected with subtyping in arrow-types

The well-typed term: Ax.fx : (Va a) — Bool (Curry-style)
comes from the term Ax:(Va a).f (x Nat) Bool (Church-style)

not an 7-redex

B o

System F,, [Mitchell 88]

Extend Curry-style system F with a new rule

N Xx.tx: A

ree-a V0

to enforce 7-subject reduction

System F,, [Mitchell 88]

Extend Curry-style system F with a new rule

N Xx.tx: A

ree-a V0

to enforce 7-subject reduction

Properties:

System F,, [Mitchell 88]

Extend Curry-style system F with a new rule

CEM.tx A
rre.a V0
to enforce 7-subject reduction

Properties:

@ Substitutivity, Sn-subject-reduction, strong normalisation

System F,, [Mitchell 88]

Extend Curry-style system F with a new rule

N Xx.tx: A

ree-a V0

to enforce 7-subject reduction

Properties:

@ Substitutivity, Sn-subject-reduction, strong normalisation

A< A B<PB
A—-B < A—= B

@ Subtyping rule is now admissible

System F,, [Mitchell 88]

Extend Curry-style system F with a new rule

N Xx.tx: A

ree-a V0

to enforce 7-subject reduction

Properties:

@ Substitutivity, Sn-subject-reduction, strong normalisation

A< A B<PB
A—-B < A—= B

@ Subtyping rule is now admissible
Expansion lemma

If THt:A isderivablein F,, then Tk ¢ :A is derivable in system F
for some n-expansion t’ of the term t.

More subtyping

If we set
1 = ny'y
AxB = Vy((A—=B—7v)—"7)
A+B = Yy (A=) —=(B—=7)—")
List(A) = VV (Y—=(A—=y—7)—7)

then, in F, the following subtyping rules are admissible:

A< A
1 <A List(A) < List(A')
A<A B<PH A<A B<PH

AxB < A xB A+B < A+PB

More subtyping

If we set
1 = ny'y
AxB = Vy((A—=B—7v)—"7)
A+B = Yy (A=) —=(B—=7)—")
List(A) = VV (Y—=(A—=y—7)—7)

then, in F, the following subtyping rules are admissible:

A< A
1 <A List(A) < List(A')
A<A B<PH A<A B<PH
AxB < A'x B A+B < A+B

@ But most typable terms have no principal type

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B FrEt: AN
rt: AnB FrEt: A N=t: B

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B rFt:AnB rFt:ANB
rt: AnB FrEt: A N=t: B

@ [In-subject reduction, strong normalisation, etc.

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B rFt:AnB rFt:ANB
rt: AnB FrEt: A N=t: B

@ [In-subject reduction, strong normalisation, etc.

@ Subtyping rules
C<A C<B

ANnB < A ANB < B C < AnB

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B rFt:AnB rFt:ANB
rt: AnB FrEt: A N=t: B

@ [In-subject reduction, strong normalisation, etc.

@ Subtyping rules
C<A C<B

ANnB < A ANB < B C < AnB

@ All the strongly normalising terms are typable. ..

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B rFt:AnB rFt:ANB
rt: AnB FrEt: A N=t: B

@ [In-subject reduction, strong normalisation, etc.

@ Subtyping rules
C<A C<B

ANnB < A ANB < B C < AnB

@ All the strongly normalising terms are typable. ..
... but nothing to do with V: already true in A—n

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B rFt:AnB rFt:ANB
rt: AnB FrEt: A N=t: B

@ [In-subject reduction, strong normalisation, etc.

@ Subtyping rules
C<A C<B

ANnB < A ANB < B C < AnB

@ All the strongly normalising terms are typable. ..
... but nothing to do with V: already true in A—n

@ All typable terms have a principal type
Ax:ixx. : Va VB ((a—p)Na— p)

Part IV
«O>» «Fr «=)» «=)» = DA

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type
~ (L — 1) x (Bool — Bool) x (Nat — Nat) x - --

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type
~ (L — 1) x (Bool — Bool) x (Nat — Nat) x - --

Since all the types A — A are inhabited:

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type
~ (L — 1) x (Bool — Bool) x (Nat — Nat) x - --

Since all the types A — A are inhabited:

@ The cartesian product Vo (a—«) should be larger than all the
types of the foom A — A

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type
~ (L — 1) x (Bool — Bool) x (Nat — Nat) x - --

Since all the types A — A are inhabited:

@ The cartesian product Vo (a—«) should be larger than all the
types of the foom A — A

@ In particular, Vo (a—«) should be larger than its own function
space Vo (a—a) — Va (a—a)...

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type
~ (L — 1) x (Bool — Bool) x (Nat — Nat) x - --

Since all the types A — A are inhabited:

@ The cartesian product Vo (a—«) should be larger than all the
types of the foom A — A

@ In particular, Vo (a—«) should be larger than its own function
space Vo (a—a) — Va (a—a)...

... seems to be very confusing!

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

Taking back our example:

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

Taking back our example:

@ The intersection Va (a—a) is smaller thanall A — A

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

Taking back our example:
@ The intersection Va (a—a) is smaller thanall A — A

@ In particular, Va (a—a) is smaller than its own function
space Va (a—a) — Va (a—a)...

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

Taking back our example:
@ The intersection Va (a—a) is smaller thanall A — A

@ In particular, Va (a—a) is smaller than its own function
space Va (a—a) — Va (a—a)...

... our intuition feels much better!

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

Taking back our example:
@ The intersection Va (a—a) is smaller thanall A — A

@ In particular, Va (a—a) is smaller than its own function
space Va (a—a) — Va (a—a)...

... our intuition feels much better!

= We will prove strong normalisation for Curry-style system F

Remember that SN(F-Church) < SN(F-Curry) (combinatorial equivalence)

Strong normalisation: the difficulty

Try to prove that
N-t:A = tisSN

by induction on the derivation of THt: A

Strong normalisation: the difficulty

Try to prove that
N-t:A = tisSN

by induction on the derivation of THt: A

TFx:a OO
M x:AFt: B r-t:A—B FrFu:A
'EFXx.t:A— B l-tu:B
r'-t: B g TV() [Ft:VaB

[-t:VaB M t: B{a:=A}

Strong normalisation: the difficulty

Try to prove that
N-t:A = tisSN

by induction on the derivation of THt: A

TEx:a 0O
I x:AFt:B r-t:A—B r-u:A
r'-XMx.t: A— B N-tu: B
r'-t: B g TV() [~t:VaB
F-t:VaB Mk t:B{a:=A}

All the cases successfully pass the test except application

Two terms t and u may be SN, whereas tu is not [Take t = u = Ax . xx]

Strong normalisation: the difficulty

Try to prove that
N-t:A = tisSN

by induction on the derivation of THt: A

TEx:a 0O
I x:AFt:B r-t:A—B r-u:A
r'-XMx.t: A— B N-tu: B
r'-t: B g TV() [~t:VaB
F-t:VaB Mk t:B{a:=A}

All the cases successfully pass the test except application

Two terms t and u may be SN, whereas tu is not [Take t = u = Ax . xx]

= The induction hypothesis “t is SN” is too weak (in general)

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

= Should replace it by an invariant that depends on the type A

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

= Should replace it by an invariant that depends on the type A
Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that fulfill this invariant

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

= Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that fulfill this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

= Should replace it by an invariant that depends on the type A
Intuition:
The more complex the type, the stronger its invariant,

the smaller the set of terms that fulfill this invariant

Invariants are represented by suitable sets of terms:
e Reducibility candidates [Girard]

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

= Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that fulfill this invariant

Invariants are represented by suitable sets of terms:
e Reducibility candidates [Girard], or
e Saturated sets [Tait]

Outline of the proof

@ Define a suitable notion of reducibility candidate
= the sets of A-terms that will interpret/represent types

(Here, we use Tait's saturated sets)

Outline of the proof

@ Define a suitable notion of reducibility candidate
= the sets of A-terms that will interpret/represent types

(Here, we use Tait's saturated sets)

@ Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable \-terms as elements

Outline of the proof

@ Define a suitable notion of reducibility candidate
= the sets of A-terms that will interpret/represent types

(Here, we use Tait's saturated sets)

@ Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable \-terms as elements

© Associate to each type A a reducibility candidate [A]

Type constructors ‘—' and 'V’ have to be reflected at the level of candidates

Outline of the proof

@ Define a suitable notion of reducibility candidate
= the sets of A-terms that will interpret/represent types

(Here, we use Tait's saturated sets)

@ Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable \-terms as elements

© Associate to each type A a reducibility candidate [A]

Type constructors ‘—' and 'V’ have to be reflected at the level of candidates

© Check (by induction) that T+ t: A implies t € [A]

This is actually a little bit more complex, since we must take care of the typing context

Outline of the proof

@ Define a suitable notion of reducibility candidate
= the sets of A-terms that will interpret/represent types

(Here, we use Tait's saturated sets)

@ Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable \-terms as elements

© Associate to each type A a reducibility candidate [A]

Type constructors ‘—' and 'V’ have to be reflected at the level of candidates

© Check (by induction) that T+ t: A implies t € [A]

This is actually a little bit more complex, since we must take care of the typing context

© Conclude that any well-typed term t is SN by step 2.

B o

Preliminaries (1/2)

o Notations:

A

SN
Var
TVar

set of all untyped A-terms (open & closed)
set of all strongly normalisable untyped A-terms
set of all (term) variables

set of all type variables

Preliminaries (1/2)

o Notations:

A = set of all untyped A-terms (open & closed)

SN = set of all strongly normalisable untyped \-terms
Var = set of all (term) variables

TVar = set of all type variables

@ A reduct of a term t is a term t’ such that t = t' (one step)

The number of reducts of a given term is finite and bounded by the number of redexes

Preliminaries (1/2)

o Notations:

A = set of all untyped A-terms (open & closed)

SN = set of all strongly normalisable untyped \-terms
Var = set of all (term) variables

TVar = set of all type variables

@ A reduct of a term t is a term t’ such that t = t' (one step)

The number of reducts of a given term is finite and bounded by the number of redexes

@ A finite reduction sequence of a term t is a finite sequence
(ti)icfo..n such that t=ty >t > > th_1 >t

Infinite reduction sequences are defined similarly, by replacing [0..n] by N

Preliminaries (1/2)

o Notations:

A = set of all untyped A-terms (open & closed)

SN = set of all strongly normalisable untyped \-terms
Var = set of all (term) variables

TVar = set of all type variables

@ A reduct of a term t is a term t’ such that t = t' (one step)

The number of reducts of a given term is finite and bounded by the number of redexes

@ A finite reduction sequence of a term t is a finite sequence
(ti)icfo..n such that t=ty >t > > th_1 >t

Infinite reduction sequences are defined similarly, by replacing [0..n] by N

o Finite reduction sequences of a term t form a tree, called the
reduction tree of t

B o

Preliminaries (2/2)

Definition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences
starting from t are finite

Preliminaries (2/2)

Definition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences
starting from t are finite

Proposition

The following assertions are equivalent:
O t is strongly normalisable
@ All the reducts of t are strongly normalisable
© The reduction tree of t is finite

Saturated sets [Tait]

Definition (Saturated set)

A set S C A is saturated if:

(SAT1) S CSN

(SAT?2) x€Var, velst(SN) = xveS

(SAT3) t{x:=ujveS, veSN = (Ax.t)uves

Saturated sets [Tait]

Definition (Saturated set)

A set S C A is saturated if:

(SAT1) S CSN

(SAT?2) x€Var, velst(SN) = xveS

(SAT3) t{x:=ujveS, veSN = (Ax.t)uves

@ (SAT1) expresses the property we want to prove

Saturated sets [Tait]

Definition (Saturated set)

A set S C A is saturated if:

(SAT1) S CSN

(SAT?2) x€Var, velst(SN) = xveS

(SAT3) t{x:=ujveS, veSN = (Ax.t)uves

@ (SAT1) expresses the property we want to prove

@ Saturated sets contain all the variables (SAT2)

Extra-arguments v € list(SN) are here for technical reasons

Saturated sets [Tait]

Definition (Saturated set)

A set S C A is saturated if:

(SAT1) S CSN

(SAT?2) x€Var, velst(SN) = xveS

(SAT3) t{x:=ujveS, veSN = (Ax.t)uves

@ (SAT1) expresses the property we want to prove

@ Saturated sets contain all the variables (SAT2)

Extra-arguments v € list(SN) are here for technical reasons

@ Saturated sets are closed under head [-expansion (SAT3)

Notice the condition u € SN to avoid a clash with (SAT1) for K-redexes

Saturated sets [Tait]

Definition (Saturated set)

A set S C A is saturated if:

(SAT1) S CSN

(SAT?2) x€Var, velst(SN) = xveS

(SAT3) t{x:=ujveS, veSN = (Ax.t)uves

@ (SAT1) expresses the property we want to prove

@ Saturated sets contain all the variables (SAT2)

Extra-arguments v € list(SN) are here for technical reasons

@ Saturated sets are closed under head [-expansion (SAT3)

Notice the condition u € SN to avoid a clash with (SAT1) for K-redexes

@ The set of all saturated sets is written SAT [C B(SN) C P(A)]

= o

Properties of saturated sets

Proposition (Lattice structure)
© SN is a saturated set

Properties of saturated sets

Proposition (Lattice structure)

© SN is a saturated set
@ SAT is closed under arbitrary non-empty intersections/unions:

142, (SheesAT = (Ns),(Usi) esAT
iel

icl

Properties of saturated sets

Proposition (Lattice structure)

© SN is a saturated set
@ SAT is closed under arbitrary non-empty intersections/unions:

142, (SheesAT = (Ns),(Usi) esAT
iel iel
(SAT, C) is a complete distributive lattice, with
T=SN and L ={teSN|t> xur---un} (Neutral terms)

Properties of saturated sets

Proposition (Lattice structure)
© SN is a saturated set
@ SAT is closed under arbitrary non-empty intersections/unions:
142, (SheesAT = (Ns),(Usi) esAT
iel icl
(SAT, C) is a complete distributive lattice, with
T=SN and L ={teSN|t> xur---un} (Neutral terms)

Realisability arrow: Forall S, T C A we set

S—T = {teA|VweS tweT}

Properties of saturated sets

Proposition (Lattice structure)
© SN is a saturated set
@ SAT is closed under arbitrary non-empty intersections/unions:
142, (SheesAT = (Ns),(Usi) esAT
iel icl
(SAT, C) is a complete distributive lattice, with
T=SN and L ={teSN|t> xur---un} (Neutral terms)

Realisability arrow: Forall S, T C A we set
S—T = {teA|VweS tweT}

Proposition (Closure under realisability arrow)
If S,T cSAT, then (S— T)e SAT

Principle:

Interpret syntactic types by saturated sets

«O>» «Fr o« «E>» = Q>

it
v

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

@ Type quantification Va .. is interpreted by the intersection ﬂ
SeSAT

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

@ Type quantification Va .. is interpreted by the intersection ﬂ
SeSAT

Remark: this intersection is impredicative since S ranges over all saturated sets

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

@ Type quantification Va .. is interpreted by the intersection ﬂ
SeSAT

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: Vo (o — «) should be interpreted by ﬂ (§—9)
SESAT

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

@ Type quantification Va .. is interpreted by the intersection m
SeSAT

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: Vo (o — «) should be interpreted by ﬂ (§—9)
SESAT

To interpret type variables, use type valations:

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

@ Type quantification Va .. is interpreted by the intersection m
SeSAT

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: Vo (o — «) should be interpreted by ﬂ (§—9)
SESAT

To interpret type variables, use type valations:

Definition (Type valuations)

A type valuation is a function p: TVar — SAT
The set of type valuations is written TVal (= TVar — SAT)

Interpreting types (2/2)

By induction on A, we define a function [A] : TVal — SAT

Interpreting types (2/2)

By induction on A, we define a function [A] : TVal — SAT

[A— B]]p = [[A]]p - [[B]]p [[a]]p = pla)
[[VO(B]]p = m [[B]]p;cw—s
SESAT

(p;a—S)(a) =S

Note: (p; a < S) is defined by {(p: a—8)(8) = p(8) forall B#a

Interpreting types (2/2)

By induction on A, we define a function [A] : TVal — SAT

[A— B]]p = [[A]]p . [[B]]p [[a]]p = p(a)
[[VO(B]]p = m [[B]]p;cw—s
SESAT

: Jo— is define (pro=S)(a) = S
Note: - (pie = 5) s defined by {(p: aS)(8) = p(8) for all B # a
Problem: The implication

r-t:A = telA,

cannot be proved directly. (One has to take care of the context)

Interpreting types (2/2)

By induction on A, we define a function [A] : TVal — SAT

[A— B]]p = [[A]]p - [[B]]p [[a]]p = pla)
[[VO(B]]p = m [[B]]p;cw—s
SESAT

(p;a—S)(a) =S

Note: (p; a < S) is defined by {(p: a—8)(8) = p(8) forall B#a

Problem: The implication
ret:A = telA,
cannot be proved directly. (One has to take care of the context)

= Strengthen induction hypothesis using substitutions

B o

Substitutions

Definition (Substitutions)

A substitution is a finite list o =[x := v1;...; X := Uy
where x; # x; (for i # j) and u; € A

Substitutions

Definition (Substitutions)

A substitution is a finite list o =[x := v1;...; X := Uy
where x; # x; (for i # j) and u; € A

Application of a substitution o to a term t is written t[o]

Exercise: Define it formally

Substitutions

Definition (Substitutions)

A substitution is a finite list o =[x := v1;...; X := Uy
where x; # x; (for i # j) and u; € A

Application of a substitution o to a term t is written t[o]

Exercise: Define it formally

Definition (Interpretation of contexts)

Forall T=x3:A1;...;xa: A, and pe€ TVal set:

M, = {o=k=u...ixo:=up]; vj€[A], (i=1.n)}

Substitutions o € [[], are said to be adapted to the context I' (in the type valuation p)

B o

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If THt:A in Curry-style system F, then
Vp € TVal Vo e [, tlo] € [Al,

The strong normalisation invariant

Lemma (Strong normalisation invariant)
If THt:A in Curry-style system F, then
Vp € TVal Vo e [, tlo] € [Al,

Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

The strong normalisation invariant

Lemma (Strong normalisation invariant)
If THt:A in Curry-style system F, then

Vp € TVal Vo e [, tlo] € [Al,
Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If THt:A in Curry-style system F, then
Vp € TVal Vo e [, tlo] € [Al,

Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume x;:A:;...;xn:AnHt:B

The strong normalisation invariant

Lemma (Strong normalisation invariant)
If THt:A in Curry-style system F, then

Vp € TVal Vo e [, tlo] € [Al,
Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume x;:A:;...;xn:AnHt:B
Consider an arbitrary type valuation p (for instance: p(a) = SN for all «)

The strong normalisation invariant

Lemma (Strong normalisation invariant)
If THt:A in Curry-style system F, then

Vp € TVal Vo e [, tlo] € [Al,
Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume x;:A:;...;xn:AnHt:B
Consider an arbitrary type valuation p (for instance: p(a) = SN for all «)

We have: x1 € [A1]p, x2 € [A2]p, ..., xn € [An]l, (SAT2)

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If THt:A in Curry-style system F, then
Vp € TVal Vo e [, tlo] € [Al,

Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume x;:A:;...;xn:AnHt:B
Consider an arbitrary type valuation p (for instance: p(a) = SN for all «)

We have: x1 € [A1],, x2 € [A2]p, ..., xn € [An], (SAT2), hence:
o=[x1:=x1;...ixn = Xn] € [x1: A1; ... %n : An],p

From the lemma we get t = t[o] € [B],, hence te& SN (SAT1)

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If THt:A in Curry-style system F, then
Vp € TVal Vo e [, tlo] € [Al,

Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Corollary (Church-style SN)
The typable terms of F-Church are strongly normalisable

A remark on impredicativity

In the SN proof, interpretation of V relies on the property:

If (Si)ier (I # @) is a family of saturated sets,
then (Y;c,; Si Is a saturated set

in the special case where | = SAT (impredicative intersection)

A remark on impredicativity

In the SN proof, interpretation of V relies on the property:

If (Si)ier (I # @) is a family of saturated sets,
then (Y;c,; Si Is a saturated set

in the special case where | = SAT (impredicative intersection)

@ In ‘classical’ mathematics, this construction is legal

A remark on impredicativity

In the SN proof, interpretation of V relies on the property:

If (Si)ier (I # @) is a family of saturated sets,
then (Y;c,; Si Is a saturated set

in the special case where | = SAT (impredicative intersection)

@ In ‘classical’ mathematics, this construction is legal

= Standard set theories (Z, ZF, ZFC) are impredicative

A remark on impredicativity

In the SN proof, interpretation of V relies on the property:

If (Si)ier (I # @) is a family of saturated sets,
then (Y;c,; Si Is a saturated set

in the special case where | = SAT (impredicative intersection)

@ In ‘classical’ mathematics, this construction is legal

= Standard set theories (Z, ZF, ZFC) are impredicative

@ In (Bishop, Martin-L6f's style) constructive mathematics, this
principle is rejected, mainly for philosophical reasons:

e No convincing ‘constructive’ explanation
e Suspicion about (this kind of) cyclicity

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:
@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}

@ Fact: & is non empty, since E € &
© Take: S=(eeF

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &

© Take: S=(eeF

@ By definition, S is included in all the sub-spaces of E containing S

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &

© Take: S=(eeF

@ By definition, S is included in all the sub-spaces of E containing S

© But S is itself a sub-vector space of E containing S (so that S € &)

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &

© Take: S=(eeF

@ By definition, S is included in all the sub-spaces of E containing S

© But S is itself a sub-vector space of E containing S (so that S € &)

@ So that S is actually the smallest of all such spaces

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &

© Take: S=(eeF

@ By definition, S is included in all the sub-spaces of E containing S

© But S is itself a sub-vector space of E containing S (so that S € &)

@ So that S is actually the smallest of all such spaces

ThIS deﬁnition iS impredicative (Step 3) (but legal in ‘classical’ mathematics)

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:
@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &
© Take: S=(eeF
@ By definition, S is included in all the sub-spaces of E containing S

© But S is itself a sub-vector space of E containing S (so that S € &)
@ So that S is actually the smallest of all such spaces

ThIS deﬁnition iS impredicative (Step 3) (but legal in ‘classical’ mathematics)

The set S is defined from &, that already contains S as an element

discovered a fortiori

Impredicativity: An example (2/2)

But there are other ways of defining S...

Impredicativity: An example (2/2)

But there are other ways of defining S...

e Standard ‘concrete’ definition, by linear combinations:

Impredicativity: An example (2/2)

But there are other ways of defining S...

e Standard ‘concrete’ definition, by linear combinations:
Let S be the set of all vectors of the form v=ca1-vi+ - 4 an - Va

where (v;) ranges over all the finite families of elements of S,
and (i) ranges over all the finite families of scalars

Impredicativity: An example (2/2)

But there are other ways of defining S...

e Standard ‘concrete’ definition, by linear combinations:
Let S be the set of all vectors of the form v=ca1-vi+ - 4 an - Va

where (v;) ranges over all the finite families of elements of S,
and (i) ranges over all the finite families of scalars

o Inductive definition:

Impredicativity: An example (2/2)

But there are other ways of defining S...

e Standard ‘concrete’ definition, by linear combinations:
Let S be the set of all vectors of the form v=ca1-vi+ - 4 an - Va

where (v;) ranges over all the finite families of elements of S,
and (i) ranges over all the finite families of scalars

o Inductive definition:

Let S be the set inductively defined by:
@0¢cS,
Q@ IfveS, thenves,
Q If veSand aisascalar, thena-veSs
QIfvueSandw, €8S, thenvy +v, € S.

Impredicativity: An example (2/2)

But there are other ways of defining S...

e Standard ‘concrete’ definition, by linear combinations:
Let S be the set of all vectors of the form v =1 -vi+ -+ an - va
where (v;) ranges over all the finite families of elements of S,
and (i) ranges over all the finite families of scalars

e Inductive definition:

Let S be the set inductively defined by:
Q0¢cS, _
Q IfveS, thenves,

© If veSand ais ascalar, thena-v €S
Q fvieSand vo € S, then vi +wv, € S.

= Both definitions are predicative (and give the same object)

