
System F

Alexandre Miquel � PPS & U. Paris 7

Alexandre.Miquel@pps.jussieu.fr

Types Summer School 2005

August 15�26 � Göteborg

Introduction

System F : independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Introduction

System F : independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Introduction

System F : independently discovered by

Girard: System F (1970)

Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Introduction

System F : independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Introduction

System F : independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Introduction

System F : independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Part I

System F: Church-style presentation

System F syntax

De�nition

Types

Terms

A,B ::= α | A→ B | ∀α B

t, u ::= x
| λx :A . t | tu (term abstr./app.)
| Λα . t | tA (type abstr./app.)

Notations
Set of free (term) variables: FV (t)
Set of free type variables: TV (t), TV (A)

Term substitution: u{x := t}
Type substitution: u{α := A}, B{α := A}

Perform α-conversion to prevent captures of free (term/type) variables!

System F syntax

De�nition

Types

Terms

A,B ::= α | A→ B | ∀α B

t, u ::= x
| λx :A . t | tu (term abstr./app.)
| Λα . t | tA (type abstr./app.)

Notations
Set of free (term) variables: FV (t)
Set of free type variables: TV (t), TV (A)

Term substitution: u{x := t}
Type substitution: u{α := A}, B{α := A}

Perform α-conversion to prevent captures of free (term/type) variables!

System F typing rules

Contexts

Typing judgments

Γ ::= x1 : A1, . . . , xn : An

Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Declaration of type variables is implicit (for each α ∈ TV (Γ))
Type variables could be declared explicitly: α : ∗ (cf PTS)
One rule for each syntactic construct ⇒ System is syntax-directed

System F typing rules

Contexts

Typing judgments

Γ ::= x1 : A1, . . . , xn : An

Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Declaration of type variables is implicit (for each α ∈ TV (Γ))
Type variables could be declared explicitly: α : ∗ (cf PTS)
One rule for each syntactic construct ⇒ System is syntax-directed

System F typing rules

Contexts

Typing judgments

Γ ::= x1 : A1, . . . , xn : An

Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Declaration of type variables is implicit (for each α ∈ TV (Γ))
Type variables could be declared explicitly: α : ∗ (cf PTS)
One rule for each syntactic construct ⇒ System is syntax-directed

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}

Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u

� (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u

� u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´

�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }
4 294 967 296 times

x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A

Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable

Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Part II

Encoding data types

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool

false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1

ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (2/3)

Objection:

We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (2/3)

Objection: We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (2/3)

Objection: We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (2/3)

Objection: We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (2/3)

Objection: We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (2/3)

Objection: We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Cartesian product

Encoding of the cartesian product A× B

A× B ≡ ∀γ ((A→B→γ) → γ)

〈t1, t2〉 ≡ Λγ . λf :A→ B → γ . f t1 t2

fst ≡ λp :A× B . p A (λx :A . λy :B . x) : A× B → A
snd ≡ λp :A× B . p B (λx :A . λy :B . y) : A× B → B

Correctness w.r.t. typing and reduction

Γ ` t1 : A Γ ` t2 : B
Γ ` 〈t1, t2〉 : A× B

fst 〈t1, t2〉 �∗ t1
snd 〈t1, t2〉 �∗ t2

Lemma (Canonical forms of type A× B)

The closed normal terms of type A×B are of the form 〈t1, t2〉, where t1 and t2
are closed normal terms of type A and B, respectively.

Cartesian product

Encoding of the cartesian product A× B

A× B ≡ ∀γ ((A→B→γ) → γ)

〈t1, t2〉 ≡ Λγ . λf :A→ B → γ . f t1 t2

fst ≡ λp :A× B . p A (λx :A . λy :B . x) : A× B → A
snd ≡ λp :A× B . p B (λx :A . λy :B . y) : A× B → B

Correctness w.r.t. typing and reduction

Γ ` t1 : A Γ ` t2 : B
Γ ` 〈t1, t2〉 : A× B

fst 〈t1, t2〉 �∗ t1
snd 〈t1, t2〉 �∗ t2

Lemma (Canonical forms of type A× B)

The closed normal terms of type A×B are of the form 〈t1, t2〉, where t1 and t2
are closed normal terms of type A and B, respectively.

Cartesian product

Encoding of the cartesian product A× B

A× B ≡ ∀γ ((A→B→γ) → γ)

〈t1, t2〉 ≡ Λγ . λf :A→ B → γ . f t1 t2

fst ≡ λp :A× B . p A (λx :A . λy :B . x) : A× B → A
snd ≡ λp :A× B . p B (λx :A . λy :B . y) : A× B → B

Correctness w.r.t. typing and reduction

Γ ` t1 : A Γ ` t2 : B
Γ ` 〈t1, t2〉 : A× B

fst 〈t1, t2〉 �∗ t1
snd 〈t1, t2〉 �∗ t2

Lemma (Canonical forms of type A× B)

The closed normal terms of type A×B are of the form 〈t1, t2〉, where t1 and t2
are closed normal terms of type A and B, respectively.

Cartesian product

Encoding of the cartesian product A× B

A× B ≡ ∀γ ((A→B→γ) → γ)

〈t1, t2〉 ≡ Λγ . λf :A→ B → γ . f t1 t2

fst ≡ λp :A× B . p A (λx :A . λy :B . x) : A× B → A
snd ≡ λp :A× B . p B (λx :A . λy :B . y) : A× B → B

Correctness w.r.t. typing and reduction

Γ ` t1 : A Γ ` t2 : B
Γ ` 〈t1, t2〉 : A× B

fst 〈t1, t2〉 �∗ t1
snd 〈t1, t2〉 �∗ t2

Lemma (Canonical forms of type A× B)

The closed normal terms of type A×B are of the form 〈t1, t2〉, where t1 and t2
are closed normal terms of type A and B, respectively.

Disjoint union

Encoding of the disjoint union A + B

A + B ≡ ∀γ ((A→γ) → (B→γ) → γ)

inl(v) ≡ Λγ . λf :A→ γ . λg :B → γ . f v : A + B (with v : A)
inr(v) ≡ Λγ . λf :A→ γ . λg :B → γ . g v : A + B (with v : B)

caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 ≡ u C (λx :A . t1) (λy :B . t2)

Correctness w.r.t. typing and reduction

Γ ` u : A + B Γ, x : A ` t1 : C Γ, y : B ` t2 : C
Γ ` caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 : C

caseC inl(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t1{x := v}
caseC inr(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t2{y := v}

+ Canonical forms of type A + B (works as expected)

Disjoint union

Encoding of the disjoint union A + B

A + B ≡ ∀γ ((A→γ) → (B→γ) → γ)

inl(v) ≡ Λγ . λf :A→ γ . λg :B → γ . f v : A + B (with v : A)
inr(v) ≡ Λγ . λf :A→ γ . λg :B → γ . g v : A + B (with v : B)

caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 ≡ u C (λx :A . t1) (λy :B . t2)

Correctness w.r.t. typing and reduction

Γ ` u : A + B Γ, x : A ` t1 : C Γ, y : B ` t2 : C
Γ ` caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 : C

caseC inl(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t1{x := v}
caseC inr(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t2{y := v}

+ Canonical forms of type A + B (works as expected)

Disjoint union

Encoding of the disjoint union A + B

A + B ≡ ∀γ ((A→γ) → (B→γ) → γ)

inl(v) ≡ Λγ . λf :A→ γ . λg :B → γ . f v : A + B (with v : A)
inr(v) ≡ Λγ . λf :A→ γ . λg :B → γ . g v : A + B (with v : B)

caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 ≡ u C (λx :A . t1) (λy :B . t2)

Correctness w.r.t. typing and reduction

Γ ` u : A + B Γ, x : A ` t1 : C Γ, y : B ` t2 : C
Γ ` caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 : C

caseC inl(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t1{x := v}
caseC inr(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t2{y := v}

+ Canonical forms of type A + B (works as expected)

Disjoint union

Encoding of the disjoint union A + B

A + B ≡ ∀γ ((A→γ) → (B→γ) → γ)

inl(v) ≡ Λγ . λf :A→ γ . λg :B → γ . f v : A + B (with v : A)
inr(v) ≡ Λγ . λf :A→ γ . λg :B → γ . g v : A + B (with v : B)

caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 ≡ u C (λx :A . t1) (λy :B . t2)

Correctness w.r.t. typing and reduction

Γ ` u : A + B Γ, x : A ` t1 : C Γ, y : B ` t2 : C
Γ ` caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 : C

caseC inl(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t1{x := v}
caseC inr(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t2{y := v}

+ Canonical forms of type A + B (works as expected)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Natural numbers

Encoding of the type of Church numerals

Nat ≡ ∀γ (γ → (γ → γ) → γ)

0 ≡ Λγ . λx : γ . λf : γ→γ . x
1 ≡ Λγ . λx : γ . λf : γ→γ . f x
2 ≡ Λγ . λx : γ . λf : γ→γ . f (f x)

...
n ≡ Λγ . λx : γ . λf : γ→γ . f (· · · (f︸ ︷︷ ︸

n times

x) · · ·) : Nat
...

Lemma (Canonical forms of type Nat)

The terms 0, 1, 2, . . . are the only closed normal terms of type Nat.

Natural numbers

Encoding of the type of Church numerals

Nat ≡ ∀γ (γ → (γ → γ) → γ)

0 ≡ Λγ . λx : γ . λf : γ→γ . x
1 ≡ Λγ . λx : γ . λf : γ→γ . f x
2 ≡ Λγ . λx : γ . λf : γ→γ . f (f x)

...
n ≡ Λγ . λx : γ . λf : γ→γ . f (· · · (f︸ ︷︷ ︸

n times

x) · · ·) : Nat
...

Lemma (Canonical forms of type Nat)

The terms 0, 1, 2, . . . are the only closed normal terms of type Nat.

Natural numbers

Encoding of the type of Church numerals

Nat ≡ ∀γ (γ → (γ → γ) → γ)

0 ≡ Λγ . λx : γ . λf : γ→γ . x
1 ≡ Λγ . λx : γ . λf : γ→γ . f x
2 ≡ Λγ . λx : γ . λf : γ→γ . f (f x)

...
n ≡ Λγ . λx : γ . λf : γ→γ . f (· · · (f︸ ︷︷ ︸

n times

x) · · ·) : Nat
...

Lemma (Canonical forms of type Nat)

The terms 0, 1, 2, . . . are the only closed normal terms of type Nat.

Natural numbers

Encoding of the type of Church numerals

Nat ≡ ∀γ (γ → (γ → γ) → γ)

0 ≡ Λγ . λx : γ . λf : γ→γ . x
1 ≡ Λγ . λx : γ . λf : γ→γ . f x
2 ≡ Λγ . λx : γ . λf : γ→γ . f (f x)

...
n ≡ Λγ . λx : γ . λf : γ→γ . f (· · · (f︸ ︷︷ ︸

n times

x) · · ·) : Nat
...

Lemma (Canonical forms of type Nat)

The terms 0, 1, 2, . . . are the only closed normal terms of type Nat.

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f

plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)

mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´

down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Part III

System F: Curry-style presentation

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}
⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}

⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}
⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}
⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}
⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}
⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

Extracting pure λ-terms

In Church-style system F , polymorphism is explicit:

id ≡ Λα . λx :α . x and id Nat 2

Two kind of redexes (λx :A . t)u and (Λα . t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t 7→ |t|

|x | = x
|λx :A . t| = λx . |t| |Λα . t| = |t|

|tu| = |t||u| |tA| = |t|

Target language is pure λ-calculus

Second kind redexes are erased, �rst kind redexes are preserved

Extracting pure λ-terms

In Church-style system F , polymorphism is explicit:

id ≡ Λα . λx :α . x and id Nat 2

Two kind of redexes (λx :A . t)u and (Λα . t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t 7→ |t|

|x | = x
|λx :A . t| = λx . |t| |Λα . t| = |t|

|tu| = |t||u| |tA| = |t|

Target language is pure λ-calculus

Second kind redexes are erased, �rst kind redexes are preserved

Extracting pure λ-terms

In Church-style system F , polymorphism is explicit:

id ≡ Λα . λx :α . x and id Nat 2

Two kind of redexes (λx :A . t)u and (Λα . t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t 7→ |t|

|x | = x
|λx :A . t| = λx . |t| |Λα . t| = |t|

|tu| = |t||u| |tA| = |t|

Target language is pure λ-calculus

Second kind redexes are erased, �rst kind redexes are preserved

Extracting pure λ-terms

In Church-style system F , polymorphism is explicit:

id ≡ Λα . λx :α . x and id Nat 2

Two kind of redexes (λx :A . t)u and (Λα . t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t 7→ |t|

|x | = x
|λx :A . t| = λx . |t| |Λα . t| = |t|

|tu| = |t||u| |tA| = |t|

Target language is pure λ-calculus

Second kind redexes are erased, �rst kind redexes are preserved

Extracting pure λ-terms

In Church-style system F , polymorphism is explicit:

id ≡ Λα . λx :α . x and id Nat 2

Two kind of redexes (λx :A . t)u and (Λα . t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t 7→ |t|

|x | = x
|λx :A . t| = λx . |t| |Λα . t| = |t|

|tu| = |t||u| |tA| = |t|

Target language is pure λ-calculus

Second kind redexes are erased, �rst kind redexes are preserved

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:

The whole syntax
The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax

The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements

The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements
The typing rules

The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Church-style system F

Church-style system FCurry-style system F [Leivant 83]

Types

Terms

Judgments

Reduction

A,B ::= α | A→ B | ∀α B

t, u ::=

x | λx . t | tu

x | λx :A . t | tu | Λα . t | tA

x | λx :A . t | tu | Λα . t | tA

Γ ::= [] | Γ, x :A

(λx . t)u � t{x := u}

(λx :A . t)u � t{x := u}

(λx :A . t)u � t{x := u}

(Λα . t)A � t{α := A}

(Λα . t)A � t{α := A}

Remarks:

Types (and contexts) are unchanged

Terms are now pure λ-terms

Only one kind of redex

Church-style system F

Church-style system F

Curry-style system F [Leivant 83]

Types

Terms

Judgments

Reduction

A,B ::= α | A→ B | ∀α B

t, u ::=

x | λx . t | tux | λx :A . t | tu | Λα . t | tA

x | λx :A . t | tu | Λα . t | tA

Γ ::= [] | Γ, x :A

(λx . t)u � t{x := u}(λx :A . t)u � t{x := u}

(λx :A . t)u � t{x := u}

(Λα . t)A � t{α := A}

(Λα . t)A � t{α := A}

Remarks:

Types (and contexts) are unchanged

Terms are now pure λ-terms

Only one kind of redex

Church-style system FChurch-style system F

Curry-style system F [Leivant 83]

Types

Terms

Judgments

Reduction

A,B ::= α | A→ B | ∀α B

t, u ::= x | λx . t | tu

x | λx :A . t | tu | Λα . t | tAx | λx :A . t | tu | Λα . t | tA

Γ ::= [] | Γ, x :A

(λx . t)u � t{x := u}

(λx :A . t)u � t{x := u}(λx :A . t)u � t{x := u}
(Λα . t)A � t{α := A}(Λα . t)A � t{α := A}

Remarks:

Types (and contexts) are unchanged

Terms are now pure λ-terms

Only one kind of redex

Church-style system FChurch-style system F

Curry-style system F [Leivant 83]

Types

Terms

Judgments

Reduction

A,B ::= α | A→ B | ∀α B

t, u ::= x | λx . t | tu

x | λx :A . t | tu | Λα . t | tAx | λx :A . t | tu | Λα . t | tA

Γ ::= [] | Γ, x :A

(λx . t)u � t{x := u}

(λx :A . t)u � t{x := u}(λx :A . t)u � t{x := u}
(Λα . t)A � t{α := A}(Λα . t)A � t{α := A}

Remarks:

Types (and contexts) are unchanged

Terms are now pure λ-terms

Only one kind of redex

Church-style system F: typing rules

Curry-style system F: typing rules

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ `

tt

: B
Γ `

tt

: ∀α B
α/∈TV (Γ)

Γ `

tt

: ∀α B
Γ `

tt

: B{α := A}

⇒ Rules are no more syntax directed

Church-style system F: typing rules

Curry-style system F: typing rules

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t

t

: B
Γ ` t

t

: ∀α B
α/∈TV (Γ)

Γ ` t

t

: ∀α B
Γ ` t

t

: B{α := A}

⇒ Rules are no more syntax directed

Church-style system F: typing rules

Curry-style system F: typing rules

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ `

t

t : B
Γ `

t

t : ∀α B
α/∈TV (Γ)

Γ `

t

t : ∀α B
Γ `

t

t : B{α := A}

⇒ Rules are no more syntax directed

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change

A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x

: ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)

: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α

: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)

: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool

(`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations

1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)

2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)
for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)

2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and reduction

Second-kind redexes are erased, �rst-kind redexes are preserved

(Church) (Λα . λx : α . x)B y � (λx :B . x) y � y
↓ Erasing

(Curry) (λx . x) y ≡ (λx . x) y � y

Fact 1 (Church to Curry):

If t0, t ′0 ∈ Church, then

t �n t ′ ⇒ |t0| �p |t ′0| (with p ≤ n)

Fact 2 (Curry to Church):

If t0 ∈ Church, t ′ ∈ Curry and t0 well-typed, then

|t0| �p t ′ ⇒ ∃t ′0 (|t ′0| = t ′ ∧ t0 �n t ′0) (with n ≥ p)

Erasing and reduction

Second-kind redexes are erased, �rst-kind redexes are preserved

(Church) (Λα . λx : α . x)B y � (λx :B . x) y � y

↓ Erasing
(Curry) (λx . x) y ≡ (λx . x) y � y

Fact 1 (Church to Curry):

If t0, t ′0 ∈ Church, then

t �n t ′ ⇒ |t0| �p |t ′0| (with p ≤ n)

Fact 2 (Curry to Church):

If t0 ∈ Church, t ′ ∈ Curry and t0 well-typed, then

|t0| �p t ′ ⇒ ∃t ′0 (|t ′0| = t ′ ∧ t0 �n t ′0) (with n ≥ p)

Erasing and reduction

Second-kind redexes are erased, �rst-kind redexes are preserved

(Church) (Λα . λx : α . x)B y � (λx :B . x) y � y
↓ Erasing

(Curry) (λx . x) y ≡ (λx . x) y � y

Fact 1 (Church to Curry):

If t0, t ′0 ∈ Church, then

t �n t ′ ⇒ |t0| �p |t ′0| (with p ≤ n)

Fact 2 (Curry to Church):

If t0 ∈ Church, t ′ ∈ Curry and t0 well-typed, then

|t0| �p t ′ ⇒ ∃t ′0 (|t ′0| = t ′ ∧ t0 �n t ′0) (with n ≥ p)

Erasing and reduction

Second-kind redexes are erased, �rst-kind redexes are preserved

(Church) (Λα . λx : α . x)B y � (λx :B . x) y � y
↓ Erasing

(Curry) (λx . x) y ≡ (λx . x) y � y

Fact 1 (Church to Curry):

If t0, t ′0 ∈ Church, then

t �n t ′ ⇒ |t0| �p |t ′0| (with p ≤ n)

Fact 2 (Curry to Church):

If t0 ∈ Church, t ′ ∈ Curry and t0 well-typed, then

|t0| �p t ′ ⇒ ∃t ′0 (|t ′0| = t ′ ∧ t0 �n t ′0) (with n ≥ p)

Erasing and reduction

Second-kind redexes are erased, �rst-kind redexes are preserved

(Church) (Λα . λx : α . x)B y � (λx :B . x) y � y
↓ Erasing

(Curry) (λx . x) y ≡ (λx . x) y � y

Fact 1 (Church to Curry):

If t0, t ′0 ∈ Church, then

t �n t ′ ⇒ |t0| �p |t ′0| (with p ≤ n)

Fact 2 (Curry to Church):

If t0 ∈ Church, t ′ ∈ Curry and t0 well-typed, then

|t0| �p t ′ ⇒ ∃t ′0 (|t ′0| = t ′ ∧ t0 �n t ′0) (with n ≥ p)

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):

1 During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase

2 During the contraction of a 2nd-kind redex
the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase

2 During the contraction of a 2nd-kind redex
the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase

the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase

the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:

1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction

2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

More subtyping

If we set

⊥ := ∀γ γ
A× B := ∀γ ((A→ B → γ) → γ)
A + B := ∀γ ((A→ γ) → (B → γ) → γ)
List(A) := ∀γ (γ → (A→ γ → γ) → γ)

then, in Fη, the following subtyping rules are admissible:

⊥ ≤ A
A ≤ A′

List(A) ≤ List(A′)

A ≤ A′ B ≤ B ′

A× B ≤ A′ × B ′
A ≤ A′ B ≤ B ′

A + B ≤ A′ + B ′

� But most typable terms have no principal type

More subtyping

If we set

⊥ := ∀γ γ
A× B := ∀γ ((A→ B → γ) → γ)
A + B := ∀γ ((A→ γ) → (B → γ) → γ)
List(A) := ∀γ (γ → (A→ γ → γ) → γ)

then, in Fη, the following subtyping rules are admissible:

⊥ ≤ A
A ≤ A′

List(A) ≤ List(A′)

A ≤ A′ B ≤ B ′

A× B ≤ A′ × B ′
A ≤ A′ B ≤ B ′

A + B ≤ A′ + B ′

� But most typable terms have no principal type

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .

. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Part IV

The Strong Normalisation Theorem

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:
1 The intersection ∀α (α→α) is smaller than all A→ A
2 In particular, ∀α (α→α) is smaller than its own function

space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:

1 The intersection ∀α (α→α) is smaller than all A→ A
2 In particular, ∀α (α→α) is smaller than its own function

space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:
1 The intersection ∀α (α→α) is smaller than all A→ A

2 In particular, ∀α (α→α) is smaller than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:
1 The intersection ∀α (α→α) is smaller than all A→ A
2 In particular, ∀α (α→α) is smaller than its own function

space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:
1 The intersection ∀α (α→α) is smaller than all A→ A
2 In particular, ∀α (α→α) is smaller than its own function

space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:
1 The intersection ∀α (α→α) is smaller than all A→ A
2 In particular, ∀α (α→α) is smaller than its own function

space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

Strong normalisation: the di�culty

Try to prove that
Γ ` t : A ⇒ t is SN

by induction on the derivation of Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ `

tt

: A→ B Γ `

uu

: A
Γ `

ttuu

: B

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

All the cases successfully pass the test except application
Two terms t and u may be SN, whereas tu is not [Take t ≡ u ≡ λx . xx]

⇒ The induction hypothesis �t is SN� is too weak (in general)

Strong normalisation: the di�culty

Try to prove that
Γ ` t : A ⇒ t is SN

by induction on the derivation of Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ ` t

t

: A→ B Γ ` u

u

: A
Γ ` t

t

u

u

: B

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

All the cases successfully pass the test except application
Two terms t and u may be SN, whereas tu is not [Take t ≡ u ≡ λx . xx]

⇒ The induction hypothesis �t is SN� is too weak (in general)

Strong normalisation: the di�culty

Try to prove that
Γ ` t : A ⇒ t is SN

by induction on the derivation of Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ `

t

t : A→ B Γ `

u

u : A
Γ `

t

t

u

u : B

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

All the cases successfully pass the test except application
Two terms t and u may be SN, whereas tu is not [Take t ≡ u ≡ λx . xx]

⇒ The induction hypothesis �t is SN� is too weak (in general)

Strong normalisation: the di�culty

Try to prove that
Γ ` t : A ⇒ t is SN

by induction on the derivation of Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ `

t

t : A→ B Γ `

u

u : A
Γ `

t

t

u

u : B

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

All the cases successfully pass the test except application
Two terms t and u may be SN, whereas tu is not [Take t ≡ u ≡ λx . xx]

⇒ The induction hypothesis �t is SN� is too weak (in general)

Reducibility candidates [Girard 1971]

To prove that
Γ ` t : A

A

⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard], or

Saturated sets [Tait]

Reducibility candidates [Girard 1971]

To prove that
Γ ` t :

A

A ⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard], or

Saturated sets [Tait]

Reducibility candidates [Girard 1971]

To prove that
Γ ` t :

A

A ⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard], or

Saturated sets [Tait]

Reducibility candidates [Girard 1971]

To prove that
Γ ` t :

A

A ⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard], or

Saturated sets [Tait]

Reducibility candidates [Girard 1971]

To prove that
Γ ` t :

A

A ⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard]

, or

Saturated sets [Tait]

Reducibility candidates [Girard 1971]

To prove that
Γ ` t :

A

A ⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard], or

Saturated sets [Tait]

Outline of the proof

1 De�ne a suitable notion of reducibility candidate
= the sets of λ-terms that will interpret/represent types
(Here, we use Tait's saturated sets)

2 Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)
Each candidate should only contain strongly normalisable λ-terms as elements

3 Associate to each type A a reducibility candidate JAK
Type constructors `→' and `∀' have to be re�ected at the level of candidates

4 Check (by induction) that Γ ` t : A implies t ∈ JAK
This is actually a little bit more complex, since we must take care of the typing context

5 Conclude that any well-typed term t is SN by step 2.

Outline of the proof

1 De�ne a suitable notion of reducibility candidate
= the sets of λ-terms that will interpret/represent types
(Here, we use Tait's saturated sets)

2 Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)
Each candidate should only contain strongly normalisable λ-terms as elements

3 Associate to each type A a reducibility candidate JAK
Type constructors `→' and `∀' have to be re�ected at the level of candidates

4 Check (by induction) that Γ ` t : A implies t ∈ JAK
This is actually a little bit more complex, since we must take care of the typing context

5 Conclude that any well-typed term t is SN by step 2.

Outline of the proof

1 De�ne a suitable notion of reducibility candidate
= the sets of λ-terms that will interpret/represent types
(Here, we use Tait's saturated sets)

2 Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)
Each candidate should only contain strongly normalisable λ-terms as elements

3 Associate to each type A a reducibility candidate JAK
Type constructors `→' and `∀' have to be re�ected at the level of candidates

4 Check (by induction) that Γ ` t : A implies t ∈ JAK
This is actually a little bit more complex, since we must take care of the typing context

5 Conclude that any well-typed term t is SN by step 2.

Outline of the proof

1 De�ne a suitable notion of reducibility candidate
= the sets of λ-terms that will interpret/represent types
(Here, we use Tait's saturated sets)

2 Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)
Each candidate should only contain strongly normalisable λ-terms as elements

3 Associate to each type A a reducibility candidate JAK
Type constructors `→' and `∀' have to be re�ected at the level of candidates

4 Check (by induction) that Γ ` t : A implies t ∈ JAK
This is actually a little bit more complex, since we must take care of the typing context

5 Conclude that any well-typed term t is SN by step 2.

Outline of the proof

1 De�ne a suitable notion of reducibility candidate
= the sets of λ-terms that will interpret/represent types
(Here, we use Tait's saturated sets)

2 Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)
Each candidate should only contain strongly normalisable λ-terms as elements

3 Associate to each type A a reducibility candidate JAK
Type constructors `→' and `∀' have to be re�ected at the level of candidates

4 Check (by induction) that Γ ` t : A implies t ∈ JAK
This is actually a little bit more complex, since we must take care of the typing context

5 Conclude that any well-typed term t is SN by step 2.

Preliminaries (1/2)

Notations:

Λ ≡ set of all untyped λ-terms (open & closed)
SN ≡ set of all strongly normalisable untyped λ-terms
Var ≡ set of all (term) variables
TVar ≡ set of all type variables

A reduct of a term t is a term t ′ such that t � t ′ (one step)
The number of reducts of a given term is �nite and bounded by the number of redexes

A �nite reduction sequence of a term t is a �nite sequence
(ti)i∈[0..n] such that t = t0 � t1 � · · · � tn−1 � tn
In�nite reduction sequences are de�ned similarly, by replacing [0..n] by N

Finite reduction sequences of a term t form a tree, called the
reduction tree of t

Preliminaries (1/2)

Notations:

Λ ≡ set of all untyped λ-terms (open & closed)
SN ≡ set of all strongly normalisable untyped λ-terms
Var ≡ set of all (term) variables
TVar ≡ set of all type variables

A reduct of a term t is a term t ′ such that t � t ′ (one step)
The number of reducts of a given term is �nite and bounded by the number of redexes

A �nite reduction sequence of a term t is a �nite sequence
(ti)i∈[0..n] such that t = t0 � t1 � · · · � tn−1 � tn
In�nite reduction sequences are de�ned similarly, by replacing [0..n] by N

Finite reduction sequences of a term t form a tree, called the
reduction tree of t

Preliminaries (1/2)

Notations:

Λ ≡ set of all untyped λ-terms (open & closed)
SN ≡ set of all strongly normalisable untyped λ-terms
Var ≡ set of all (term) variables
TVar ≡ set of all type variables

A reduct of a term t is a term t ′ such that t � t ′ (one step)
The number of reducts of a given term is �nite and bounded by the number of redexes

A �nite reduction sequence of a term t is a �nite sequence
(ti)i∈[0..n] such that t = t0 � t1 � · · · � tn−1 � tn
In�nite reduction sequences are de�ned similarly, by replacing [0..n] by N

Finite reduction sequences of a term t form a tree, called the
reduction tree of t

Preliminaries (1/2)

Notations:

Λ ≡ set of all untyped λ-terms (open & closed)
SN ≡ set of all strongly normalisable untyped λ-terms
Var ≡ set of all (term) variables
TVar ≡ set of all type variables

A reduct of a term t is a term t ′ such that t � t ′ (one step)
The number of reducts of a given term is �nite and bounded by the number of redexes

A �nite reduction sequence of a term t is a �nite sequence
(ti)i∈[0..n] such that t = t0 � t1 � · · · � tn−1 � tn
In�nite reduction sequences are de�ned similarly, by replacing [0..n] by N

Finite reduction sequences of a term t form a tree, called the
reduction tree of t

Preliminaries (1/2)

Notations:

Λ ≡ set of all untyped λ-terms (open & closed)
SN ≡ set of all strongly normalisable untyped λ-terms
Var ≡ set of all (term) variables
TVar ≡ set of all type variables

A reduct of a term t is a term t ′ such that t � t ′ (one step)
The number of reducts of a given term is �nite and bounded by the number of redexes

A �nite reduction sequence of a term t is a �nite sequence
(ti)i∈[0..n] such that t = t0 � t1 � · · · � tn−1 � tn
In�nite reduction sequences are de�ned similarly, by replacing [0..n] by N

Finite reduction sequences of a term t form a tree, called the
reduction tree of t

Preliminaries (2/2)

De�nition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences
starting from t are �nite

Proposition

The following assertions are equivalent:
1 t is strongly normalisable
2 All the reducts of t are strongly normalisable
3 The reduction tree of t is �nite

Preliminaries (2/2)

De�nition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences
starting from t are �nite

Proposition

The following assertions are equivalent:
1 t is strongly normalisable
2 All the reducts of t are strongly normalisable
3 The reduction tree of t is �nite

Preliminaries (2/2)

De�nition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences
starting from t are �nite

Proposition

The following assertions are equivalent:
1 t is strongly normalisable
2 All the reducts of t are strongly normalisable
3 The reduction tree of t is �nite

Saturated sets [Tait]

De�nition (Saturated set)

A set S ⊂ Λ is saturated if:

(SAT1) S ⊂ SN

(SAT2) x ∈ Var, ~v ∈ list(SN) ⇒ x~v ∈ S

(SAT3) t{x := u}~v ∈ S , u ∈ SN ⇒ (λx . t)u~v ∈ S

(SAT1) expresses the property we want to prove

Saturated sets contain all the variables (SAT2)
Extra-arguments ~v ∈ list(SN) are here for technical reasons

Saturated sets are closed under head β-expansion (SAT3)
Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

The set of all saturated sets is written SAT [⊂ P(SN) ⊂ P(Λ)]

Saturated sets [Tait]

De�nition (Saturated set)

A set S ⊂ Λ is saturated if:

(SAT1) S ⊂ SN

(SAT2) x ∈ Var, ~v ∈ list(SN) ⇒ x~v ∈ S

(SAT3) t{x := u}~v ∈ S , u ∈ SN ⇒ (λx . t)u~v ∈ S

(SAT1) expresses the property we want to prove

Saturated sets contain all the variables (SAT2)
Extra-arguments ~v ∈ list(SN) are here for technical reasons

Saturated sets are closed under head β-expansion (SAT3)
Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

The set of all saturated sets is written SAT [⊂ P(SN) ⊂ P(Λ)]

Saturated sets [Tait]

De�nition (Saturated set)

A set S ⊂ Λ is saturated if:

(SAT1) S ⊂ SN

(SAT2) x ∈ Var, ~v ∈ list(SN) ⇒ x~v ∈ S

(SAT3) t{x := u}~v ∈ S , u ∈ SN ⇒ (λx . t)u~v ∈ S

(SAT1) expresses the property we want to prove

Saturated sets contain all the variables (SAT2)
Extra-arguments ~v ∈ list(SN) are here for technical reasons

Saturated sets are closed under head β-expansion (SAT3)
Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

The set of all saturated sets is written SAT [⊂ P(SN) ⊂ P(Λ)]

Saturated sets [Tait]

De�nition (Saturated set)

A set S ⊂ Λ is saturated if:

(SAT1) S ⊂ SN

(SAT2) x ∈ Var, ~v ∈ list(SN) ⇒ x~v ∈ S

(SAT3) t{x := u}~v ∈ S , u ∈ SN ⇒ (λx . t)u~v ∈ S

(SAT1) expresses the property we want to prove

Saturated sets contain all the variables (SAT2)
Extra-arguments ~v ∈ list(SN) are here for technical reasons

Saturated sets are closed under head β-expansion (SAT3)
Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

The set of all saturated sets is written SAT [⊂ P(SN) ⊂ P(Λ)]

Saturated sets [Tait]

De�nition (Saturated set)

A set S ⊂ Λ is saturated if:

(SAT1) S ⊂ SN

(SAT2) x ∈ Var, ~v ∈ list(SN) ⇒ x~v ∈ S

(SAT3) t{x := u}~v ∈ S , u ∈ SN ⇒ (λx . t)u~v ∈ S

(SAT1) expresses the property we want to prove

Saturated sets contain all the variables (SAT2)
Extra-arguments ~v ∈ list(SN) are here for technical reasons

Saturated sets are closed under head β-expansion (SAT3)
Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

The set of all saturated sets is written SAT [⊂ P(SN) ⊂ P(Λ)]

Properties of saturated sets

Proposition (Lattice structure)

1 SN is a saturated set
2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Properties of saturated sets

Proposition (Lattice structure)
1 SN is a saturated set

2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Properties of saturated sets

Proposition (Lattice structure)
1 SN is a saturated set
2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Properties of saturated sets

Proposition (Lattice structure)
1 SN is a saturated set
2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Properties of saturated sets

Proposition (Lattice structure)
1 SN is a saturated set
2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Properties of saturated sets

Proposition (Lattice structure)
1 SN is a saturated set
2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (2/2)

By induction on A, we de�ne a function JAK : TVal→ SAT

JA→ BKρ = JAKρ → JBKρ JαKρ = ρ(α)

J∀α BKρ =
⋂

S∈SAT
JBKρ;α←S

Note: (ρ; α← S) is de�ned by
(

(ρ; α←S)(α) = S
(ρ; α←S)(β) = ρ(β) for all β 6= α

Problem: The implication

Γ ` t : A ⇒ t ∈ JAKρ

cannot be proved directly. (One has to take care of the context)

⇒ Strengthen induction hypothesis using substitutions

Interpreting types (2/2)

By induction on A, we de�ne a function JAK : TVal→ SAT

JA→ BKρ = JAKρ → JBKρ JαKρ = ρ(α)

J∀α BKρ =
⋂

S∈SAT
JBKρ;α←S

Note: (ρ; α← S) is de�ned by
(

(ρ; α←S)(α) = S
(ρ; α←S)(β) = ρ(β) for all β 6= α

Problem: The implication

Γ ` t : A ⇒ t ∈ JAKρ

cannot be proved directly. (One has to take care of the context)

⇒ Strengthen induction hypothesis using substitutions

Interpreting types (2/2)

By induction on A, we de�ne a function JAK : TVal→ SAT

JA→ BKρ = JAKρ → JBKρ JαKρ = ρ(α)

J∀α BKρ =
⋂

S∈SAT
JBKρ;α←S

Note: (ρ; α← S) is de�ned by
(

(ρ; α←S)(α) = S
(ρ; α←S)(β) = ρ(β) for all β 6= α

Problem: The implication

Γ ` t : A ⇒ t ∈ JAKρ

cannot be proved directly. (One has to take care of the context)

⇒ Strengthen induction hypothesis using substitutions

Interpreting types (2/2)

By induction on A, we de�ne a function JAK : TVal→ SAT

JA→ BKρ = JAKρ → JBKρ JαKρ = ρ(α)

J∀α BKρ =
⋂

S∈SAT
JBKρ;α←S

Note: (ρ; α← S) is de�ned by
(

(ρ; α←S)(α) = S
(ρ; α←S)(β) = ρ(β) for all β 6= α

Problem: The implication

Γ ` t : A ⇒ t ∈ JAKρ

cannot be proved directly. (One has to take care of the context)

⇒ Strengthen induction hypothesis using substitutions

Substitutions

De�nition (Substitutions)

A substitution is a �nite list σ = [x1 := u1; . . . ; xn := un]
where xi 6= xj (for i 6= j) and ui ∈ Λ

Application of a substitution σ to a term t is written t[σ]
Exercise: De�ne it formally

De�nition (Interpretation of contexts)

For all Γ = x1 : A1; . . . ; xn : An and ρ ∈ TVal set:

JΓKρ =
{
σ = [x1 := u1; . . . ; xn := un]; ui ∈ JAiKρ (i = 1..n)

}
Substitutions σ ∈ JΓKρ are said to be adapted to the context Γ (in the type valuation ρ)

Substitutions

De�nition (Substitutions)

A substitution is a �nite list σ = [x1 := u1; . . . ; xn := un]
where xi 6= xj (for i 6= j) and ui ∈ Λ

Application of a substitution σ to a term t is written t[σ]
Exercise: De�ne it formally

De�nition (Interpretation of contexts)

For all Γ = x1 : A1; . . . ; xn : An and ρ ∈ TVal set:

JΓKρ =
{
σ = [x1 := u1; . . . ; xn := un]; ui ∈ JAiKρ (i = 1..n)

}
Substitutions σ ∈ JΓKρ are said to be adapted to the context Γ (in the type valuation ρ)

Substitutions

De�nition (Substitutions)

A substitution is a �nite list σ = [x1 := u1; . . . ; xn := un]
where xi 6= xj (for i 6= j) and ui ∈ Λ

Application of a substitution σ to a term t is written t[σ]
Exercise: De�ne it formally

De�nition (Interpretation of contexts)

For all Γ = x1 : A1; . . . ; xn : An and ρ ∈ TVal set:

JΓKρ =
{
σ = [x1 := u1; . . . ; xn := un]; ui ∈ JAiKρ (i = 1..n)

}
Substitutions σ ∈ JΓKρ are said to be adapted to the context Γ (in the type valuation ρ)

Substitutions

De�nition (Substitutions)

A substitution is a �nite list σ = [x1 := u1; . . . ; xn := un]
where xi 6= xj (for i 6= j) and ui ∈ Λ

Application of a substitution σ to a term t is written t[σ]
Exercise: De�ne it formally

De�nition (Interpretation of contexts)

For all Γ = x1 : A1; . . . ; xn : An and ρ ∈ TVal set:

JΓKρ =
{
σ = [x1 := u1; . . . ; xn := un]; ui ∈ JAiKρ (i = 1..n)

}
Substitutions σ ∈ JΓKρ are said to be adapted to the context Γ (in the type valuation ρ)

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B

Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2)

, hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

A remark on impredicativity

In the SN proof, interpretation of ∀ relies on the property:

If (Si)i∈I (I 6= ∅) is a family of saturated sets,
then

⋂
i∈I Si is a saturated set

in the special case where I = SAT (impredicative intersection)

In `classical' mathematics, this construction is legal

⇒ Standard set theories (Z, ZF, ZFC) are impredicative

In (Bishop, Martin-Löf's style) constructive mathematics, this
principle is rejected, mainly for philosophical reasons:

No convincing `constructive' explanation
Suspicion about (this kind of) cyclicity

A remark on impredicativity

In the SN proof, interpretation of ∀ relies on the property:

If (Si)i∈I (I 6= ∅) is a family of saturated sets,
then

⋂
i∈I Si is a saturated set

in the special case where I = SAT (impredicative intersection)

In `classical' mathematics, this construction is legal

⇒ Standard set theories (Z, ZF, ZFC) are impredicative

In (Bishop, Martin-Löf's style) constructive mathematics, this
principle is rejected, mainly for philosophical reasons:

No convincing `constructive' explanation
Suspicion about (this kind of) cyclicity

A remark on impredicativity

In the SN proof, interpretation of ∀ relies on the property:

If (Si)i∈I (I 6= ∅) is a family of saturated sets,
then

⋂
i∈I Si is a saturated set

in the special case where I = SAT (impredicative intersection)

In `classical' mathematics, this construction is legal

⇒ Standard set theories (Z, ZF, ZFC) are impredicative

In (Bishop, Martin-Löf's style) constructive mathematics, this
principle is rejected, mainly for philosophical reasons:

No convincing `constructive' explanation
Suspicion about (this kind of) cyclicity

A remark on impredicativity

In the SN proof, interpretation of ∀ relies on the property:

If (Si)i∈I (I 6= ∅) is a family of saturated sets,
then

⋂
i∈I Si is a saturated set

in the special case where I = SAT (impredicative intersection)

In `classical' mathematics, this construction is legal

⇒ Standard set theories (Z, ZF, ZFC) are impredicative

In (Bishop, Martin-Löf's style) constructive mathematics, this
principle is rejected, mainly for philosophical reasons:

No convincing `constructive' explanation
Suspicion about (this kind of) cyclicity

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯

2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F

4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S

5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)

6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

