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Chapter 1

Introduction

Some history

Leibniz had as ideal the following.

(1) Create a ‘universal language’ in which all possible problems can be stated.

(2) Find a decision method to solve all the problems stated in the universal
language.

If one restricts oneself to mathematical problems, point (1) of Leibniz’ ideal
is fulfilled by taking some form of set theory formulated in the language of
first order predicate logic. This was the situation after Frege and Russell (or
Zermelo).

Point (2) of Leibniz’ ideal became an important philosophical question. ‘Can
one solve all problems formulated in the universal language?’ It seems not,
but it is not clear how to prove that. This question became known as the
Entscheidungsproblem.

In 1936 the Entscheidungsproblem was solved in the negative independently
by Alonzo Church and Alan Turing. In order to do so, they needed a formali-
sation of the intuitive notion of ‘decidable’, or what is equivalent ‘computable’.
Church and Turing did this in two different ways by introducing two models of
computation.

(1) Church (1936) invented a formal system called the lambda calculus and
defined the notion of computable function via this system.

(2) Turing (1936/7) invented a class of machines (later to be called Turing
machines) and defined the notion of computable function via these machines.

Also in 1936 Turing proved that both models are equally strong in the sense
that they define the same class of computable functions (see Turing (1937)).

Based on the concept of a Turing machine are the present day Von Neu-
mann computers. Conceptually these are Turing machines with random access
registers. Imperative programming languages such as Fortran, Pascal etcetera
as well as all the assembler languages are based on the way a Turing machine
is instructed: by a sequence of statements.

Functional programming languages, like Miranda, ML etcetera, are based on
the lambda calculus. An early (although somewhat hybrid) example of such a
language is Lisp. Reduction machines are specifically designed for the execution
of these functional languages.
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Reduction and functional programming

A functional program consists of an expression E (representing both the al-
gorithm and the input). This expression F is subject to some rewrite rules.
Reduction consists of replacing a part P of E by another expression P’ accord-
ing to the given rewrite rules. In schematic notation

E[P] — E[P'],

provided that P — P’ is according to the rules. This process of reduction
will be repeated until the resulting expression has no more parts that can be
rewritten. This so called normal form E* of the expression E consists of the
output of the given functional program.

An example:

(7T+4) %« (84+5%3) 11% (84 5%3)
11 % (8 + 15)
11 %23

253.

A

In this example the reduction rules consist of the ‘tables’ of addition and of
multiplication on the numerals.
Also symbolic computations can be done by reduction. For example

first of (sort (append (‘dog’, ‘rabbit’) (sort ((‘mouse’, ‘cat’))))) —
— first of (sort (append (‘dog’, ‘rabbit’) (‘cat’, ‘mouse’)))
— first of (sort (‘dog’, ‘rabbit’, ‘cat’, ‘mouse’))
— first of (‘cat’, 'dog’, ‘mouse’, ‘rabbit’)
—  ‘cat’.

The necessary rewrite rules for append and sort can be programmed easily
in a few lines. Functions like append given by some rewrite rules are called
combinators.

Reduction systems usually satisfy the Church-Rosser property, which states

that the normal form obtained is independent of the order of evaluation of
subterms. Indeed, the first example may be reduced as follows:

(T+4)*(8+5%3) (7T+4)* (8 +15)
11 % (8 + 15)
11 % 23

253,

A

or even by evaluating several expressions at the same time:

(T+4)x(8+5%3) — 11x%(8+15)
— 11%23
—  253.
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Application and abstraction

The first basic operation of the A-calculus is application. The expression
F-A

or

FA

denotes the data F' considered as algorithm applied to the data A considered
as input. This can be viewed in two ways: either as the process of computation
F'A or as the output of this process. The first view is captured by the notion
of conversion and even better of reduction; the second by the notion of models
(semantics).

The theory is type-free: it is allowed to consider expressions like F'F', that
is F applied to itself. This will be useful to simulate recursion.

The other basic operation is abstraction. If M = M]Jx] is an expression
containing (‘depending on’) z, then Az.M[x] denotes the function z — M|z].
Application and abstraction work together in the following intuitive formula.

Mx2xx4+1)3=2x3+1 (=7).

That is, (Az.2 * x + 1)3 denotes the function = +— 2 % x + 1 applied to the
argument 3 giving 2+3+1 which is 7. In general we have (A\x.M[z])N = M[N].
This last equation is preferably written as

(Ax.M)N = M|z := N], (8)

where [z := N| denotes substitution of N for x. It is remarkable that although
(B) is the only essential axiom of the A-calculus, the resulting theory is rather
involved.

Free and bound variables

Abstraction is said to bind the free variable z in M. E.g. we say that Ax.yx
has z as bound and y as free variable. Substitution [z := N] is only performed
in the free occurrences of x:

yr(Az.x)[z := N] = yN(A\z.x).

In calculus there is a similar variable binding. In f; f(x,y)dx the variable x is
bound and y is free. It does not make sense to substitute 7 for x: fab f(7,9)d7;
but substitution for y makes sense: f: f(z,7)dx.

For reasons of hygiene it will always be assumed that the bound variables
that occur in a certain expression are different from the free ones. This can be
fulfilled by renaming bound variables. E.g. Azx.z becomes Ay.y. Indeed, these
expressions act the same way:

(Ar.z)a =a = (\y.y)a

and in fact they denote the same intended algorithm. Therefore expressions
that differ only in the names of bound variables are identified.
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Functions of more arguments

Functions of several arguments can be obtained by iteration of application. The
idea is due to Schonfinkel (1924) but is often called currying, after H.B. Curry
who introduced it independently. Intuitively, if f(x,y) depends on two argu-
ments, one can define

Fx = )\yf(x,y),
F = \o.F,.

Then
(Fa)y = Fpy = f(x,y). (*)

This last equation shows that it is convenient to use association to the left for
iterated application:

FM; --- M, denotes (--((FMy)Ms)---M,).
The equation (%) then becomes
Fay = f(z,y).
Dually, iterated abstraction uses association to the right:
Axy - X f(z1, ..., x,) denotes Axy.(Aze.(- - (Axy. f(z1, ..., 20)))).

Then we have for F' defined above

F = zy.f(z,y)
and (*) becomes

(Azy.f(z,y))ry = f(x,y).
For n arguments we have
(Axy - f(xy, o ymp))xr o xn = f(21,...,2p)

by using n times (). This last equation becomes in convenient vector notation

(AL fZ]))T = f[Z];

more generally one has

(AZ.fIF)N = f[N].



Chapter 2

Conversion

In this chapter, the A-calculus will be introduced formally.

2.1. DEFINITION. The set of A-terms (notation A) is built up from an infinite
set of variables V' = {v,v’,v",...} using application and (function) abstraction.

reV = xe€A,
M,NeA = (MN)ecA,
MeMANzeV = (AzM)eA.

In BN-form this is

variable ::= ‘v’ |variable

A-term = variable| ‘(" A-term A-term )’ | *(\’ variable A-term ‘)’

2.2. EXaMPLE. The following are A-terms.
v';
(v'v);
(Ao (v'v));
((Aw(w'v)");
(X' (v'0)))o" ™).

2.3. CONVENTION. (i) z,¥,z,... denote arbitrary variables; M, N, L,... de-

note arbitrary A-terms. Outermost parentheses are not written.

(il) M = N denotes that M and N are the same term or can be obtained

from each other by renaming bound variables. E.g.

N
Il
—
>
8
<
~—
N

>

8
\_/\g/\_/\_/

N
Wl

N

(iii) We use the abbreviations

9
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and
Axy - . M = Arp( Az (- - (Azp (M))-)).

The terms in Example 2.2 now may be written as follows.

Y;
yx;
AZ.YT;
(A\zr.yx)z;
(Azy.yz)zw.

Note that A\z.yx is (Az(yx)) and not ((Az.y)z).

2.4. DEFINITION. (i) The set of free variables of M, notation FV (M), is de-
fined inductively as follows.

FV(z) = {z};
FV(MN) = FV(M)UFV(N);
FV(Az.M) = FV(M)—{z}.

A variable in M is bound if it is not free. Note that a variable is bound if it
occurs under the scope of a A.

(ii) M is a closed \-term (or combinator) if FV(M) = (. The set of closed
A-terms is denoted by A°.

(iii) The result of substituting N for the free occurences of = in M, notation
Mz := NJ, is defined as follows.

z[z:=N] = N;
yle:=N] = y, ifzZy;
(MiMy)[x := N| = (My[z:= N])(Mz[x := NJ);
(My. M)z :=N] = Ay.(Mp[z := NJ).

2.5. EXAMPLE. Consider the A\-term
ATY.TYZ.

Then z and y are bound variables and z is a free variable. The term Azy.zxy
is closed.

2.6. VARIABLE CONVENTION. If M;y,..., M, occur in a certain mathematical
context (e.g. definition, proof), then in these terms all bound variables are
chosen to be different from the free variables.

Note that in the fourth clause of Definition 2.4 (iii) it is not needed to say
‘provided that y # = and y ¢ FV(N). By the variable convention this is the
case.

Now we can introduce the A-calculus as formal theory.
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2.7. DEFINITION. (i) The principal axiom scheme of the A-calculus is
(Az.M)N = M|z := N| )

for all M, N € A.
(ii) There are also the ‘logical” axioms and rules.

Equality:
M = M;
M=N = N=M;
M=NN=L = M=L.

Compatibility rules:

M=M = MZ=M7Z

M=M = ZM=ZM;

M=M = Xe.M=Mx.M. (&)

(iii) If M = N is provable in the A-calculus, then we sometimes write A -
M = N.

As a consequence of the compatibility rules, one can replace (sub)terms by
equal terms in any term context:

For example, (A\y.yy)r = zx, so
A Arz((\y.yy)z)r = Az.x(zz)x.

2.8. REMARK. We have identified terms that differ only in the names of bound
variables. An alternative is to add to the A-calculus the following axiom scheme

Ax.M = A y.M[z :=vy|, provided that y does not occur in M. ()

We prefer our version of the theory in which the identifications are made on
syntactic level. These identifications are done in our mind and not on paper.
For implementations of the A-calculus the machine has to deal with this so
called a-conversion. A good way of doing this is provided by the name-free
notation of de Bruijn, see Barendregt (1984), Appendix C.

PROOF. By the axiom () we have
()\l‘lM)Xl == M[xl = Xl]

By induction on n the result follows. [
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2.10. EXAMPLE (Standard combinators). Define the combinators

I = \z.x;
K = J\zy.z;
K. = Azy.y;

S = Jxyz.az(yz).

Then, by Lemma 2.9, we have the following equations.

IM = M,
KMN = M,
KiMN = N;

SMNL = ML(NL).
Now we can solve simple equations.

2.11. EXAMPLE. 3G VX GX = XXX (there exists G € A such that for all
X € A one has AF GX = XX). Indeed, take G = Az.xzz and we are done.

Recursive equations require a special technique. The following result pro-
vides one way to represent recursion in the A-calculus.

2.12. FIXEDPOINT THEOREM. (i) VF' 3X FX = X. (This means: for all
F € A there is an X € A such that A\F FX = X.)
(ii) There is a fized point combinator

Y = Af.(Ax.f(zx))(Az.f(xx))

such that
VE F(YF)=YF.

PROOF. (i) Define W = \z.F(zx) and X = WW. Then
X=WW = (A\e.F(zx))W = F(WW) = FX.
(ii) By the proof of (i). O
2.13. EXAMPLE. (i) 3G VX GX = SGX. Indeed,

VX GX =SGX <« Gz =SGzx
= G =M.SGx
< G = (\gx.Sgx)G
< G =Y(\gz.Sgx).

Note that one can also take G = YS.
(il) 3G VX GX = GG: take G = Y (Agz.gg). (Can you solve this without
using Y?)
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In the lambda calculus one can define numerals and represent numeric func-
tions on them.

2.14. DEFINITION. (i) F™(M) with F' € A and n € N is defined inductively as
follows.

FO (M) = M,
FPY (M) = F(FE™(M)).

(ii) The Church numerals cg, ¢y, Co, ... are defined by
cn = M. f"(x).

2.15. PROPOSITION (J.B. Rosser). Define

A = lzypgap(ypg);
A, = \zyzax(yz);
Asp = Azyyx.

Then one has for alln,m € N
(i) Arencm = Cnim-
(il) AxCnCm = Cham-
(iil) AexpCnCm = c(um), except for m =0 (Rosser started counting from 1).

In the proof we need the following.

2.16. LEMMA. (i) (cpz)™(y) = 2™ (y).
(ii) (cn)™(x) = €¢(pmy(x), for m > 0.

PRrROOF. (i) Induction on m. If m = 0, then LHS = y = RHS. Assume (i) is
correct for m (Induction Hypothesis: ITH). Then

(en)™ () = caz((cnr)™(y))
= cuz(a™™(y)) by IH,

= 2" (@""(y))
n—+n*xm (y)

nx(m-+1) (y)

= X

= X

(ii) Induction on m > 0. If m = 1, then LHS = ¢, = RHS. If (ii) is correct
for m, then

(ca)™H(2) = eal(en)™(@
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PROOF OF THE PROPOSITION. (i) Exercise.
(ii) Exercise. Use Lemma 2.16 (i).
(iii) By Lemma 2.16 (ii) we have for m > 0

Aexp ChCm = CpCp
= Az.(cp)" ()
= )\m.c(nm)x
= C(nm),

since Ae.Mx = M if M = \y.M'[y] and = ¢ FV(M). Indeed,

Ax.Mz = dr.(Ay.M'y))x

= \v.M'[z]
= \y.M'[y]
M. O
Exercises
2.1. (i) Rewrite according to official syntax

My = y(Azx.zy(Azw.yz)).
(ii) Rewrite according to the simplified syntax
My = X/ O (o) Yo ) ( O (06 )u"))-
2.2.  Prove the following substitution lemma. Let x £ y and x ¢ FV(L). Then
Mz := N]ly := L] = My := L][z :== N[y := L]].
2.3. (i) Prove, using Exercise 2.2,
AF M, =My = AF Mz := N] = Mp[z := N].
(ii) Show
AFM =My &AF Ny =Ny = A Mz = Ni] = Mz := Na].

2.4.  Prove Proposition 2.15 (i), (ii).

2.5.  Let B = Azyz.x(yz). Simplify M = BXY Z, that is find a ‘simple’ term N such
that A\F M = N.

2.6. Simplify the following terms.
(i) M = (Azyz.zyx)aa(Apq.q);
(il) M = (Ayz.zy)((Az.azzz)(Az.xzx))(Aw.l);
(iii) M = SKSKSK.
2.7. Show that
i) A KI=K,;
(i) Ak SKK =1.

2.8. (i) Write down a closed A-term F' € A such that for all M, N € A

FMN = M(NM)N.



2.9.

2.10.

2.11.

2.12.

2.13.
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(ii) Construct a A-term F' such that for all M, N, L € A°
FMNL = NA\z.M)(\yzyLM).

Find closed terms F' such that
(i) Fz = xl;
(il) Fay = zly.
Find closed terms F' such that
(i) Fz = F. This term can be called the ‘eater’ and is often denoted by Kqo;
(il) Fx =xF;
(ili) FIKK = FK.
Show
VC[, | IFVZ Fi = C[F, T

and take another look at the exercises 2.8, 2.9 and 2.10.

Let P,Q € A. P and @ are incompatible, notation P § @, if A extended with
P = @ as axiom proves every equation between \-terms, i.e. for all M, N € A
one has A+ (P =Q) - M = N. In this case one says that A + (P = Q) is
1consistent.

(i) Prove that for P,Q € A

P4Q & A+ (P =Q)F true = false,

where true = K, false = K...
(ii) Show that I § K.
(iii) Find a A-term F such that Fl =z and FK = y.
(iv) Show that K ¢ S.

Write down a grammar in BN-form that generates the A-terms exactly in the
way they are written in Convention 2.3.






Chapter 3

The Power of Lambda

We have seen that the function plus, times and exponentiation on N can be
represented in the A-calculus using Church’s numerals. We will now show that
all computable (recursive) functions can be represented in the A-calculus. In
order to do this we will use first a different system of numerals.

Truth values and a conditional can be represented in the A-calculus.

3.1. DEFINITION. (i) true = K, false = K.
(ii) If B is considered as a Boolean, i.e. a term that is either true or false,
then

if B then P else @

can be represented by

BPQ.

3.2. DEFINITION (Pairing). For M, N € A write
[M, N] = Az.if z then M else N (= Xz.zMN).
Then

[M, N]true = M,
[M, Nlfalse = N,

and hence [M, N] can serve as an ordered pair.

We can use this pairing construction for an alternative representation of
natural numbers due to Barendregt (1976).

3.3. DEFINITION. For each n € N, the numeral "n" is defined inductively as
follows.

I_O—I

1,

T+ 17 [false, ).

17
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3.4. LEMMA (Successor, predecessor, test for zero). There exist combinators ST,

P~, and Zero such that

S+r—n—| — '_n—l—l—',
P ™'n+17 = ™n7,
Zero"(0' = true,
Zero'n+17 = false.
ProOOF. Take
St = )z.[false, z],
P~ = Jzx.zfalse,
Zero = Mz.xtrue. O

3.5. DEFINITION (Lambda definability). (i) A numeric function is a map
¢: NP =N

for some p. In this case ¢ is called p-ary.
(ii) A numeric p-ary function ¢ is called A-definable if for some combinator

(%)

F
Frngm-- Ty ="p(ng,...,np)"

for all ny,...,n, € N. If (x) holds, then ¢ is said to be A-defined by F.

3.6. DEFINITION. The initial functions are the numeric functions U, ST, Z
defined by

St(n) = n+1;
Z(n) = 0.

Let P(n) be a numeric relation. As usual
pm[P(m)]

denotes the least number m such that P(m) holds if there is such a number;
otherwise it is undefined.

3.7. DEFINITION. Let A be a class of numeric functions.
(i) Ais closed under composition if for all ¢ defined by

gp(ﬁ) = X(@bl(ﬁ)a s vwm(ﬁ))

with x,%1,...,%m € A, one has ¢ € A.
(ii) A is closed under primitive recursion if for all ¢ defined by
p(0,7) = Xx(7),
o+ 1,7) = vk, 7),k,7)

with x,% € A, one has ¢ € A.
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(iii) A is closed under minimalization if for all ¢ defined by

o(1) = pm[x(1i,m) = 0]

with x € A such that
Vi Im x (i, m) = 0,

one has ¢ € A.
3.8. DEFINITION. The class R of recursive functions is the smallest class of

numeric functions that contains all initial functions and is closed under compo-
sition, primitive recursion and minimalization.

So R is an inductively defined class. The proof that all recursive functions
are \-definable is in fact by a corresponding induction argument. The result is
originally due to Kleene (1936).

3.9. LEMMA. The initial functions are A-definable.
PrROOF. Take as defining terms

U = Iy xn.a,
St Az.[false,z] (see Lemma 3.4)
Z = X0 0O

3.10. LEMMA. The A-definable functions are closed under composition.
PRrOOF. Let x,%1,...,%, be A-defined by G, Hy, ..., H,, respectively. Then

gp(ﬁ) - X(wl(ﬁ)v ce 7wm(ﬁ))

is A\-defined by
F =) £.G(H %) -+ (HpZ). O

As to primitive recursion, let us first consider an example. The addition
function can be specified as follows.

Add(0,y) = v,
Add(z +1,y) = 1+ Add(x,y) = ST(Add(x,y)).
An intuitive way to compute Add(m,n) us the following.

Test whether m = 0.
If yes: give output n;
if no: compute Add(m — 1,n) and give its successor as output.

Therefore we want a term Add such that
Add zy = if Zerox then y else ST (Add(P~x)y).
This equation can be solved using the fixedpoint combinator: take
Add = Y (\axy.if Zerox then y else ST (a(P™z)y)).

The general case is treated as follows.
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3.11. LEMMA. The A-definable functions are closed under primitive recursion.

PRrROOF. Let ¢ be defined by

p(0,7) = x(7),
(P(k+17ﬁ> - 1/’(@(/97ﬁ>7k7ﬁ)7

where y, 1 are A-defined by G, H respectively. Now we want a term F' such
that

Fzy = if Zerox then Gy else H(F (P z)y)(P ™ 2)y
= D(F,z,7), say.

It is sufficient to find an F' such that

F = \e§.D(F,z,7)
= (Afzg.D(f,z,9))F.

Now such an F' can be found by the Fixedpoint Theorem and we are done. [J
3.12. LEMMA. The A-definable functions are closed under minimalization.
PRrROOF. Let ¢ be defined by

p(it) = pm[x (i, m) = 0],

where x is A-defined by G. Again by the Fixedpoint Theorem there is a term
H such that

Hzy = if Zero(GZy) then y else HZ(S1y)
= (AhZy.E(h,Z,y))HZy, say.

Set F' = AZ.HZ"0". Then F' M\-defines ¢:

FI_,r_L’—I — Hl—ﬁ—ll—o_\
— I_O—I lf Gl—ﬁ—ll_o—l — I_O—I
= H'ngm17 else
— f_]__l lf Gl_ﬁ_lf_l—l — I_O_I
= Hgm27 else
= 27 if ...
= ... 0O

3.13. THEOREM. All recursive functions are \-definable.
ProOF. By the lemmas 3.9-3.12. [

The converse also holds. So for numeric functions we have ¢ is recursive iff
@ is A-definable. Moreover also for partial functions a notion of A-definability
exists. If ¢ is a partial numeric function, then we have

1) is partial recursive < v is A-definable.
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3.14. THEOREM. With respect to the Church numerals ¢, all recursive func-
tions can be A-defined.

PRrROOF. Define

S, = Azyzy(zyz),
P. = Azyza(Apg.q(py)) (K1,
Zero, = Mz.xz(Kfalse)true.

Then these terms represent the successor, predecessor and test for zero. Then
as before all recursive functions can be A-defined. [J

An alternative proof uses ‘translators’ between the numerals "n" and c,,.

3.15. PROPOSITION. There exist terms T, T~ such that for all n

Te, = ™7

Tt = ¢,.
PROOF. Construct T, T~! such that

T = Mz.aStron,
T=! = \z.if Zeroz then ¢ else SH(T~H(P~x)). O

3.16. COROLLARY (Second proof of Theorem 3.14). Let ¢ be a recursive func-
tion (of arity 2 say). Let F represent ¢ with respect to the numerals "n.

Define
Fo = \ey. T YF(Tz)(Ty)).

Then F, represents @ with respect to the Church numerals. O

The representation of pairs in the lambda calculus can also be used to solve
multiple fixedpoint equations.

3.17. MULTIPLE FIXEDPOINT THEOREM. Let FY,..., F, be A-terms. Then we
can find X1, ..., X, such that

X1 = XX,

X, = F,Xi---X,.
Observe that for n = 1 this is the ordinary Fixedpoint Theorem (2.12).

PROOF. We treat the case n = 2. So we want

X1 = FiX1Xo,
Xy = Fr X Xs.

!Term found by J. Velmans.
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The trick is to construct X; and X5 simultaneously, as a pair. By the ordinary
Fixedpoint Theorem we can find an X such that

X = [F1(Xtrue)(Xfalse), F»(Xtrue)(Xfalse)].

Now define X; = Xtrue, Xy = Xfalse. Then the result follows. This can be
generalized to arbitrary n. O

3.18. EXAMPLE. There exist G, H € A such that

Hr = G(xx)(S(H(zx))).

Indeed, we can replace the above equations by

G = )\xy.Hy(Kx),
H = o.Glae)(S(H(zz))),

and apply the Multiple Fixedpoint Theorem with F; = Aghxy.hy(Kz) and
Fy = Aghx.g(xx)(S(h(zx))).

Exercises

3.1.

3.2.

3.3.

3.4.

(i) Find a A-term Mult such that for all m,n € N
Mult'n "m'="n-m".
(ii) Find a A-term Fac such that for all n € N
Fac'n'="n!"

The simple Ackermann function ¢ is defined as follows.

©(0,n) = n+1,
p(m+1,0) = ¢(m,1),
pm+1,n+1) = @(m,e(m+1,n)).

Find a A-term F that A-defines .

Construct A-terms My, My, ... such that for all n one has
MO = @,
Mn+1 = Mn+2Mn-

Verify that P_ (see the first proof of Theorem 3.14) indeed A-defines the pre-
decessor function with respect to the Church numerals.
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Reduction

There is a certain asymmetry in the basic scheme (). The statement
(Az.z? +1)3 =10

can be interpreted as ‘10 is the result of computing (Az.2z2 + 1)3’, but not vice
versa. This computational aspect will be expressed by writing

(A\z.2® +1)3 — 10

which reads ‘(Az.2? + 1)3 reduces to 10

Apart from this conceptual aspect, reduction is also useful for an analysis
of convertibility. The Church-Rosser theorem says that if two terms are con-
vertible, then there is a term to which they both reduce. In many cases the
inconvertibility of two terms can be proved by showing that they do not reduce
to a common term.

4.1. DEFINITION. (i) A binary relation R on A is called compatible (with the
operations) if

MRN = (ZM)R (ZN),
(MZ) R (NZ) and
(Az.M) R (Az.N).

(ii) A congruence relation on A is a compatible equivalence relation.
(iii) A reduction relation on A is a compatible, reflexive and transitive rela-
tion.

4.2. DEFINITION. The binary relations — g, —»3 and =g on A are defined in-
ductively as follows.
i) 1. (A.M)N —g Mz := NJ;
2. M —-gN = ZM —g ZN, MZ —3 NZ and Az.M —g Ax.N.
1. M —g M,
2. M—gN = M —»gN;
3. M —3gN,N-—gL = M—glL.

(i)
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(i) 1. M —3N = M=4N;
2. M:5N2>N:5M;
3. M:ﬁN,N:ﬁL = M:ﬁL.

These relations are pronounced as follows.

M —3 N : Mpg-reduces to N;
M —g N : Mp-reduces to Nin one step;
M =3 N : M is 3-convertible to N.

By definition — g is compatible, — 3 is a reduction relation and =g is a con-
gruence relation.

4.3. EXAMPLE. (i) Define

AT.xT,

€
|

Then Q —4 €.
(ii) KIQ —3 |

Intuitively, M =g N if M is connected to N via — g-arrows (disregarding
the directions of these). In a picture this looks as follows.

M

N . SN
NN NS
e

4.4. EXAMPLE. KIS =g Il. This is demonstrated by the following reductions.

KIQ2

(

)\y.l)ﬂ\\ | /n

4.5. PROPOSITION. M =g N & A M = N.
PROOF. By an easy induction. [J

4.6. DEFINITION. (i) A [-redex is a term of the form (Az.M)N. In this case
Mz := N] is its contractum.

(ii) A Aterm M is a B-normal form (B-nf) if it does not have a [-redex as
subexpression.

(ili) A term M has a [-normal form if M =g N and N is a $-nf, for some
N.
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4.7. EXAMPLE. (Az.zx)y is not a §-nf, but has as g-nf the term yy.
An immediate property of nf’s is the following.
4.8. LEMMA. Let M be a B-nf. Then

M —3N = N=M.

Proor. This is true if —3 is replaced by —z. Then the result follows by
transitivity. [

4.9. CHURCH-ROSSER THEOREM. If M —3 N1, M —g Ny, then for some N3
one has N1 —g N3 and Ny —g N3; in diagram

The proof is postponed until 4.19.

4.10. COROLLARY. If M =g N, then there is an L such that M —»g L and
N —p3 L.

An intuitive proof of this fact proceeds by a tiling procedure: given an arrow
path showing M =3 N, apply the Church-Rosser property repeatedly in order
to find a common reduct. For the example given above this looks as follows.

N N,
SN NS
| \/

This is made precise below.
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PRrROOF. Induction on the generation of =g.

Case 1. M =5 N because M —»g N. Take L = N.

Case 2. M =g N because N =g M. By the IH there is a common S-reduct
Ly of N, M. Take L = L;.

Case 3. M =3 N because M =g N', N =5 N. Then

M N’ N
\\(IH) \\(IH)/
L . (CR) . Lo

L U

4.11. COROLLARY. (i) If M has N as 3-nf, then M —5 N.
(ii) A A-term has at most one (3-nf.

PROOF. (i) Suppose M =3 N with N in g-nf. By Corollary 4.10 M —»3 L
and N —»g L for some L. But then N = L, by Lemma 4.8, so M —3 N.

(ii) Suppose M has -nf’s Ny, Na. Then Ny =g Ny (=g M). By Corollary
410 N1 —g L, No —g L for some L. But then Ny = L = N, by Lemma
4.8. I

4.12. SOME CONSEQUENCES. (i) The A-calculus is consistent, i.e. A I/ true =
false. Otherwise true =3 false by Proposition 4.5, which is impossible by
Corollary 4.11 since true and false are distinct g-nf’s. This is a syntactic
consistency proof.

(ii) €2 has no f-nf. Otherwise £ — 3 N with N in S-nf. But £ only reduces
to itself and is not in G-nf.

(iii) In order to find the B-nf of a term M (if it exists), the various subex-
pressions of M may be reduced in different orders. By Corollary 4.11 (ii) the
G-nf is unique.

The proof of the Church-Rosser theorem occupies 4.13-4.19. The idea of
the proof is as follows. In order to prove Theorem 4.9, it is sufficient to show

the Strip Lemma:
M

v

Ny B

In order to prove this lemma, let M —3 Ny be a one step reduction resulting
from changing a redex R in M in its contractum R’ in Nj. If one makes a
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bookkeeping of what happens with R during the reduction M —» 3 N3, then by
reducing all ‘residuals’ of R in Ns the term N3 can be found. In order to do the
necessary bookkeeping an extended set A O A and reduction § is introduced.
The underlining serves as a ‘tracing isotope’.

4.13. DEFINITION (Underlining). (i) A is the set of terms defined inductively
as follows.

reV = x€A,
M,NecA = (MN)ecA,
MeAxzeV = (Az.M)eA,
M,NelAzeV = ((Az.M)N)e€A.

(ii) The underlined reduction relations — 3 (one step) and —»g are defined

starting with the contraction rules B B
A.M)N — g M [x

Az M)N —3 Mx:

I,
]

Then — g is extended in order to become a compatible relation (also with respect
to M-abstraction). Moreover, —» 5 is the transitive reflexive closure of — g.

(iii) If M € A, then |M| € A is obtained from M by leaving out all underlin-
ings. E.g. |(A\z.z)((Az.z)(Az.z))| = I(I).

N
N

4.14. DEFINITION. The map ¢ : A — A is defined inductively as follows.

= uz,

)

) = ¢M)e(N),
oA M) = lz.p(M),

)

p(M)[z := o(N)].

In other words, ¢ contracts all redexes that are underlined, from the inside to
the outside.

NoOTATION. If |[M| = N or ¢(M) = N, then this will be denoted by

M ——>No M ——N.

] v
4.15. LEMMA.
M o - N’
g
| || M, N'eA,
M,N € A.
M N



28 Introduction to Lambda Calculus

PRroOF. First suppose M —3 N. Then N is obtained by contracting a redex
in M and N’ can be obtained by contracting the corresponding redex in M'.
The general statement follows by transitivity. [

4.16. LEMMA. (i) Let M,N € A. Then

(i)

M N
B
¥ Y M, NeA
QM) vevveenieeiieeiis - o(N)
B

PROOF. (i) By induction on the structure of M, using the Substitution Lemma
(see Exercise 2.2) in case M = (Ay.P)Q. The condition of that lemma may be
assumed to hold by our convention about free variables.

(ii) By induction on the generation of —» 4 , using (i). O

4.17. LEMMA.

PRrROOF. By induction on the structure of M. [J

4.18. STRIP LEMMA.

M
4
Ny
8

M, Ny, Ny, N3 € A.

Ny

PROOF. Let Nj be the result of contracting the redex occurrence R = (Az.P)Q
in M. Let M’ € A be obtained from M by replacing R by R’ = (Az.P)Q. Then
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IM'| = M and ¢(M’) = N;. By the lemmas 4.15, 4.16 and 4.17 we can erect
the diagram

which proves the Strip Lemma. [J

4.19. PROOF OF THE CHURCH-ROSSER THEOREM. If M —» g Ny, then M =
My —g My —g --- —g M, = N;. Hence the CR property follows from the
Strip Lemma and a simple diagram chase:

M

N Ny

. g

4.20. DEFINITION. For M € A the reduction graph of M, notation Gz(M), is
the directed multigraph with vertices {N | M — 3 N} and directed by — .
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4.21. ExaMpLE. Gg(I(lz)) is

(1)

sometimes simply drawn as

It can happen that a term M has a nf, but at the same time an infinite
reduction path. Let @ = (Az.zz)(Az.zx). Then @ — Q — --- so KIQ —
KIQ — ... and KIQ — |. Therefore a so called strategy is necessary in

order to find the normal form. We state the following theorem; for a proof see
Barendregt (1984), Theorem 13.2.2.

4.22. NORMALIZATION THEOREM. If M has a normal form, then iterated con-
traction of the leftmost redex leads to that normal form.

In other words: the leftmost reduction strategy is normalizing. This fact
can be used to find the normal form of a term, or to prove that a certain term
has no normal form.

4.23. EXxaAMPLE. Kl has an infinite leftmost reduction path, viz.
KQl -5 Ay Q)1 =3 Q =5 Q —5---,
and hence does not have a normal form.

The functional language (pure) Lisp uses an eager or applicative evaluation
strategy, i.e. whenever an expression of the form F'A has to be evaluated, A is
reduced to normal form first, before ‘calling’” F. In the A-calculus this strat-
egy is not normalizing as is shown by the two reduction paths for KI€2 above.
There is, however, a variant of the lambda calculus, called the Al-calculus, in
which the eager evaluation strategy is normalizing. In this Al-calculus terms
like K, ‘throwing away’ €2 in the reduction KI€2 — | do not exist. The ‘ordi-
nary’ A-calculus is sometimes referred to as AK-calculus; see Barendregt (1984),
Chapter 9.

Remember the fixedpoint combinator Y. For each F' € A one has YF =g
F(YF), but neither YF' —3 F(YF) nor F(YF) —3 YF. In order to solve
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reduction equations one can work with A.M. Turing’s fixedpoint combinator,
which has a different reduction behaviour.

4.24. DEFINITION. Turing’s fixedpoint combinator ® is defined by setting
A = dryy(zay),
® = AA
4.25. PROPOSITION. For all F € A one has
OF —3 F(OF).
PROOF.

OF = AAF
—5  (A\y.y(AAy))F
—3 F(AAF)
—  F(OF). O
4.26. EXAMPLE. 3G VX GX — X(XG). Indeed,

VX GX - X(XG) < G — \.a(zQ)
< G — (A\gz.x(xg))G
< G =0(\gzr.x(xg)).

Also the Multiple Fixedpoint Theorem has a ‘reducing’ variant.

4.27. THEOREM. Let Fy, ..., F, be A-terms. Then we can find X1, ..., X, such
that

X1 — XX,

X, — FE,X; X,

PROOF. As for the equational Multiple Fixedpoint Theorem 3.17, but now
using ©. [

Exercises

4.1.  Show VM 3N [N in f-nf and NI —4 M].
4.2.  Construct four terms M with Gg(M) respectively as follows.

()
. <©>© \\7
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4.3.

4.4.%

4.5.

4.6.*

4.7.%

4.8.

4.9.

4.10.

Introduction to Lambda Calculus

Show that there is no F' € A such that for all M, N € A
F(MN) = M.
Let M = AAzx with A = Aazz.z(aax). Show that Gg(M) contains as subgraphs

an n-dimensional cube for every n € N.

(A. Visser)
(i) Show that there is only one redex R such that Gg(R) is as follows.

(ii) Show that there is no M € A with Gg(M) is
[Hint. Consider the relative positions of redexes.]
(C. Bohm) Examine Gg(M) with M equal to
(i) HIH, H =MXzy.x(Az.yzy)z.
(ii) LLl, L =Mvy.z(yy)z.
(iii) QIQ, Q = lzy.zylzy.
(J.W. Klop) Extend the A-calculus with two constants §, e. The reduction
rules are extended to include MM — e. Show that the resulting system is

not Church-Rosser.
[Hint. Define terms C, D such that

Cx — dz(Cx)
D — CD

Then D — € and D — Ce in the extended reduction system, but there is no
common reduct.]

Show that the term M = AAx with A = Aazz.z(aaz) does not have a normal
form.

(i) Show A/ WWW = wsws, with W = \ay.ayy and ws = Az.xzz.
(ii) Show A By = B, with B, = A, A, and A, = Ap.pp=.

Draw Gg(M) for M equal to:
(i) WWWwW, W =xy.xyy.
(il) ww, w=\z.a.

(ill) waws, ws= Az.xaT.
(iv) (Az.dzx)Ax.lzz).

(v) Qzd(zz))Azd(zx)).

(vi) H(H).

The length of a term is its number of symbols tinlloes 0.5 cm. Write down a
A-term of length < 30 cm with normal form > 100" light year.

[Hint. Use Proposition 2.15 (ii). The speed of light is ¢ = 3 x 10! ¢cm/s.]
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Type Assignment

The lambda calculus as treated so far is usually referred to as a type-free theory.
This is so, because every expression (considered as a function) may be applied to
every other expression (considered as an argument). For example, the identity
function | = Az.x may be applied to any argument x to give as result that same
z. In particular | may be applied to itself.

There are also typed versions of the lambda calculus. These are introduced
essentially in Curry (1934) (for the so called Combinatory Logic, a variant of
the lambda calculus) and in Church (1940). Types are usually objects of a
syntactic nature and may be assigned to lambda terms. If M is such a term
and a type A is assigned to M, then we say ‘M has type A’ or ‘M in A’; the
denotation used for this is M : A. For example in some typed systems one has
I : (A—A), that is, the identity | may get as type A—A. This means that if
2 being an argument of | is of type A, then also the value lz is of type A. In
general, A— B is the type of functions from A to B.

Although the analogy is not perfect, the type assigned to a term may be
compared to the dimension of a physical entity. These dimensions prevent us
from wrong operations like adding 3 volt to 2 ampere. In a similar way types
assigned to lambda terms provide a partial specification of the algorithms that
are represented and are useful for showing partial correctness.

Types may also be used to improve the efficiency of compilation of terms
representing functional algorithms. If for example it is known (by looking at
types) that a subexpression of a term (representing a funtional program) is
purely arithmetical, then fast evaluation is possible. This is because the ex-
pression then can be executed by the ALU of the machine and not in the slower
way in which symbolic expressions are evaluated in general.

The two original papers of Curry and Church introducing typed versions of
the lambda calculus give rise to two different families of systems. In the typed
lambda calculi ¢ la Curry terms are those of the type-free theory. Each term
has a set of possible types. This set may be empty, be a singleton or consist
of several (possibly infinitely many) elements. In the systems d la Church the
terms are annotated versions of the type-free terms. Each term has (up to an
equivalence relation) a unique type that is usually derivable from the way the
term is annotated.

The Curry and Church approaches to typed lambda calculus correspond to

33
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two paradigms in programming. In the first of these a program may be written
without typing at all. Then a compiler should check whether a type can be
assigned to the program. This will be the case if the program is correct. A
well-known example of such a language is ML, see Milner (1984). The style of
typing is called implicit typing. The other paradigm in programming is called
explicit typing and corresponds to the Church version of typed lambda calculi.
Here a program should be written together with its type. For these languages
type-checking is usually easier, since no types have to be constructed. Examples
of such languages are Algol 68 and Pascal. Some authors designate the Curry
systems as ‘lambda calculi with type assignment’ and the Church systems as
‘systems of typed lambda calculus’.

Within each of the two paradigms there are several versions of typed lambda
calculus. In many important systems, especially those @ la Church, it is the case
that terms that do have a type always possess a normal form. By the unsolv-
ability of the halting problem this implies that not all computable functions can
be represented by a typed term, see Barendregt (1990), Theorem 4.2.15. This
is not so bad as it sounds, because in order to find such computable functions
that cannot be represented, one has to stand on one’s head. For example in
A2, the second order typed lambda calculus, only those partial recursive func-
tions cannot be represented that happen to be total, but not provably so in
mathematical analysis (second order arithmetic).

Considering terms and types as programs and their specifications is not the
only possibility. A type A can also be viewed as a proposition and a term M in A
as a proof of this proposition. This so called propositions-as-types interpretation
is independently due to de Bruijn (1970) and Howard (1980) (both papers
were conceived in 1968). Hints in this direction were given in Curry and Feys
(1958) and in Lauchli (1970). Several systems of proof checking are based
on this interpretation of propositions-as-types and of proofs-as-terms. See e.g.
de Bruijn (1980) for a survey of the so called AUTOMATH proof checking system.
Normalization of terms corresponds in the formulas-as-types interpretation to
normalisation of proofs in the sense of Prawitz (1965). Normal proofs often
give useful proof theoretic information, see e.g. Schwichtenberg (1977).

In this section a typed lambda calculus will be introduced in the style of
Curry. For more information, see Barendregt (1992).

The system A—-Curry

Originally the implicit typing paradigm was introduced in Curry (1934) for the
theory of combinators. In Curry and Feys (1958) and Curry et al. (1972) the
theory was modified in a natural way to the lambda calculus assigning elements
of a given set T of types to type free lambda terms. For this reason these calculi
d la Curry are sometimes called systems of type assignment. If the type o € T
is assigned to the term M € A one writes = M : o, sometimes with a subscript
under F to denote the particular system. Usually a set of assumptions I' is
needed to derive a type assignment and one writes I' = M : o (pronounce this
as ‘T" yields M in ¢’). A particular Curry type assignment system depends on
two parameters, the set T and the rules of type assignment. As an example we
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now introduce the system A—-Curry.

5.1. DEFINITION. The set of types of A—, notation Type(A—), is inductively
defined as follows. We write T = Type(A—). Let V = {«,a’,...} be a set of
type variables. It will be convenient to allow type constants for basic types such
as Nat, Bool. Let B be such a collection. Then

aeV = aeT,
BeB = BeT,
oreT = (o—7)€T (function space types).

For such definitions it is convenient to use the following abstract syntax to

form T.
with
V=al|V (type variables).
NoraTION. (i) If 01,...,0, € T then
0102 =0y
stands for

(o1—=(02— - —=(on—1—00)"));

that is, we use association to the right.
(ii) a,f,7,... denote arbitrary type variables.

5.2. DEFINITION. (i) A statement is of the form M : o with M € Aand o € T.
This statement is pronounced as ‘M in ¢’. The type o is the predicate and the
term M is the subject of the statement.

(ii) A basis is a set of statements with only distinct (term) variables as
subjects.

5.3. DEFINITION. Type derivations in the system A— are built up from as-
sumptions z:0, using the following inference rules.

o
M :o—T N :o M.ZT
MN : 7 Ae. M :o—T1

5.4. DEFINITION. (i) A statement M : o is derivable from a basis I', notation
'-M:o

(or T'Fy_, M : o if we wish to stress the typing system) if there is a derivation
of M : o in which all non-cancelled assumptions are in I'.
(ii) We use M : o as shorthand for ) - M : o.
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5.5. EXAMPLE. (i) Let 0 € T. Then F Afz.f(fz): (0—0)—0o—0, which is
shown by the following derivation.

%:—W(Q) oD
- (?) fr:o
f(fz):o
Ax.f(fx): 0—0
Mz f(fx): (0—0)—0o—0

(1)

2)

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.
(ii) One has + K : 0—7—o0 for any 0,7 € T, which is demonstrated as
follows. @
o

Y.z 1 T—0

(1

ALY. L : O—T—0
(iii) Similarly one can show for all o € T
Fl:o—o.

(iv) An example with a non-empty basis is the statement

yobkly:o.

Properties of \—

Several properties of type assignment in A— are valid. The first one analyses
how much of a basis is necessary in order to derive a type assignment.

5.6. DEFINITION. Let I' = {z1:01,...,2,:0,} be a basis.
(i) Write dom(I") = {z1,...,z,} and o; = I'(z;). That is, I" is considered
as a partial function.
(ii) Let Vi be a set of variables. Then I' [ Vi = {zx:i0 |z € V& o =T'(z)}.
(iii) For o,7 € T substitution of 7 for « in ¢ is denoted by oo := 7].

5.7. BAsis LEMMA. Let I' be a basis.
(i) If T’ D T is another basis, then

'M:0 = T'FM:o.

(i) TFM:0 = FV(M) C dom(T).
(ii) TFM:0 = T [FVWM)FM:o0.

PROOF. (i) By induction on the derivation of M : o. Since such proofs will
occur frequently we will spell it out in this simple situation in order to be shorter
later on.
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Case 1. M : o is x:0 and is element of I'. Then also z:0 € T and hence
I'tM:o.

Case 2. M : o is (M1Ms) : o and follows directly from M; : (t—o) and
My : 7 for some 7. By the IH one has T" - M : (t—0o) and TV - My : 7. Hence
P/ [ (MlMQ) L 0.

Case 3. M : o is (Ax.My) : (01—03) and follows directly from ',z : o
M : 0o. By the variable convention it may be assumed that the bound variable
x does not occur in dom(I"). Then I, z:07 is also a basis which extends I, x:07.
Therefore by the TH one has I, x:01 F M7 : 09 and so I - (A\x.M7) : (61—03).

(ii) By induction on the derivation of M : 0. We only treat the case that
M :ois (Ax.M;) : (01—02) and follows directly from I', z:00 = Mj : 09. Lety €
FV(A\x.M;), then y € FV(M;) and y # z. By the IH one has y € dom(T", z:01)
and therefore y € dom(T").

(i) By induction on the derivation of M : 0. We only treat the case that
M : o is (M1 M,) : 0 and follows directly from M; : (1—0o) and Ms : 7 for some
7. By the IH one has I | FV(M;) F M; : (t—o) and I | FV(M2) F My : 7. By
(i) it follows that T' | FV(M1Ms) b My : (t—o)and T' | FV(M1Ms) = My @ T
and hence I' [ FV(M 1 Ms) F (M1 M) : 0. O

The second property analyses how terms of a certain form get typed. It is
useful among other things to show that certain terms have no types.

5.8. GENERATION LEMMA. (i) 'z :0 = (z:0) €T.
(i) TFMN:7 = 3o['FM:(0—17)&I'F N :0].
(i) TEFXe. M :p = Fo,7[Tyxiob M :7&p = (0—7)].

PRrROOF. By induction on the structure of derivations. [J
5.9. PROPOSITION (Typability of subterms). Let M’ be a subterm of M. Then
'M:0 = T'FM:0 for someI’ and o'.

The moral is: if M has a type, i.e. ' M : o for some I' and o, then every
subterm has a type as well.

PRrROOF. By induction on the generation of M. [J
5.10. SUBSTITUTION LEMMA.
i) TFM:0 = Ta:=7FM:ola:=7]
(ii) Suppose I'yx:ob M :7 andT'F N : 0. Then ' Mz := N]: 7.

PROOF. (i) By induction on the derivation of M : o.
(ii) By induction on the derivation showing I', z:0 = M : 7. O

The following result states that the set of M € A having a certain type in
A— is closed under reduction.

5.11. SUBJECT REDUCTION THEOREM. Suppose M —»g M'. Then

'-M:0 = TFM :o.
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PRrOOF. Induction on the generation of — g using the Generation Lemma 5.8
and the Substitution Lemma 5.10. We treat the prime case, namely that M =
(Az.P)Q and M’ = Plz := Q]. Well, if

' (\x.P)Q:0o
then it follows by the Generation Lemma that for some 7 one has
'(\z.P):(r—o)and T'HQ : 7.
Hence once more by the Generation Lemma
NaxrkFP:ocand 'FQ: 7
and therefore by the Substitution Lemma
I'kPlz:=Q]:0. O
Terms having a type are not closed under expansion. For example,
Fl:(o0—0), but /Kl (A\zx.zz): (60—0).

See Exercise 5.1. One even has the following stronger failure of subject expan-
sion, as is observed in van Bakel (1992).

5.12. OBSERVATION. There are M, M’ € A and 0,0’ € T such that M’ —3 M
and
FM:o, FM o,

but
VM :o.

PROOF. Take M = Azy.y, M' = SK, 0 = a—(—p) and ¢’ = (f—a)—(8—0);
do Exercise 5.1. I

All typable terms have a normal form. In fact, the so-called strong nor-
malization property holds: if M is a typable term, then all reductions starting
from M are finite.

Decidability of type assignment

For the system of type assignment several questions may be asked. Note that
for T' = {xy:01,...,2y:0,} one has

'EM:0 & F(Azyio1- - Azpion.M) : (01— -+ - —0,—0),

therefore in the following one has taken I' = (). Typical questions are
(1) Given M and o, does one have - M : ¢?
(2) Given M, does there exist a o such that - M : o7
(3) Given o, does there exist an M such that - M : o7
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These three problems are called type checking, typability and inhabitation re-
spectively and are denoted by M : ¢?, M : 7 and 7 : 0.

Type checking and typability are decidable. This can be shown using the
following result, independently due to Curry (1969), Hindley (1969), and Milner
(1978).

5.13. THEOREM. (i) It is decidable whether a term is typable in \—.

(i1) If a term M is typable in A—, then M has a principal type scheme, i.e.
a type o such that every possible type for M is a substitution instance of o.
Moreover o is computable from M.

5.14. COROLLARY. Type checking for A— is decidable.

PROOF. In order to check M : 7 it suffices to verify that M is typable and that
T is an instance of the principal type of M. [

For example, a principal type scheme of K is a—f3—a.

Polymorphism

Note that in A— one has
Fl:o—0 forall 0 € T.

In the polymorphic lambda calculus this quantification can be internalized by
stating
Fl:Va.a—a.

The resulting system is the polymorphic of second-order lambda calculus due
to Girard (1972) and Reynolds (1974).

5.15. DEFINITION. The set of types of A2 (notation T = Type(A2)) is specified
by the syntax
T=V|B|T-T]|VV.T.
5.16. DEFINITION. The rules of type assignment are those of A—, plus
M :Va.o M:o
M : oo := 1] M :Va.o
In the latter rule, the type variable a may not occur free in any assumption on

which the premiss M : o depends.

5.17. EXaMPLE. (i) FI:Va.a—a.
(ii) Define Nat = Va.(a—a)—a—a. Then for the Church numerals ¢, =
Afz.f"(z) we have F ¢, : Nat.

The following is due to Girard (1972).

5.18. THEOREM. (i) The Subject Reduction property holds for 2.
(il) A2 is strongly normalizing.

Typability in A2 is not decidable; see Wells (1994).
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Exercises
5.1. (i) Give a derivation of
FSK: (a—f8)—(a—a).
(ii) Give a derivation of
FKI: f—(a—a).
(iii) Show that t/ SK : (a—f—0).
(iv) Find a common S-reduct of SK and KI. What is the most general type for
this term?
5.2.  Show that Az.zz and KI(Az.zz) have no type in A—.
5.3.  Find the most general types (if they exist) for the following terms.
(i) Azy.zyy.
(ii) SII.
(ili) Azy.y(Az.z(yx)).
5.4.  Find terms M, N € A such that the following hold in A—.
(i) FM:(a=p)=(F—7)=(a=7).
(ii) =N (((a=B)=B)—pB)—(a—p).
5.5. Find types in A2 for the terms in the exercises 5.2 and 5.3.



Chapter 6

Extensions

In Chapter 3 we have seen that all computable functions can be expressed
in the lambda calculus. For reasons of efficiency, reliability and convenience
this language will be extended. The set of A-terms A will be extended with
constants. Some of the constants are selected to represent primitive data (such
as numbers) and operations on these (such as addition). Some new reduction
rules (the so called d-rules) are introduced to express the operational semantics
of these operations. Even if these constants and operations can be implemented
in the lambda calculus, it is worthwhile to have primitive symbols for them.
The reason is that in an implementation of the lambda calculus addition of the
Church numerals runs less efficient than the usual implementation in hardware
of addition of binary represented numbers. Having numerals and addition as
primitives therefore creates the possibility to interprete these efficiently.
From now on we allow constants in A-terms. Let C be a set of constants.

6.1. DEFINITION. The set of lambda terms with constants, notation A(C), is
defined inductively as follows.

CeC = CeA),
reV = xeAC),
M,N € A(C) = (MN)e A(C),

MeAC),zeV = (\.M)eAC).
This definition given as an abstract syntax is as follows.
A(C) :=C |V |A(C)A(C) | A\V A(C).

6.2. DEFINITION (d-reduction). Let X C A(C) be a set of closed normal forms.
Usually we take X C C. Let f : X*¥ — A be an ‘externally defined’ function. In
order to represent f, a so-called d-rule may be added to the A-calculus. This is
done as follows.
(1) A special constant in C is selected and is given some name, say 6 (= d ).
(2) The following contraction rules are added to those of the A-calculus:

(SMle —>f(M1,...,Mk),

for My,...,M; € X.
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Note that for a given function f this is not one contraction rule but in fact
a rule schema. The resulting extension of the A-calculus is called Ad. The
corresponding notion of (one step) reduction is denoted by (—gs) —3s-

So d-reduction is not an absolute notion, but depends on the choice of f.

6.3. THEOREM (G. Mitschke). Let f be a function on closed normal forms.
Then the resulting notion of reduction —»gs satisfies the Church-Rosser prop-
erty.

ProOF. Follows from Theorem 15.3.3 in Barendregt (1984). O

The notion of normal form generalises to Bd-normal form. So does the
concept of leftmost reduction. The Sd-normalforms can be found by a leftmost
reduction (notation —»gs).

6.4. THEOREM. If M —» g5 N and N is in 36-nf, then M —» 35 N.
PROOF. Analogous to the proof of the theorem for S-normal forms (4.22). O

6.5. EXAMPLE. One of the first versions of a d-rule is in Church (1941). Here
X is the set of all closed normal forms and for M, N € X we have

0cMN — true, if M = N;
0cMN — false, if M £ N.

Another possible set of d-rules is for the Booleans.
6.6. ExaMPLE. The following constants are selected in C.
true, false, not, and, ite (for if then else).

The following d-rules are introduced.

not true — false;
not false — true;
and true true — true;
and true false — false;
and false true — false;
and false false — false;
ite true — true (= \zy.z);
ite false — false (= \zy.z).

It follows that

itetruexy —

ite falsexy — y.
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Now we introduce as d-rules some operations on the set of integers
Z={..,-2,-1,0,1,2,...}.

6.7. EXAMPLE. For each n € Z a constant in C is selected and given the name
n. (We will express this as follows: for each n € Z a constant n € C is chosen.)
Moreover the following constants in C are selected:

plus, minus, times, divide, equal, error.
Then we introduce the following -rules (schemes). For m,n € Z

plusnmm — n+m;
minus nm n —m;

timesnm n * Mm;

-
-
dividenm — n-<+m, if m#0;
dividen(0 —
-
N

equalnn

error;
true;

equalnm false, if n# m.

We may add rules like
plus n error — error.

Similar d-rules can be introduced for the set of reals.
Again another set of d-rules is concerned with characters.

6.8. EXAMPLE. Let 3 be some linearly ordered alphabet. For each symbol
s € X we choose a constant ‘s’ € C. Moreover we choose two constants d - and
4_ in C and formulate the following d-rules.

0.'s1'sy’ — true, if s1 precedes ss in the ordering of ¥;
0-‘'s1’'sy’ — false, otherwise.
0_‘s1”'sy’ — true, if s1 = s9;
0_‘s1’'ss’ — false, otherwise.

It is also possible to represent ‘multiple valued’ functions F' by putting as
d-rule

on — m, provided that F(n) = m.

Of course the resulting Ad-calculus does not satisfy the Church-Rosser theorem
and can be used to deal with non-deterministic computations. We will not
pursue this possibility, however.

We can extend the type assignment system A— to deal with constants by
adding typing axioms of the form

C:o.
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For the system with integers this would result in the following. Let Z,B € B
be basic type constants (with intended interpretation Z and booleans, respec-
tively). Then one adds the following typing axioms to A—-.

true : B, false : B,
not : B—B, and:B—B—B,
n:Z, error:Z,
plus : Z—7—7Z, minus:Z—7Z—Z, times:Z—7Z—Z, divide:Z—7Z—Z,

equal : Z—7—B.

6.9. EXAMPLE. F Azy.times z(plus xy) : Z—Z—Z, as is shown by the follow-
ing derivation.

plus : Z—72—7 =2
times : Z—7Z—7Z 22 pluszc : Z—7Z —yﬂ—Z—(l)

timesx : Z—Z plusxy : Z

times x(plus xy) : Z

1
Ay.times z(plus xy) : Z—7Z

2
Azy.times x(plus xy) : Z—Z—7Z

The Strong Normalization property for (plain) A— implies that not all re-
cursive functions are definable in the system. The same holds for the above
Ad-calculus with integers. The following system of type assignment is such
that all computable functions are representable by a typed term. Indeed, the
system also assigns types to non-normalizing terms by introducing a primitive
fixedpoint combinator Y having type (0—0c)—0o for every o.

6.10. DEFINITION. (i) The AY d-calculus is an extension of the Ad-calculus in
which there is a constant Y with reduction rule

Yi— f(Y))
(ii) Type assignment to A Y d-terms is defined by adding the axioms
Y : (0—0)—0
for each ¢ € T. The resulting system is denoted by A\ Y d—.

Because of the presence of Y, not all terms have a normal form. Without
proof we state the following.

6.11. THEOREM. (i) The AY d-calculus satisfies the Church-Rosser property.
(i1) If a term in the AY d-calculus has a normal form, then it can be found
using leftmost reduction.
(iii) The Subject Reduction property holds for \Y 6—.
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6.12. THEOREM. All computable functions can be represented in the Y §-
calculus by a term typable in AY §d—-.

PROOF. The construction uses the primitive numerals n. If we take S;L,(S =
Ar.plusz 1, Py = Ar.minus x 1, and Zeroys = A\r.equal x 0, then the proof
of Theorem 3.13 can be imitated using Y instead of the fixedpoint combinator
Y. The types for the functions defined using Y are natural. [

One could also add Y to the system A2 using the (single) axiom

Y :Va.(a—a)—a.

Exercises

6.1. Let k,, be defined by ko = | and k,4+1 = K(k,). Show that on the k,, the
recursive functions can be represented by terms in the Adc-calculus.

6.2. Write down a Ad-term F in the system of Example 6.7 such that
Fn —n!+n.

6.3. Write down a Ad-term F in the system of Example 6.8 such that for s1, s2,t1, 12 €
> we have

Fl's1’,‘t1’|['s2), ‘ta)] —  true, if (s1,t1) precedes (s2,t2) in the
lexicographical ordering of ¥ x 3;

—  false, otherwise.

6.4. Give suitable typing axioms (in A— and A2) for the constants in Example 6.6.






Chapter 7

Reduction Systems

In this chapter we consider some alternative models of computation based on
rewriting. The objects in these models are terms built up from constants with
arity in N and variables, using application.

7.1. DEFINITION. Let C be a set of constants. The set of terms over C (notation
T =7(C)) is defined as follows.

reV = xeT,
CelCty...tp, €T = C(t1,...,tn) €T,

where n = arity(C).

Recursive programming schemes

The simplest reduction systems are recursive programming schemes (RPS).
The general form of an RPS has as language the terms 7(C). On these a
reduction relation is defined as follows.

Cl(xl,. .. ,l‘nl) — tl,

Cilzi,...,xn,) — tg,

where n; = arity(C;). Here we have
(1) The C’s are all different constants.
(2) The free variables in ¢; are among the xy,...,zy,.
(3) In the t’s there may be arbitrary C’s.
For example, the system

is an RPS.
The A-calculus is powerful enough to ‘implement’ all these RPS’s. We can
find A-terms with the specified reduction behaviour.

47
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7.2. THEOREM. Fach RPS can be represented in \-calculus. For example (see
above), there are terms C and D such that

Czy —p D(Cax)y,

Dzy —3 Cuz(Dzy).

PROOF. By the reducing variant 4.27 of the Multiple Fixedpoint Theorem. [J

Without proof we mention the following.

7.3. THEOREM. FEvery RPS satisfies the Church-Rosser theorem.

Term rewrite systems

More general than the RPS’s are the so called term rewrite systems (TRS’s),
which use pattern matching in function definitions. A typical example is
A0y) — v,
A(S().y) — S(A(.y)).
Then, for example, A(S(0),S(S(0))) — S(S(S(0))).

The difference with RPS’s is that in a TRS the arguments of a rewrite rule
may have some structure. A constant in a TRS that does not have a contraction
rule (i.e. no rewrite rule starts with that constant) is called a constructor. The
other constants are called functions.

Not all TRS’s satisfy the Church-Rosser property. Consider the system

A(z) — B,

A(B) — C.
Then A(B) reduces both to B and to C'. It is said that the two rules overlap.
The following rule overlaps with itself:

Then D(D(D(D))) reduces to E and to D(E).

See Klop (1992) for a survey and references on TRS’s.

Combinatory logic (CL) is a reduction system related to A-calculus. Terms
in CL consist of (applications of) constants I, K, S and variables, without
arity restrictions. The contraction rules are

Ix — =z,
Kxy — =z,
Szyz — xz(yz).
(Note that KI is a nf.) Then KII — I, and SII(SII) has no normal
form. This CL can be represented as a TRS by considering I, K, S as (0-ary)
constructors, together with a function Ap with arity 2, as follows.
Ap(I7 I‘) - T,
Ap(Ap(K,x),y) — =,
Ap(Ap(Ap(S,z),y),2) — Ap(Ap(z,z), Ap(y,2)).
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The CL-term SII(SII) is translated into Q = Ap(w,w) wherew = Ap(Ap(S,I),I).
The Normalization Theorem does not extend to TRS’s. Consider the above
TRS-version of CL, together with the rules

or(z,true) — true,
or(true,x) — true,

or(false, false) — false.

The expression
or(A, B)

can, in general, not be normalized by contracting always the leftmost redex. In
fact A and B have to be evaluated in parallel. Consider e.g. the terms

or(Q2, Ap(I,true))

and

or(Ap(I,true), Q).

==

Therefore this system is called non-sequential.

Combinatory reduction systems

Even more general than TRS’s are the combinatory reduction systems (CRS)
introduced in Klop (1980). These are TRS’s together with arbitrary variable
binding operations. We have in fact

CRS

A / \TRS
\

/

RPS

Exercises

7.1.  (Toyama et al. (1989a), see also (1989b)) A TRS is called strongly normalizing
(SN) if there is no term that has an infinite reduction path. So (the TRS version
of) CL(S, K) is not SN, but CL(I, K) (with the obvious reduction rules) is.
Define the following two TRS’s.

Rli

F(4,5,6,z) — F(z,x,z,x),
F(r,y,z,w) — T,
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X X
N4

~N — Ut

RQZ

G(z,z,y) — =
G(z,y,x) — =
— x

G(y,z,x)

)

Show that both R; and Ry are SN, but the union R U Rs is not.
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Exercises of the class of Herman Geuvers

Exercises 1a: Simple Type Theory
1. Find inhabitants (i.e. closed terms) of the following types (in STT)

(a) (a=p)=(f—7)—a—=y

(b) a=f—(a—f—7)=y

(¢) ((a=f—a)—a)—a

(d) f—=((a=pB)=7)—7

2. The type a—(a—a)—«a is also called nat.

(a) Show that there are infinitely many closed terms (inhabitants) of type nat.
(b) Describe a term 0 : nat and the succesor succ : nat—nat.

(c) Describe the derivations that the (infinitely many) terms under (a) correspond
to.

(d) Construct a derivation of ((a—3)—~)—[F—~ and the associated typed A-term.
3. Add product types to A—, that is add o x 7 to the types and

(a) Add the appropriate term constructors to extend the term language of A—.

(b) Give typing rules for terms of type o x 7, by giving an elimination rule and an
introduction rule. (A term of type o x 7 should be built up from a term of type
o and a term of type 7.)

(c) Give a reduction rule for the new term constructors. Try to give an “g-like”
rule and an “n-like” rule.

4. Prove the claim made in the proof of the Weak Normalization theorem (page 16 of
the slides of lesson 2): If we reduce in P a redex of maximum height (height h(P))
that does not contain any other redex of height h(P), obtaining the term @, then

m(Q) <, m(P).
5. Fill the three gaps in the proof of Strong Normalization (page 17 of the slides of
lesson 2). That is, prove
(a) [o] € SN (by induction on o)
(b) If M[N/z]P € [7], N € [o], then (\z.M)NP € [r] (by induction on o)
(¢) (By induction on the derivation of I' - M : o).

LT, .. Xy Tp E M o

N; € [[Tﬂ],...,Nn e [[Tn]] } = M[Nl/xl,Nn/xn] c [[g]]

6. Prove the Substitution Lemma (by induction on the derivation of I'y z : 7, A = M : o).
(That is, prove that if 'z : 7, A M :oand ' P : 7, then I', A+ M[P/x] : 0.)



Exercises 1b: Polymorphic Lambda Calculus

1
2

. Listhe type Va.a. Give the typing derivations of the following typing. A\x: L. Aa.z(a—a)(za).

. Find terms of the following types in A2. (See the slides for the definitions.)

a) o—o V 7. Now make this term polymorphic in ¢ and 7.

(
(

)

b) o—=T—0 AT

(¢) VfB.0—Ja.o[a/F]. Which logical rule does this term correspond to?
)

(d) Given M : Ja.o and F : Va.o—7, with a ¢ FV(7), construct a term of type 7.
Which logical rule does this term correspond to?

. Define the type of booleans bool in A2 as bool := Va.a—a—«

(a) Define true : bool and false : bool.

(b) Define conjunction and disjunction over the booleans

4. Recall the natural numbers in A\2.

ot

(a) Define exponentiation exp : nat—nat—nat on the natural numbers in A2. (Use
the iterator and already defined functions.)

(b) Define the function Z? : nat—bool such that Z70 =g true and Z7?(Sz) =5 false.

. The type of lists over A is defined by listy := Va.a—(A—a—a)—a.

(a) Define the “head” function over list4. This function requires a “default value”
for the case of the nil-list:

head : A—listy—A.

NB. The tail function is not so easy to define. It can’t be defined directly by
iteration.

(b) Define the function suclist : list,,;—nat that adds 1 to each element in a list of
natural numbers. (See the “map” function on the slides.)

6. Consider the type of Binary trees with nodes in A and leaves in B, as given in the

lecture:

treeq p = Va.(B—a)—(A—a—a—a)—a

(a) Define the functions leaf : B—tree, g and join : A—treey p—treey p—treey .

(b) Define the iterator for tree:
it : Vy.(B—7)—=(A—y—y—7)—treeq p—7.

(Given a type v and functions f : (y—B) and g : (y—A—A), it should produce
a function from treey g to 7.)



(c) Take B := nat and write a function tsuml that computes the sum of all leaves.

(d) Take A := nat and write a function tsumlIn that computes the sum of all leaves
and nodes.

(e) Take A := bool and write a function tend that computes the leave (a term of
type B) that is found by going “left” if the boolean in the node is true and
“right” if it’s false.

(f) Take A, B := bool and write a function tpath that computes the path (as a term
of type Listpoo to the leaf by going “left” if the boolean in the node is true and
“right” if it’s false.

7. Prove Strong Normalization for A2 by proving the following by induction on the
derivation.
Proposition

LTy @t T B M ro= M[Py/xy,..., Pz, € [o],

for all valuations p and Py € [11] ,,..., P, € [7],
See the slides or the Handbook article by Barendregt (Def 4.1.7, page 50) for the
derivation rules of A\2. See the slides for how this fits in the proof of SN.






Exercises of the class of Herman Geuvers

Exercises 2a: Higher Order Logic

1. Define the Leibniz equality on A as t =4 ¢ := VP:A—Prop.(Pt)—(Pq). Prove the
following by finding terms of the associated types.
(a) reflexivity of =4: Vz:A.x =4 .
(b) transitivity of =4: Va,y,22Ax =2y >y =42 — T =4 2.

(¢) symmetry of =4: Vo, y:Ax =4y — y =a x.

2. The transitive closure of a relation R is defined as follows.

trclos := AR:A— A—Prop.\x, y:A.(VQ:A— A—Prop.(trans(Q)—(R C Q)—(Q z y))).
So trclos is of type (A—A—Prop)—(A—A—Prop)

(a) Define the notions trans and C in the definition of trclos.
(b) Prove that the transitive closure is transitive. (Find a term of type trans(trclos R)).

(c) Prove that the transitive closure of R contains R. (Find a term of type
R C (trclos R)).

3. In this exercises we will prove in higher order logic a variant of the Knaster-Tarski
fixed-point theorem.
Given a domain A, we identify A—Prop with the collection of subsets of A. In
this exercise we consider maps ® : (A—Prop)—(A—Prop), mapping subsets of A to
subsets of A.
® is asumed to be monotone: VP, Q:A—Prop.P C Q — (P P) C (¢ Q).
(P C @ is an abbreviation for Vz:A.(P 2)—(Q ), which is also gives away the answer
to the exercise above.)

P : A—Prop is called ®-closed if (¢ P) C P.
(a) Define (formally) X : A—Prop as the smallest ®-closed subset of A.

(b) Prove (for arbitrary P : A—Prop): if P is ®-closed, then X C P.
(Find a term of type VP:A—Prop.(d P) C P — X C P.)

(c¢) Prove (® X) C X.

(d) Prove X C (¢ X).

(e) Conclude that X is the least fized point of ®:
X~ (PX),
ii. P~ (®P)— X CP.

where we take the equality ~ to be defined in the set-theoretical way as
P~Q=PCQNQCP.



4. Recall the induction principle over natural numbers as a higher order formula. Given
a domain N and 0: N, S : N—N, Indy is

VP:N—Prop.(P0) — (V&:N.(Pz)—(P(Sx))) — Vo:N.(Px)

(a) Consider a datatype of lists over a base domain A. So we have two base domains
A and L and we let Nil : L,Cons : A—L—L. Define the induction principle
over lists.

(b) Consider a datatype of binary trees with leaves in base type A and node labels
in base type B. So So we have three base domains A, B and T : Set and we
let Leaf : A—T, Join : B—T—T—T. Define the induction principle over these
trees.

Exercises 2b: Extensions of AHOL; the )\ cube; PTSs

1. (a) Explain for every — and II in the following judgment which II-rule (of AHOL)
is needed to make it a valid construction.

A : Type, R : A—A—Prop F ITz: A.TIQ:(A—Prop)—Prop.Q(Rz)— Rz x : Prop

(b) Do the same for the following judgment in CC.

A : Prop = ITF:(Ila:Prop . I1Q:a—Prop.Ily:aQ y—Q y). FF A — Prop : Type

2. Give a context I' and a term M of the type
(Ilz:A.(Rxa—Ra(fz))—Raa—Ra(fa)

in this context.
What is the simplest system of the A cube in which this typing is valid?

3. (a) Recall the polymorphic type of lists over A, Listy and define it in A2. (So
A : Prop I List 4 : Prop; verify that this is indeed possible in the A-cube system
A2.)

(b) Define induction over lists as a proposition in AP2. (So A : Prop - indy ;o : Prop;
verify that this is indeed possible in the A-cube system AP2.)

4. Define in CC, ¢ :=Va:A.x = a, ¢ :=Vz:B.3y:B.x # y (with A, B : Prop) and define
EXT := Vo, 3:Prop.(a & ) = (@ =prop 3).
Give a term of type L in CC in the following context
e: EXT, A, B :Prop,hy: @, hy: 1

Alternatively you may try to find this term in Coq, see the file coq_ex7.v8.

2



5. Prove the following basic property for any Pure Type System (S,.4,R). (By induc-
tion on the derivation.)
(Variable Lemma)

KI'FM:A thenT'Fxz:Bforallx: Bel.

6. Prove the Substitution Lemma for PTSs. (By induction on the derivation; do the
cases for the last rule being (weak) or ().
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Lecture 1: Simple and Polymorphic Type Theory

Examples:

el \yTw o o—T—0
AP AT N y(22) ¢ (a—B)—(B—7)—a—y
Az My BI==e 08 ) - a—((B—a)—a)—a
For every type there is a term of that type:
20
Not for every type there is a closed term of that type:

(a—a)—a is not inhabited

Simplest system: \— just arrow types

Typ := TVar | (Typ—Typ)
e BExamples: (a—f)—a, (a—F)=((f—7)—(a—7))
o Brackets associate to the right and outside brackets are omit-
ted:
(a=B)=(B—7)—a—y
e Types are denoted by o, 7,. . ..
Terms:
e typed variables {,xJ, ..., countably many for every o.
e application: if M : c—7 and N : o, then (MN) : 7

e abstraction: if P : 7, then (Az?.P) : 0—7

Formulation with contexts to declare the free variables:
7;1 . 0'17:1}2 . (727 . 71’” . O—n

is a context, usually denoted by I'.

Derivation rules of A—:

zoel T'EFM:o-71I'EN:o xokHEP: T
'-xz:0 I'EMN T 'k Av:io.P:o—t

[' =y, M : o if there is a derivation using these rules with
conclusion I' = M : o



Typical problems one would like to have an algorithm for:

I'= M : o7 Type Checking Problem TCP
['= M :7 Type Synthesis Problem TSP
F7: o Type Inhabitation Problem (by a closed term) TIP

Formulas-as-Types (Curry, Howard):
There are two readings of a judgement M : o
1. term as algorithm /program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o

Typical problems one would like to have an algorithm for:

['H M : o7 Type Checking Problem TCP
['F M :7 Type Synthesis Problem TSP
7o Type Inhabitation Problem (by a closed term) TIP

For A—, all these problems are decidable.
Remarks:

e TCP and TSP are (usually) equivalent:
To solve M N : o, one has to solve N :7 (and if this gives
answer 7, solve M : 7—0).

e TIP is undecidable for most extensions of A\—, as it corre-
sponds to provability in some logic.

Formulas-as-Types (Curry, Howard):
There are two readings of a judgement M : o

1. term as algorithm/program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o

e There is a one-to-one correspondence between
— typable terms in A—
— derivations in minimal proposition logic
e The judgement
T1 T2 :T9 ..., Zn  TnHM:0o
can be read as

M is a proof of o from the assumptions 71,79, ..., Tp.

]



Example

la—=B8—1]% [0 [a—0)? [a]!

Q—VYL 1 : ~ Az:a— =y \ya— B za.xz(yz)
o (amf-)—la—)—a—ry
(a—=B)—a—y

(a—=f—7)—=(a—p)—a—y

Computation:
e (J-reduction: (Az:o.M)P — 5 M[P/x]
e 7)-reduction: A\x:o. Mz —p M if x ¢ FV(M)

Cut-elimination in minimal logic = 3-reduction in A—.

[o]! Dy
Dy Lo
T 1 Dy Dy
o—T o -
T
PO |
[.1:1.)0] D,
1 P:o

]\/f/ i T 1 Dy ~ Dy
Av:o. M o—T P:o M[P/a]: T

(Az:o.M)P : T

Example

[a—=B8—1] 0! [a—p) [a]!

= Y q < ~ Ar:a— =y \ya— B za.xz(yz)
o=y 9 : (a—>ﬂ—>7)—>(a—>ﬁ)—>a_>7
(a—=fB)—a—y

(a—=p—7)=(a—p)—a—y

[2:a—=8—P [z:a]' [y:a—B? [z:a]!

rz: B—y yz: B

rz(yz) 1y 1
Naxz(yz) t a—y
Mpa— B \zaxz(yz) : (a—0)—a—y
Az:a— =y \y:a—F A zaxz(yz) - (a—F—y)—(a—F)—a—y

n

Properties of A—.

e Uniqueness of types
fI'EM:ocand '+ M : 7, then 0 = 7.

e Subject Reduction
IfFI—M:UandM—WUN,thenFI—N:U.

e Strong Normalization
If ' = M : o, then all Bn-reductions from M terminate.



Properties of A—.

e Uniqueness of types
fFI'FM:ocand ' M : 7, then o0 = 7.

e Subject Reduction
IfFI—M:UandM—>ﬁnN,thenF|—N:0.

e Strong Normalization
If '+ M : o, then all Bn-reductions from M terminate.

e Substitution property

flz:7,AF-M:o, I'FP:7, then A+ M[P/z]: 0.
e Thinning

FI'FM:ocand'CA, then A+ M : 0.

e Strengthening
fl,z:7FM:0and x ¢ FV(M), then 't M : 0.

12

Strong Normalization of 3 for A— a la Curry is proved by con-
structing a model of A—.
Definition

e [] := SN (the set of strongly normalizing \-terms).

o [c—7]:={M |VN € [o](MN € [])}.
Lemma (both by induction on o)

e [0c] CSN

o If M[N/x]P € [7], N € [o], then (\z.M)NP € [].
Proposition

e e Mo N € [0

Proof By induction on the derivation of ' = M : 0.
Corollary A— is SN
Proof By taking N; := x; in the Proposition.

Strong Normalization of § for A—.
Note:

e Terms may get larger under reduction
(A Az f(fx)P — g Ax.P(Pz)

e Redexes may get multiplied under reduction.

A Az f(f2)(Ay-M)Q) — 5 Az (Ay-M)Q)((Ay-M)Q))

e New redexes may be created under reduction.
(Af Az f(f2))(Ay.N) — g Az.(Ay.N)((Ay.N)x)

Polymorphic A-calculus
Why Polymorphic \-calculus?
e Simple type theory A— is not very expressive

e In simple type theory, we can not ‘reuse’ a function.
Eg. \r:a.x:a—a and \x:G.x : f—0.

We want to define functions that can treat types polymorphically:
add types Va.o:
Examples

o Vo.a—a
If M :Va.a—a, then M can map any type to itself.

e Va.V3.a—pF—a
If M : Va.VB.a—p—a, then M can take two inputs (of
arbitrary types) and return a value of the first input type.

1R



Derivation rules of \2:
Full (system F-style) polymorphism:

Typ := TVar | (Typ—Typ) | V. Typ.

'-M:o 'FM:Vao
a ¢ FV(D for 7 any type
' Xa.M :Va.o 9 ' Mt :o[r/a]

Examples:
e \a NG v \y:f.a: VaVi.a—F—a.
o \u:(VYo.a) \y:o.at : (Va.a)—o—T.

o \u:(Vo.a).x (0—7) (xo): (Va.a)—T.

Formulas-as-types for A\2:
There is a formulas-as-types isomorphism between A2 and sec-
ond order proposition logic, PROP2

Derivation rules of PROP2:
Fo [+Va.o
— = a¢FVID) =
Fhvao “ YO op olr/al
NB This is constructive second order proposition logic:

Va.V3.((a—f)—a)—a Peirce's law

is not derivable.

Recall: Important Properties

I'EM:o? TCP
'EM:? TSP
7o TIP

Properties of A2
o TIP is undecidable,
e TCP and TSP are equivalent & decidable.

Definability of the other connectives:
1 = Vo«
oNT = Va.(c—T—a)—a
oVT = Va.(c—a)—=(T—a)—a

Ja.o = VE.(Va.o—pF)—f

and all the standard constructive derivation rules are derivable.
Example (A-elimination):

1
Va.(lc—=1—a)—a ol

_T—0
(c—=T17—0)—0 o0—oT—0
o

Idea:
The definition of a connective is an encoding of the elimination
rule.



Data types in A2 Properties of A2.
Nat := Va.a—(a—a)—a e Uniqueness of types
This type can be used as the type of natural numbers, using the FIEM:oand ' M: 7 then o = 7.
encoding of IN as Church numerals in the A-calculus. ® Subject Reduction
no Ao A F( . (fz)) n-times f IfI'-M: o and M—>57) N,then'H N : 0.
o () := A \r:a\fa—a.x
o 5 = M:Nat  \a. \z:a\fra—a.f(nazf)

e lteration: if c:o and g:c—ao, then define It c g : Nat—o as

e Strong Normalization
If ' M : o, then all Bn-reductions from M terminate.

An:Natnocyg

Then
ltcgn =g(...(gc)) (n times g)
= Define 4, X, ... using iteration.
Strong Normalization of § for A2. Strong Normalization of § for A2.
Note:
e There are two kinds of 3-reductions Question:

| 7
— (\z:o.M)P — 5 M[P/a] How to define [Vor.o] 77

— (Aa.M)T — 3 M[1/q]
e The second doesn’t do any harm: we can just look at the o What is [/?
underlying untyped \-terms '

[Vo.o] = xeplola—x??

The collection of all ‘possible’ interpretations of types (?)

o [Ixcr/lo],.—x may get very (too?) big.
Girard:

e [Va.o] should be small

Recall the proof for A—-:

e [a] := Term(a) N SN.

o [o—7] :={M:0—7|VN € [o](MN € [7])}.
Question:

How to define [Va.o] 77 M [oo—x
XeU

Va.o] :=Uxeplo]y—x?? e Characterization of U.

922 o1



U := SAT, the collection of saturated sets of (untyped) A-terms.

X C A is saturated if
exP ... P, € X (forall z € Var, P|,..., P, € SN)
e X CSN
o If M[N/z]P € X and N € SN, then (\z.M)NP € X.

Let p : TVar — SAT be a valuation of type variables.
Define the interpretation of types [[0]]/) as follows.

i [[a]]p = p(Oé)
o [o—7],:={M|VN € [0] (MN € [7],)}

* [[VO[.O'HP = mXGSAT[[U]]p,a::X

Proposition
XL Tlyee Xy Tp =M o= M[P)/xy,...,Py/xy] € 0]

for all valuations p and P; € [[Tl]]p, ... Pye [[Tn]]p

Proof
By induction on the derivation of ' - M : 0.

Corollary A2 is SN

(Proof: take P; to be x1, ..., Py to be x5,.)

9%
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Lecture 2: Higher Order Logic and Type Theory

e Induction
VN —prop( AP:N—prop.(P0)
= (Vy(Az:N.(Px = P(Sx)))
= Vy(Az:N.Px)))
Notation:
VP:N—prop( (P0)
= (Va:N.(Pz = P(S«x)))
= Va:N.Px)

e Higher order predicates/functions
transitive closure of a relation R

AR: A— A—prop. Az, y:A.

(VQ:A— A—prop.(trans(Q) = (R C Q) = Qzy))

of type
(A— A—prop)—(A— A—prop)

2

The original motivation of Church to introduce simple type the-
ory was:

to define higher order (predicate) logic

In A— we add the following
® prop as a basic type
® = : prop—prop—prop
eV, : (o—prop)—prop (for each type o)
This defines the language of higher order logic HOL.

Derivation rules for Higher Order Logic HOL (following Church)
e Natural deduction style.
e Rules are ‘on top’ of the simple type theory.
e Judgements are of the form
AbFre
—A=9Y1,...,¢n
—['is a A—-context

—I'F:prop, I' -y : prop,..., I' 4y, : prop
— I is usually left implicit: A F ¢



(axiom) Ak if peA

AUpkEy

(= -introduction) AF o= b

AFopo=1v AFp

(= -elimination)

Al
. . Ak I
(V-introduction) AF Voo if x:0 ¢ FV(A)
o A Vo v,
(V-elimination) A+ oft/a] ift:o
, Ak P
(conversion) AF if p=5
Important in HOL:
Conversion rule:
A FVYP:N—prop.(...Pc...) V-elim
A (.. Ay:N.y > 0)c...) conv

AbF(...c>0...)

Definability of other connectives (constructively):
1 = Yaprop.ar
A = Yazprop.(¢p = ¢ = a) = «
eV = Yazprop.(¢ = a) = (Y = o) = «
dzr:o.p = Yaprop.(Vrio.p = a) = «

Church has additional things that we will not consider now:
e Negation connective with rules

o Classical logic
AF —-p
Al

e Define other connectives in terms of =, V, = (classically).
e Choice operator (; : (0—prop)—o

e Rule for ¢:
A xoc.Px

A+ P(sP)
This (Church’ original higher order logic) is basically the logic
of the theorem prover HOL (Gordon, Melham, Harrison) and of
Isabelle-HOL (Paulson, Nipkow).

We will here restrict to the basic constructive core (V,=>) of
HOL.

Equality is definable in higher order logic:

t and ¢ terms are equal if they share the same properties
(Leibniz equality)

Definition in HOL (for ¢,q : A):
t=4q = VYP:A—prop.(Pt = Pq)
e This equality is reflexive and transitive (easy)
e It is also symmetric(!) Trick: find a “smart” predicate P

Exercise: Prove reflexivity, transitivity and symmetry of = 4.



Exercise: Proof of symmetry of = 4. One more exercise on Higher Order Logic
(Trick: take \y:A.y =4 t for P.) The transitive closure of a binary relation R on A has been de-
fined as follows.

AFt=4q
A FVP:A—prop.(Pt = Pq) ...
AF(t=a1)= (q=41) AFt=,t trclos R .= Az, y:A.
Abg=yt (VQ:A—A—Prop.(trans(Q)— (R € Q)—(Qxy))).
1. Prove that the transitive closure is transitive.
2. Prove that the transitive closure of R contains R.
Why not introduce a A-term notation for the derivations?
(axiom) N if pe A
A - This gives a type theory AHOL
. . U
(= -introduction) Fj—é% o Let prop be a new ‘universe’ of propositional types.
e Direct encoding (deep embedding) of HOL into the type
S AFp=1v9 Ak yp theory AHOL
(= -elimination) N
. . Al v
(V-introduction) A Voo if z:0 ¢ FV(A)
o A Vro.p o
(V-elimination) A oft/a] ift:o
Al

(conversion) A if p=531



Now we have two ‘levels’ of type theories

(axiom) AfFra:y tzpen e The (simple) type theory describing the language of HOL
(= introduction) A zobp M9 o The type theory for the proof-terms of HOL
Abp Aro.M: o =1 NB Many rules, many similar rules.
(= -elimination) Abr MA E :;\;/)VAWZF Ny We put these levels together into one type theory AHOL.
b Pseudoterms:
} ) Abrr, .. M:op )
(V-introduction) Abr )\fllj;()'.f\f V1o if z:0 ¢ FV(A) T := Prop | Type | Type’ | Var | (ITVar:T.T) | (A\Var:T.T) | TT
(V-elimination) Abp M :Vro.p CTEt o {Prop, Type, Type'} is the set of sorts, S.

Abp Mt: ot/
Some of the typing rules are parametrized

. AbFp M:p e
(conversion) Abp Mo if =51
(axiom) F Prop : Type F Type : Type/ () P'EA:s; T.a:AF B:sy if (s1,89) € { (Type, Type),
. . . ['F1lz:AB : sy (Prop, Prop), (Type, Prop) }
(var) m (weak) T xil Y C. e The combination (Type, Type) forms the function types A—B
» & Z: r ' for A, B:Type.
. IA:sy LAl B sy if (s1,50) € { (Type, Type), This comprises the unary predicate types and binary relations
() ['F1lx:AB : s9 (Prop, Prop), (Type, Prop) types: A—Prop and A— A—Prop.
Also: higher order predicate types like (A— A—Prop)—Prop.
() DzAEM:B TENmAB:s NB A Il-type formed by (Type, Type) is always an —-type.
UE v AM - Tlx:A.B e (Prop,Prop) forms the propositional types ¢—1) for ¢, 1:Prop;
implicational formulas.
IEM:lzAB TEN:A "mP
(app) T ]\"Z N : B[N/a] NB A Tl-type formed by (Type, Type) is always an —-type.
e (Type,Prop) forms the dependent propositional type ITx:A.¢
(conv) '-M:A T'EFB:s if A=y B for A:Type, @:Prop; universally quantified formulas.

'-M:B

15 1R



Derivation in HOL, with terms:

Example: Deriving irreflexivity from anti-symmetry
z: VxAUARJJU = Ryz= 1

Rel := AX:Type. X — X —Prop
AntiSym = AX:Type. AR:(Rel X).Va,y: X.(Rzy) = (Ryz) = L co VyRay = Ryx = L

Irrefl == AX:Type. AR:(Rel X').Va:X.(Rxx) = L zer: Rrx= Rrx= 1 ¢ : Rxx]

Derivation in HOL: zrrq: Rrz = L n lo: Re gl

A A Zrrqq :

va Z Rry= Ryr= 1 MN:(Rxx)zoeqq: Rex = L
VW Rry= Ryr= 1 A AN (Rxx).zxxqq Ve Roz = 1
Rxx= Rrx= L (R ]
Rrx= 1| [Rxx] Typing judgement in AHOL:
L A:Type, R:A— A—Prop, z : llz,y:A(Rry—Ryr—1)
Rzz = 1 Ao ANg:(Rxa).zxxqq: (lle:ARxaz—1)

Vl‘A.RJ;x = 1

Properties of AHOL.

e Uniqueness of types

Question: is the type theory AHOL really isomorphic with HOL?

Yes:Disambiguation Lemma Given fT-M:Aand ' M : B, then A= ;B.
['FM:T in AHOL e Subject Reduction

there is a permutation of I: I'p, I'7, I'p such that If T M:Aand M —43 N, then T'F N : A,

LIp, I, Tp-M:T e Strong Normalization

2.T'p consists only of declarations A : Type If ' M : A, then all B-reductions from M terminate.

3.T'p, consists only of declarations z : o with I'p = o : Type Proof of SN is a higher order extension of the one for A2 (using

4. " p consists only of declarations z : ¢ with I'p, I';, = ¢ : Prop the saturated sets).

So,if ' M : T, we also have
ApType, ..., ApType, 201, ..., TpiOm, 21301, ... Zpipp = M =T
FD FL FP
domainvar. termvar. proofvar.

10



Decidability Questions:
I'M:0? TCP
'M:? TSP
I'=?:0 TIP

For AHOL:
e TIP is undecidable
e TCP/TSP: simultaneously.

21

Ok(<>) = ‘true’
Ok(T', z:A) = Typer(A) € {Prop, Type},
Typep(xz) = if Ok(I') and x:A € I then A else ‘false’,
Typer(Prop) = if Ok(I")then Type else ‘false’,
Typep(Type) = if Ok(I")then Type’ else ‘false’,

Typer(Type') = ‘false’,

Type Checking

Define algorithms Ok(—) and Type (—) simultaneously:
e Ok(—) takes a context and returns ‘true’ or ‘false’

e T'ype (—) takes a context and a term and returns a term or
‘false’.

29

Typep(MN) = if Typep(M) = C and Typep(N) = D
then if €' »gllz:A.Band A=43 D
then B[N/z] else 'false’
else ‘false’,

Typep(Az:A.M) = if Typer ,.4(M) = B
then if Typep(Ilx:A.B) € {Prop, Type}
then I1x:A.B else ‘false’
else ‘false’,

Typep(Ilz:A.B) = if Typep(A) = Type
and TypeF,x:A(B) = s € {Prop/Type}
then s else
if Typer(A) = Prop and Typer ,.4(B) = Prop
then Prop else ‘false’

1



Soundness
Typep(M) =A = T+ M:A

forall ', M.
Completeness

'EM: A = T\vpe[‘(l\[) =3 A
forall I', M and A.

This implies that, if Typep(M) = ‘false’, then M is not typable
inT.

Completeness only makes sense if we have uniqueness of types
(Otherwise: let Type (—) generate a set of possible types)

Termination

Interesting case(2): A-abstraction:
Typer(Az:A.M) = if Typer ;.4(M) =B

then if Typer(Ilz:A.B) € {Prop, Type}

then [1z:A.B else ‘false’
else ‘false’,

Replace the side condition
Typep(Ilz:A.B) € {Prop, Type}
by

Typer(A) = Prop and B = 117:C.D with D # Prop/Type/ Type’

or
Typep(A) = Type and B = 117:C.D with D # Type/ Type'.

27

Termination
We want Type (—) to terminate on all inputs.
(Not guaranteed by soundness and completness)

Interesting case (1): application:

Typep(MN) = if Typep(M) = C and Typep(N) =D
then if C' ;A Band A =5 D
then B[N/z] else ‘false’
else ‘false’,
For this case, termination follows from the decidability of equality
on well-typed terms (using SN and CR).

9%






Types Summer School

Gothenburg Sweden August 2005 (axiom) + Prop : Type - Type : Type

(var) 'FA:s (weak)Fl_A:s '-M:C
Herrnan'Geuv't.ers () FEA:s) T,x:Ab B:so if (s1,s9) € { (Type, Type),
Radboud University Nijmegen, NL Tk z:A.B : s (Prop, Prop), (Type, Prop) }
_ ) aeAFM:B T'HIz:AB:s
Lecture 3: Extensions of AHOL; the A-cube; Pure Type I\ A M Tz A B
Systems
) '-M: Ilx:AB TTEN:A
(app T+ MN : B[N/z]

'FM:A T'EB:s
'M:B

(conv)

if A=5 B

AHOL contains A2 and A—.
_ (1) P'EA:s; T.a:AF B:sy if (s1,89) € { (Type, Type),
(1) PEA:s) I'mAb B:sy if (s1,52) € { (Type, Type), ['F1lz:AB : s9 (Prop, Prop), (Type, Prop) }
' 1lz:AB : s (Prop, Prop), (Type, Prop) }

Why not extend AHOL to include

_ o Higher order logic over polymorphic domains?
e —-types on the Type-level (one copie of A—) like ITA : Type A— A

e —-types on the Prop-level (second copie of A—)

This rule allows to form

e Quantification over all domains?
o [la:Prop.a—a: polymorphic types on the Prop-level (one like in ITA : Type.llP:A—Prop.llx:A.Px—Px
copie of A\2)



() 'EA:sy T,a:Ab B:sy if (s1,82) € { (Type, Type),
I'E1Ilz:AB : s9

Why not extend AHOL to include

e Higher order logic over polymorphic domains?
like ITA : Type.A—A

e Quantification over all domains?
like in ITA : Type.llP:A—Prop.llz:A.Px—Px

This can easily be done by allowing in the Il-rule

o (s1,89) € { (Type’, Type) } to obtain higher order logic over
polymorphic domains ~~ system AU~

e (s1,59) € { (Type’, Prop)} to allow quantification over all
domains ~~» system AU

Problem:

o \U (AHOL + (Type', Type) and (Type',Prop)) is inconsistent
(Girard)

e \U™ (AHOL + (Type', Type)) is inconsistent (Coquand, Hurkens)
NB AHOL + (Type',Prop) is consistent.

Implications
e \U™ can't be used as a logic.
e In AU, there is a closed term M with - M : L

e This M can not be in normal form (by some syntactic rea-
soning)

e So, A\U™ is not SN

(Prop, Prop), (Type, Prop) }

Problem:

e \U (AHOL + (Type', Type) and (Type',Prop)) is inconsistent
(Girard)

e \U™ (AHOL + (Type’,Type)) is inconsistent
(Coquand, Hurkens)

NB AHOL + (Type',Prop) is consistent.

Type Checking in AU~ is still decidable:
All types (terms of type Prop, Type or Type') are strongly nor-
malizing

Typer(MN) = if Typep(M) = C and Typep(N) = D
then if C' »gllz:A.Band A=3 D
then B[N/z] else 'false’
else ‘false’,

In the type synthesis algorithm we only check equality of types



Variations on the rules of AHOL: The cube of typed A-calculi: (forget about Type’ for the mo-

ment)
e There are many type system with (slightly) different rules Vary on all possible combinations for
e Many (proofs of) properties are similar R C { (Prop, Prop), (Type, Prop), (Type, Type), (Prop, Type) }
e Plan: Study these type systems in one general framework: in the Il-rule:
— The cube of typed A-calculi (Barendregt) (I1) LE AF: ? H:IFAJ.::BA: :ZB =52 i (51,89) € R

— Pure Type Systems (Terlouw, Berardi) We take (Prop, Prop) in every R

Aw APw 'FA:s1 T''omAEB:so .
/‘ / (I I'FTIlx:A.B : s9 i (s1,82) € R
N

AP2
‘ System R
b _ A— Prop, Prop
AW APw A2 (system F) EProp, Prop% (Type, Prop)
/ / AP (LF) (Prop, Prop) (Prop, Type)
A— AP \w (Prop, Prop) (Type, Type)
AP2 (Prop, Prop) (Type, Prop) (Prop, Type)
add (Type, Prop) Aw (system Fw) | (Prop, Prop) (Type, Prop) (Type, Type)
APw (Prop, Prop) (Prop, Type) (Type, Type)
add (Type, Type) APw (CC) (Prop, Prop) (Type, Prop) (Prop, Type) (Type, Type)
A— in this presentation is equivalent to A— in the way we've
(Prop, Prop add (Prop, Type) presented before. Similarly for A2, AP, ...



This cube also gives a fine structure for the One can do higher order predicate logic in CC, in a slightly un-

Calculus of Constructions, CC (Coquand and Huet) usual way:
CC has: e ‘propositions’ and first order ‘sets’ are both of type Prop
e Polymorphic data types on the Prop-level, e propositions and sets are completely mixed
e.g. [la:Prop.a—(a—a)—a. Is it faithful to do higher order predicate logic in CC??
e Predicate domains on the Type-level, A Nol
e.g. N—N—Pro nswer: No!
& P There are non-provable formulas of HOL that become inhabited
e Logic on the Prop-level, in CC
e.g. ¢ A = lla:Prop.(p—p—a)—a.
e Universal quantification (first and higher order),
e.g. [IP.N—Prop.llx:N.Pr— Px.
Consider extensionality of propostions: Consider extensionality of propostions:
EXT := Vo, B:prop.(a < () = (@ =prop ) EXT := Vo, f:prop.(a < () = (a =prop )
In CC, this becomes Ila, 3:Prop.(a <= 3) — (& =pyop ) In CC, this becomes Tla, 3:Prop.(a < 3) — (a =pyop )

Suppose two base domains A and B and constants a : A, b : B.
In HOL, the following formulas are consistent.

e =VrAr=a, =Ve:BIyBr#y



Consider extensionality of propostions:
EXT = va,ﬂ:prop.(a = /6) = (OZ :prop /6)
In CC, this becomes Ila, 3:Prop.(a <> 3) — (& =pyop )

Suppose two base domains A and B and constants a : A, b : B.
In HOL, the following formulas are consistent.

e =VrAzr=a,:=Ve:BIyBr#y

But in CC, EXT also applies to the base sets A and B.
A < B (both are non-empty) so A =pq, B

so property 1) (of B) also applies to A
so VoA dy:Ax #y

contradicting ¢
So, in CC, ¢ and v are inconsistent

Pure Type Systems
Determined by a triple (S, .4, R) with

e S the set of sorts
o A the set of axioms, A C S x S
e R theset of rules, RCS xS xS
If s9=s3in (s1,$9,83) € R, we write (s1,52) € R.

pseudoterms:

T:=&|Var|(IIVar:T.T) | (A\Var:T.T) | TT.

We have to be careful when doing higher order logic in CC.

Or: we may try to improve on this: taking the sets and the
propositions apart:
System APREDw:
e Sorts: Prop, Set, Type?, Type®
e Axioms for these sorts: Prop : Type?, Set : Type®
e Rules R:
— (Prop, Prop): implication
Set, Prop): first order quantification
Type?, Prop): higher order quantification

—(

—(

— (Set, Set): function types

— (Set, TypeP): predicate types
—(

Type?, TypeP): higher order types

1%

. 'FA:s .
(sort) |k s1:s89 if (s1,89) € A (var) FrAlz:A ifxegl
FA:s THEFM:C .
(weak) “p parar.c FrET
'A:s1 I'ao:AEB:sy .
() Fl_]HJZZA.BZS:g © i (s1,5,55) €R

) oA M:B T'FIlx:A.B:s
' e:AM : 1lx:A.B

'FM:1llx:AB T'TEN:A

(app) ['+ MN : B[N/z]
I'-M:A TFB:s
, A=3B
(conv) FM:B 5

an



Examples of PTSs

APREDw AHOL /
S Set, Type®, Prop, Type S Prop, Type, Type ,
A Set : Type®, Prop : Type A Prop : Type, Type : Type
R (Set, Set), (Set, Type), (Type, Type), (Prop, Prop). R (Prop. Prop), (Type, Type). (Type, Prop)
(Set, Prop), (Type, Prop) AU
cC S Prop, Type, Type'
S Prop, Type A Prop : Type, Type : Type’
A Prop : Type R (Prop, Prop), (Type, Type), (Type', Type), (Type’, Prop), (Type, Prop)
R (Prop, Prop), (Prop, Type), (Type, Prop), (Type, Type) Ax
S *
A * %
R (*,%)
A PTS-morphism from (S, A, R) to A\(S', A/, R') is an There are now two type systems for higher order predicate logic:
[+ S — S’ that preserves the axioms and rules: APRER\(;)RaE%d AHOL.
W
oif (s1,50) € Athen (f(s1), f(s2)) € A’ S Set, Type®, Prop, Type
if h / A Set : Type®, Prop : Type
i (51,52, 83) € R then (f(s1), f(52), f(s3)) € R R (Set, Set), (Set, Type), (Type, Type), (Prop, Prop),
f extends to pseudoterms and contexts (Set, Prop), (Type, Prop)
Proposition: AHOL
. . S Prop, Type, Type
If ' M : Athen f(I')F f(M): f(A) A Prop : Type, Type : Type'
Examples: R (Prop, Prop), (Type, Type), (Type, Prop)
o [ AS, A R) = M, [f(s) =« ("initial"” PTS) They are equivalent:
e g : \PREDw — CC, ¢(Prop) = g(Set) := Prop, The PTS-morphism h : APREDw — AHOL, given by
g(TypeP) = g(Type®) := Type. h(Prop) := Prop h(Set) := Type/
Corollary: SN for CC = SN for APREDw h(Type?) := Type h(Type®) := Type

constitutes an isomorphism between the derivable sequents.

92 1



cC OO
S Prop, {Type;},cN S Prop, {Type; }cIN
A Prop : Type, Type; : Type; 1| A Prop : Type, Type; : Type; 1|
R (Prop, Prop), (Prop, Type;), (Type;, Prop) R (Prop, Prop), (Prop, Type;), (Type;, Prop)
(Type;, Typej, TYPe; (i j)) (Typey, Type;, Typeyax(i,j))
NB: (Type; 1 Type;, Type;)) would be inconsistent. NB: (Type;_1Type;, Type;)) would be inconsistent.

The Extended Calculus of Constructions has in addition

e Cumulativity: Prop C Typey C Type; C ...

® ) -types:

' A:Prop Ia:AF B :Prop I'EFA:Type; ''w:AF B : Typej
't Yxz:A.B : Prop I'FXz:AB: Type1nax(i7j>

NB: We have [1A:Type;.o : Prop, but not X A:Type;.o : Prop

NB: Coq has in addition Set : Type and rules (Set, Set), (Type;, Set), (Set, Prop)
and inductive types.

What is the use of the abstract framework of PTSs? Properties of PTSs.
e Present (the kernel of) systems in a uniform way e Uniqueness of types

- fI'-M:Aand ' M : B, then A=3B.
* g;)z[e):vroerksystems (e AHOL, APREDw, CC) within one Holds if AC S xS and R C (S x S) x S are functions.

. e Subject Reduction
e Prove properties for many systems at once. KT - M- Aand M N then 'E N - A
: _>ﬂ , : .

e Substitution property
fl,z: BLAFM:A I't P: B, then
[A[P/z| F M[P/z] : A[P/x].
e Thinning
fT'FM:Aand ' CA, A well-formed, then A - M : A.

e Strengthening
fCx:7,AFM:Aand z ¢ FV(M, A, A), then
D,ARM A



Strong Normalization:
If ' M : A, then all 3-reductions from M terminate.

SN holds for some PTSs (all subsystems of CC,...), and for
some not (AU, Ax, ...).

SN for CC can be proved by a higher order extension of the
saturated sets argument (for A2).

20
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Per Martin-Lof:

A type comes with

construction principles: how to build objects of that type? and
elimination principles: what can you do with an object of that
type?

This fits well with the Brouwerian view of mathematics:

“there exists an x" means
“we have a method of constructing x"

In short: a type is characterised by the construction principles
for its objects.

Dogma of Type Theory

e Everything has a type
M:A
e Types are a bit like sets, but: ...

— types give “syntactic information”

=

34 (7% 8)”:nat

—sets give “semantic information”

3e{n € N | Va,y,z > 0(z" +y" # 2")}

Examples

e A summer school is constructed from students, teachers, a
team of good organisers and good weather.

e A phrase is constructed from a noun and a verb or from two
phrases with the word “and” between them.
So any phrase has the shape
“noun verb and noun verb and ...and noun and verb”.

e A natural number is either 0 or the successor S applied to a
natural number.

So the natural numbers are the objects of the shape S(... S(0)...).

Note:

Checking whether an object belongs to an alleged type is
decidable!



But if type checking should be decidable, there is not much
information one can encode in a type (?)

is X a type?
The proper question is: what are the objects of X? (How does
one construct them?)

One constructs an object of the type X by giving an NV € IN
and a proof of the fact that Va, y, z > 0(zV 4y # 2V).

The type X consists of pairs (N, p), with
eNeNN
e p a proof of Va,y, z > 0(x™N + ¢V #£ 2N)
(N,p) : X is decidable (if proof-checking is decidable).

Judgement
'=M:U

e [ is a context
e M is a term
o U is a type
Two readings
e M is an object (expression) of data type U (if U : Set)
e M is a proof (deduction) of proposition U (if U : Prop)

More technically.
(Especially related to the type theory of Coq, but more widely
applicable.)

e A data type (or set) is a term A : Set

e A formula is a term ¢ : Prop

e An object is a term ¢ : A for some A : Set
e A proof is a term p : ¢ for some ¢ : Prop.

e Set and Prop are both “universes” or “sorts”.

Slogan: (Curry-Howard isomorphism)

Propositions as Types
Proofs as Terms

I contains
e variable declarations z : T
—x : A with A : Set ~ ‘declaring x in A’
— 2 : ¢ with ¢ : Prop ~ ‘assuming ¢' (axiom)
o definitions x .= M : T
—x:=1: A with A:Set ~ 'defining x as the expression t’
—x :=p: @ with ¢ : Prop ~ 'defining x as the proof p of

P
(=~ declaring = as a “reference” to the lemma )



Type theory as a basis for theorem proving

e Interactive theorem proving = interactive term construction
Proving ¢ = (interactively) constructing a proof term p :

e Proof checking = Type checking
Type checking is decidable and hence proof checking is.

NB Proof terms are first class citizens.

De Bruijn criterion for theorem provers / proof checkers:
How to check the checker?

Interactive Theorem Prover:

Proof Engine, Proof Checker,
big, with lots small program,
ft >
USER : of automation, proot term user verifiable
generating l
(potential?) proofs OK (Checked!)

A TP satisfies the De Bruijn criterion if a small, ‘easily’ verifiable,
independent proof checker can be written.

Type theory as a basis for theorem proving

e Interactive theorem proving = interactive term construction
Proving ¢ = (interactively) constructing a proof term p :

e Proof checking = Type checking
Type checking is decidable and hence proof checking is.

Decidability problems:

['= M : A? Type Checking Problem  TCP
['H M :7 Type Synthesis Problem TSP
['F?:A  Type Inhabitation Problem TIP

TCP and TSP are decidable
TIP is undecidable

How proof terms occur (in Coq):

Lemma trivial : forall x:A, P x > P x.
intros x H.

exact H.

Qed.

e Using the tactic script a term of type
forall x:A, P x -> P x has been created.

e Using Qed, trivial is defined as this term and added to the
global context.



Computation
* (0):
(Az:AM)N —g M[N/x]
e (1): primitive recursion reduction rules (later)
e (0): definition unfolding: if x :=t: A €T, then
M(z) —5 M(t)
e Transitive, reflexive, symmetric closure: =3, 5

NB: Types that are equal modulo = 3,5 have the same inhabitants
(definitional equality):

[ ]\?:}_AM FIB— B:s y —45 B

This is also called the Poincaré principle:

“(computational) equalities do not require a proof”

(conversion)

12

Data types and executable programs in type theory
Data types:

Inductive nat : Set :=
0 : nat
| S : nat->nat.

This definition yields
e The constructors 0 and S

e Induction principle:

nat ind : VP:nat—Prop.(P0) — (Vn:nat.(Pn)—(P(Sn))) —

Vn:nat(Pn)

e Recursion scheme (primitive recursion over higher types)

The Poincaré principle says that if z : A(n) — B and y :
A(fm), then
xy: Biff fm=n.

But: type checking should be decidable, so fm = n should be
decidable.

So: the definable functions in our type theory must be restricted:
all computations should terminate.

Example of the recursion scheme (1 abbreviates (S 0) etc.)

Fixpoint nfib (n:nat) :nat :=
match n with

| O => 1

| S m => match m with
| O =>1
| Sp => nfib p + nfib m
end

end.

NB: Recursive calls should be ‘smaller’ (according to some rather
general syntactic measure)

e Coq includes a (small, functional) programming language in
which executable functions can be written.



Dependently typed data types: vectors of length n over A

Inductive vect (A:Set) : nat -> Set :=
| nnil : vect A O

| ccons : forall (n:nat)(a:A), vect An —-> vect A (S n).

Now define, for example,
e head : forall (A:Set)(n:nat), vect A (Sn) — A
e tail : forall (A:Set)(n:nat), vect A (S n) — vect An

Inductive types are also used to define the logical connectives:

(Notation: A\/B denotes or A B etc.)

Inductive or (A : Prop)(B : Prop) : Prop :=
or_introl : A — A\/B |
or_intror : B — A\/B.

Inductive and (A : Prop)(B : Prop) : Prop :=
conj : A— B — A/\B.

Inductive ex (A : Set)(P : A—Prop) : Prop :=
ex_intro : (x:A)(P x) — (Ex P).

Inductive True : Prop := 1| : True.

Inductive False : Prop := .

All (constructive) logical rules are now derivable.

Let the type checker do the work for you!

Implicit Syntax

If the type checker can infer some arguments, we can leave them
out:

Write f  abin stead of f ST ab if
f IS, T:Set.S —T — T

Also: define /' := f __ and write F'ab.

Proof terms in intensional type theory

e The ‘subtype’ {t : A | (P t)} is defined as the type of pairs
(t,p) where t : Aand p: (P t).

e A partial function is a function on a subtype
Eg (=) 1 {zR|z#0} - R.

If z:R and p:x #0, then ) ' R.

e Usually we only consider partial functions that are proof-

irrelevant, i.e.

ifp:t;ré()andq:t;«féO,then<t—1p> ﬁ

an



Use >-types for mathematical structures:
theory of groups: Given A : Type, a group over A is a tuple
consisting of

o: A—=A—A
e: A
inv : A—A

such that the following types are inhabited.
Va,y,z:A(xoy)oz = xo(yoz),
Vo:Aeox = x,
Va:A.(invz)ox = e.
Type of group-structures over A, Group-Str(A), is
(A—>A—A) x (A x (A—A))

21

We would like to use names for the projections:
Coq has labelled record types (type dependent)

e Record My_type : Set :=

{11 : type_l ;
1.2 : type_2 ;
1.3 : type_3 }.

If X : My_type, then (1_1 X) : type_1.

e Basically, My_type consists of labelled tuples:
[1_1:= value_1, 1_2:=value_2, 1_3:=value_3]

e Also with dependent types: 1_1 may occur in type_2.
If X : My_type, then

(1_2 X) : type_2 [(1_1 X)/1_1]

The type of groups over A, Group(A), is

Group(A) := Y 0:A—-A—AYe:AYinv:A—A.
(Va,y,z2A.(xoy)oz=mx0(yo2))A
(Vz:A.eox = 1)A
(Va:A.(invx) oz =e).

If ¢ : Group(A), we can extract the elements of the group struc-

ture by projections: 7t : A= A—A, m(mat) 1 A

If f: A—>A—A a: Aand h : A—A with p{,py and p3

proof-terms of the associated group-axioms, then

<f7 (a, <h7 <p17 <p2ap3>>>>> : Group(A).
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e Record Group : Type :=

{ crr : Set;
op : Ccrr -> crr -> crr;
unit : crr;
inv :  Ccrr -> crr;
assoc : (x,y,z:crr)

(op (op x y) z) = (op x (op y 2))

T

IfX : Group, then (op X) : (crr X) -> (crr X) -> (crr X).

The record types can be defined in Coq using inductive types.
Note: Group is in Type and not in Set



Let the checker infer even more for you! Coercions

e The user can tell the type checker to use specific terms as
coercions.
Coercion k : A >-> Bdeclaresthetermk : A -> B
as a coercion.

—If £ a can not be typed, the type checker will try to type
check (k £) aand £ (k a).

— If we declare a variable x: A and A is not a type, the type
checker will check if (k A) is a type.

Coercions can be composed.

Functions and Algorithms

e Set theory (and logic): a function f : A—B is a relation
R C A x B such that Vx:AJly:B.Rxy.
“functions as graphs”

e In Type theory, we have functions-as-graphs (R : A—B—Prop),
but also functions-as-algorithms: f : A—B.

Functions as algorithms also compute: 3 and ¢ rules:
(A AM)N — 5 M[N/z],
Recb fO —, b,
Recb f(Sxz) —, fx(Rech fx).
Terms of type A— B denote algorithms, whose operational se-

mantics is given by the reduction rules.
(Type theory as a small programming language)
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Coercions and structures
Record CMonoid : Type :=
{ m_crr :> CSemi_grp;
m_proof : (Commutative m_crr (sg_op m_crr))

/\ (IsUnit m_crr (sg_unit m_crr) (sg_op m_crr))

T

e A monoid is now a tuple (((S,=g,7),qa, f,p),q)
IfM : Monoid, the carrier of Mis (crr(sg crr(m crr M)))
Nasty !!
= We want to use the structure M as synonym for the carrier
set (crr(sg_crr(m_crr M))).
= The maps crr, sg_crr, m_crr should be left implicit.

e The notation m_crr :> Semi_grp declares the coercion
mcrr : Monoid >-> Semi_grp.

9%

Intensionality versus Extensionality
The equality in the side condition in the (conversion) rule can
be intensional or extensional.

Extensional equality requires the following rules:
'-M,N:A—=B T'Fp:llz:A.(Mxz = Nx)
'FM=N:A—B

[FP:A THA=B:s
'HFP:B
e Intensional equality of functions = equality of algorithms
(the way the function is presented to us (syntax))

(ext)

(conv)

e Extensional equality of functions = equality of graphs
(the (set-theoretic) meaning of the function (semantics))



Adding the rule (ext) renders TCP undecidable:

Suppose H : (A—B)—Prop and x : (H f); then
x:(H g)iffthereisap:llzAfr=gux

So, to solve this TCP, we need to solve a TIP.

The interactive theorem prover Nuprl is based on extensional
type theory.
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Two mathematical constructions: quotient and subset for se-
toids.

() is an equivalence relation over the setoid [A, = 4] if
e () : A—(A—Prop) is an equivalence relation,
o=, CQ, ieVr,yA(z=4y)—(Qxy).
The quotient setoid [A, =4]/Q is defined as
[4, Q)]
Easy exercise:
If the setoid function f : [A,=4] — [B,=p] respects @

(ie. Vo, y:A(Q z y)—((f 7) =p (f ¥)))

it induces a setoid function from [A,=4]|/Q to [B,=pg].

Setoids
How to represent the notion of set?

Note: A set is not just a type, because
M : Ais decidable whereas t € X is undecidable

A setoid is a pair [A, =] with

o A : Set,

e —: A—(A—Prop) an equivalence relation over A
Function space setoid (the setoid of setoid functions)

[A%B, =, s o] is defined by

ASB = YfA=B.(lz,y:A(x =2 y)—((f ©) =p (),

f= 4559 =Te,yA(r=2y)=(m f2)=p (11 9Y)

an

Given [A, = 4] and predicate P on A define the sub-setoid

(A=Al | P = [BeA(P x), = 4| P]
= A|P is =4 restricted to P: for ¢,r : Yx:A.(P x),

q(=alP)r = (m1q) =4 (m 1)
Proof-irrelevance is “embedded” in the subsetoid construction:

Setoid functions are proof-irrelevant.
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1 Introduction

The type theory described in this chapter has been developed by Martin-Lof
with the original aim of being a clarification of constructive mathematics.
Unlike most other formalizations of mathematics, type theory is not based
on predicate logic. Instead, the logical constants are interpreted within type

IThis is a chapter from Handbook of Logic in Computer Science, Vol 5,
Oxford University Press, October 2000
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theory through the Curry-Howard correspondence between propositions
and sets [10, 22]: a proposition is interpreted as a set whose elements
represent the proofs of the proposition.

It is also possible to view a set as a problem description in a way simi-
lar to Kolmogorov’s explanation of the intuitionistic propositional calculus
[25]. In particular, a set can be seen as a specification of a programming
problem; the elements of the set are then the programs that satisfy the
specification.

An advantage of using type theory for program construction is that it
is possible to express both specifications and programs within the same
formalism. Furthermore, the proof rules can be used to derive a correct
program from a specification as well as to verify that a given program has
a certain property. As a programming language, type theory is similar
to typed functional languages such as ML [19, 32] and Haskell [23], but
a major difference is that the evaluation of a well-typed program always
terminates.

The notion of constructive proof is closely related to the notion of com-
puter program. To prove a proposition (Vz € A)(Jy € B)P(x,y) construc-
tively means to give a function f which when applied to an element a
in A gives an element b in B such that P(a,b) holds. So if the proposi-
tion (Vo€ A)(3y€ B)P(z,y) expresses a specification, then the function f
obtained from the proof is a program satisfying the specification. A con-
structive proof could therefore itself be seen as a computer program and
the process of computing the value of a program corresponds to the process
of normalizing a proof. It is by this computational content of a constructive
proof that type theory can be used as a programming language; and since
the program is obtained from a proof of its specification, type theory can be
used as a programming logic. The relevance of constructive mathematics
for computer science was pointed out already by Bishop [4].

Recently, several implementations of type theory have been made which
can serve as logical frameworks, that is, different theories can be directly
expressed in the implementations. The formulation of type theory we will
describe in this chapter form the basis for such a framework, which we will
briefly present in the last section.

The chapter is structured as follows. First we will give a short overview
of different formulations and implementations of type theory. Section 2 will
explain the fundamental idea of propositions as sets by Heyting’s explana-
tion of the intuitionistic meaning of the logical constants. The following
section will give a rather detailed description of the basic rules and their
semantics; on a first reading some of this material may just be glanced at,
in particular the subsection on hypothetical judgements. In section 4 we
illustrate type theory as a logical framework by expressing propositional
logic in it. Section 5 introduces a number of different sets and the final sec-
tion give a short description of ALF, an implementation of the type theory
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of this chapter.

Although self-contained, this chapter can be seen as complement to
our book, Programming in Type Theory. An Introduction [33], in that
we here give a presentation of Martin-Lof’s monomorphic type theory in
which there are two basic levels, that of types and that of sets. The book is
mainly concerned with a polymorphic formulation where instead of a level
of types there is a theory of expressions. One major difference between
these two formulations is that in the monomorphic formulation there is
more type information in the terms, which makes it possible to implement
a type checker [27]; this is important when type theory is used as a logical
framework where type checking is the same as proof checking.

1.1 Different formulations of type theory

One of the basic ideas behind Martin-Lo6f’s type theory is the Curry-Howard
interpretation of propositions as types, that is, in our terminology, propo-
sitions as sets. This view of propositions is closely related to Heyting’s
explanation of intuitionistic logic [21] and will be explained in detail be-
low.

Another source for type theory is proof theory. Using the identification
of propositions and sets, normalizing a derivation corresponds to computing
the value of the proof term expressing the derivation. One of Martin-Lo6f’s
original aims with type theory was that it could serve as a framework
in which other theories could be interpreted. And a normalization proof
for type theory would then immediately give normalization for a theory
expressed in type theory.

In Martin-Léf’s first formulation of type theory from 1971 [28], theories
like first order arithmetic, Godel’s T [18], second order logic and simple type
theory [5] could easily be interpreted. However, this formulation contained
a reflection principle expressed by a universe V and including the axiom
V eV, which was shown by Girard to be inconsistent. Coquand and Huet’s
Calculus of Constructions [8] is closely related to the type theory in [28]:
instead of having a universe V, they have the two types Prop and Type and
the axiom Prop € Type, thereby avoiding Girard’s paradox.

Martin-Lof’s later formulations of type theory have all been predica-
tive; in particular second order logic and simple type theory cannot be
interpreted in them. The strength of the theory considered in this chapter
instead comes from the possibility of defining sets by induction.

The formulation of type theory from 1979 in Constructive Mathematics
and Computer Programming [30] is polymorphic and extensional. One im-
portant difference with the earlier treatments of type theory is that normal-
ization is not obtained by metamathematical reasoning; instead, a direct
semantics is given, based on Tait’s computability method. A consequence
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of the semantics is that a term, which is an element in a set, can be com-
puted to normal form. For the semantics of this theory, lazy evaluation is
essential. Because of a strong elimination rule for the set expressing the
propositional equality, judgemental equality is not decidable. This theory
is also the one in Intuitionistic Type Theory [31]. It is also the theory used
in the Nuprl system [6] and by the group in Groningen [3].

The type theory presented in this chapter was put forward by Martin-Lof
in 1986 with the specific intention that it should serve as a logical frame-
work.

1.2 Implementations

One major application of type theory is to use it as a programming logic
in which you derive programs from specifications. Such derivations easily
become long and tedious and, hence, error prone; so, it is essential to
formalize the proofs and to have computerized tools to check them.

There are several examples of computer implementations of proof check-
ers for formal logics. An early example is the AUTOMATH system [11, 12]
which was designed by de Bruijn to check proofs of mathematical theorems.
Quite large proofs were checked by the system, for example the proofs in
Landau’s book Grundlagen der Analysis [24]. Another system, which is
more intended as a proof assistant, is the Edinburgh (Cambridge) LCF
system [19, 34]. The proofs are constructed in a goal directed fashion,
starting from the proposition the user wants to prove and then using tac-
tics to divide it into simpler propositions. The LCF system also introduced
the notion of metalanguage (ML) in which the user could implement her
own proof strategies. Based on the LCF system, a system for Martin-Lof’s
type theory was implemented in Goteborg 1982 [35]. Another, more ad-
vanced, system for type theory was developed by Constable et al at Cornell
University [6].

During the last years, several logical frameworks based on type theory
have been implemented: the Edinburgh LF [20], Coq from INRIA [13],
LEGO from Edinburgh [26], and ALF from Géteborg [1, 27]. Coq and
LEGO are both based on Coquand and Huet’s calculus of constructions,
while ALF is an implementation of the theory we describe in this chapter.
A brief overview of the ALF system is given in section 6.

2 Propositions as sets

The basic idea of type theory to identify propositions with sets goes back to
Curry [10], who noticed that the axioms for positive implicational calculus,
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formulated in the Hilbert style,
ADBDA

(ADBD>C)D(AD>DB)DADC

correspond to the types of the basic combinators K and S
KeA—-B— A

SeA-B—-(C)—»(A—-B)—A->C

Modus ponens then corresponds to functional application. Tait [39] no-
ticed the further analogy that removing a cut in a derivation corresponds
to a reduction step of the combinator representing the proof. Howard [22]
extended these ideas to first-order intuitionistic arithmetic. Another way
to see that propositions can be seen as sets is through Heyting’s [21] ex-
planations of the logical constants. The constructive explanation of logic
is in terms of proofs: a proposition is true if we know how to prove it. For
implication we have

A proof of A D B is a function (method, program) which to
each proof of A gives a proof of B.

The notion of function or method is primitive in constructive mathematics
and a function from a set A to a set B can be viewed as a program which
when applied to an element in A gives an element in B as output. The
idea of propositions as sets is now to identify a proposition with the set of
its proofs. In case of implication we get

A D B is identified with A — B, the set of functions from A
to B.

The elements in the set A — B are of the form Ax.b, where b € B and b
may depend on x € A.

Heyting’s explanation of conjunction is that a proof of A A B is a pair
whose first component is a proof of A and whose second component is a
proof of B. Hence, we get the following interpretation of a conjunction as
a set.

AN B is identified with A x B, the cartesian product of A and B.

The elements in the set A x B are of the form (a,b) where a € Aand b € B.

A disjunction is constructively true if and only if we can prove one of
the disjuncts. So a proof of AV B is either a proof of A or a proof of B
together with the information of which of A or B we have a proof. Hence,
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AV B is identified with A + B, the disjoint union of A and B.

The elements in the set A+ B are of the form inl(a) and inr(b), where a € A
and b € B.
The negation of a proposition A can be defined by:

where | stands for absurdity, that is a proposition which has no proof. If
we let () denote the empty set, we have

—A is identified with the set A — 0

using the interpretation of implication.

In order to interpret propositions defined using quantifiers, we need
operations defined on families of sets, i.e. sets B depending on elements x in
some set A. We let B [+ a] denote the expression obtained by substituting
a for all free occurrences of x in B. Heyting’s explanation of the existential
quantifier is the following.

A proof of (3z € A)B consists of a construction of an element a
in the set A together with a proof of B [z« a].

So, a proof of (3x € A)B is a pair whose first component « is an element
in the set A and whose second component is a proof of B[x«a]. The
set corresponding to this is the disjoint union of a family of sets, denoted
by (32 € A)B. The elements in this set are pairs (a,b) where a € A
and b € Bz«<a]. We get the following interpretation of the existential
quantifier.

(3z € A)B is identified with the set (Xx € A)B.
Finally, we have the universal quantifier.

A proof of (Vz € A)B is a function (method, program) which to
each element « in the set A gives a proof of B[z« a].

The set corresponding to the universal quantifier is the cartesian product
of a family of sets, denoted by (Ilx € A)B. The elements in this set are
functions which, when applied to an element a in the set A gives an element
in the set B [z« a]. Hence,

(Vz€ A)B is identified with the set (IIxz € A)B.
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The elements in the set (IIz € A)B are of the form Axz.b where b € B and
both b and B may depend on z € A. Note that if B does not depend on x
then (ITx € A)B is the same as A — B, so — is not needed as a primitive
when we have cartesian products over families of sets. In the same way,
(X¥x € A)B is nothing but A x B when B does not depend on z.

Except the empty set, we have not yet introduced any sets that cor-
respond to atomic propositions. One such set is the equality set a =4 b,
which expresses that a and b are equal elements in the set A. Recalling
that a proposition is identified with the set of its proofs, we see that this set
is nonempty if and only if a and b are equal. If a and b are equal elements
in the set A, we postulate that the constant id(a) is an element in the set
a =4 b.

When explaining the sets interpreting propositions we have used an
informal notation to express elements of the sets. This notation differs from
the one we will use in type theory in that that notation will be monomorphic
in the sense that the constructors of a set will depend on the set. For
instance, an element of A — B will be of the form A(A, B,b) and an
element of A x B will be of the form (A, B, a,b).

3 Semantics and formal rules

We will in this section first introduce the notion of type and the judgement
forms this explanation give rise to. We then explain what a family of
types is and introduce the notions of variable, assumption and substitution
together with the rules that follow from the semantic explanations. Next,
the function types are introduced with their semantic explanation and the
formal rules which the explanation justifies. The rules are formulated in
the style of natural deduction [36].

3.1 Types

The basic notion in Martin-Lof’s type theory is the notion of type. A type
is explained by saying what an object of the type is and what it means for
two objects of the type to be identical. This means that we can make the
judgement

A is a type,

which we in the formal system write as
A type,

when we know the conditions for asserting that something is an object of
type A and when we know the conditions for asserting that two objects
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of type A are identical. We require that the conditions for identifying two
objects must define an equivalence relation.

When we have a type, we know from the semantic explanation of what
it means to be a type what the conditions are to be an object of that type.
So, if A is a type and we have an object a that satisfies these conditions
then

a is an object of type A,

which we formally write
a € A

Furthermore, from the semantics of what it means to be a type and the
knowledge that A is a type we also know the conditions for two objects of
type A to be identical. Hence, if A is a type and a and b are objects of
type A and these objects satisfies the equality conditions in the semantic
explanation of A then

a and b are identical objects of type A,

which we write
a=beA.

Two types are equal when an arbitrary object of one type is also an
object of the other and when two identical objects of one type are identical
objects of the other. If A and B are types we know the conditions for being
an object and the conditions for being identical objects of these types. Then
we can investigate if all objects of type A are also objects of type B and if
all identical objects of type A are also objects of type B and vice versa. If
these conditions are satisfied then

A and B are identical types,

which we formally write
A=B.

The requirement that the equality between objects of a type must be
an equivalence relation is formalized by the rules:

Reflexivity of objects

ac A
a=a€cA
Symmetry of objects
a=becA

b=acA
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Transitivity of objects

a=be A b=cec A
a=ceA

The corresponding rules for types are easily justified from the meaning
of what it means to be a type.

Reflexivity of types

A type

A=A
Symmetry of types

A=B

B=A
Transitivity of types

A=B B=C
A=C

The meaning of the judgement forms a € A, a=b€e A and A=1B
immediately justifies the rules

Type equality rules

ac A A=1B a=be A A=RB
a€B a=beB

3.2 Hypothetical judgements

The judgements we have introduced so far do not depend on any assump-
tions. In general, a hypothetical judgement is made in a context of the
form

1 €A, 20 €Ay, ..., 1, €A,

where we already know that Ay is a type, As is a type in the context
x1 € Aq, ..., and A, is a type in the context x1 € Ay, o € As, ...,
Tn_1 € A,. The explanations of hypothetical judgements are made by
induction on the length of a context. We have already given the meaning
of the judgement forms in the empty context; hence we could now directly
explain the judgement forms in a context of length n. However, in order not
to hide the explanations by heavy notation, we will give them for hypothet-
ical judgements only depending on one assumption and then illustrate the
general case with the judgement that A is a type in a context of length n.
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Let C be a type which does not depend on any assumptions. That A
is a type when x € C, which we write

A type [z € (],

means that, for an arbitrary object ¢ of type C, A [z« ] is a type, that is,
A is a type when c is substituted for . Furthermore we must also know
that if ¢ and d are identical objects of type C then A [z+c] and A [z d]
are the same types. When A is a type depending on = € C' we say that A
is a family of types over the type C.

That A and B are identical families of types over the type C,

A=BzeC]

means that A[z«c] and A [z« c] are equal types for an arbitrary object
c of type C.
That a is an object of type A when x € C,

a€Alzred],

means that we know that a[z«c] is an object of type A[x«¢] for an
arbitrary object ¢ of type C. We must also know that a [z« ] and a [z —d]
are identical objects of type A [z« c] whenever ¢ and d are identical objects
of type C.

That a and b are identical objects of type A depending on x € C,

a=beAlxel],

means that a [z« c] and b [z <] are the same objects of type A [z« ¢] for
an arbitrary object c of type C.

We will illustrate the general case by giving the meaning of the judge-
ment that A is a type in a context of length n; the other hypothetical
judgements are explained in a similar way. We assume that we already
know the explanations of the judgement forms in a context of length n — 1.
Let

fElGAl, .'13261427 e l'neAn

be a context of length n. We then know that

A type
Ay type [z1 € Ay]

A, type [x1 € Ay, 29 € Ag, ..., Tp_1 € Ap_q]



Martin-Lof’s Type Theory 11

To know the hypothetical judgement
A type [x1 € A1, x2 € A, ..., T, € Ay
means that we know that the judgement

Az «a] type
[xo € Ag [x1al, ..., Ty € Ay [21—a]]

holds for an arbitrary object a of type A; in the empty context. We must
also require that if a and b are arbitrary identical objects of type A; then
the judgement

Az —a] = Az <)
[xo € Ag [x1al, ..., z, € Ay [21—a]]

holds. This explanation justifies two rules for substitution of objects in
types. We can formulate these rules in different ways, simultaneously sub-
stituting objects for one or several of the variables in the context. For-
mulating the rules so they follow the semantical explanation as closely as
possible gives us:

Substitution in types

A type [x1 € Ay, 29 € Ag, ..., 2, € Ay a€ A
Alzy—a] type [x2 € Az [x1a], ..., T, € Ay [x1a]]
A type [x1 € Ay, 0 € Ag, ..., 2, € Ay a=be A
Alz1ea] = Alzy < b] [12 € Az [r14-0], ..., 7 € Ay 71 0]

The explanations of the other hypothetical judgement forms give the
following substitution rules. Let A and B be types in the context x1 € Ay,
LL’QEAQ, ...,$n€An.

Substitution in equal types

A=B [z € Aj,25 € Aa,..., 2, € A, a € A
Alzj—a]l =Blzj«a] [z € Ay [z1a], ..., T, € A, [z1a]]
Let A be a type in the context xy € Ay, 2o € Ag, ..., x, € A,,.

Substitution in objects

a€Alry € A,20 € Ag,...,x, € A a€ Ay
alri—al € Alxy—a] [x2 € Az [xr1al, ..., T, € Ay [x1a]]

Let A be a type and ¢ and d be objects of type A in the context x; € Ay,
To9 € Ao, ..., x, € A,
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Substitution in equal objects

c=deA[r € A,x0 € Ag,...,zy € A a€c€ Ay

clrr—al =d[zi—al € Alxy—a] [z € Az [xr14q], ..., Ty € Ay [210a]]

The explanations of the hypothetical judgement forms justifies the fol-
lowing rule for introducing assumptions.

Assumption

A type
Az type  [r1 € A4

A, type [x1 € A1, ..., &p_1 € Ap_1]
Atype [x1 € A1,...,xp_1 € Ap_1,x, € Ay
r€A[r € Ay,...xy, € A,z € A

In this rule all premises are explicit. In order to make the rules shorter and
more comprehensible we will often leave out that part of the context which
is the same in the conclusion and each premise.

The rules given in the previous section without assumptions could be
justified also for hypothetical judgements.

3.3 Function types

One of the basic ways to form a new type from old ones is to form a function
type. So, if we we have a type A and a family B of types over A, we want
to form the dependent function type (z € A)B of functions from A to B.
In order to do this, we must explain what it means to be an object of
type (x € A)B and what it means for two objects of type (z € A)B to be
identical. The function type is explained in terms of application.

To know that an object ¢ is of type (x € A)B means that we know that
when we apply it to an arbitrary object a of type A we get an object ¢(a)
in B[z« a] and that we get identical objects in B [z« a] when we apply
it to identical objects a and b of A.

That two objects ¢ and d of (x € A)B are identical means that when
we apply them on an arbitrary object a of type A we get identical objects
of type B [z« a].

Since we now have explained what it means to be an object of a function
type and the conditions for two objects of a function type to be equal, we
can justify the rule for forming the function type.

Function type

A type B type [z € A]
(x € A)B type
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We also obtain the rule for forming equal function types.
Equal function types

A=A B =B [z € A]
(e A)B=(xe€ A")B'

We will use the abbreviation (A)B for (z € A)B when B does not depend
on z. We will also write (z € A;y € B)C instead of (x € A)(y € B)C and
(z,y € A)B instead of (x € A;y € A)C.

We can also justify the following two rules for application

Application
ce(xeA)B a€B ce(xeA)B a=beA
c(a) € Bz—a] c(a) = ¢(b) € Bz +ad]

We also have the following rules for showing that two functions are equal.

Application

Extensionality

ce(xeA)B de(x€eA)B c(z)=d(z) € B [z € 4]
c=de(xe€A)B

x must occur free neither in ¢ nor in d

Instead of writing repeated applications as c(a1)(az) - - - (a,,) we will use the
simpler form c(ay,as,...,an).

One fundamental way to introduce a function is to abstract a variable
from an expression:

Abstraction
be Bz e A
([]b) € (x € A)B
We will write repeated abstractions as [z1,Z2,...,z,]b and also exclude

the outermost parentheses when there is no risk of confusion.

How do we know that this rule is correct, i.e. how do we know that [z]b
is a function of the type (z € A)B? By the semantics of function types,
we must know that when we apply [z]b of type (x € A)B on an object a
of type A, then we get an object of type B[z < a]; the explanation is by
(-conversion:
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[3-conversion

acA be B [z e 4]
([z]b)(a) = blr—a] € Blz—d]

We must also know that when we apply an abstraction [z]b, where b €
B [x € A], on two identical objects a1 and as of type A, then we get
identical results of type B [z« a] as results. We can see this in the following
way. By (-conversion we know that ([z]b)(a1) = b[xa1] € Blz—ai]
and ([z]b)(az2) = b[z«—as] € B [z« ag]. By the meaning of the judgements
B type [x € A] and b € B [z € A] we know that Blx < a1] = B[z < as]
and that b[x«—a1] = b[r—as] € Blxay]. Hence, by symmetry and
transitivity, we get ([z]b)(a1) = ([z]b(az2) € B[z«—a4] from a1 = ag € A.

To summarize: to be an object f in a functional type (x € A)B means
that it is possible to make an application f(a) if a € A. Then by looking
at J-conversion as the definition of what it means to apply an abstracted
expression to an object it is possible to give a meaning to an abstracted
expression. Hence, application is more primitive then abstraction on this
type level. Later we will see that for the set of functions, the situation is
different.

By the rules we have introduced, we can derive the rules

n-conversion

ce(xeA)B
([x]e(z)) =ce (x € A)B

x must not occur free in ¢

&-rule
b=de B[z e A
[z]b=[x]d € (x € A)B

3.4 The type Set

The objects in the type Set consist of inductively defined sets. In order
to explain a type we have to explain what it means to be an object in it
and what it means for two such objects to be the same. So, to know that
Set is a type we must explain what a set is and what it means for two
sets to be the same: to know that A is an object in Set (or equivalently
that A is a set) is to know how to form canonical elements in A and when
two canonical elements are equal. A canonical element is an element on
constructor form; examples are zero and the successor function for natural
numbers.
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Two sets are the same if an element of one of the sets is also an element
of the other and if two equal elements of one of the sets are also equal
elements of the other.

This explanation justifies the following rule

Set-formation
Set type

If we have a set A we may form a type EI(A) whose objects are the
elements of the set A:

El-formation
A : Set

El(A) type

Notice that it is required that the sets are built up inductively: we
know exactly in what ways we can build up the elements in the set and
different ways corresponding to different constructors. As an example, for
the ordinary definition of natural numbers, there are precisely two ways of
building up elements, one using zero and the other one using the successor
function. This is in contrast with types which in general are not built
up inductively. For instance, the type Set can obviously not be defined
inductively. It is always possible to introduce new sets (i.e. objects in
Set). The concept of type is open; it is possible to add more types to the
language, for instance by adding a new object A to Set gives the new type
EI(A)).

In the sequel, we will often write A instead of EI(A) since it will always
be clear from the context if A stands for the set A or the type of elements
of A.

3.5 Definitions

Most of the generality and usefulness of the language comes from the possi-
bilities of introducing new constants. It is in this way that we can introduce
the usual mathematical objects like natural numbers, integers, functions,
tuples etc. It is also possible to introduce more complicated inductive sets
like sets for proof objects: it is in this way rules and axioms of a theory is
represented in the framework.

A distinction is made between primitive and defined constants. The
value of a primitive constant is the constant itself. So, the constant has only
a type and not a definition; instead it gets its meaning by the semantics
of the theory. Such a constant is also called a constructor. Examples
of primitive constants are N, succ and 0; they can be introduced by the
following declarations:

N € Set
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succ € N—=N

0 € N

A defined constant is defined in terms of other objects. When we apply
a defined constant to all its arguments in an empty context, for instance,

cley,...,en), then we get an expression which is a definiendum, that is, an
expression which computes in one step to its definiens (which is a well-typed
object).

A defined constant can either be explicitly or implicitly defined. We
declare an explicitly defined constant ¢ by giving it as an abbreviation of
an object @ in a type A:

c=acA

For instance, we can make the following explicit definitions:

1 = succ(0) €N
Iy = [zlteN—N
I = [Az]z e (AeSet; A)A

The last example is the monomorphic identity function which when applied
to an arbitrary set A yields the identity function on A. It is easy to see
if an explicit definition is correct: you just check that the definiens is an
object in the correct type.

We declare an implicitly defined constant by showing what definiens it
has when we apply it to its arguments. This is done by pattern-matching
and the definition may be recursive. Since it is not decidable if an expres-
sion defined by pattern-matching on a set really defines a value for each
element of the set, the correctness of an implicit definition is in general
a semantical issue. We must be sure that all well-typed expressions of
the form c(eq, ..., e,) is a definiendum with a unique well-typed definiens.
Here are two examples, addition and the operator for primitive recursion
in arithmetic:

+ € N—=N—=N

+0,y) = v
H(suce(a),y) = succ(+(z,y))
natrec € N—-(N—-N—-=N)—=N-=N

natrec(d,e,0) = d
natrec(d, e, succ(a))

e(a, natrec(d, e, a))
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4 Propositional logic

Type theory can be used as a logical framework, that is, it can be used to
represent different theories. In general, a theory is presented by a list of

typings

Cc1 €A1,---, cn € A,
where ¢y, ..., ¢, are new primitive constants, and a list of definitions
d1 = €1 EBl,..., dmiem EAm
where dq,...,d,, are new defined constants.

The basic types of Martin-Lof’s type theory are Set and the types of
elements of the particular sets we introduce. In the next section we will give
a number of examples of sets, but first we use the idea of propositions as sets
to express that propositional logic with conjunction and implication; the
other connectives can be introduced in the same way. When viewed as the
type of propositions, the semantics of Set can be seen as the constructive
explanation of propositions: a proposition is defined by laying down what
counts as a direct (or canonical) proof of it; or differently expressed: a
proposition is defined by its introduction rules. Given a proposition A,
that is, an object of the type Set, then EI(A) is the type of proofs of A.
From the semantics of sets we get that two proofs are the same if they have
the same form and identical parts; we also get that two propositions are
the same if a proof of one of the propositions is also a proof of the other
and if identical proofs of one of the propositions are also identical proofs
of the other.

The primitive constant & for conjunction is introduced by the following
declaration

& € (Set; Set)Set

From this declaration we obtain, by repeated function application, the
clause for conjunction in the usual inductive definition of formulas in the
propositional calculus:
& -formation
A € Set B € Set
A& B € Set

where we have used infix notation, that is, we have written A& B instead
of &(A, B).

We must now define what counts as a proof of a conjunction, and that
is done by the following declaration of the primitive constant &;.

& € (A, B € Set; A; B)A&B
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This declaration is the inductive definition of the set &(A, B), that is, all
elements in the set is equal to an element of the form & (A4, B, a,b), where
A and B are sets and a € A and b € B. A proof of the syntactical form
&1 (A, B,a,b) is called a canonical proof of A&B.

By function application, we obtain the introduction rule for conjunction
from the declaration of & .

& -introduction

A € Set B € Set ac A beB
&[(A,B,a, b) € A&B

To obtain the two elimination rules for conjunction, we introduce the
two defined constants

&1 € (A, BESet; A&B)A

and
&ps € (A, B € Set; A&B)B

by the defining equations
&El(A,B,&](A,B,G/,b)) =a E A

and
&EQ(A,B,&](A,B,a,b)) =beB

respectively. Notice that it is the definition of the constants which justifies
their typings. To see that the typing of & g1 is correct, assume that A and
B are sets, and that p € A&B. We must then show that &g1(A4, B, p)
is an element in A. But since p € A& B, we know that p is equal to an
element of the form &;(A, B,a,b), where a € A and b € B. But then we
have that &g1(A, B,p) = &g1(A4, B, &1(A, B, a,b)) which is equal to a by
the defining equation of & 1.

From the typings of & g1 and & go we obtain, by function application,
the elimination rules for conjunction:

& -elimination 1

A € Set B € Set ce A&B
&p1(A,B,c) € A

and
& -elimination 2

A € Set B € Set ce A&B
&EQ(A,B,C) € B
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The defining equations for & g1 and & g2 correspond to Prawitz’ reduction
rules in natural deduction:

and

B _ :
A&B B
B

respectively. Notice the role which these rules play here. They are used
to justify the correctness, that is, the well typings of the elimination rules.
The elimination rules are looked upon as methods which can be executed,
and it is the reduction rules which defines the execution of the elimination
rules.

The primitive constant O for implication is introduced by the declara-
tion

D € (Set; Set)Set

As for conjunction, we obtain from this declaration the clause for implica-
tion in the inductive definition of formulas in the propositional calculus:

O -formation

A € Set B € Set
A D B € Set

A canonical proof of an implication is formed by the primitive constant
Dy, declared by
Dr€ (A, BeSet;(A)B)AD B

By function application, the introduction rule for implication is obtained
from the declaration of Dy:

O -introduction

A € Set B € Set b(x) € B [z € A]
Or(A,B,b)e ADB

So, to get a canonical proof of A D B we must have a function b which
when applied on a proof of A gives a proof of B, and the proof then obtained
is Dy (A,B,b)
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To obtain modus ponens, the elimination rule for D, we introduce the
defined constant
Dp€ (A, BeSet;AD B;A)B

which is defined by the equation
OF (A7B7DI (AaBabva)) = b(a) €B
In the same way as for conjunction, we can use this definition to show that

Dp is well-typed.
The defining equation corresponds to the reduction rule

A
: . A
B : =
ADB A :
B B

By function application, we obtain from the typing of Dg
D -elimination

A € Set B € Set beADB ac A
OFE (A,B,b,a)EB

5 Set theory

We will in this section introduce a theory of sets with natural numbers,
lists, functions, etc. which could be used when specifying and implementing
computer programs. We will also show how this theory is represented in
the type theory framework.

When defining a set, we first introduce a primitive constant for the set
and then give the primitive constants for the constructors, which express
the different ways elements of the set can be constructed. The typing rule
for constant denoting the set is called the formation rule of the set and the
typing rules for the constructors are called the introduction rules. Finally,
we introduce a selector as an implicitly defined constant to express the
induction principle of the set; the selector is defined by pattern-matching
and may be recursive. The type rule for the selector is called the elimination
rule and the defining equations are called equality rules.

Given the introduction rules, it is possible to mechanically derive the
elimination rule and the equality rules for a set; how this can be done have
been investigated by Martin-Lof [29], Backhouse [2], Coquand and Paulin
[9], and Dybjer[14].
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5.1 The set of Boolean values

The set of Boolean values is an example of an enumeration set. The values
of an enumeration set are exactly the same as the constructors of the set
and all constructors yield different elements. For the Booleans this means
that there are two ways of forming an element and therefore also two con-
structors; true and false. Since we have given the elements of the set and
their equality, we can introduce a constant for the set and make the type
declaration
Bool € Set

We can also declare the types of the constructor constants

true € Bool
false € Bool

The principal selector constant of an enumeration set is a function that
performs case analysis on Boolean values. For the Booleans we introduce
the if constant with the type

if € (C € (Bool)Set; b € Bool; C(true); C(false)) C(b)
and the defining equations
if(C,true,a,b) = a
if(C,false,a,b) = b

In these two definitional equalities we have omitted the types since they
can be obtained immediately from the typing of if. In the sequel, we will
often write just a = b instead of a = b € A when the type A is clear from
the context.

5.2 The empty set

To introduce the empty set, {}, we just define a set with no constructors
at all. First we make a type declaration for the set

{} € Set

Since there are no constructors we immediately define the selector case and
its type by the declaration

case € (C € ({})Set;a € {}) C(a)

The empty set corresponds to the absurd proposition and the selector cor-
responds to the natural deduction rule for absurdity

1 true C prop
C true
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5.3 The set of natural numbers

In order to introduce the set of natural numbers, N, we must give the rules
for forming all the natural numbers as well as all the rules for forming
two equal natural numbers. These are the introduction rules for natural
numbers.

There are two ways of forming natural numbers, 0 is a natural number
and if n is a natural number then succ(n) is a natural number. There are
also two corresponding ways of forming equal natural numbers, the natural
number 0 is equal to 0 and if the natural number n is equal to m, then
succ(n) is equal to succ(m). So we have explained the meaning of the
natural numbers as a set, and can therefore make the type declaration

N € Set

and form the introduction rules for the natural numbers, by declaring the
types of the constructor constants 0 and succ

0eN
succ € (n € N)N

The general rules in the framework makes it possible to give the introduc-
tion rules in this simple form.

We will introduce a very general form of selector for natural numbers,
natrec, as a defined constant. It could be used both for expressing elements
by primitive recursion and proving properties by induction. The functional
constant natrec takes four arguments; the first is a family of sets that
determines the set which the result belongs to, the second and third are
the results for the zero and successor case, respectively, and the fourth
argument, finally, is the natural number which is the principal argument
of the selector. Formally, the type of natrec is

natrec € (C € (N) Set;
d € C(0);
e€ (zeN;yeCx)) C(succ(z));
n € N)
C(n)
The defining equations for the natrec constant are
natrec(C,d,e,0) = d

natrec(C, d, e, succ(m)) = e(n, natrec(C, d, e, m))

The selector for natural numbers could, as we already mentioned, be used
for introducing ordinary primitive recursive functions. Addition and mul-
tiplication could, for example, be introduced as two defined constants
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plus € (N;N) N
mult € (N;N) N
by the defining equations
plus(m,n) = natrec([z]N, n, [z, y|succ(y), m)
mult(m,n) = natrec([z]N, 0, [z, y]plus(y, n), m)
Using the rules for application together with the type and the definitional
equalities for the constant natrec it is easy to derive the type of the right

hand side of the equalities above as well as the following equalities for
addition and multiplication:

plus(0,n) =n €N [n € N]
plus(succ(m),n) = succ(plus(m,n)) € N [m € N,n € N]

mult(0,n) =0€ N [n € N]
mult(succ(m),n) = plus(mult(m,n),n) € N [m € N,n € N]

In general, if we have a primitive recursive function f from N to A

f0) = d
f(succ(n) = e(n, f(n))

where d € A and e is a function in (N; A) A, we can introduce it as a defined
constant

e (NA

using the defining equation
f(n) = natrec([z]A,d’, ¢/, n)

where d’ and e’ are functions in type theory which correspond to d and e
in the definition of f.

The type of the constant natrec represents the usual elimination rule
for natural numbers

C(xz) Set [x € N]

d e C(0)

e € C(succ(x)) [z € N,y € C(x)]
zeN

natrec(C,d, e, z) € C(x)

which can be obtained by assuming the arguments and then apply the
constant natrec on them. Note that, in the conclusion of the rule, the
expression natrec(C,d, e, z) contains the family C. This is a consequence
of the explicit declaration of natrec in the framework.
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5.4 The set of functions (Cartesian product of a family
of sets)

We have already introduced the type (x € A)B of functions from the type
A to the type B. We need the corresponding set of functions from a set to
another set. If we have a set A and a family of sets B over A, we can form
the cartesian product of a family of sets, which is denoted II(A, B). The
elements of this set are functions which when applied to an element a in
A yield an element in B(a). The elements of the set II(A, B) are formed
by applying the constructor A to the sets A and B and an object of the
corresponding function type.
The constant IT is introduced by the type declaration

IT € (A € Set; B € (x € A)Set) Set
and the constant A by
ANe(AeSet;Be (re A)Set; fe(xe AB)II(A, B)

These constant declarations correspond to the rules

A € Set B(z) € Set [x € A]
II(A, B) € Set
A € Set B(z) € Set [z € A] f € B(x) [z € 4]

MA, B, f) e II(A, B)

Notice that the elements of a cartesian product of a family of sets, II(A, B),
are more general than ordinary functions from A to B in that the result of
applying an element of II(A4, B) to an argument can be in a set which may
depend on the value of the argument.

The most important defined constant in the Il-set is the constant for
application. In type theory this selector takes as arguments not only an
element of TI(A, B) and an object of type A but also the sets A and B
themselves. The constant is introduced by the type declaration

apply € (A € Set; B € (z € A)Set; g € II(A, B);a € A) B(a)
and the definitional equality
apply(4, B, A(f),a) = f(a)

The cartesian product of a family of sets is, when viewed as a propo-
sition the same as universal quantification. The type of the constructor
corresponds to the introduction rule

B(x) true [z € A]
(Vz € A) B(x) true
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and the type of the selector corresponds to the elimination rule

(Vx € A) B(x) true a€cA
B(a) true

The cartesian product of a family of sets is a generalization of the ordi-
nary function set. If the family of sets B over A is the same for all elements
of A, then the cartesian product is just the set of ordinary functions. The
constant — is introduced by the following explicit definition:

— € (A, B € Set) Set
- = [AaB]H(A’ [.%‘]B)
The set of functions is, when viewed as a proposition, the same as

implication since the type of the constructor is the same as the introduction

rule for implication
B true [A true]

A D B true

and the type of the selector is the same as the elimination rule

A D B true A true
B true

Given the empty set and the set of function we can define a constant
for negation in the following way

— € (A € Set) Set
-(A) = A={}

Example 1. Let us see how to prove the proposition A D —=—A. In order
to prove the proposition we must find an element in the set

A= (=(-4) = A= (A=) —{D

We start by making the assumptions z € A and y € A — {} and then
obtain an element in {}

apply(A — {}, A,y,z) € {}

and therefore

MA (A= {}) = {},
[2]A(A — {}, {},
[ylapply(A — {}, A,y,)))
€EA=(A—={})—{}) = A— (=(=4))
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Example 2. Using the rules for natural numbers, booleans and functions
we will show how to define a function, eqN € (N, N)Bool, that decides if
two natural numbers are equal. We want the following equalities to hold:

eqN(0,0) = true

eqN(0,succ(n)) = false

eqN(succ(m),0) = false
eqN(succ(m),succ(n)) = eqN(m,n)

It is impossible to define eqN directly just using natural numbers and re-
cursion on the arguments. We have to do recursion on the arguments
separately and first use recursion on the first argument to compute a func-
tion which when applied to the second argument gives us the result we
want. So we first define a function f € (N) (N — Bool) which satisfies the
equalities

f(0) = A([m]iszero(m))
f(succ(n)) = A([m] natrec(m, false, [z, y] apply(f(n),z)))
where
iszero(m) = natrec(m,true, [z, y| false)

If we use the recursion operator explicitly, we can define f as
f(n) = natrec(n,
A([m]iszero(m)),

[u, v] A((m)natrec(m, false, [z, y] apply(v, z))))

The function f is such that f(n) is equal to a function which gives true if
is applied to n and false otherwise, that is, we can use it to define eqN as
follows

eqN(m,n) = apply(f(m), n)
It is a simple exercise to show that
egN € (N, N) Bool

and that it satisfies the equalities we want it to satisfy.
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5.5 Propositional equality

The equality on the judgement level a = b € A is a definitional equality
and two objects are equal if they have the same normal form. In order to
express that, for example, addition of natural numbers is a commutative
operation it is necessary to introduce a set for propositional equality.

If a and b are elements in the set A, then |d(A, a,b) is a set. We express
this by introducing the constant Id and its type

Id € (X € Set;a € X;be€ X)Set

The only constructor of elements in equality sets is id and it is introduced
by the type declaration

id € (X €Set;z € X)d(X,z,z)

To say that id is the only constructor for Id(A,a,b) is the same as to say
that 1d(A, a,b) is the least reflexive relation. Transitivity, symmetry and
congruence can be proven from this definition. We use the name idpeel for
the selector and it is introduced by the type declaration

idpeel € (A € Set;
Ce(z,y€ A;ecld(A, x,y))Set;
a,b e A,
e €1d(4,a,b);
de (xeA)C(x,z,id(A,x)))
C(a,b,e)

and the equality
idpeel(A, C, a,b,id(A, a),d) = d(a)

The intuition behind this constant is that it expresses a substitution rule
for elements which are propositionally equal.

Example 3. The type of the constructor in the set Id(A4, a,b) corresponds
to the reflexivity rule of equality. The symmetry and transitivity rules can
easily be derived.

Let A be a set and a and b two elements of A. Assume that

deld(A,a,b)
In order to prove symmetry, we must construct an element in Id(A4, b, a).
By applying idpeel on A, [z,y,e]ld(A,y,x), a, b, d and [z]id(A, x) we get,
by simple typechecking, an element in the set Id(A, b, a).

idpeel(4, [z, y, e]ld(A, y, ), a, b, d, [x]id(A, 2)) € Id(A, b, a)
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The derived rule for symmetry can therefore be expressed by the constant
symm defined by

idsymm € (A € Set;a,b € A;d € ld(4,a,b))d(A4,b,a)
idsymm(A, a,b,d) = idpeel(A, [z,y, e]ld(4, y, x),a, b, d, [z]id(A, z))

Transitivity is proved in a similar way. Let A be a set and a, b and ¢
elements of A. Assume that

deld(A,a,b) and e € Id(A,b,c)

By applying idpeel on A, [z,y, z]ld(4,y,c)—Id(A, z, ¢), a, b, d and the iden-
tity function [z]A(Id(A, z,¢),ld(A, z, ¢), [w]w) we get an element in the set
Id(A,b,c)—Id(A,a,c). This element is applied on e in order to get the
desired element in Id(A4, a, ).

idtrans € (A € Set;a,b,c € A;d € 1d(A,a,b);e € 1d(A,b,¢)) Id(A, a,c)

idtrans(A, a,b,c,d, e) = apply(ld(A, b, ¢),ld(A, a, c),
idpeel(A, [z, y, z]ld(A, y,c)—Id(A, z, ¢),
a7 b’ d’
[Z]A(Id(A, z,¢),1d(A4, z, ¢), [w]w)),
€)

Example 4. Let us see how we can derive a rule for substitution in set
expressions. We want to have a rule
P(x) € set [x € 4] acA be A celd(A4,a,b) p € P(a)
subst(P, a,b,c,p) € P(b)

To derive such a rule, first assume that we have a set A and elements a
and b of A. Furthermore assume that ¢ € Id(A4,a,b), P(z) € Set [x € A]
and p € P(a). Type checking gives us that

A(P(x), P(x), [w]w) € P(2)—P(z) [z € A

idpeel(4, [z, y, 2] (P(x)—=P(y)), a, b, ¢, [z]A(P(x), P(x), [w]w))
€ P(a)—P(b)

We can now apply the function above on p to obtain an element in P(b). So
we can define a constant subst that expresses the substitution rule above.
The type of subst is

subst € (A € Set;
P € (A)Set;
a,b € A,
c€ld(4,a,b);
p € P(a))
P(b)
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and the defining equation

subst(A4, P,a,b,c,p) = apply(P(a), P(b),

Idpeel(A,b[x .y, 2| (P(2)—P(y)),
A(P(), P(), [w]w)),
)

5.6 The set of lists

The set of lists List(A) is introduced in a similar way as the natural num-
bers, except that there is a parameter A that determines which set the
elements of a list belongs to. There are two constructors to build a list, nil
for the empty list and cons to add an element to a list. The constants we
have introduced so far have the following types:

List € (A € set) Set
nil € (A € set) List(A)
cons € (A € set;a € A;l € List(A)) List(A)

The selector listrec for types is a constant that expresses primitive recursion
for lists. The selector is introduced by the type declaration

listrec € (A € Set;
C € (List(A)) Set;
c € C(nil(A));
e€ (x € Ayy e List(A);z € C(y)) Clcons(A, x,y));
I € List(A))
c(l)

The defining equations for the listrec constant are
listrec(A, C, c,e,nil(A)) = ¢
listrec(A, C, ¢, e,cons(A4, a,l)) = e(l, a,listrec(4, C, ¢, e,1))

5.7 Disjoint union of two sets

If we have two sets A and B we can form the disjoint union A+ B. The ele-
ments of this set are either of the form inl(A, B, a) or of the form inr(A, B, b)
where a € A and b € B. In order to express this in the framework we in-
troduce the constants

€ (A, B € Set) Set
inle (A,B €Set; A)A+ B
inre (A,B€Set;B)A+ B
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The selector when is introduced by the type declaration

when € (A, B € Set;

C € (A+ B) Set;

e€ (z e A)C(inl(A, B, x));
f€(ye B)C(inr(4, B,y));
p€A+D)

C(p)

and defined by the equations
when(A, B,C,e, f,inl(A, B,a)) = e(a)
when(4, B, C,e, f,inr(A, B,b)) = f(b)

Seen as a proposition the disjoint union of two sets expresses disjunction.
The constructors correspond to the introduction rules

A true B true
AV B true AV B true

and the selector when corresponds to the elimination rule.

AV B true C prop C true [A true] C true [B true]
C true

5.8 Disjoint union of a family of sets

In order to be able to deal with the existential quantifier and to have a set
of ordinary pairs, we will introduce the disjoint union of a family of sets.
The set is introduced by the type declaration

Y € (A € Set; B € (A)Set) Set

There is one constructor in this set, pair, which is introduced by the type
declaration

pair € (A € Set; B € (A)Set;a € A; B(a)) X(A4, B)

The selector of a set X(A, B) splits a pair into its parts. It is defined by
the type declaration

split € (A € Set; B € (A) Set;
C € (3(A, B)) Set;
d € (a € A;be B(a)) C(pair(A, B,a,b));
p € X(A, B))
C(p)
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and the defining equation
split(A, B, C, d, pair(4, B, a,b)) = d(a,b)

Given the selector split it is easy to define the two projection functions that
give the first and second component of a pair.

fst € (A €Set; B e (A)Set;pe X(A,B)) A
fst(A, B, p) = split(A, B, [z]A, [z, y]x, p)

snd € (A € Set; B € (A)Set;p € X(A, B)) B(fst(A4, B,p)
snd(A, B, p) = split(A, B, [z] B(fst(A, B, p)), [+, yly, p)

When viewed as a proposition the disjoint union of a family of sets
Y (A,B) corresponds to the existential quantifier (3 x € A)B(z). The types
of constructor pair and when correspond to the natural deduction rules for
the existential quantifier

acA B(a) true
(3z € A) B(x) true

(3z € A) B(x) true C' prop C true [x € A, B(z) true]
C true

5.9 The set of small sets

A set of small sets U, or a universe, is a set that reflects some part of the set
structure on the object level. It is of course necessary to introduce this set
if one wants to do some computation using sets, for example to specify and
prove a type checking algorithm correct, but it is also necessary in order to
prove inequalities such as 0 # succ(0). Furthermore, the universe can be
used for defining families of sets using recursion, for example non-empty
lists and sets such as N".

We will introduce the universe simultanously with a function S that
maps an element of U to the set the element encodes. The universe we will
introduce has one constructor for each set we have defined. The constants
for sets are introduced by the type declaration

U € Set
S € (U)Set
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Then we introduce the constructors in U and the defining equations for S

Boolyy € U
S(Booly) = Bool

{}yeyv
S({}y) =A{}

Ny e U
S(Ny) = N

Iy e (AeU;Be (S(A)U)U
Sy (A, B)) = II(S(A), [A]S(B(h)))

Idy € (A€ U;aeS(A);be S(A)U
S(ldy (A, a,b)) = 1d(S(A), a, b)

Listy e (Ae U)U
S(Listy (A)) = List(S(A))

+tve(AeU;BelU)U
S(+v(A, B)) = +(S(4),5(B))

Sy € (AeU;Be (S(A)U)U
S(Zu(4, B)) = X(S(A), [h]S(B(h)))

Example 5. Let us see how we can derive an element in the set
=Id(N, 0, succ(0))
or, in other words, how we can find an expression in the set
Id(N, 0,succ(0))—{}
We start by assuming that
x € 1d(N, 0, succ(0))

Then we construct a function, Iszero, that maps a natural number to an
element in the universe.

Iszero € (N) U
Iszero(m) = natrec(m, Booly, [y, z]{},)
It is easy to see that
Iszero(0) = S(Booly) = Bool
jszero(succ(0)) = S({},) = {}
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and therefore
true € Bool = Iszero(0)

subst(z, true) € Iszero(succ(0)) = {}

Finally, we have the element we are looking for
A(Id(N, 0, succ(0)), {}, [z]subst(z, true)) € Id(N, 0, succ(0))—{}

It is shown in Smith [37] that without a universe no negated equalities can
be proved.

6 ALF, an interactive editor for type theory

At the department of Computing Science in Goteborg, we have developed
an interactive editor for objects and types in type theory. The editor is
based on direct manipulation, that is, the things which are being built are
shown on the screen, and editing is done by pointing and clicking on the
screen.

The proof object is used as a true representative of a proof. The process
of proving the proposition A is represented by the process of building a
proof object of A. The language of type theory is extended with place
holders (written as indexed question marks). The notation ? € A stands
for the problem of finding an object in A. An object is edited by replacing
the placeholders by expressions which may contain placeholders. It is also
possible to delete a subpart of an object by replacing it with a placeholder.

There is a close connection between the individual steps in proving A
and the steps to build a proof object of A. When we are making a top-
down proof of a proposition A, then we try to reduce the problem A to some
subproblems By, ..., B, by using a rule ¢ which takes proofs of By, ..., B,
to a proof of A. Then we continue by proving Bi,...,B,. For instance,
we can reduce the problem A to the two problems C' O A and C' by using
modus ponens. In this way we can continue until we have only axioms and
assumptions left. This process corresponds exactly to how we can build a
mathematical object from the outside and in. If we have a problem

7€
then it is possible to refine the place holder in the following ways:
e The placeholder can be replaced by an application ¢(?1,...7,) where

c is a constant, or (?1,...7,), where x is a variable. In the case that
we have a constant, we must have that ¢(?y,...7,) € A, which holds
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if the type of the constant ¢ is equal to (x1 € Ay;...;2, € A,,)B and
N eAL e Ay[r <, €A X1 11, 21 < Tn1] and

B[aj]_ <—?17 [N i | <—?n,1] =A

So, we have reduced the problem A to the subproblems Aj, As [z <71],

oy Aplri <1, o o1 <75 —1] and further refinements must satisfy
the constraint Bz «71,...,Zn—1<"n—1] = A. The number n of new
placeholders can be computed from the arity of the constant ¢ and
the expected arity of the placeholder. As an example, if we start with
7 € A and A is not a function type and if we apply the constant ¢ of
type (x € B)C, then the new term will be

C(?l) cA

where the new placeholder ?; must have the type B (since all argu-
ments to ¢ must have that type) and furthermore the type of ¢(?1)
must be equal to A, that is, the following equality must hold:

These kind of constraints will in general be simplified by the system.
So, the editing step from ? € A to ¢(?1) € A is correct if 7, € B and
C'[x«?1] = A. This operation corresponds to applying a rule when
we are constructing a proof. The rule ¢ reduces the problem A to the
problem B.

The placeholder is replaced by an abstraction [z]?;. We must have
that
[l‘]71 €A

which holds if A is equal to a function type (y € B)C. The type of
the variable  must be B and we must keep track of the fact that
7, may be substituted by an expression which may depend on the
variable x. This corresponds to making a new assumption, when we
are constructing a proof. We reduce the general problem (y € B)C to
the problem C [y < z] under the assumption that = € B. The assumed
object x can be used to construct a solution to C, that is, we may
use the knowledge that we have a solution to the problem B when
we are constructing a solution to the problem C.

The placeholder is replaced by a constant c¢. This is correct if the
type of ¢ is equal to A.

The placeholder is replaced by a variable . The type of z must be
equal to A. But we cannot replace a placeholder with any variable of
the correct type, the variable must have been abstracted earlier.
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To delete a part of a proof object corresponds to regretting some earlier
steps in the proof. Notice that the deleted steps do not have to be the last
steps in the derivation, by moving the pointer around in the proof object it
is possible to undo any of the preceeding steps without altering the effect
of following steps. However, the deletion of a sub-object is a non-trivial
operation; it may cause the deletion of other parts which are depending on
this.

The proof engine, which is the abstract machine representing an ongoing
proof process (or an ongoing construction of a mathematical object) has two
parts: the theory (which is a list of constant declarations) and the scratch
area. Objects are built up in the scratch area and moved to the theory part
when they are completed. There are two basic operations which are used to
manipulate the scratch area. The insertion command replaces a placeholder
by a new (possible incomplete) object and the deletion command replaces
a sub-object by a placeholder.

When implementing type theory we have to decide what kind of induc-
tive definitions and definitional equalities to allow. The situation is similar
for both, we could give syntactic restrictions which guarantees that only
meaningful definitions and equalities are allowed. We could for instance
impose that an inductive definition has to be strictly positive and a defin-
ional equality has to be primitive recursive. We know, however, that any
such restriction would disallow meaningful definitions. We have therefore
— for the moment — no restrictions at all. This means that the correctness
of a definition is the user’s responsibility.

Among the examples developed in ALF, we can mention a proof that
Ackermann’s function is not primitive recursive [38], functional complete-
ness of combinatorial logic [16], Tait’s normalization proof for Godel’s
T [17], the fundamental theorem of arithmetic [40], a constructive ver-
sion of Ramsey’s theorem [15], and a semantical analysis of simply typed
lambda calculus with explicit substitution [7].

References

[1] L. Augustsson, T. Coquand, and B. Nordstrom. A short description
of Another Logical Framework. In Proceedings of the First Workshop
on Logical Frameworks, Antibes, pages 39-42, 1990.

[2] R. Backhouse. On the meaning and construction of the rules in Martin-
Lof’s theory of types. In Proceedings of the Workshop on General
Logic, Edinburgh. Laboratory for the Foundations of Computer Sci-
ence, University of Edinburgh, February 1987.

[3] R. Backhouse, P. Chisholm, G. Malcolm, and E. Saaman. Do-it-
yourself type theory. Formal Aspects of Computing, 1:19-84, 1989.



36
[4]

[13]

B. Nordstrém, K. Petersson and J. M. Smith

E. Bishop. Mathematics as a numerical language. In Myhill, Kino,
and Vesley, editors, Intuitionism and Proof Theory, pages 53-71, Am-
sterdam, 1970. North Holland.

A. Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5:56-68, 1940.

R. L. Constable et al. Implementing Mathematics with the NuPRL
Proof Development System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

C. Coquand. From Semantics to Rules: a Machine Assisted Analy-
sis. In Borger, Gurevich, and Meinke, editors, C'SL’93, pages 91-105.
Springer-Verlag, LNCS 832, 1994.

T. Coquand and G. Huet. The Calculus of Constructions. Technical
Report 530, INRIA, Centre de Rocquencourt, 1986.

T. Coquand and C. Paulin-Mohring. Inductively defined types. In
Proceedings of the Workshop on Programming Logic, Bastad, 1989.

H. B. Curry and R. Feys. Combinatory Logic, volume I. North-Holland,
1958.

N. G. de Bruijn. The Mathematical Language AUTOMATH, its us-
age and some of its extensions. In Symposium on Automatic Demon-
stration, volume 125 of Lecture Notes in Mathematics, pages 2961,
Versailles, France, 1968. IRIA, Springer-Verlag.

N. G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism, pages 589-606, New York,
1980. Academic Press.

G. Dowek, A. Felty, H. Herbelin, H. Huet, G. P. Murthy, C. Parent,
C. Paulin-Mohring, and B. Werner. The coq proof assistant user’s
guide version 5.6. Technical report, Rapport Technique 134, INRIA,
December 1991.

P. Dybjer. Inductive families. Formal Aspects of Computing, pages
440-465, 1994.

D. Fridlender. Ramsey’s theorem in type theory. Licentiate Thesis,
Chalmers University of Technology and University of Géteborg, Swe-
den, October 1993.

V. Gaspes. Formal Proofs of Combinatorial Completeness. In To
appear in the informal proceedings from the logical framework workshop
at Bastad, June 1992.



[17]

[18]

[19]

[20]

[21]

22]

Martin-Lof’s Type Theory 37

V. Gaspes and J. M. Smith. Machine Checked Normalization Proofs
for Typed Combinator Calculi. In Proceeding from the logical frame-
work workshop at Bastad, June 1992.

K. Godel. Uber eine bisher noch nicht benutze erweitrung des finiten
standpunktes. Dialectica, 12, 1958.

M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78
of Lecture Notes in Computer Science. Springer-Verlag, 1979.

R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining
Logics. JACM, 40(1):143-184, 1993.

A. Heyting. Intuitionism: An Introduction. North-Holland, Amster-
dam, 1956.

W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479-490.
Academic Press, London, 1980.

P. Hudak et al. Report on the Programming Language Haskell: A Non-
Strict, Purely Functional Language, March 1992. Version 1.2. Also in
Sigplan Notices, May 1992.

L. S. van Benthem Jutting. Checking Landau’s “Grundlagen” in
the AUTOMATH system, volume 83 of Mathematical Centre Tracts.
Mathematisch Centrum, Amsterdam, 1979.

A. N. Kolmogorov. Zur Deutung der intuitionistischen Logik. Matem-
atische Zeitschrift, 35:58-65, 1932.

Z. Luo and R. Pollack. LEGO Proof Development System: User’s
Manual. Technical report, LFCS Technical Report ECS-LFCS-92-211,
1992.

L. Magnusson and B. Nordstrom. The ALF proof editor and its proof
engine. In Types for Proofs and Programs, volume 806 of LNCS, pages
213-237, Nijmegen, 1994. Springer-Verlag.

P. Martin-Lof. A Theory of Types. Technical Report 71-3, University
of Stockholm, 1971.

P. Martin-Lof. Hauptsatz for the Intuitionistic Theory of Iterated
Inductive Definitions. In J. E. Fenstad, editor, Proceedings of the
Second Scandinavian Logic Symposium, pages 179-216. North-Holland
Publishing Company, 1971.



38
[30]

[39]

[40]

B. Nordstrém, K. Petersson and J. M. Smith

P. Martin-Lof. Constructive Mathematics and Computer Program-
ming. In Logic, Methodology and Philosophy of Science, VI, 1979,
pages 153-175. North-Holland, 1982.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, 1990.

B. Nordstrom, K. Petersson, and J. M. Smith. Programming in
Martin-Lof’s Type Theory. An Introduction. Oxford University Press,
1990.

L. C. Paulson. Logic and Computation. Cambridge University Press,
1987.

K. Petersson. A Programming System for Type Theory. PMG re-
port 9, Chalmers University of Technology, S—412 96 Goteborg, 1982,
1984.

D. Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

J. M. Smith. The Independence of Peano’s Fourth Axiom from Martin-
Lof’s Type Theory without Universes. Journal of Symbolic Logic,
53(3), 1988.

N. Szasz. A Machine Checked Proof that Ackermann’s Function is
not Primitive Recursive. Licentiate Thesis, Chalmers University of
Technology and University of Goteborg, Sweden, June 1991. Also
in G. Huet and G. Plotkin, editors, Logical Frameworks, Cambridge
University Press.

W. Tait. Infinitely long terms of transfinite type. In Formal systems
and recursive functions, pages 176-185, Amsterdam, 1965. North-
Holland.

B. von Sydow. A machine-assisted proof of the fundamental theorem
of arithmetic. PMG Report 68, Chalmers University of Technology,
June 1992.



PART II:

Foundations






Gilles Dowek:

Mixing deductions and
computations






Introduction
to Proof Theory

Gilles Dowek

Ecole polytechnique and INRIA

LIX, Ecole polytechnique

91128 Palaiseau Cedex, France
Gilles.Dowek@polytechnique.fr
http://www.lix.polytechnique.fr/~dowek






Contents

1 Predicate Logic
1.1 Languages . . . . . v v ittt e e e e
1.1.1 Terms and propositions . . . . . ... ... ........
1.1.2 Variables and substitutions . . . .. .. ... ... ....
1.2 Proofs . . . . . . e
1.2.1 ProofsdleHilbert . . . . ... ... ... ... ..
1.2.2 The deduction lemma . . . ... ... ... ... ... ..
1.2.3 Natural deduction . . . ... ... ... ... ... ...
1.2.4 Constructive proofs . . . . . . .. ... ...
1.3 Models. . . . . . . e
2 Extensions of predicate logic
2.1 Many-sorted predicate logic . . . . . . ... ...
2.2 Predicate logicmodulo . . . . .. .. ... oL oL
2.2.1 Deductionrules. . . . .. ... .. ... ...
2.2.2 Congruences defined by rewrite rules . . . . . . ... ...
2.3 Bindinglogic . . .. ... ... ... o
3 Type theory
3.1 Naivesettheory . ... ... .. ... . ... ... ...
3.2 Settheory . . . . .. . . ...
3.3 Simple typetheory . . . . . . .. ... L
34 Infinity. . . . .. .. .
3.5 Moreaxioms . . . . .. ..o e e e
3.5.1 Extensionality . .. ... ... ... ... ...
3.5.2 Descriptions . . . . . . .. ..
3.6 Type theory withabinder . . . . . .. .. ... .. ... .....
4 Cut elimination in predicate logic
4.1 Uniform proofs . . . . . . . . ... o
4.2 Cuts and cut elimination . . . . . ... ... ... ... . ...
4.3 Proofsasterms . . . . . . .. ... o
4.4 Cutelimination . . . . . . . ... oL
4.5 Harrop theories . . . . . . . . ... L

10
13
13
15
16
21
23

27
27
29
29
31
33

35
35
38
39
43
45
45
45
46



4 CONTENTS
5 Cut elimination in predicate logic modulo 69
5.1 Congruences defined by a system rewriting atomic propositions . 69
5.2 Proofasterms . ... .. ... ... ... 70
5.3 Counterexamples . . . . . . . . ... Lo 71
5.4 Reducibility candidates . . . . ... ... ..o 72
5.5 Pre-model . . . . ... 74
5.6 Pre-model construction . . . . ... ... Lo 79
5.6.1 Thetermcase . ... ..... ... ... .. ....... 79

5.6.2 Quantifier free rewrite systems . . . ... ... ... ... 80

5.6.3 Positive rewrite systems . . . . . ... ..o L. 80

5.6.4 Type theory and type theory with infinity . . . . . . . .. 81



Introduction

There is something special about the mathematical discourse : each assertion
must be justified by a proof. A proof is a sequence of assertions produced from
the previous ones by deduction rules. The deduction rules are thus the “rules
of the game” that mathematicians play.

Euclid’s Elements (IIIrd century B.C.) are usually considered as the first
systematic development where each assertion is given a proof, however, the pre-
cise definition of the notion of proof has only been formulated at the beginning
of the XXtH century. Having a definition, and not just an informal idea of what
a correct proof is, is important in several areas. First, since the middle of the
xxth century, proofs have been used not only by mathematicians, but also by
computerized proof processing systems such as proof checkers and proof search
systems, and designing such a system requires a precise definition.

Having a definition is also necessary to solve some problems about proofs.
This is what proof theory is about. A first type of results proof theory permits
to prove is independence results: results asserting that some proposition cannot
be proved in some theory, for instance that the axiom of parallels cannot be
proved from the other axioms of geometry.

However, proof theory is not concerned only with the provable propositions
but also with the structure of proofs themselves, for instance with the compar-
ison of different proofs of the same theorem. One key notion in proof theory
is that of canonical, direct or cut free proof. For instance, if we first prove two
propositions A and B, to deduce the proposition A A B (A and B) and at last
the proposition A, we build a proof that is not canonical, because it contains
an unnecessary detour by the proposition A A B, that has nothing to do with
the problem. Such a detour is called a cut. The main results we prove in these
course notes are that in some cases, such cuts can be eliminated and thus that
all provable propositions have canonical proofs. Moreover non canonical proofs
can be transformed into canonical ones in an algorithmic way.

From a philosophical point of view, these results show that proving a theorem
does not require to use ideas external to the statement of the theorem, or more
precisely, that the use of such external ideas is only required in some specific
cases, depending on the theory. Another application of cut elimination is that
studying the structure of canonical proofs permits to show that some proposi-
tions have no canonical proofs. Hence, from the cut elimination theorem, we can

5



6 CONTENTS

deduce that they have no proof at all. We get this way independence results.
Cut elimination is also used to reduce dramatically the search space of proof
search algorithms, by restricting to canonical proofs. Finally, cut elimination
permits to prove the witness property for constructive proofs, i.e. that each
time we have a proof of a special form of the existence of an object verifying
a property P, there is also a mathematical object, called a witness, for which
the property P can be proved to hold. Moreover, with the cut elimination algo-
rithm, a description of this object can be computed from the proof. This allows
to use mathematics as a programming language: the cut elimination process is
the execution process of this programming language.

Very often, a proof is defined as a succession of reasonning steps starting
from the axioms and ending at a conclusion. With such a definition, deduction
rules are just reasonning rules. This definition hides the fact that, in mathemat-
ics, proofs are not only formed with reasonning steps but also with computation
steps. Deduction modulo is a reformulation of the axiomatic method where
reasonning and computation are both fully taken into account. We can, for in-
stance, take advantage of this distinction between reasonning and computation
when designing proof seach methods. More surprisingly, we can also take ad-
vantage of this distinction in proof theory. In particular, several cut elimination
theorems can then be seen as corollaries of a single general cut elimination the-
orem for deduction modulo. Thus deduction modulo can be used as a unifying
framework to present the basic results of proof theory. This is the point of view
we have taken in these course notes.



Chapter 1

Predicate Logic

1.1 Languages

A language permits to designate things (The Moon, the number 2, the set of
even numbers, ...) and to express facts (The Moon is a satellite of the Earth,
the number 2 is a member of the set of even numbers, the set of even numbers is
infinite, ...). A phrase that designates a thing is called a term, one that expresses
a fact is called a proposition.

The easiest way to designate a thing is to use an individual symbol (also called
a proper name) such as “2”. Thus, a language contains individual symbols and
individual symbols are terms. But, if we want to be able to designate an infinite
number of objects with a finite number of symbols, we cannot give a proper
name to each object. Thus, a language must contain an other kind of symbols,
called function symbols. A function symbol alone is not a term, but it permits to
construct a term when it is applied to already constructed terms. For instance,
with the individual symbol 0 and the function symbol Su (for “successor”) we
can designate all the natural numbers. The number zero is designated by the
term 0, the number one by the term Su(0) obtained by applying the function
symbol Su to the term 0, the number two by the term Su(Su(0)), ... Some
function symbols must be applied to several arguments to construct a term,
for instance the symbol + must be applied to two arguments. The function
symbol + is said to have two arguments, while the symbol Su is said to have
one argument. Individual symbols can be seen as special function symbols that
have zero arguments.

The simplest way to form a proposition is to apply a predicate symbol to one
or several terms. For instance, we can form this way the proposition

satellite(Moon,Earth)

that expresses that the Moon is a satellite of the Earth. Thus, a language
contains predicate symbols. The predicate symbol satellite that must be applied
to two terms to form a proposition is said to have two arguments. A proposition

7
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formed by application of a predicate symbol to terms is called atomic. More
propositions can be formed with the connectors — (not), A (and), V (or) and
= (implies). It is also convenient to consider propositions T (truth) and L
(falsity). We can for instance form this way the proposition

prime(Su(Su(0))) A =prime(Su(Su(Su(Su(0)))))

that expresses that the number two is prime and that the number four is not.

A last construction is needed for propositions such as “all men are mortal”
or “some number is prime”, where we express that all objects verify some pred-
icate or that some object verify some predicate without expliciting this object.
We could introduce symbols all and some and let them replace a term as an
argument of a predicate symbol or a function symbol. For instance we would
write

prime(some)

to express that some number is prime, in the same way that we write
prime(Su(Su(0)))

to express that the number two is prime. But, such a construction is ambiguous.
Indeed, the proposition

some > all

may express that for all numbers there is some greater number (which is true)
but also that there is some number greater than all numbers (which is false).
A more precise construction is to apply the predicate symbol to a variable
and indicate in a second step if this variable is universal or existential with a
quantifier V (for all) or 3 (there exists). The fact that some number is prime is
then expressed

Az prime(x)

The order in which these quantifiers are applied permits to resolve the ambigu-
ities. The fact that for all numbers there is some greater number is expressed
by the proposition

Ve Jyy >z

while the fact that some number is greater than all numbers (which is false) is
expressed by the proposition

JyVey>x

Among all the symbols used to form terms and propositions, some are the
same in all languages: the connectors T, L, =, A, V and =, the quantifiers V
and 3 and the variables, while the function symbols (including the individual
symbols) and the predicate symbols are specific to a given language. For instance
the symbol Moon is used in the language of astronomy, but not in the language
of geometry.
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1.1.1 Terms and propositions

Definition 1.1.1 (Language) A language is a set of function symbols and
a set of predicate symbols. To each symbol is associated a number, called its
number of arguments.

Definition 1.1.2 (Term) Let L be a language and V be an infinite set whose
elements are called variables. The terms of the language £ with variables V are
defined by the following rules

e if x is a variable then the tree whose root is labeled by x and that has no
sub-tree is a term,

o if f is a function symbol of n arguments and t1,...,t, are terms then the
tree whose root is labeled by f and whose sub-trees are ty,...,t, is a term.

Definition 1.1.3 (Proposition) Let £ be a language and V be an infinite set.
The propositions of the language L with variables V are defined by the following
rules

e if P is a predicate symbol of n arguments and ty,...,t, are terms then
the tree whose root is labeled by P and whose sub-trees are ti,...,t, s a
proposition,

e the trees whose root are labeled by T and L and that have no sub-tree are
propositions,

e if A is a proposition then the tree whose root is labeled by — and whose
sub-tree is A is a proposition,

e if A and B are propositions then the trees whose root are labeled by A, V
or = and whose sub-trees are A and B are propositions,

e if A is a proposition and x a variable then the trees whose root are labeled
Vz and 3z and whose sub-tree is A are propositions.

Remark. In several places, we shall use the notation A < B. There is no
connector < in our definition of the notion of proposition. Thus the proposition
A & B is just a notation for the proposition (A = B) A (B = A).

Example 1.1.1 If = is a predicate symbol of two arguments, + a function sym-

bol of two arguments, 0 a function symbol of zero arguments (i.e. an individual
symbol) and = a variable then the tree

1S a proposition.
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Remark. Terms and propositions have been defined as trees whose nodes are
labeled by symbols. Some authors prefer to define terms and propositions as
strings, i.e. as sequences of symbols. The proposition of example 1.1.1 would
then be written

= (+(2,0),2)

or
r+0==x

This is difference is just a matter of taste.

However, the advantage of considering trees instead of strings is that this
permits to disregard the shallow properties of expressions: whether + is written
before, between or after its arguments, whether parentheses or brackets are
used, ... and to focus on the logical structure of expressions.

1.1.2 Variables and substitutions

Definition 1.1.4 (Variables) The set of variables of a term (resp. proposi-
tion) is defined by induction over its height as follows

() = {z},
o Var(f(ti,...,tn)) = Var(t1) U...UVar(t,),

.
<
Q
g

(
ar(P(t, ...,tn)) = Var(t;) U...U Var(t,),
* Var(T) =Var(L) =0,
ar(~4) = Var(4),
Var(AAB) =Var(AV B) = Var(A = B) = Var(4) U Var(B),

Var(Vz A) = Var(3z A) = Var(A) U {z}.

The set of free variables of a term (resp. a proposition) is defined by induc-
tion over its height as follows

z) = {z},
[ty tn)) = FV(t)) U... U FV(t,),

o FV(

o FV(
FV(P(t1,....tn)) = FV(t1) U... U FV(t,),

o FV(T)=FV(L) =0,
FV(-A) = FV(4),
FV(AANB)=FV(AVB)=FV(A= B) = FV(A) UFV(B),
FV(¥z A) = FV(3z A) = FV(4) \ {z}.
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Definition 1.1.5 (Closed and open) A term (resp. a proposition) that con-
tain no free variables is said to be closed, otherwise it is said to be open.

We now want to define the operation of substitution. For instance, substi-
tuting the term y + 2 for the variable z in the proposition z x 2 = 4 yields the
proposition (y +2) x 2 = 4. The result of the substitution of the term u for the
variable z in the term or proposition ¢ is written (u/z)t. When we substitute a
term u for a variable z in a term or a proposition ¢, we want to substitute only
the free occurrences of z. A first attempt to define substitution is the following.

Definition 1.1.6 (Replacement) Let t be a term (resp. a proposition), x be
a variable and u be a term. The term (resp. the proposition) (u/x)t is defined
by induction over the height of t as follows.

o (u/z)z =10,
if y is a variable different from x, then (u/x)y =y,

(u/x) f(t1, s tn) = f(u/2)t1, ..., (u/T)tn),
® <U/£L’)P(t1, Jtn) = P((U/.’L')tl, ) (U/Sﬂ)tn),

(u/)T =T,

ufz)l =1,

(ufz)(~A) = ~(u/z)A,

(u/zY(AAB) = {u/z)A A (u/z)B,

(u/z)(AV B) = (u/z)AV (u/z)B,

(u/z)(A = B) = {u/z)A = {u/z)B,

(u/z)(Vx A) =Vz A,

(u/z)(Vy A) =Vy (u/m)A if y # z,

(u/z)(Fz A) =3z A,

(u/2) 3y A) =3y (u/n)A if y £ o.

But there is still a problem with this definition : when we replace y + 0 for
z in Yy P(z,y) we obtain Vy P(y + 0,y) where the variable y in y + 0 is now
quantified, while originally, this variable y had nothing to do with the variable
y quantified in Yy P(z,y). To perform a correct substitution, we must first
rename the variable y quantified in Vy P(z,y) to get, for instance, Vz P(z, 2)
and then substitute the variable x by y + 0 to get Vz P(y + 0, 2). The choice of
the variable z is arbitrary, and we could also have obtained Yw P(y + 0, w).

Thus, to define the substitution operation, we must first define the equiva-
lence of two propositions modulo bound variable renaming and define substitu-
tion on the quotient of the set of propositions modulo this relation.

Definition 1.1.7 (Alphabetic equivalence) The alphabetic equivalence be-
tween propositions is defined as follows

e if A and B are atomic propositions then A ~ B if and only if A = B,
T~T,
L~
(mA) ~ (=A") if and only if A~ A',
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(AAB) ~(A"AB') if and only if A~ A" and B ~ B,

(AVB)~ (A'"VB') if and only if A~ A" and B ~ B,

(A=>B)~ A" =>B')ifand onlyif A~ A" and B~ B',

(Vz A) ~ (Vy A") if and only if for some variable z not appearing in Vz A
nor in Yy A' (z/x)A ~ (z/y)A’,

3z A) ~ (Fy A') if and only if for some variable z not appearing in Ix A
nor in Jy A" (z/z)A ~ (z/y)A'.

From now on, propositions will be considered up to alphabetic equivalence,
i.e. we consider only classes of propositions modulo alphabetic equivalence. So
the proposition Vz (0 < z) and Yy (0 < y) are equal.

Definition 1.1.8 (Substitution) Let t be a term (resp. a proposition), z be
a variable and u be a term. The term (resp. the proposition) (u/x)t is defined
by induction over the height of t as follows

o (u/z)r =u,
if y is a variable different from x, then (u/x)y =y,

(u/z)f(t1, s tn) = f((u/2)t1, ooy (u/2)t0),
o (u/T)P(t1,....tn) = P((u/2)t1, ..., (u/2)t,),
(u/z)T =T,
(u/z)L = 1,
(U/w)(—'A) = ~(u/z)A,
(u/x)(AAB) = (u/z)A N (u/z)B
(u/z)(AV B) = (u/z)AV (u/z)B
(u/x)(A = B) = (u/z)A = (u/z)B,
(u/z)(Vy A) = Vz (u/z)(z/y)A where z s a variable not appearing in

Yy A, not appearing in u and distinct from x,
(u/x)(ﬂy A) = 3z (u/z)(z]y)A where z is a variable not appearing in
dy A, not appearing in u and distinct from x.

We can in the same way define simultaneous substitution.

Definition 1.1.9 (Simultaneous substitution) Let ¢t be a term (resp. a
proposition), Ti,...,T, be variables and ui,...,u, be terms. Let o be the fi-
nite function mapping x; to u;. The term (resp. the proposition) ot is defined
by induction over the height of t as follows

* ox; = u;,
if y is a variable different from the x;’s, then oy = v,

of(t1yytn) = f(ot1, ...y oty),
L] UP(tl,...,tn) ZP(Utl,...,Utn),

ol =T,
ol =1,
G(‘!A) = —|0'A,

0c(AANB)=0AN0B,
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0(AVB)=0AVoB,

0(A= B)=0A=0B,

o(Vy A) =Vz o(z/y)A where z is a variable not appearing in Vy A and
not appearing in o,

o(Jy A) = 3z o(z/y)A where z is a variable not appearing in Jy A and
not appearing in o.

1.2 Proofs

We are now ready to define the tools that permit to prove propositions.

1.2.1 Proofs a la Hilbert

Definition 1.2.1 (Theory) A theory is a set of propositions, called axioms,
such that the membership of some proposition to this set can be decided in an
algorithmic way.

Definition 1.2.2 (Deduction rule) A Deduction rule is a set of n + 1-uples
of propositions, such that the membership of some n+ 1-uples of propositions to
this set can be decided in an algorithmic way. The n + 1-uple (A4, ..., Ay, B) is

written
A LA,

B

The propositions A1, ..., A, are called the premises and the proposition B the
conclusion of the n + 1-uple.

Definition 1.2.3 (Proof) Let D a set of deduction rules. A proof of a propo-
sition B in D is a tree whose root is labeled by the proposition B, whose sub-trees
are proofs of propositions A, ..., An and such that the n + 1-uple

Al A,
B

is an element of one of the deduction rules of D.

Definition 1.2.4 (Logical axioms) A logical axiom is a proposition of the
following form where A, B, C are arbitrary propositions and x an arbitrary

variable.
A= (B=A)

(A=>(B=0)=(A=>B)= (4=0))
(Vz (A= B))=> (A=>Vs B) (ifzgFV(A))
T
1=A
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A= (A= 1)
(A=>1)=>-4
(AANB)= A
(ANB)=>B
A= B= (AAB)
A= (AVB)
B= (AV B)
(AVB)=> ((A=0)=(B=0)=0))

Vz A= (t/z)A

(t/z)A =TIz A

dz A= (Vz (A= B))=B) (ifz¢ FV(B))
Av-A

Definition 1.2.5 (Deduction rules & la Hilbert) Given a theory T, the
deduction rules a la Hilbert for T' are the following:

o the rule Axiom containing all the 1-uples

A
where A is an element of T or a logical aziom,

e the rule Modus ponens containing all the 3-uples
A=B A
B
o the rule Generalization containing all the 2-uples

A
Vz A

where x does not appear free in I.

These rules should be understood as follows: axioms have trivial proofs, if
we have already proved A = B and A we can deduce B, if we have already
proved A with no assumption on z, we can deduce Vz A.
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Example 1.2.1 Consider the language formed with the four proposition sym-
bols (i.e. predicate symbol of zero arguments) P, Q, R and S. Consider the
theory formed with the propositions

P

Q
Q=R
P=(R=19)
we have the following proof of the proposition S
Aziom — Aziom —~——— Aziom =~ Aziom

Modus ponens Q=R Q Modus ponens
g Modus ponens

P=(R=1S)
R=S

Remark. Some authors prefer to define proofs as sequences of propositions
rather than as trees. Again, this is just a matter of taste.

1.2.2 The deduction lemma

We now want to prove that a proposition A = B has a proof in the theory T if
and only if the proposition B has a proof in the theory I, A.

Proposition 1.2.1 Let A be a proposition, the proposition A = A has a proof
in the empty theory.

Proof. The propositions
A= ((A=24)=2A4)=>(A=>A=4)= (A= A4)

A= (A= A4)=> A)
A= (A= A)
are logical axioms. Hence, the proposition A = A has the proof

B A= (A=>A)=> A)
(A= (A=>A)=>(A=> A)
A=A

Modus ponens
A= (A4=4) Modus ponens

where Bis (A= (A= A4)=> A))=> (A= (A= 4) = (A= A4)).

Proposition 1.2.2 (Deduction lemma) The proposition A = B has a proof
in the theory T is and only if the proposition B has a proof in the theory T', A.
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Proof. If the proposition A = B has a proof in the theory I', then it has a proof
in the theory T', A. So does the proposition A. Thus, the proposition B has a
proof built with the Modus ponens rule.

Conversely, we prove by induction over the height of the proof of Bin I'; A
that there is a proof of A = B in I

e If the root of the proof is a Aziom, then either B = A and we have a proof
of A = B by the proposition 1.2.1, or B an element of I' and we have the
proof

B=(A=B) B
A=1B

Modus ponens

o If the root of the proof is a Modus ponens then B is deduced from C = B
and C, that have smaller proofs. By induction hypothesis, there are proofs
7 and 9 of A= (C = B) and A = C in I" and we take the proof

(A=>(C=B))=((A=C)= (A= B)) A:(é:B)
(A=C)= (A= B)

T2
Modus pm Modus b

A= B

e If the root of the proof is a Generalization then we have B = Vx C, x
does not appear in I" nor in A and C has a smaller proof. By induction
hypothesis, there is a proof m of A = C in I" and we take the proof

_T
A=C

—+——~ Generalization
(Vz (A= (0)) :,a({::vaCC) Vz (A= C) Modus ponens

1.2.3 Natural deduction

Introducing an hypothesis seems to be a natural step in a proof. To prove, for
instance, the proposition (n = 0) = (n +1 = 1) we want to assume that n =0
and then to prove that n +1 = 1.

Proofs a la Hilbert do not permit to do that directly: if we have a proof of the
proposition n + 1 = 1 using the hypothesis n = 0, the deduction lemma permits
to transform this proof into one of the proposition (n = 0) = (n +1 = 1),
but this proof is much longer than the proof we started with and it is not very
natural.

Natural deduction is an alternative definition of the notion of proof where
the introduction of an hypothesis is deduction rule. In Natural deduction, a
deduction step can modify not only the proved proposition but also the theory
T, hence a proof is not a tree of propositions, but a tree of ordered pairs (I', A)
where T is a theory and A a proposition. Such an ordered pair is called a sequent
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and is written I' - A (read “T" entails A”). The Introduction rule that permits
to introduce an hypothesis transforms the sequent I'; A - B into the sequent
'-A= B.

The notions of deduction rule and proof adapt straightforwardly to sequents.

Definition 1.2.6 (Deduction rule on sequents) A Deduction rule is a set
of n + 1-uples of sequents, such that the membership of some n + 1-uples of
sequents to this set can be decided in an algorithmic way. The n + 1-uple (T'; -
A1, ....,Tp F Ay, A F B) is written

TyFA4, ...T, A,
AFB

The sequents 'y F A1, ...,y b A, are called the premises and the sequent A - B
the conclusion of the n + 1-uple.

Definition 1.2.7 (Proof on sequents) Let D a set of deduction rules. A
proof of a sequent A F B in D is a tree whose root is labeled by the sequent
A F B, whose sub-trees are proofs of sequents T'y F Aq,...,T = A, and such
that the n + 1-uple
kA ..TI,FA,
A+B

is an element of one of the deduction rule of D.

With the introduction rule, the three first logical axioms are now redundant,
indeed the sequent I' F A = (B = A) can be proved as follows

I'A,BF A
INNAFB=A
'A=(B=A4)

The sequent T+ (A = (B = C)) = ((A = B) = (A = (C)) can be proved as
follows

Intro
Intro

AFA=(B=C) AFA AFA=B AFA

ArBSC Modus p. AT B MOduSModus p-
[LA= (B> 0).A=>BAFC P-
A= (B=>C),A=>BrA=C n;‘;m

NA= (B=C)FA=B)= (A=C0C)

'r(A=(B=0C)=(A=B)=(A=0))

where A =T,A = (B = C),A = B,A. And, if the variable = appears free

neither in T' nor in A, the sequent T' - (Vz (A = B)) = (A = Vz B) can be
prov(ed a(s follov&;s) ( ) ( )
AWMz (A= B))=(A=B) A+Vz(A=1B

A+-A=B Modus p. 4

A+ B L.

T,Vz (A= B),AF Vs B GIenerahzatlon

T.Vz (A= B)F A= vz B "
(Ve (A= B))=(A=Vze B

where A =T',Vz (A = B), A.

Intro

Modus p.

Intro
)
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Using proof d la Hilbert, when we have proved the propositions A and B
and we want to deduce the proposition A A B, we must use the logical axiom
A = (B = (AAB)) and deduce B = (A A B) and then A A B with the
Modus ponens rule. It is more natural to take a rule allowing to deduce directly
'FAABfromTF A and I' F B. As we have the rule Introduction this logical
axiom and this rule are equivalent. As we have just seen, in a system where we
have the logical axiom, we can simulate any instance of the rule and conversely,
in a system where we have the rule, the axiom can be proved as follows

I A B-A T,AB+B

T.ABFAAB INeW“ﬂe
T,AF B = (AAB) Mo
Intro

'A= (B=(AAB))

Excercise 1.2.1 With proof a la Hilbert, are the logical axiom and the rule
equivalent ¢ Hint: try to prove the Deduction lemma.

We can suppress in a similar way all the logical axioms and replace them by
deduction rules. Let us take another example. The logical axiom

(AVB)= (A=0)=(B=0C)=0))

can be replaced by the rule
'HrAvB THA=C TFB=C

r-c

But, as it is equivalent to prove the sequent I' - A = C or the sequent ', A+ C
we can transform this rule further into

r'-AvB T,A-C I,B+-C
r-c

In this rule, V is the only connector or quantifier that appears explicitly. In
most rules, only one connector or quantifier occurs. This permits to classify the
rules according to the connector or quantifier that appears in this rule. The rules
of a connector or quantifier can further be classified according to the position
of this connector or quantifier. If it appears in the conclusion of the rule, then
the rules is called an introduction rule, if it appears in a premise, then the rule
is an elimination rule. For instance, the connector V has two introduction rules

r-A4

TFAVE e

I'+B

TF Ay p Vintro

and one elimination rule
'-AvB T,A+-C T,B-C

TFEC V-elim
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The Modus ponens
I'rA=B TFA

I'+B

is the elimination rule of implication. The Generalization

r-4

is the introduction rule of the universal quantifier V. And the rule Introduction

T,AF B
TFA= B

is the introduction rule of the implication.
The system obtained this way is called Natural Deduction.

Definition 1.2.8 (Natural deduction)

Aziom if A€T

A
TET T-intro
TeL
TFA—
LAFL
TF oA —-niro
'rA TF-A )
—TFEL elim
'-rA THB .
TTRAAB (T
I'AAB )
“TEFA A-elim
I'AAB )
“TEB A-elim
| .
TFAVE e
I'+B

TFAVB /e

'-AvB T,A-C T,B+C
re=cC

A+ B
I'rA=B

V-elim

=-initro
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'rA=B THFA

TFB =-elim
% V-intro if x ¢ FV(T)
vz A Veli

Tk (¢/z)A " "™
Tk (t/z)A

Trag A i

T3z A T,AFB
TFB

-elim if x ¢ FV (T, B)

TFAV-A Ezcluded middle

Proposition 1.2.3 A proposition A has a proof a la Hilbert in the theory T if
and only if the sequent T' - A has a proof in natural deduction.

Proof. By induction on the height of proofs.

Definition 1.2.9 (Contradictory, consistent) A theory I' is contradictory
if all propositions have a proof in T'. It is consistent otherwise.

Excercise 1.2.2 Prove that a theory T is contradictory if and only the propo-
sition L has a proof. Prove that a theory T is contradictory if and only there is
a proposition A such that A and - A have a proof.

Excercise 1.2.3 Let A be a proposition, prove that a theory that proves the
proposition A & —A is contradictory.

Example 1.2.2 (Equality) Given a language L containing a predicate symbol
= of two arguments, the theory of equality in this language is formed with the
following azioms.

Identity axiom:

Vz (xz = x)
Leibniz’ axiom scheme: for each proposition A, the aziom
Vo Vy ((z =y) = ((z/2)A = (y/2)A))
Excercise 1.2.4 In the theory of equality, give a proof of the proposition
VeVy (x=y=>y=u1)
Example 1.2.3 (Arithmetic) The language of arithmetic is formed with

o an individual symbol 0, a function symbol Su of one argument and two
function symbols + and X of two arguments
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e g predicate symbol = of two arguments.

The axioms of arithmetic are the axioms of equality and the axioms:
Vz Yy (Su(z) = Su(y) =z =1y)
Vz =(0 = Su(z))

induction scheme: for each proposition A the axiom
((0/2) AN (Vz ((z/2)A = (Su(z)/2)A))) = Vy (y/2)A

and the axioms

Vy 0+y=y)
Ve Vy (Su(z) +y = Su(z +y))
Yy (0xy =0)

Va Vy (Su(z) x y = (z x y) +y)
Excercise 1.2.5 Write a proof in arithmetic of the propositions
Su(0) + Su(0) = Su(Su(0))

Ve (z+0=2)

1.2.4 Constructive proofs

Definition 1.2.10 (Constructive proof) A proof is constructive if it does
not use the excluded middle rule.

We want to prove that constructive provability and general provability are
equivalent. This does not mean, of course, that all propositions that have a proof
have a constructive proof, but that for each proposition A we can compute
a proposition A’ such that the proposition A has a proof if and only if the
proposition A’ has a constructive proof.

Definition 1.2.11 (Negative translation) Let A be a proposition, the propo-
sition A’ is defined by induction over the height of A as follows.

o A" =——A if A is atomic,
e T/ =—-T,

o I'=-—1,

—A) = -4,

(
(AAB)' = —=(A"AB'),
(

AV B) = -—(A'V B'),
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e (A= B) =-(A"= B'),
o (Vz A) = —-=(Vz A'),
o (Az A) =-—(3z A").

Proposition 1.2.4 The proposition A has a proof if and only if A’ has a con-
structive proof.

Proof. (1) If a sequent I' - A has a constructive proof m, then the sequent
I' b == A has a constructive proof. First, we can add the hypothesis =4 to all
sequents of the proof 7, we obtain a proof n’ of the sequent I',—=A F A. Then

we have the following proof.
T

N-Ar-A T,-AFA
r-AF L
I'k--A

Thus, we can build a constructive proof of =—T. From a constructive proof of
I'AF L we can build a constructive proof of I' - === A. From constructive
proofs of ' F A and T' F B, we can build a constructive proof of I' - == (AA B).
From a constructive proof of I' - A, we can build a constructive proof of T -
-=(A V B). From a constructive proof of I' - B, we can build a constructive
proof of I' F == (A V B). From a constructive proof of I'; A + B, we can build
a constructive proof of T' F =—(A = B). From a constructive proof of T F A,
we can build a constructive proof of I' - ——=Vz A provided = does not appear
free in T. From a constructive proof of T' - (t/z) A, we can build a constructive
proof of I' F ——3z A.

(2) Then, we check that from a constructive proofs of I - ==L, we can build
a constructive proof of I' F =—A. From constructive proofs of I' F =——A and
I' F =—A, we can build a constructive proof of I' F =—_L. From a constructive
proof of T'  =—(=—=A A ==B), we can build a constructive proof of ' F == A
and a constructive proof of I' + == B. From a constructive proofs of T' +
—=(==AV--B),[,-—AF —-=C and ', == B I =—C we can build a constructive
proof of I' + ==C. From constructive proofs of I' F =—(==A4 = —-B) and
I' F == A, we can build a constructive proof of I' F == B. From constructive
proofs of T' - =—(Vz == A), we can build a constructive proof of T' - =—(t/x) A.
From constructive proofs of I' F =—3z A and I',—-—A F =—B we can build a
constructive proof of I' - == B provided that x does not appear free in T nor in
B.

As an example we show that from constructive proofs of T' b —=(—-—A =
—=B) and I' F =—A, we can build a constructive proof of I' F ——B.

—-elim
—-intro

’
™

T',-B, -—-A = --BF --A=--B ', =B, -—A = --BF--A
I',-B,-—A= -—-BF--B

s I',-B,mmA=--BF L

I',-BF ==(=-=A = --B) I''"BtF =(--A = --B)

T,-BF L

I'+--B

=-elim

F, —|B, -—A = --B}F-B

—-elim

—-intro
—-elim

—-intro
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(3) We check that if A is a proposition, then the proposition =—(A VvV —A)
has a constructive proof.
~(AV-A), Ak A
—(AV-A),AF-(AV-A) ~(AV-A),AF AV -A
S(AV-AL,AFL
S(AVoA)F oA o
~(AV ~A) F ~(AV ~A) S(AV-A) F AV oA Vo
—|(A \Y —|A) 1l —-elim
m —-1ntro

V-i

—-€.

(4) Then, we show that if I' - A has a proof = then I'' - A’ has a constructive
proof, by induction over the height of . If the last rule of 7 is an axiom then
we use the axiom rule, if the last rule is an introduction rule then we use lemma
(1), if it is an elimination rule then we use lemma, (2), if it the excluded middle
rule, we use lemma (3).

(5) Conversely, we show that the proposition A < ——A has a (not neces-
sarily constructive) proof and we deduce that A < A’ has a (non necessarily
constructive) proof and that if I' F A’ has a constructive proof then I' F A has
a (not necessarily constructive) proof.

Remark. In these course notes, we shall mainly focus on constructive proofs.
This does not mean that we renounce the non constructive proofs, but that non
constructive proofs of a proposition A are understood as constructive proofs of
its negative translation.

1.3 Models

Definition 1.3.1 (Structure) Let £ be a language formed with the function
symbols fo, f1,... of number or arguments ng,ny,... and the predicate symbols
Py, P, ... of number of arguments mqg, my,.... A structure M built on L is a
n-uple formed with

e g non empty set M,
e a function fo from M™ to M, a function fl from M™ to M, ...
e a function Py from M™ to {0,1}, a function Py from M™ to {0,1}, ...

Definition 1.3.2 (Assignment) An assignment over the set of variables V is
a function from V to M. If ¢ is an assignment, x o variable and a an element
of M, then ¢ + (z,a) is the assignment mapping x to a and y to ¢(y) when y
is distinct from x.

Definition 1.3.3 (Denotation) Let £ be a language, V be a set of variables
and M be a structure built on L. Let ¢ be an assignment and t be a term (resp.

a proposition), the denotation of t in M modulo ¢ is defined by induction over
the height of t.
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b |$|¢7 = (ZS(Z'), R
|fi(t15 "'atni)|¢ = fi(|t1|¢’ ) |tni|¢):
b |-P’i(t17 "'7tni) ¢ = ‘ﬁ)i(|t1|¢7 ST |tni ¢);
[Tl =1,
|J-|¢ =0,

|~A|g =1 if |Alg =0, and O otherwise,

|[AANB|p =1if |A|lp =1 and |B|y =1, and 0 otherwise,

|AV Blg =11if|Als =1 or |B|g =1, and 0 otherwise,

|A= Blg =1if|Alg =0 or |B|y =1, and 0 otherwise,

Vo Aly = 1 if for all elements a of M, |Aly4(z,0) = 1, and O otherwise
|3z Aly =1 if there is an element a of M such that |Alyy (5,0 = 1, and 0
otherwise.

Definition 1.3.4 (Validity, model) Let £ be a language, V be a set of vari-
ables and M be a structure built on L. A proposition P is valid in M is for all
assignments ¢, |P|ly = 1. A theory T is valid in M if all its axioms are valid.
The structure M is a model of ' if T is valid in M.

Proposition 1.3.1 (Soundness) Let I' be a theory. If the proposition P has
a proof in T', then it is valid in all the models of T'.

Proof. By induction over the height of a proof of P in T.

Corollary 1.3.2 If the theory I' has a model in which P is not valid then P
has no proof in T.

Corollary 1.3.3 IfT' has a model then I' is consistent.

Example 1.3.1 Consider the language containing two predicate symbol = and
< of two arguments. Consider the theory O formed with the axioms of equality
and

Vz (z < x)
Ve Vy (z <yAy<a) =z =y)
VeVyVz ((z <yAy<z)=>z<2)
From these aziom we cannot deduce the proposition
Ve Vy (r <yVy< )

Indeed, consider the structure M = (N, I,|) where I(n,m) =1 if n =m and
0 otherwise, |(n,m) =1 if n is a divisor of m and 0 otherwise. The structure M
is a model of O. But it is not a model of the proposition Yz Vy (x <yVy < z),
because 2 is not a divisor of 3 and 3 is not a divisor of 2.
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Remark. The first use of the notion of model to prove that some proposition has
no proof in a theory is probably that of F. Klein who has built in 1871 a model
of all the axioms of Euclid’s geometry except the axiom of parallels, showing
that the axiom of parallels cannot be deduced from the other axioms of Euclid’s
geometry. (However the notion of model has only been defined by A. Tarski,
more than fifty years later, in 1936).

The soundness theorem has a converse we shall not prove here.

Proposition 1.3.4 (Godel’s completeness theorem) Let I be a theory. If
the proposition P is valid in all the models of T then it has a proof in T.

Remark. The soundness theorem holds also for constructive proofs. But not
the completeness theorem. For instance, let P be a proposition symbol (i.e.
a predicate symbol of zero arguments). We shall see (exercise 4.1.1) that the
proposition PV =P has no constructive proof, but it is valid in all models. The
notion of model needs to be adapted for constructive proofs.

Remark. In proof theory, the notion of model is mostly used to prove inde-
pendence results, i.e. that some propositions have no proof in some theories.
The notion of model is also used in algebra. For instance, ordered sets can be
defined as the models of the theory O of example 1.3.1. Groups can also be
defined as the models of some theory, but it can be shown that Archimedian
complete ordered fields cannot be defined as the models of some theory. This
fact may be used to prove, for instance, that there are ordered sets or groups of
all infinite cardinals, while it is known that all Archimedian complete ordered
fields are isomorphic to R and thus that they all have cardinal 2¥0. The branch
of mathematics that studies these applications of logic to algebra is called model
theory.

Remark. A common misconception is that the notion of model can be used, as
an alternative to the notion of proof, to define the notion of mathematical truth,
i.e. that instead of saying that a proposition is true if it has a proof, we could
say that it is true if it is valid in all models. The problem with such a definition
of truth is that, unlike the fact that a tree is a proof of some proposition, the
fact that a proposition is valid in all models is not self evident, i.e. it cannot
be checked in an algorithmic way. Thus, the fact that some proposition is valid
in all models must itself be justified by some argument. Thus, such a definition
of truth reduces the question of the truth of the proposition “P” to that of the
proposition “the proposition P is valid in all models” and trying to justify some
proposition we enter into an infinite regression.

Remark. (Many-valued model) In the definition 1.3.1, the truth value 0 is used
as denotation of non valid propositions, and the truth value 1 as denotation
of valid propositions. This definition can be extended by adding other truth
values. A common extension is to take a third value for propositions whose
validity is unknown in this model.
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Chapter 2

Extensions of predicate
logic

2.1 Many-sorted predicate logic

In some theories, we want to distinguish several sorts of objects. For instance, in
a language with the individual symbols German, English, French, Germany,
United— Kingdom, Ireland, France and a predicate L, we can form the propo-
sitions

L(German, Germany)

L(English, United — Kingdom)
L(English, Ireland)
L(French, France)

expressing that German is an official language of Germany, ... In this theory,
we can also form the unwanted proposition

L(Germany, Germany)

An extension of predicate logic permits to restrict the term and proposition
formation rules, in such a way that such unwanted propositions are avoided.

Definition 2.1.1 (Many-sorted language) A language is a set of sorts, a
set of function symbols and a set of predicate symbols. To each function symbol
is associated a m + 1-uple of sorts (s1,...,8n,8n11) called its rank and to each
predicate symbol is associated a n-uple of sorts (sy,...,s,) called its rank.

Definition 2.1.2 (Term in a many-sorted language) Let £ be a many-

sorted language and Vs be a a family of disjoint infinite sets indexed by sorts.
The terms of the language L with variables Vs are defined by the following rules

27
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o if x is a variable of V, then the tree whose root is labeled by x and that
has no sub-tree is a term of sort s,

e if [ is a function symbol of rank (s1, ..., $n, Sny1) and t1, ..., t, are terms of
sort s1, ..., S, then the tree whose root is labeled by f and whose sub-trees
are ti,...,ty is a term of sort Sp41.

Definition 2.1.3 (Proposition in a many-sorted language) Let £ be a
many-sorted language and V, be a o family of disjoint infinite sets indexed by
sorts. The propositions of the language L with variables Vs are defined by the
following rules

e if P is a predicate symbol of rank (s1,...,8,) and t1, ..., t, are terms of sort
81, ...,58n, then the tree whose root is labeled by P and whose sub-trees are
t1,...,tn @S a proposition,

e the trees whose root are labeled by T and L and that have no sub-tree are
propositions,

o if A is a proposition then the tree whose root is labeled by — and whose
sub-tree is A is a proposition,

o if A and B are propositions then the trees whose root are labeled by A, V
or = and whose sub-trees are A and B are propositions,

o if A is a proposition and x a variable then the trees whose root are labeled
Vz and 3z and whose sub-tree is A are propositions.

The definition of a substitution is restricted in such a way that a variable of
sort s can only be substituted by a term of sort s. The proof rules are the same
than in ordinary predicate logic.

Definition 2.1.4 (Structure in a many-sorted language) Let L be a lan-
guage formed with the sorts sg, s1, ..., the function symbols fo, f1,... of number
or arquments and the predicate symbols Py, Py, .... A structure M built on L is
a n-uple formed with

o ¢ family of non empty sets My, My, , ...,

e a function fo from My, x ...x M, to M, ., where (s1,...,8n,Snq1) 18 the
rank of fo, a function fi ...

e a function Py from Mg, x ...x M, to{0,1} where (s1,...,sn) is the rank
of Py, a function Py ...

The denotation of a term and a proposition is defined in the same way as in
ordinary predicate logic, with the extra condition that in the case of quantifiers,
the object a belongs to M, where s is the sort of the quantified variable.
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Proposition 2.1.1 (Soundness and completeness) A proposition has a proof
in a theory if and only if it is valid in all the models of this theory.

Remark. Predicate logic is a particular case of many-sorted predicate logic with
a single sort.

2.2 Predicate logic modulo

In predicate logic, proofs are sequences of deduction steps. The idea of predicate
logic modulo is that a proof is not a sequence of deduction steps, but a sequence
of deduction steps and of computation steps. For instance, in arithmetic, to
prove the proposition

dz (2xz=4)

we use the 3-intro rule and we are reduced to prove the proposition 2 x 2 = 4.
Then, we have to use the axioms of addition and multiplication to prove this
proposition. In predicate logic modulo, we can simply compute the term 2 x 2
and obtain the proposition 4 = 4 that can easily be proved with the identity
axiom.

2.2.1 Deduction rules

Definition 2.2.1 A relation = defined on terms and propositions of a language
is a congruence if

e it is an equivalence relation,

e it is compatible with all function symbols, predicate symbols, connectors
and quantifiers, i.e. if t = u then f(t) = f(u), if A= B and A’ = B’ then
ANA'=BAB',if A=B thenVz A=Vz B, ...

In predicate logic modulo a theory is formed with a set of axioms I' such that
the membership of some proposition to this set can be decided in an algorithmic
way and a congruence = on terms and propositions such that the equivalence
of two propositions can be decided in an algorithmic way. Before or after each
deduction step, we can transform the proved proposition into any equivalent one.
The deduction rules are thus modified to take these computations into account.
These rules permit to prove sequents of the form I' F= A. A proposition is said
to have a proof in the theory T', = if the sequent I' = A has a proof with the
following deduction rules.

Definition 2.2.2 (Deduction rules modulo)

@AmomzfAel“andAEB

Tr—4 T-intro if A=T
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TF-B , .. ., _
m 1-elim ZfB =1
T,AF-B ., .. _ _
W —-intro ZfB =1 and C =-A
TH_C TH-A . _
TF_ B —-elim if C =-A and B= L
TF-A T+B . .,
Tr- o A-intro if C = (AN B)
re=C C
TF_ A N-elim if C = (A A B)
re=C C
ﬁ A-elim ZfC = (A N B)
Fk=A . oy
Tr_C V-intro if C = (AV B)
'=B_, . ooy
Tr_ o V-intro if C = (AV B)
TH-D T,Ak—C T,BF-C_ . .. _
TF_C V-elim if D = (AV B)
AF=B _ . P
W =-intro lf C= (A = B)
TH_C TFr_A o
TF_B =-elim if C = (A = B)
- A . ——
(z, A) V-intro if B= (Vz A) and x ¢ FV ()
TF.B
LF-5B (z, A, t) V-elim if B= (Vz A) and C = (t/z)A
Ih=C (z, A,t) F-intro if B= (3z A) and C = (t/x)A
=B
Lre (i: at ; P= B (y 4) Feclim if C = (3w A) and = ¢ FV(T, B)
Tr_4 B Excluded middle if A= (BV —B)

Proposition 2.2.1 (Equivalence) For every congruence = there is a theory
T such thatT'F= A if and only if TT F A.

Proof. We take, for instance, all the axioms of the form Vz; ... Vz, (A & B)
where A = B.

Definition 2.2.3 (Model of a theory modulo) A structure M is a model
of a theory modulo T', = if all the axioms of T are valid in M and each time two
terms (resp. propositions) are congruent they have the same denotation in M.

Proposition 2.2.2 (Soundness and completeness) A proposition has a proof
in a theory if and only if it is valid in all the models of this theory.
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2.2.2 Congruences defined by rewrite rules

Congruences used in predicate logic modulo are often defined by rewrite systems.

Definition 2.2.4 (Rewrite rule, rewrite system) A rewrite rule is an or-
dered pair of terms or an ordered pair of propositions (I,r) written | — r. A
rewrite system is a set of rewrite rules.

Definition 2.2.5 (Redex) Let R be a rewrite system and t be o term. The
term t is a redex (reducible expression) if there exists a rulel — r in R and a
substitution o such thatt = ol. A term t is said to contain a redex if one of its
sub-terms is a redez.

Definition 2.2.6 (One step reduction) Let R be a rewrite system. A term
(resp. a proposition) t reduces to a term (resp. a proposition) u in one step
(t —* u) if there is a sub-term t' of t and a substitution o such that t' = ol
and u is obtained by replacing in t the sub-term t' by the term ou.

Definition 2.2.7 (Reduction sequence) Let R be a rewrite system. A re-
duction sequence is a finite or infinite sequence of terms (resp. propositions)
to,t1,... such that for every i, t; —' t;iyq.

Definition 2.2.8 (Reduction) Let R be a rewrite system. A term (resp. a
proposition) t reduces to a term (resp. a proposition) u (t — u) if there is a
finite reduction sequence starting on t and ending on u.

Definition 2.2.9 (Congruence sequence) Let R be a rewrite system. A
congruence sequence s a finite or infinite sequence of terms (resp. proposi-
tions) to,t1, ... such that for every i, t; —' tiy1 or ti; —1 t;.

Definition 2.2.10 (Congruence) Let R be a rewrite system. Two terms
(resp. two propositions) t and u are congruent if there is a finite congruence
sequence starting on t and ending on u.

Definition 2.2.11 (Normal term) A term (resp. a proposition) is normal if
it contains no redex. A term (resp. a proposition) u is a normal form of a term
(resp. a proposition) t if t — u and u is normal.

Definition 2.2.12 (Terminating) A term (resp. a proposition) is terminat-
ing if it has a normal form, i.e. if there exists a finite reduction sequence starting
on this term and ending on a normal term. It is strongly terminating if all re-
duction sequences issued from this term are finite.

A rewrite system is terminating (resp. strongly terminating) if all terms and
all propositions are terminating (resp. strongly terminating).

Definition 2.2.13 (Confluent) A rewrite system is confluent if whenever a
term (resp. proposition) t reduces to two terms (resp. proposition) u; and us,
then there exists a term (resp. proposition) v such that u; reduces to v and us
reduces to v.
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Proposition 2.2.3 In a confluent rewrite system, two terms (resp. two propo-
sitions) are congruent if and only if they reduce to a common term.

Proof. By induction on the length of the congruence sequence.

Proposition 2.2.4 In a confluent rewrite system a term has at most one nor-
mal form.

Proof. If u; and us are normal forms of ¢, then t — wy and ¢ — us. By
confluence, there exists a term v such that u; — v and us — v. As u; and
uy are normal u; = v = us.

Proposition 2.2.5 In a terminating and confluent rewrite system a term has
ezxactly one normal form. And this normal form can be computed form the term.

Proof. Termination yields existence and confluence unicity. To compute the
normal form, it is sufficient to reduce the term until a normal form is reached.

Proposition 2.2.6 In a terminating and confluent rewrite system two terms
(resp. propositions) are congruent if they have the same normal form.

Proof. If the two terms have the same normal form, then they are congruent.
If they are congruent, so are their normal forms and these two normal forms
reduce to a common term. Hence they are equal.

Proposition 2.2.7 In a terminating and confluent rewrite system, the congru-
ence can be checked in an algorithmic way.

Proof. Congruence can be checked by computing the normal forms and checking
their identity.

Example 2.2.1 (A presentation of arithmetic in predicate logic modulo)

To formulate arithmetic in predicate logic modulo, we can keep the axioms of
equality and the azioms

Vz Vy (Su(z) = Su(y) =z =1y)
Vz —(0 = Su(z))
((0/2) AN (Vz ((z/2)A = (Su(z)/2)A))) = Vy (y/2)A

and replace the axioms

Vy 0+y=1y)
Vo Vy (Su(z) +y = Su(z +y))
Vy (0xy =0)

Vo Vy (Su(z) xy = (z xy)+y)
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by the rewrite rules
0+y —uy

Su(z) +y — Su(z +y)
Oxy—0

Su(z) Xy —zxzxy+y

Excercise 2.2.1 Give a proof of the proposition 3z (2 X x = 4).

2.3 Binding logic

In mathematics, we use the notation z — x + 2 to designate the function that
maps £ to z + 2. Such a symbol is said to be a binder, because the variable x
that is free in z + 2 is bound in z — z + 2. In predicate logic the only binders
are the quantifiers V and 3 that bind variables in propositions, but there is no
way to bind variables in terms and so, there is no way to form a term such as
T 1.

Binding logic is an extension of predicate logic where function symbols and
predicate symbols can bind variables in their arguments. To each function
symbol or predicate symbol of n arguments is associated a rank (ki,...,ky)
where ki, ..., k, are natural numbers. Then, if f has the rank (ki,..., k,) and
t1,...,t, are terms, we can form the term

f@mp, t, ol Tl ty)

where 21, ..., z;, are bound in the term ¢y, ..., 7, ...,2} are bound in the term
tn.

In many-sorted binding logic a rank is a sequence of sequences of sorts. Then,
when a function symbol f has the rank

((S%a "t Sllcl ’ Skl—f-l)a "'<3?a ) S?n ’ S?n—i-l)a 8n+1)

x},...,x3, are variables of sorts si,...,s} , ..., Z ,...,z} are variables of sorts
sy ..., 85 and t,...,t, are terms or sorts 3}91+1: .+ 841 then the sort of the
term f(z]..xp t1,..., o) ty) is s™HL

Substitution is modified in such a way that bound variables are renamed
to avoid capture. Proof rules are the same than in predicate logic or predicate
logic modulo. A notion of model can also be defined for binding logic, but we
shall not present it here.
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Chapter 3

Type theory

In arithmetic, (example 1.2.3), we can speak about the natural numbers but not
about the functions mapping natural numbers to natural numbers nor about the
sets of natural numbers. Thus, arithmetic is not sufficient to express mathemat-
ics and we need to build more expressive theories. Set theory and type theory
(also called higher-order logic) are such theories.

3.1 Naive set theory

In the language of arithmetic, the symbol Swu is a function symbol, thus, it may
be used to form terms, such as Su(0), but it is not itself a term. If we want to be
able to speak about the function Su, we need the symbol Su to be a term and
hence an individual symbol. When Su is an individual symbol, we cannot form
the term Su(0) anymore. Hence, we need to introduce a new function symbol «
for the application of a function to its argument and write this term a(Swu,0).

We could also introduce a function symbol ay for functions of two arguments,
but this is not needed. Indeed, a function f of two arguments can always be
seen as a function of one argument that maps z to the function that maps y to
f(z,y). Thus instead of writing as(f, z,y) we can write a(a(f,z),y).

To ease notations we shall write (f z) for the term a(f,z) and (f z1 ... )
for the term (...(f z1)...xzy).

In the same way, we want the symbols designating predicates (sets), to be
terms and hence individual symbols, for instance if the individual symbol prime
designates the set of prime numbers, to express that the number 2 is prime, we
cannot write prime(2), but we need to introduce a new predicate symbol € and
write this proposition 2 € prime.

For terms expressing predicates of several arguments to be terms, we must
also introduce symbols €, €3, ... For predicates of zero arguments (i.e. propo-
sitions) to be terms, we must introduce a predicate symbol €, also written &.
The proposition €, (R, z,y) expresses that x and y are related by the predicate
of two arguments (relation) R. The proposition £(E) expresses that the pred-
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icate of zero argument E is true. The only difference between E and e(FE) is
that E is a term (designating an object) while e(E) is a proposition (expressing
a fact). The object E may be called the propositional content of the proposition
e(E).

The notions of function and set are redundant. We can express a function
as a functional relation (its graph), i.e. as a set of ordered pairs. In this case,
we just need the symbol €.

Conversely, we can define a set as its characteristic function, i.e. as the
function mapping its argument to the propositional content of the fact that z
belongs to the set. In this case, we just need the symbols a and €. If E is a
set and = an object, the propositional content of the fact that = belongs to E is
designated by the term (E z) and the fact that = belongs to E is expressed by
the proposition (E x). Thus, the proposition x € E is thus written e(E z). In
the same way, the proposition €2 (R,z,y) is written (R z y), ...

Let us now turn to the making of functions and sets. Whenever we have a
term ¢t and variables x1, ..., z,, we want to consider the function x1,...,x, — t,
for instance the function z — (3 x ). This function is such that we get back ¢
when we apply it to x1, ..., z,. Whenever we have a proposition P and variables
Z1, ...y Tn, We want to build the predicate {z1,...,z, | P}, for instance the set
{z | y (z =2 x y)}. This predicate is such that we get back P when we apply
it to x1, ..., Tp.

A solution would be to introduce for each term ¢ and sequence of variables
Z1,...,Tpn an individual symbol Cy, . ¢ and an axiom

Tn,

(Czl,...,a:n,t Zy --- wn) =t

and for each proposition P and sequence of variables z1, ..., 2z, an individual
symbol E;, . .. p and an axiom

e(Eqgy,....zn,p T1 - Tp) & P

In predicate logic modulo, these axioms can be transformed into rewrite rules

(Corporonst UL oo Up) — (U1 /T1, ooy Un [ Z0)E
(B oz, P U1 v Up) — (U1 /Z1, .oy Up [Ty P

But, not all these symbols are necessary, and we can restrict to a much smaller
language.

Definition 3.1.1 (Naive set theory) The language of naive set theory is
formed with

e q predicate symbol € of one argument.
e a function symbol o of two arguments,

o individual symbols S, K, T, L, =, A, V, =, ¥ and 3.
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and the congruence defined by the rewrite rules
(Szyz)—((z2)(y2)
(Kzy) —x
e(T) — T
e(l) — L
e(5 z) — —e(x)
e(Azy) — (e(z) Ne(y))
e(V zy) — (e(z) Vely))
&=z y) — (e(a) = £(y)
e(V z) — Yy e(z y)
(@) — Jy e(z y)

Proposition 3.1.1 (Comprehension) For each term t and sequence of vari-
ables xy, ..., T, there is a term u such that

t

(u z1 ... T,)

and for each proposition P and sequence of variables x1, ..., T, there is a term
u such that

eur ... zy) =P

Proof. By induction over the height of ¢ (resp. P).

Many variants of this theory have been proposed in the History of mathe-
matics: Cantor’s set theory (1872), Frege’s Begriffschrift (1879), Church’s pure
A-calculus (1932), ... Unfortunately, all these systems are contradictory. A
contradiction is given by Russell’s paradox.

By proposition 3.1.1 there exists a term R such that

Vz (e(R z) & —e(z x))

(take for instance R = (S (K =) (S (S K K) (S K K)))). The set R is the set
of all sets that do not contain themselves. By definition, this set contains itself
if and only if it does not, which is contradictory. More precisely, with the elim-
ination rule of the universal quantifier V, we can deduce from this proposition
the proposition

e(R R) & —e(R R)

and we have seen (exercise 1.2.3) that from such a proposition, we can prove a
contradiction.



38 CHAPTER 3. TYPE THEORY

3.2 Set theory

In naive set theory, it is possible to construct functions defined on all the universe
and to construct sets in comprehension with any property P. To restrict naive
set theory and avoid paradoxes, we may restrict function construction in such a
way that functions are defined with a domain of definition and, similarly, only
subsets of already constructed sets are constructed in comprehension. Such
ideas are exploited in several theories, including set theory and simple type
theory.

In Zermelo’s set theory and in its extension Zermelo-Fraenkel set theory,
the basic notion is that of set and functions are defined as relations. Thus the
language does not contain symbols & and £, but a symbol €.

When P is a proposition, it is not always possible to form the set of objects
verifying the property P. This is only allowed in four cases.

o If x and y are two sets, we can form the set {z,y} containing exactly =
and y (the symbol {, } is a function symbol),

o If z is a set we can form the set |J(z) containing the elements of the
elements of z,

o If z is a set, we can form a set p(z) containing the subsets of z.

o If  is a set and P is a proposition containing variables y, z1, ..., 2, We
can form the subset of z of the elements y verifying P. This set can be
written fy ... 2. p(%,21,-.., 2n) Where f, ., . pisa function symbol.

The axioms are
ze{z,yl e (z=zVz=y)

ye|J@) & @z (yeznzen)
y€Epx)e Vz(zey=z2€u))

Yy € fy,zl,...,z",P(-Tyzl, 7zn) = (y S A P)

There is no way to construct the set of sets that do not belong to themselves
and Russell’s paradox is avoided.
In predicate logic modulo, these axioms may be transformed into rewrite
rules
te{u,v} —t=uVvVt=v

tEU )— Az (t€EzNzEW)
tep(u) —Vz(ze€t=>2€u)

t € fyzizn,P(U01, ., 0,) —> € UA ()Y, v1/21, .., Un/2n) P

This system does not terminate as the proposition fy —yey(z) € fy,-yey(2)
reduces to fy —yey(z) € A fy ~yey(®) € fy-yey(x). Thus, if we call A the
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proposition fy —yey(x) € fy -~yey(x) and B the proposition f, —yey(z) € = we
have
A— BA-A

The decidability of the congruence relation generated by these rule is an open
problem.

3.3 Simple type theory

Simple type theory originates from the work of A.N. Whitehead and B. Russell.
It is another way to restrict naive set theory to avoid paradoxes. In this theory,
the basic notion is that of function. Each function has a domain of definition
and the application (f t) can be constructed only when ¢ belongs to the domain
of the function f, otherwise it is prohibited by the syntax. Hence simple type
theory is a many-sorted theory. Taking all sets as possible function domains,
i.e. all sets as sorts, makes it difficult to decide if a term (f t) is well-formed or
not because we need to decide if the term ¢ designates an object that belongs
to the domain of f or not. Moreover as an object can belong to several set, it
should have several sorts. In type theory, an object has only one sort that is the
maximal set it belongs to. It is called the type of this object. There is one type
¢ for atoms and one type o for propositional contents, then each time we have
two types T and U, we can form the type T — U of functions mapping objects
of sort T to objects of sort U.

Definition 3.3.1 (Simple types) Simple types are closed terms formed with
the individual symbols v and o and the function symbol — of two arguments.

To ease notation, we write Ty — To — ... » T, — U for the type (Ty —
(Ty... = (T, = U)..)).

Definition 3.3.2 (Language of type theory) The language of simple type
theory in predicate logic modulo is formed with

e q predicate symbol € of rank (o),
e for each pair of type T,U, a function symbol ary of rank (T — U, T,U),

o for each triple of types T,U,V an individual symbol Sty of sort (T —
U-V)-T->U)>T->YV,
for each pair of types T, U an individual symbol K1y of sortT - U = T,
individual symbols T and L of sort o,
an individual symbol = of sort o — o,
individual symbols A, V, = of sort 0 = 0 — o,
for each type T, individual symbols V1 and Ir of type (T — 0) — o.

Definition 3.3.3 (Rewrite system of type theory) The rewrite system T
is defined by the rules

(Stuyv Ty z) — ((z 2) (y 2))
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(Krpzy) —w
e(T) — T
e(l) — L

z) — —e(x)

) — &(x) Ne(y)
e(Vzy) — () Vely)

) — e(z) = e(y)

— Vyelzy

e(=

eAzxy

=y
e(Vr

) )
e(Gr #) — 3y ez y)
Proposition 3.3.1 (Comprehension) For each term t there is a term u not
containing the variable x such that (u x) =t. For each proposition P there is a

term u such that e(u) = A.

Proof. By induction over the height of ¢.

o If t = x then we take u = (S K K), we have (u ) = (S K K z) =

e If ¢t is a variable different from z or an individual symbol, we take u =
(K t), we have (uz) = (K tz) =t.

e If ¢ = (t1 t2), then by induction hypothesis, there are terms u; and ws
such that (u1 =) =t and (us x) = t2. We take u = (S u1 u2). We have
(uz)= (S ur u2 ) = (u1 ) (u2 ) = (1 t2) = t.

By induction over the height of A.
o If A =¢(t), we take u =t.

e If A= BAC, then by induction hypothesis, there are terms v and w such
that e(v) = B and e(w) = C. We take u = (A v w). We proceed the same
wayif A=T,1,-B,BvCor B=C.

e If A =Vz B, then by induction hypothesis, there is a term v such that
e(v) = B and there is a term w not containing z such that (w z) = v
and hence e(w ) = e(v) = B. We take u = (V w). We have e(u) =
Vz e(w x) = Vz B. We proceed the same way if A = 3z B.

Definition 3.3.4 (Leibniz’ Equality) By the proposition 3.3.1 there is a term
= such that

e(=zy)=Vp(e(pz)=>elpy))
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Excercise 3.3.1 Prove
Vx e(x=x)

and for each proposition A
Ve Yy (e(e2y) > (2/2)A = (y/2)4))

To prove that the rewrite system 7 is terminating, we first focus on the two
first rules.

Proposition 3.3.2 (Tait’s theorem) The rewrite system

(Sruy zy 2) — ((z 2) (y 2))
(Kry zy) — =
is strongly terminating.

Proof. The set of reducible terms of type T is defined by induction over the
height of T'.

e If T is ¢+ or o then t is reducible of type T if and only if it is strongly
terminating.

o If T =T, — T, then t is reducible of type T if and only if for every
reducible term u of type T1, the term (¢ u) is reducible of type T>.

We prove by induction over the height of T' that
e (1) all reducible terms are strongly terminating and

e (2) variables and individual symbols other than S and K are reducible
terms.

Let T=U1 5 ... > U, =V (V=vorV =o0). (1) If tis a reducible
term of type T, then let z1, ..., z,, be variables of types Ux, ..., U,. By induction
hypothesis, the variables z1, ..., z, are reducible. Hence, the term (¢ z; ... ) is
reducible and its type is either ¢ or o. Hence it is strongly terminating and so is
t. (2) If z is a variable of type T or an individual symbol of type T different from
S and K, then let ug, ..., u, be reducible terms of types Uy, ..., U,,. By induction
hypothesis the terms uq, ..., u, are strongly terminating. A reduction sequence
starting from (z wu; ... u,) reduces redexes in the terms ui, ..., u,. Hence, it is
finite. The term (z u; ... ) is strongly terminating and its type is ¢ or o, hence
it is reducible. Thus, z is reducible.

Then, we prove by induction over the height of ¢ that every term is reducible.

e If ¢ is a variable or an individual symbol different from S and K then it
is reducible.

e If t = (u v), then the terms v and v are reducible by induction hypothesis,
and the term ¢ is reducible.
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Ift = K (resp. t =S5) thenlet U; - ... 2 U, >V V=v0rV =0)
be the type of ¢t and let wuy, ..., u, be reducible terms of types Uy, ..., Uy,.
We have to prove that the term (K wy ... up) (resp. (S up ... up)) is
strongly terminating. Consider a reduction sequence tg,t1,ta, ... starting
from the term (K w1 ... un) (resp. (S w1 ... up)). We have to prove
that this reduction sequence is finite. If the root redex is never reduced,
all reductions take place in uq, ..., u,, these terms are reducible and hence
strongly terminating and the reduction sequence is finite. If the root redex
is reduced at step m, then the term ¢,, has the form (K w} u} uj... ul)

n
(resp. (S u} uh uj... uw))) and the term ¢,,41 is (v} uf ... ul) (resp.
(uy uh (uh ub) uy ... ul)) where v} is a reduct of uy, ..., ul, is a reduct

of u,. The term (u1 uz ... up) (resp. (ur us (us u3z) ug ... uy)) is re-

ducible, hence it is strongly terminating and the term (u} uj ... ul,) (resp.

(u] uf (uh uf) uwly ... ul)) is strongly terminating, thus the reduction se-

quence tg, t1,t2, ... is finite. Therefore, the term K (resp. S) is reducible.

All terms are reducible, hence all terms are strongly terminating.

Proposition 3.3.3 The rewrite system T is strongly terminating.

Proof. We reduce termination in 7 to termination in the system SK. We define
a translation || || of the terms and the propositions of type theory into terms of
type theory. In each type T', we choose a variable zr.

|z = =z,

I1Stuvl =Stuv,

|Krull = Kru,

1 W)l = (2] [Jl]),

||T|| = |1l = ((S K K) z,),
I-]l = (S K K),

Al =NVl = lI=[l = (S K K) 2000,
IVzll = [3rll = (S (§ K K) (K 21)),

le@®I = izll,
T = [I-LIl = 2o,
I=All = [IAll,

[AA B[l = [[AV B[l = [[A = B|| = (20~ [|All [|BI),
V2 All = |13z Al| = [|(z/2)All

We check that if A rewrites in one step to B in 7T, then ||A|| rewrites in
at least one step to ||B|| in SK. If Ay, A, Ao, ... is a reduction sequence in T,
then the sequence || Ao|l, || A1l, ||Az2]l, --- is a reduction sequence in SK, thus it is

finite.

Proposition 3.3.4 The rewrite system T is confluent.
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Proposition 3.3.5 Each term (resp. proposition) has a unique normal form
for the rewrite system T and the congruence generated by this system can be
checked in an algorithmic way.

Proof. It is terminating and confluent.

Proposition 3.3.6 Type theory has a model.

Proof. Consider the model

M, = {0}
M, = {0,1}
— My
Mroy = MY

KT,U = ar— (b = a)
a(a,b) = a(d)
€a) = a
T =1
i =0
(@) = 1if a=0and 0 otherwise
/'A\(a, b) = 1lifa=1andb=1 and 0 otherwise
f/(a, b) = 1lifa=1orb=1 and 0 otherwise
:'>A(a, b) = 1ifa=0orb=1and 0 otherwise
YT(a) = 1if for all bin My a(b) =1 and 0 otherwise
3r(a) = 1if there exists a b in My such that a(b) = 1 and 0 otherwise

It is easy to check that |A|s = |B|s when A = B.

3.4 Infinity

A set is said E to be infinite if there is function f mapping elements of E to
elements of E that is injective, but not surjective. In type theory this proposition
Infinite(E) is expressed as follows.

Jda 3f Vx (e(E z) = (E (f z))) AVz Yy ((e(E z) ANe(E y)
Ne((f 2)=(f y))) = e(z=y)) A (Vz (e(E z) = —e(a=(f x))))

Notice that the proposition 3E Infinite(E) is not valid in the model of propo-
sition 3.3.6, hence it is not provable. If we replace M, by the set N in the
model of proposition 3.3.6, we keep a model of type theory and the proposition
3E Infinite(E) is valid in this model. Thus, the proposition —=3E In finite(E)
is not valid in this model and therefore it is not provable either. Indeed, so far
neither in type theory nor in set theory we have given an axiom that permits to
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construct an infinite set. To be able to formalize mathematics we need to add
such an axiom.

In type theory, we add an axiom expressing that the set of objects of type ¢
is infinite. Thus, the set E is such that ¢(E z) = T and we can formulate the

axiom
Ja 3f Vo Vy (e((f 2)=(f y)) = e(z=y)) A (Vz —e(a=(f 7))

Instead of taking an existential axiom, we can give a name to the function and
to the element that is not in its image. For instance, we can call them Swu and
0 and we get the two axioms

Vz Yy (e((Su z)=(Su y)) = e(z=y))
Vo —e(0=(Su z))

that are two of Peano’s axioms.
These axioms become theorems if we add some symbols and rewrite rules.

Definition 3.4.1 (Type theory with infinity) Type theory with infinity is
the extension of type theory with individual symbols 0 of type 1, Su and Pred of
type ¢ — ¢, an individual symbol Null of type v — o and the rules

(Pred (Su x)) — «

(Null 0) — T
(Null (Su 0)) — L

Excercise 3.4.1 In simple type theory with infinity, prove the propositions
Va Yy (e((Su 2)=(Su y)) = e(z=y))
Vz —e(0=(Su x))
Proposition 3.4.1 Type theory with infinity has a model.

Proof. Consider the model

M, = N
M, = {0,1}
Mr,y = MMT
0 = o,
Su = nen+ 1,
Pred = n +— if n =0 then 0 else n — 1,
Null = nwif n=0then 1 else 0,
Sruy = am (b= (e ale) (b))
KT,U = ar (b — a)
a(a,b) = a(b)

€la) = a
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T o= 1
i =0
(@) = 1if a=0and 0 otherwise
;\(a, b) = 1lifa=1andb=1 and 0 otherwise
f/(a, b) = 1lifa=1orb=1 and 0 otherwise
:'>A(a, b) = 1ifa=0orb=1and 0 otherwise
\;fT(a) 1if for all b in M7 a(b) =1 and 0 otherwise

3r(a) = 1if there exists a b in My such that a(b) = 1 and 0 otherwise
It is easy to check that |A|, = |B|s when A = B.

There are many ways to construct the natural numbers in type theory with
infinity (as finite cardinals, ...). An easy way is simply to take 0 for zero and
(Su n) for the successor of n.

Then the type ¢ contains all the natural numbers, but possibly also other
objects. The set of natural numbers can be defined as the smallest set containing
0 and closed by successor, i.e. as the intersection of all such sets. An object is a

member of N if it is a member of all sets E containing 0 and closed by successor.
Thus

e(Nn)=VE ((e(E 0) A (Vz (e(E z) = e(E (Su z))))) = ¢(E n))
The existence of such an object given by proposition 3.3.1.
Excercise 3.4.2 Prove the induction theorem

VE (¢(E 0) AVz (e(E z) = e(E (Su z)))) = Vn (e(N n) = £(E n))

3.5 More axioms

3.5.1 Extensionality

In mathematics, it is usual to consider that two sets that have the same elements
are equal and that two functions that are point-wise equal are equal. This leads,
both in set theory and in type theory to the aziom of extensionality. In type
theory, this axiom is stated

Vi Vg (Ve e((f 2)=(9 2))) = e(f=9))
vz Vy (e(z) & e(y)) = e(z=y)

3.5.2 Descriptions

The proposition 3.3.1 permits for instance to prove the existence of a function
that adds two to its arguments, i.e. the proposition

Af Ve e((f 2)=(Su (Su x)))



46 CHAPTER 3. TYPE THEORY

but, it does not permit to prove the existence of a function that takes the value 1
on 1 and the value 0 anywhere else. Indeed, it can be proved that the proposition

Af Vo ((e(z=(Su 0)) = e((f 2)=(5u 0))) A (me(z=(Su 0)) = &((f 2)=0)))

has no proof in type theory.
In contrast, with the proposition 3.3.1, it is easy to prove the existence of
the graph of this function, i.e. the proposition

AR Vz Vy (e(R z y) & ((e(z=1) = e(y=1)) A (me(z=1) = e(y=0))))

and we can also prove, for instance by induction, that this relation is functional,
i.e. that
Vz (e(Nz) = 'y e(R z 5))

But to conclude to the existence of the function we need the following axiom
(descriptions axiom)

VPVYQ (Vr (e(Pz) =y e(Qzy)) = 3If Vz (e(P 2) = (Q z (f 7))

that relates functions and functional relations.
In set theory, functions are functional relations, thus they need no axiom to
be related.

3.6 Type theory with a binder

We have seen in proposition 3.3.1 that to have a language containing the function
symbols ary and the individual symbols Sty,v and Kty and the related
rewrite rules is sufficient to prove that, for each term ¢ and variable x there
is a term w not containing the variable z such that (u ) = t. But, the term
1 is sometimes cumbersome to compute. It is more comfortable to have a
symbol — such that the function mapping x to ¢ can simply be written x +— .
The symbol — is a function symbol of one argument binding one variable in
its argument. When we take the symbol —, the symbols S and K become
superfluous (S =z~ y— 2z ((x 2) (y 2), K =z — y — z). We thus get
the following theory.

Definition 3.6.1 (Language of type theory with a binder) The language
of simple type theory with a binder is formed with

e q predicate symbol € of rank (o),

o for each pair of type T,U, a function symbol ary of rank (T — U, T,U),
for each pair of types T, U a function symbol — of rank ((T,U),T — U),

o individual symbols T and L of sort o,
an individual symbol — of sort o — o,
individual symbols A, V, = of sort o — 0 — o,
for each type T, individual symbols V7 and 31 of type (T — o) — o.
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Definition 3.6.2 (Rewrite system of type theory with a binder) The rewrite
system T is defined by the rules

((x = t) u) — (u/z)t

e(T) — T
e(l) — L
e(5 7) — —e(2)
e(A zy) — e(z) Nely)
e(Vzy) — e(x) Vely)
e(=zy) —e(x) = ey)
e(Vr ) — Vy e(z y)

E(QT z) — Jy e(x y)

To prove that the rewrite system 7" is terminating, we first focus on the first
rule.

Proposition 3.6.1 (Tait’s theorem with a binder) The rewrite system
((x = t) u) — (u/x)t
s strongly terminating.

Proof. The set |T'| of reducible terms of type T is defined by induction over the
height of T'.

e If T is 1 or o then t is in |T'| if and only if it is strongly terminating.

o If T =T, — T, then t is in |T| if and only if it is strongly terminating
and when its reduces to a term of the form x — ¢’ then for every term u
in |T1|, (u/x)t' is in |T»|.

To prove that all terms of type T' are strongly terminating, we prove that
all terms of type T are in |T'|. More generally, we prove, by induction over the
height of ¢, that if ¢ is a term of type T', ¢ a substitution mapping variables of
type U to elements of U], then ot is in |T|.

o If t = y, then if y is in the domain of o then ot is in |T|. Otherwise,
ot = y, the variable y is normal, hence it is strongly terminating and it
cannot reduce to a term of the form z — ¢', hence it is in |T.
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e If t =2 — u, then T =T, — T3. Modulo alphabetic equivalence, we can
chose the variable x not appearing in o, thus ot = x — ou. This term is
strongly terminating because a reduction sequence issued from it can only
reduce the term ou and, by induction hypothesis, this term is in |75| and
thus it is strongly terminating. Then, if ot reduces to the term z — t/,
then ¢’ is a reduct of ou. Let v be a term of |T»|, the term (v/z)t' is a
reduct of ((v/x) o o)u, that is in |T3| by induction hypothesis. It is easy
to check that |T3| is closed by reduction. Thus the term (v/x)¢' is in |T5|.

Hence, the term ot is in |T.

o If t = (t1 t2) and ¢; is a term of type U — T and t; a term of type U.
We have ot = (ot; ots). By induction hypothesis ot; and oty are in the
sets [U — T'| and |U|. To prove that ot is in |T|, we prove that if u is in
|U — T'| and us is in U then (uy us) is in |T|.

The terms u; and us are strongly terminating. Let n be the maximum
length of a reduction sequence issued from u; and n' the maximum length
of a reduction sequence issued from us. We prove that (uq us) is in |T|
by induction on n + n'.

First we prove that (u; u2) is strongly terminating. Consider a reduction
sequence issued from this term. If the first redex is in u; or us then we
apply the induction hypothesis, otherwise the redex is at the root of the
term (u; uz2), u; has the form z — ' and the first step of the reduction
sequence reduces (u; uz) to (uz/x)u’. This term is in |T|, hence it is
strongly terminating and the reduction sequence is finite. Then, we prove
that if T'= U; — U, and (u; us) reduces to a term of the form y — v, then
for every term w in |Uy|, (w/y)v is in |Us|. As (u1 uz) is an application,
the reduction sequence is not empty. If the first redex is in uy or us, we
apply the induction hypothesis, otherwise the redex is at the root of the
term (u; u2), u; has the form z — ' and the first step of the reduction
sequence reduces (u; uz2) to (uz/z)u’. This term is in |T| and it reduces
to y — v, hence for every term w in |Uy|, (w/y)v is in |Uz|. Thus the term
(u1 we) isin |T.

Proposition 3.6.2 The rewrite system T' is strongly terminating.

Proof. We follow the lines of the proof of proposition 3.3.3 and reduce termina-
tion in 7' to termination in the system formed with the first rule. We define a
translation || || of the terms and the propositions of type theory into terms of
type theory. In each type T, we choose a variable zr.

o ||zl = =,
o llz =t ==z~ i,

o [[E w)l = (Il flull),
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o [[TIh= Ll = ((z = 2) o),
=)l =z — 2,

Al =1IV]l = [I2]l = (2 = ) Zom00),
IVrll = 3zll = 2 = (2 21),
o lle@)l = [I£l;
T = [I-LIl = 2o,
I=All = [[All,

[AA B[l = |[[AV B|| = [[A = Bl = (2000 [|All [|BI]),
Ve All = B2 All = [|(zr/2)All-

We check that if A rewrites in one step to B in T, then ||A|| rewrites in at
least one step to || B]| in the system formed with the first rule. If Ag, A;, As, ... is
a reduction sequence in 7, then the sequence ||Ao||, || A1]l, || A2]|, --- is a reduction
sequence in the system formed with the first rule, thus it is finite.

Proposition 3.6.3 The rewrite system T' is confluent.

Remark. If we add the axiom of extensionality to both formulations of type
theory we get equivalent theories, i.e. each language can be translated into the
other preserving provability. When we do not take the extensionality axioms,
there are subtle differences between these theories, we shall not discuss here.

Remark. Some authors use the notation Ax t for z — ¢, hence the name \-
calculus for this language.
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Chapter 4

Cut elimination in
predicate logic

4.1 Uniform proofs

A natural deduction proof built without the excluded middle rule is said to be
constructive. The choice of this name comes from the fact that, as we shall see,
from a constructive proof in the empty theory of a proposition of the form 3z A,
it is possible to compute a term ¢ and a proof of the proposition (¢/z)A. Such a
term ¢ is called a witness of the proposition 3z A. Thus, explicitly or implicitly,
a constructive existence proof contains a witness.

Conversely, from a term ¢ and a proof of (t/z)A, the rule F-intro permits to
build a proof of the proposition 3z A. A proof ended by an introduction rule
is said to be uniform. Witnesses are explicit in uniform existence proofs. Thus,
it is equivalent to have a term ¢ and a proof of (¢/z)A or a uniform proof of
the proposition 3z A. To prove that from a constructive proof of a proposition
of the form Jdz A we can compute a witness, we shall prove that all proofs can
be transformed into uniform ones. For instance, the non uniform proof of the
proposition 3z (P(z) = P(z))

P(c) - P(c) .

3z (P(z) = P(x)) F 3z (P(z) = P(z)) . FP(c) = P(c) ~ntro
F3z (P(2) = P(2)) = 3z (P(2) = P(2)) 7 " F 3z (P(x) > P()) - 00°
F3z (P(z) = P(2)) =-elim

will be transformed into
P(c)F P(c)

F P(c) = P(c) T-intro
F 3z (P(x) = P(x))

From the fact that all proofs can be transformed into uniform ones, we will
deduce that

=-intro

e if A is an atomic proposition then it has no proof,

51
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1 has no proof,

e if A has a proof then | has a proof from the axiom A,

e if AA B has a proof then A has a proof and B has a proof,

e if AV B has a proof then A has a proof or B has a proof,

e if A = B has a proof then B has a proof from the axiom A,

e if Vx A has a proof then A has a proof,

e if 3z A has a proof then there is a term ¢ such that (¢/x)A has a proof.

The results obtained for the case of T, =, A, = and V are trivial, they can
simply be established with the elimination rules. The interesting results are
thus for L, V and 3. The result in the case of the existential quantifier 3 is the
witness property. The result obtained in the case of the disjunction V is called
the disjunction property. The result obtained in the case of the contradiction
L is the consistency of the empty theory. Thus, like model constructions, proof
transformation results permit to prove consistency and independence results.

Excercise 4.1.1 (Independence of the Excluded middle rule) Consider
a language formed with a proposition symbol P and a theory containing no ax-
ioms and no rewrite rules. Construct a model where the proposition P is not
valid. Does this proposition have a proof ? Construct a model where the propo-
sition =P is not valid. Does this proposition have a proof ? Does the proposition
PV =P have a constructive proof ?

Excercise 4.1.2 Consider a language formed with o proposition symbol P and
a theory containing no axioms and no rewrite rules. Construct a model where
the proposition P is not valid. Does this proposition have a proof ? Construct a
model where the proposition —P is not valid. Does this proposition have a proof ¢
Does the proposition PV —P have a proof (possibly using the excluded middle
rule) ¢ Does natural deduction with the excluded middle have the disjunction
property ?

Excercise 4.1.3 Consider a language formed with a proposition symbol P, a
predicate symbol () of one argument and two individual symbols 0 and 1 and a
theory containing no axioms and no rewrite rules. Construct a model where the
proposition

(((Q(0) = Q0)) AP) V (Q(1) = Q(0) A =P))
is not valid. Does this proposition have a proof ? Construct a model where the
proposition

(((QO) = QM) AP) Vv (Q(1) = Q(1) A—=P))

is not valid. Does this proposition have a proof ? Does the proposition

3z ((Q0) = Q(=)) A P) v (Q(1) = Q(z) A=P))

have a proof (possibly using the excluded middle) ¢ Does natural deduction with
the excludes middle rule have the witness property ¢
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Remark. Some problems in mathematics have the form “Find an object z
such that A”. One way to solve such a problem is to prove constructively the
proposition dz A, to transform this proof into a uniform one and to read the
witness in the proof. For instance, finding the quotient of the division of 9 by 2
can be done in the following way: fist prove constructively the proposition

dgIr (9=2xqg+rAr<2)

then transform this proof into a uniform one and read the witness in the proof.
One advantage of proceeding this way, compared to other division algorithms,
is that the result cannot be wrong. Indeed, a uniform proof of

dgIr (9=2xqg+rAr<2)
not only contains the witness 4 but also a proof of the proposition
Ir (9=2x4+rAr<2)
Of course, finding a proof of the proposition
dgIr (9=2%xg+rAr<2)
may be tedious, but it is not if we prove once for all the proposition
VanVp (-(p=0)=3J¢3Ir(n=pxqg+rAr<p))

Notice that when we apply this theorem to 9 and 2 and to a proof of =2 = 0 we
get a proof of
dgIr (9=2xqg+rAr<2)

that is not uniform. Thus, this proof needs to be transformed before the witness
can be read. The quotient 4 is computed during this transformation. Thus cut
elimination is the execution process of mathematics seen as a programming
language.

4.2 Cuts and cut elimination

Definition 4.2.1 (Cut, cut free) A cut is a proof ended with an elimination
rule whose left premise is proved by an introduction rule on the same symbol.

Here are the different cases
s
AR L | . 7
rF-4 "™ Tra4
TEL —-elim

’
™ ™

I'HrA T'+B
THFAAB li
“TFA N-elim

N-intro
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!
™ T

'+A T+HB
I'FAAB i
“TEFB N-elim

A-intro

™
T'HA . 7T' '
TFAvB ™™ T Arc T.BFC
TFC

V-elim

™
I'HB . ' '’
TFAVvB "™ T Arc T.BFC
TFC

V-elim

™

TA+B - '
TFA= B ™™ TFra

'+B

_T
e .
PV 47
T+ (t/z)A ™
__ T
'k (t/x)A _ . il
TFaz A 20 T Arp
I'HB

J-elim
A proof contains a cut if one of its sub-trees is a cut. Otherwise it is cut free.
It is easy to check that cut free proofs in the empty theory are uniform.

Proposition 4.2.1 In the empty theory, a cut free proof ends with an intro-
duction rule.

Proof. By induction over the height of the proof. The last rule cannot be
an axiom rule, because the theory contains no axioms. If the last rule is an
elimination, then the left premise of the elimination is proved with a cut free
proof. Hence it ends by an introduction and the proof is a cut contradicting the
fact that it is cut free.

Thus to prove that all proofs can be transformed into uniform ones we will
prove that all proofs can be transformed into cut free ones. To do so, we define
a process that eliminates cuts step by step. A cut of the form

T

TVAF L - w’

TFaA "M% pg
TEL —-elim

is replaced by the proof obtained this way: in the proof m we suppress the
hypothesis A in all sequents, then each time the axiom rule is used with this
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proposition, we replace it with the proof #’. A cut of the form

/

T  _T
r-A =B .
TFAAB /\l-'lntro
“TFA A-elim
is replaced by the proof . A cut of the form
"
'r-A I'+B . ¢
FI—A/\BAAl',m ro
rrp /O
is replaced by the proof «'. A cut of the form
_m
T'HFA Veint w !
TFAvB ""™°T ArC T,BFC
TFC V-elim

is replaced by the proof obtained this way: in the proof 7' we suppress the
hypothesis A in all sequents, then each time the axiom rule is used with this
proposition, we replace it by the proof 7. A cut of the form

_mT

T+FB Veint w !

TFAvB "™°T ArC T,BFC
TFC V-elim

is replaced by the proof obtained this way: in the proof 7" we suppress the
hypothesis B in all sequents, then each time the axiom rule is used with this
proposition, we replace it by the proof 7. A cut of the form

_ T

I'A+B ) a

TFA= B M0 g
TFB =-elim

is replaced by the proof obtained this way: in the proof 7 we suppress the
hypothesis A in all sequents, then each time the axiom rule is used with this
proposition, we replace it with the proof #’. A cut of the form

™
'HA
'FVz A B
mv-ehm

V-intro

is replaced by the proof m where the variable z is substituted by the term ¢
everywhere. A cut of the form

™
DF(t/z)A _ . 7
TFaz A T2 FAF B

TFB J-elim
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is replaced by the proof obtained this way: in the proof 7', we substitute the
variable z by the term t everywhere, then we suppress the hypothesis (t/z)A
in all sequents and each time the axiom rule is used with this proposition, we
replace it with the proof =.

Excercise 4.2.1 Eliminate the cuts in the proof

_P@QEPEQ .
Je (P(@) > P@) F3e (P@)=> P@) _ .. FP=P~ """
F 3z (P(z) = P(z)) = 3z (P(z) = P(z)) P 3o (P(2) = P(@) 2 i

F 3z (P(x) = P(x))

When a proof contains a cut, it is always simple to remove it, thus the cut
elimination process is not difficult to define. But removing a cut may create
new cuts, so the main question is that of the termination of this process.

4.3 Proofs as terms

The cut elimination process of the previous section is still cumbersome to ex-
press. This is due to the fact that we use a too cumbersome notation for natural
deduction proof. The goal of this section is to introduce another notation for
these proofs.

As we have seen, one of the key operations in this proof transformation
process is the substitution of a variable by a term. Another key operation is
the following: in a proof 7w of the sequent I'y) A F B, remove the hypothesis
A in all sequents and replace the axiom rules on this proposition by a proof
7' of the sequent T' - A. To be able to express smoothly this operation, it is
better to use a notation where proofs are expressed by terms containing special
variables standing for proofs of the hypotheses. Thus to express a proof of a
sequent Aj,..., A, F B we shall first introduce variables &, ..., &, standing for
proofs of the propositions Ay, ..., A,. If B is the proposition A; and the sequent
Ay, ..., Ay B A; is proved with the axiom rule, we shall write this proof &;.

Now a proof « of the sequent I'; A F B is expressed by a term containing one
variable for each proposition of I' and a variable £ for A and the proof obtained
by removing the hypothesis A in all sequents of 7 and replacing the axiom rules
on this proposition by a proof 7’ of the sequent T F A is simply obtained by
substituting the proof 7’ for the variable £ in 7.

For each natural deduction rule, we introduce a function symbol. To express

a proof such as
!

™ T
'rA I'B .
TFAAB A-1ntro

we express first the proofs 7 and 7’ as terms, then we apply the function symbol
of two arguments associated to the rule A-intro to = and 7'.

In the case of the rule =-intro, we transform a proof 7 of the sequent T', A -
B into one of the sequent I' H A = B containing less hypotheses. The proof 7
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is expressed by a term containing a variable £ standing for a proof of A. This
variable must not appear in the proof of I' - A = B. Thus the function symbol
associated to the rule =-intro must be a binder.

From now on, to simplify proofs, we shall drop the negation symbol —.
Everything works for the proposition = A as for the proposition A = 1.

Definition 4.3.1 (Term notation for proofs) We express proofs as terms
in a language with two sorts: one for terms of the theory and the other for
proof-terms. Terms of the theory will be written with Latin letters (t, u, ...)
while proof-terms will be written with Greek letters (m, ...).

e The proof

s expressed by the term &;.

e The proof

TeT T -intro

s expressed by the term I, where I is an individual symbol.

e The proof
™
'L
mJ_-ClZ'm
is expressed by the term &6, (7), where §, is a function symbol of one
argument.
e The proof
T
T'+tA T'HFB .
TTEAAB A-wntro
is expressed by the term (mw,n'), where (,) is a function symbol of two
arguments.
e The proof
T
'AAB

Tra N-elim
is expressed by the term fst(m) and the proof
™

I'AAB i
TFA N-elim

is expressed by the term snd(m) where fst and snd are function symbols of
one argument.
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The proof

_T
A
'AVB

is expressed by the term i(w) and the proof

V-intro

_m_
I'+B -
TFAvB '
is expressed by the term j(w), where i and j are function symbols of one
argument.

The proof
T 7]" 7'['”
TFAVB T,AFC T,BFC
TFC V-elim

is expressed by the term 6(mw, & ', x @), where § is a function symbol of
three arguments binding one variable in its second argument and one in
its third.

The proof

T
A+ B
''+A=B

is expressed by the term & — w, where — is a function symbol of one
argument binding one variable in its argument.

The proof

=-intro

’
m ™

'rA=B TIFHA
'kB

=-elim

is expressed by the term a(m,n'), where a is a function symbol of two
arguments. This term is also simply written (7 7).

The proof

T
rEa
T Fvg A 7o

is expressed by the term x — w, where — is a function symbol of one
argument binding one variable in its argument.

The proof

T
I'kve A

m V-Cl'&’m

is expressed by the term a(mw,t) where a is a function symbol of two argu-
ments. This term is also simply written (7 t).
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e The proof
__ T
TF (/o)A _
Traga o
is expressed by the term (t,7) where {,) is a function symbol of two argu-
ments.
e The proof
i 7T,
[F3cA TLAFB_ .
TFB -ewm

is expressed by the term d3(mw,x€ ') where 63 is a function symbol of two
arguments binding two variables in its second argument.

Excercise 4.3.1 Write the term associated to the proof

_POFPQ _
dz (P(z) = P(x)) F 3z (P(z) = P(z)) ) F P(c) = P(c) .
=-intro I-intro
F 3z (P(z) = P(z)) = 3z (P(z) = P(z)) F 3z (P(z) = P(x)) s elim

F 3z (P(x) = P(x))

Remark.(An historical note on the choice of symbols) The choice of these sym-
bols comes from a tradition due to Brouwer, Heyting and Kolmogorov, according
to which

e there is only one proof of T,

e there is no proof of L,

a proof of A A B is an ordered pair formed with a proof of A and a proof
of B,

a proof of AV B is a boolean value together with a proof of A or B
according to the value of the boolean,

a proof of A = B is a function mapping proofs of A to proofs of B,

a proof of Vz A is a function mapping any object ¢ to a proof of (t/z)A,

a proof of 3z A is an ordered pair formed with a term ¢ and a proof of
(t/x)A.

Remark. (Types of proofs) If 7 is a proof of B under the hypothesis A then
& — mis a proof of A = B. As all proofs have the same sort, the proof-term
¢ — 7 does not have a type, but if we wanted to give a type to it, it would
get the type A’ — B’ where A’ is the type of proofs of A and B’ the type of
proofs of B. Thus the type of a proof would be isomorphic to the proposition
proved by the proof-term. This isomorphism is called Curry-de Bruijn-Howard
isomorphism. In particular it can be proved that a type contains a closed term



60 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

in the language of definition 3.3.2 or 3.6.1 if and only if this type is isomorphic
to proposition that has a constructive proof.

As proof-terms have no type, there are proof-terms that are proof of no
proposition. For instance, if P is a proposition symbol and ¢ a variable standing
for a proof of P then the proof-term (£ &) does not corresponds to any proof.
The natural deduction rules are now used to express which proof-terms is a a
proof of which proposition. We use a notation & : Ay,...,&, : A, 7 : B to
express that 7 is a proof of the sequent Ay, ..., A, F B where &1, ..., &, are the
names given to the variables of standing for proofs of the propositions Ay, ..., 4.
The rules are the following.

Definition 4.3.2 (Deduction rules with proofs)

mAZL’ZO’I’TL 'lf€A€F

m T-intro

'kw: L L -eli
TFo,(m):A &M

'7n:A T+a':B

Ck{mn'y: AANB A\-aniro
IT'7n:AANB i
FI‘fSt(W):A/\_e mm
I'mn:AANB i
T+ snd(w) g \enm

'kFn:A Veint
TFi(m:AvB ™"
I'Fn:B Veint
Tkjr):AVvB “onero

Ttan:AVB T,6:Ak7':C T,x:Bra":C
Tk §(mén',xn") : C

é:Arn:B
'ré-»n:A=B

'tn:A=B T+7a:A

V-elim

=-intro

F'k(ra'):B = -elim
'kn: A . .
rme:vav""tm ifx ¢ FV(T)
I'tn:Vz A

TF (7 0): (¢/z)A ° cim
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F'kr:(t/z)A _ .
TF (¢, ) : 3z A o

Ftr:3z A T,6:A+7': B
[+ é5(m,xén’) : B

-elim if x ¢ FV (T, B)

Proposition 4.3.1 A sequent Ai,..., A, - B is derivable in natural deduction
if and only if there exists a term w such that the judgment & : Ay, ..., &, Ap b
7 : B is derivable in this system.

The cut elimination rules can now be rephrased on the proof-terms

Definition 4.3.3 (Cut elimination rules)
fSt(<7T1,7l'2) — M

snd((7r1,7r2 ) —> Mo

)
8(i(m1), Eme, xm3) — (m1/€)ms
6(j(m1), Ema, xm3) — (m1/x)73
(€ = m) m) — (m2/&)m
(x> 7)) t) — (t/z)7
03((t,m),Exme) — (t/x,m1 /&)

Proposition 4.3.2 (Subject reduction) If ' - 7 : P and @1 — «' then
Fkx':P.

4.4 Cut elimination

We now want to prove that if a proof-term is a proof of some proposition then
it is strongly terminating. Following the idea of Curry-de Bruijn-Howard iso-
morphism, this proof extends that of proposition 3.6.1.

Definition 4.4.1 (Reducible proof-terms) Let A be a proposition. We de-
fine the set |A| of reducible proof-terms of A by induction over the height of
A.

o If A is an atomic proposition then a proof-term 7 is an element of |A| if
it is strongly terminating.

o A proof-term w is an element of | T| if it is strongly terminating.
o A proof-term 7 is an element of |L| if it is strongly terminating.

o A proof-term 7 is an element of |A A B| if it is strongly terminating and
when w reduces to a proof-term of the form (w1, m2) then w1 is an element
of |A| and 7o is an element of |B|.



62 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

A proof-term w is an element of |AV B| if it is strongly terminating and
when w reduces to a proof-term of the form i(m) (resp. j(ma2)) then m
(resp. w2 ) is an element of |A| (resp. |B|).

A proof-term w is element of |A = B| if it is strongly terminating and
when 7 reduces to a proof-term of the form & — m then for every ' in
|Al, (/&) is an element of |B].

A proof-term 7 is an element of Nz A| if it is strongly terminating and
when 7 reduces to a proof-term of the form x — m then for every term t
(t/x)m is an element of |(t/x)A| (which is equal to |A|).

A proof-term 7 is an element of |3z A| if it is strongly terminating and

when 7 reduces to a proof-term of the form (t,m1) then w1 is an element
of |(¢/x)A| (which is equal to |A]).

Lemma 4.4.1 Elements of |A| are strongly terminating.

Proof. By definition.

Lemma 4.4.2 If 7 is an element of |A| and 1 — 7' then ' is an element of

4]

Proof. By definition.

Lemma 4.4.3 All variables are members of |A|.

Proof. By definition.

Lemma 4.4.4 If 7 is an elimination and if for every ' such that 1 —' 7',
' € |A| then 7 € |A|.

Proof. We first prove that 7 is strongly terminating. Let m# = my,m2,... be a
reduction sequence issued from 7. If this sequence is empty it is finite. Oth-
erwise we have m —! 72 and hence 73 is an element of |A| thus it is strongly
terminating and the reduction sequence is finite.

Then, we prove that if 7 reduces to an introduction then the sub-terms
belong to the appropriate sets. Let # = 71, m2,... 7, be a reduction sequence
issued from 7 and such that m, is an introduction. This sequence cannot be
empty because 7 is an elimination. Thus 7 —! 719 — 7,. We have 75 € |A]
and thus if 7, is an introduction the sub-terms belong to the appropriate sets.

Proposition 4.4.5 (Gentzen-Prawitz theorem) IfT'F 7 : A then the proof-
term w is strongly terminating.
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Proof. By lemma 4.4.1, it is sufficient to prove that if I' - 7 : A then the
proof-term 7 is an element of |A|. More generally, we prove, by induction over
the height of the proof-assignment tree, that if ' F 7 : A, 8 is a substitution
mapping the term variable to terms and ¢ is a substitution mapping some proof
variables associated to a proposition B in T' to an element of |B|, then o is
an element of |A|.

e Axiom. If 7 is a variable £, we have (£ : A) € I". If € is in the domain of
definition of o, then 00¢ = o is an element of | A|, otherwise 06 = o€ = &
is an element of |A| by proposition 4.4.3.

e T-intro. The proof-term 7 has the form I. We have ofn = I. This proof-
term is normal and thus it is strongly terminating. Hence, the proof-term
o6l is in |A|.

e A-intro. The proof-term 7 has the form (p1, p2) where p; is a proof of
some proposition B and ps a proof of some proposition C. We have
o0m = (o0p1,00p2). Consider a reduction sequence issued from this proof-
term. This sequence can only reduce the proof-terms ofp; and o6ps.
By induction hypothesis these proof-terms are in |B| and |C|. Thus the
reduction sequence is finite.

Furthermore, all reducts of ofm have the form (p}, py) where p} is a reduct
of 00p, and pl, one of 68p,. The proof-terms p} and p, are in |B| and |C|
by proposition 4.4.2.

Hence, the proof-term o6{p1, p2) is in |A|.

e V-intro. The proof-term 7 has the form i(p) (resp. j(p)) and p is a proof
of some proposition B. We have o0r = i(a8p) (resp. j(c8p)). Consider
a reduction sequence issued from this proof-term. This sequence can only
reduce the proof-terms ¢8p. By induction hypothesis this proof-term is
an element of |B|. Thus the reduction sequence is finite.

Furthermore, all reducts of ofm have the form i(p") (resp. j(p')) where p'
is a reduct of ofp. The proof-term p' is an element of |B| by proposition
4.4.2.

Hence, the proof-term o6i(p) (respectively 08j(p)) is an element of |A|.

e =-intro. The proof-term 7 has the form £ — p where £ is a proof variable
of some proposition B and p a proof of some proposition C. We have
obr = £ — 00p, consider a reduction sequence issued from this proof-
term. This sequence can only reduce the proof-term o6p. By induction
hypothesis, the proof-term o6p is an element of |C|, thus the reduction
sequence is finite.

Furthermore, all reducts of ofm have the form £ — p’ where p' is a reduct
of o0p. Let 7 be any proof of |B|, the proof-term (7/£)p’ can be obtained
by reduction from ((7/£) o 0)8p. By induction hypothesis, the proof-term
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((1/€) 0 0)8p is an element of |C|. The proof term (7/€)p' is an element
of |C|, by proposition 4.4.2.

Hence, the proof-term o0(£ — p) is an element of |A|.

V-intro. The proof-term 7 has the form z — p where p is a proof of some
proposition B. We have ofr = z — g0p. Consider a reduction sequence
issued from the proof-term ¢fr = z — ofp. This sequence can only
reduce the proof-term ofp. By induction hypothesis, the proof-term ofp
is an element of |B|, thus the reduction sequence is finite.

Furthermore, all reducts of gfm have the form z — p' where p' is a
reduct of ofp. The proof-term (t/x)p' is obtained by reducing the proof-
term ((t/z)o)((t/z) o §)p. By induction hypothesis again, the proof-term
((t/z)o)((t/x) o 8)p is an element of |B|. The proof-term (t/z)p’ is an
element of |B|, by proposition 4.4.2.

Hence 06(z — p) is an element of |A|.

F-intro. The proof-term 7 has the form (¢, p), where p is a proof of some
proposition B. We have g6 = (6t,50p). Consider a reduction sequence
issued from this proof-term. This sequence can only reduce the proof-
term ofp. By induction hypothesis this proof-term is in [B|. Thus the
reduction sequence is finite.

Furthermore, all reducts of o607 have the form (6t, p') where p' is a reduct
of 06p. The proof-term p' is an element of |B|, by proposition 4.4.2.

Hence, the proof-term o6(t, p) is an element of |A|.

L-elim. The proof-term 7 has the form d, (p) where p is a proof of L.
We have o6n = §, (68p). By induction hypothesis, the proof-term cfp
is an element of |L|. Hence, it is strongly terminating. Let n be the
maximum length of reduction sequences issued from this proof-term. We
prove by induction on n that d, (c6p) is in |A|. Since this proof-term is
an elimination, by proposition 4.4.4, we only need to prove that every of
its one step reducts is in [A|. The reduction can only take place in ofp
and we apply the induction hypothesis.

Hence, the proof-term 064 (p) is an element of |A|.

A-elim. We only detail the case of left elimination. The proof-term 7 has
the form fst(p) where p is a proof of some proposition A A B. We have
o0m = fst(ofp). By induction hypothesis the proof-term ofp is in |AA B|.
Hence, it is strongly terminating. Let n be the maximum length of a
reduction sequence issued from this proof-term. We prove by induction
on n that fst(o8p) is in the set |A|. Since this proof-term is a elimination,
by proposition 4.4.4, we only need to prove that every of its one step
reducts is in |B|. If the reduction takes place in o6p then we apply the
induction hypothesis. Otherwise gfp has the form {p}, p5) and the reduct
is p|. By the definition of |[A A B| this proof-term is in |A|.

Hence, the proof-term ofst(p) is an element of |A|.
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e V-elim. The proof-term 7 has the form §(p1,£p2 xp3) where p; is a proof
of some proposition BV C and ps and ps are proofs of A. We have
o0r = §(06p1,Ea0p2, xo0p3). By induction hypothesis, the proof-term
afp; is in the set |[B V C|, and the proof-terms ofp2 and ofps are in the
set |A|. Hence, these proof-terms are strongly terminating. Let n, n' and
n'' be the maximum length of reduction sequences issued from these proof-
terms. We prove by induction on n + n’ +n" that 6(c0p1,00&p2, x00p3)
is in |A|. Since this proof-term is an elimination, by proposition 4.4.4,
we only need to prove that every of its one step reducts is in |A|. If the
reduction takes place in o6p;, g0py or o6ps then we apply the induction
hypothesis. Otherwise, if o8p; has the form i(p’) (resp. j(p')) and the
reduct is ((p'/€) 00)0p2 (resp. ((p'/x)o0)0ps). By the definition of |[BVC|
the proof-term p’ is in |B| (resp. |C|). Hence by induction hypothesis
((p'/€) 0 0)0p2 (resp. ((p'/x) o 0)0p3) is in |A].

Hence, the proof-term o88(p1,&pa, xps) is an element of |A|.

e =-elim. The proof-term 7 has the form (p; p2) and p; is a proof of
some proposition B = A and p, a proof of the proposition B. We have
ofm = (00p1 obp2). By induction hypothesis o6p; and ofp, are in the
sets |B = A| and |B|. Hence these proof-terms are strongly terminating.
Let n be the maximum length of a reduction sequence issued from o6p;
and n' the maximum length of a reduction sequence issued from cfp,. We
prove by induction on n +n' that (c6p1 06p2) is in the set |A|. Since this
proof-term is an elimination, by proposition 4.4.4, we only need to prove
that every of its one step reducts is in |A|. If the reduction takes place in
o0py or in 0fp, then we apply the induction hypothesis. Otherwise c6p;
has the form £ — p' and the reduct is (66p2/§)p’. By the definition of
|B = A| this proof-term is in |A|.

Hence, the proof-term o6(p;1 p2) is an element of |A|.

e V-elim. The proof-term 7 has the form (p t) where p is a proof of some
proposition Yz B and A = (t/z)B. We have o0 = (c6p 6t). By induc-
tion hypothesis, the proof-term ofp is in |Vz B|. Hence, it is strongly
terminating. Let n be the maximum length of a reduction sequence issued
from this proof-term. We prove by induction on n that (68p 6t) is in the
set |A|. As this proof-term is an elimination, by proposition 4.4.4, we only
need to prove that every of its one step reducts is in |A|. If the reduction
takes place in ofp then we apply the induction hypothesis. Otherwise o6p
has the form z — p' and the reduct is (6¢/z)p’. By the definition of |Vz B|
this proof-term is in |A|.

Hence, the proof-term o8(p t) is an element of |A|.
e J-elim. The proof-term 7 has the form d3(p1,z€p2) where p; is a proof

of some proposition 3z B and p; is a proof of A. We have ofr =
03(00p1, z€abp2). By induction hypothesis, the proof-term o8p; is in the
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set |3z B| and the proof-term o6p- is in the set |A|. Hence, these proof-
terms are strongly terminating. Let n and n’ be the maximum length of
reduction sequences issued from these proof-terms. We prove by induc-
tion on n + n' that d3(c0p1,2€06p2) is in |A|. As this proof-term is an
elimination, by proposition 4.4.4, we only need to prove that every of its
one step reducts is in |A|. If the reduction takes place in ofp; or cfp,
then we apply the induction hypothesis. Otherwise, c6p; has the form
(t, ') and the reduct is (p'/€)(t/2)obp2 = ((5'/€) o (t/2)0)((t/) o O)po.
By the definition of |3z B|, the proof-term p’ is in |B|. Thus, by induction
hypothesis, the proof-term ((p'/&) o (t/x)o)((t/x) 0 0)ps is in |A|.

Hence, the proof-term 06d3(p1,&xp2) is an element of |A|.

4.5 Harrop theories

We have seen that constructive cut free proofs in the empty theory are uniform,
and we have deduced the disjunction property and the witness property for the
empty theory. Of course these properties do not extend to all theories, but they
extended to Harrop theories.

Definition 4.5.1 (Harrop theory) The set of Harrop propositions is induc-
tively defined as follows:

e atomic propositions, T and L are Harrop propositions,

e —A is a Harrop proposition,

e AN B is a Harrop proposition if A and B are Harrop propositions,
e A = B is a Harrop proposition if B is a Harrop proposition,

o Yz A is a Harrop proposition if A is a Harrop proposition,

A Harrop theory is a theory whose azioms are all Harrop propositions.

Proposition 4.5.1 LetT" be a Harrop theory. If AV B has a constructive proof
in T, then A or B has a proof in T' and this proof is constructive. If 3x A has
a constructive proof in T, then there is a term t such that (t/x)A has a proof in
I' and this proof is constructive.

Proof. By induction over the height of the proof.

If the proofs ends with an introduction, then the result is trivial.

The proof cannot end with an axiom because I" contains only Harrop propo-
sitions and the conclusion is not a Harrop proposition.

We prove now that if the proof ends with an elimination then the theory T’
is contradictory and hence the result is trivial.

Let C; be the conclusion of the proof and Cy be the left premise of this
elimination, the proof of Cs cannot end with an introduction because the proof
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is cut free, hence it ends with an axiom rule or an elimination, if it ends with an
elimination rule, then let C5 be the left premise of this rule, ... Thus the rule
ends with a sequence of elimination rules on propositions Ci,...,C, and C, is
an axiom.

We prove that at least one of the propositions Ci,...,C,, is L. Assume this
is not the case. Then the proposition C,, is a Harrop proposition because it is
an element of I'. Let us prove that the proposition C,,_; is also a Harrop propo-
sition. The proposition C,_; has been produced from C,, with an elimination
rule. This elimination rule cannot be V-elim or 3-elim because C), is a Harrop
proposition, it cannot be L-elim, because none of the propositions Ci, ..., C,, is
1. Hence it is either A-elim, =-elim or V-elim, thus C,,_; is a Harrop propo-
sition. We prove this way by induction that all the propositions Cp, ...,C; are
Harrop propositions. Hence C is a Harrop proposition which is contradictory.

Thus one of the propositions C1, ..., Cj, is L, thus the theory I' is contradic-
tory, it proves all propositions and the result is trivial.

Excercise 4.5.1 Show that proofs of propositions of the form AV B and 3x A
in consistent Harrop theories end with an introduction rule.

Corollary 4.5.2 Let P and Q) be two proposition symbols, the proposition
~(PVQ)=(PVQ)

does not have a constructive proof in the empty theory.

Proof. Assume that the proposition =—(P V @) = (P V @) has a proof. Let T’

be the Harrop theory formed with the axiom ——(P V @), the proposition PV Q

has a proof in I". Thus either the proposition P or the proposition ) has proof

in I" and it is easy to construct a model of I" where P is not valid and a model
of T where () is not valid.

Corollary 4.5.3 Let P be a proposition symbol, the proposition
-—P =P

does not have a constructive proof in the empty theory.

Proof. If it had, so would the proposition. =—(PV Q) = (P V Q).

Corollary 4.5.4 Let P be a predicate symbol of one argument, the proposition
(=Vz P(z)) = Jz -P(x)
does not have a constructive proof in the empty theory.

Proof. Assume that the proposition (=Vz P(z)) = dx —P(x) has a proof. Let
T be the Harrop theory formed with the axiom —Vx P(z). Then the proposition
Jz —P(z) has a proof in I'. Thus there is a term ¢ such that the proposition
—P(t) has a proof in I'. Consider a model M with two elements and let P hold
form the denotation of ¢ but not for the other element. This model is a model
of T but not of =P(t). Thus, the proposition —P(¢) does not have a proof in T’
which is contradictory.
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Chapter 5

Cut elimination in
predicate logic modulo

We have seen that from the cut elimination theorem we could deduce the consis-
tency, the disjunction property and the witness property for the empty theory.
Of course, not many theorems can be proved in the empty theory. When we
add axioms, cut free proofs need not be uniform anymore. For instance adding
the axiom Jz P(zx), allows a non uniform proof of the proposition dx P(x).
We have already seen that the disjunction property and the witness property
extended to Harrop theories. We are now interested in other theories: theories
modulo with no axioms, such as simple type theory and simple type theory with
infinity.

5.1 Congruences defined by a system rewriting
atomic propositions

Proposition 5.1.1 Consider a congruence = defined by a confluent rewrite
system rewriting terms to terms and atomic propositions to arbitrary proposi-
tions. If A and B are not atomic and A = B then A and B have the same root
connector or quantifier.

Proposition 5.1.2 Consider a congruence = defined by a confluent rewrite
system rewriting terms to terms and atomic propositions to arbitrary proposi-
tions. Consider the theory modulo formed with no arioms and the congruence
=. A cut free proof in this theory ends with an introduction rule.

Proof. By induction over the height of the proof. The last rule cannot be
an axiom rule, because there is no axiom. If the last rule is an elimination,
then the left premise of the elimination is proved with a cut free proof. Hence
it ends by an introduction. By proposition 5.1.2, this introduction concerns

69
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the same connector or quantifier as the elimination rule and the proof is a cut
contradicting the fact that it is cut free.

Thus, if cut elimination holds for such a theory, then consistency, the dis-
junction property and the witness property also.
5.2 Proof as terms

Proof-terms are defined as in predicate logic and the reduction rules are the
same. But the proof assignments rules have to be modified to take the congru-
ence into account.

Definition 5.2.1 (Deduction rules with proofs)

Aziom if §: A€T and A= B

FT_¢ B

Tr-7. 4 T-introif A=T
% L-elimif B= 1

L }_EFTI—:_A(W,EH';?; B intro if C = (AN B)

% A-elim if C = (A A B)
% A-elim if C = (A A B)
% V-intro if C = (AV B)
% V-intro if C = (AV B)

Ck=n:D T,(:Ar=7":C T,x:Br=zx":C

TF— o(m, e’ xa™) - C V-elim if D = (AV B)

1—1“,?;:1‘2“ }:;5 =-intro if C = (A = B)
. — ! M
r I_Erﬂ-l—.:c(ﬂ 5’;213 A =-elim if C = (A = B)
Fr=w:A

oo 7 B (@A) Veintro if B= (Vo A) and o ¢ FV(T)
F |_E V(- B

TF=(x?):C (z,A,t) V-elim if B= (Vx A) and C' = (t/x)A
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I't=wn:C
Pk= (t,7): B
Tkm:C T,6:Ab_7':B
[tz d3(m,zén') - B

(z,A,t) T-intro if B= (qz A) and C = (t/z)A

(z,A) F-elim if C = (3z A) and x ¢ FV (T, B)

Proposition 5.2.1 A sequent Ai,...,A, F= B is derivable in natural de-
duction modulo if and only if there exists a term w such that the judgment
& Ay, €, s Ay F= w2 B is derivable in this system.

Proposition 5.2.2 (Subject reduction) IfT' b= 7 : P and #1 — 7' then
kx':P.

5.3 Counterexamples

Cut elimination fails for very simple rewrite systems.

Example 5.3.1 (Russell’s counterexample) We have seen that in naive set
theory, if we call A the proposition e(R R) (or R € R) we have

A— A
Modulo this rule, the proposition —A has the proof
£ (£¢)
and the proposition A also thus the proposition L has the proof

(€= (£8) €= (£9))

This proof only reduces to itself and thus it does not terminate. It is easy to
check that more generally, there are no cut free proofs of L because there no
uniform proofs of this proposition.

Example 5.3.2 (Crabbé’s counterexample) Set theory is an example of a
theory modulo that does not have the cut elimination property. We have seen
that there are two propositions A and B in set theory such that

A— BA-A

Thus under the assumption x : B, the proposition —A has the proof

£ = (snd(§) §)
and the proposition A has the proof

(X, & P (snd(£) €))
thus the proposition L has the proof

((§ = (snd(§) €)) (x, € > (snd(§) €)))
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and the proposition B has the proof

x = ((§ = (snd(§) €)) (x,€ = (snd(E) £)))

It is easy to check that this proof does mot terminate and more generally that
the proposition —B has no cut free proof.

Example 5.3.3 (A terminating counterexample) Cut elimination may be
lost even with a confluent and terminating rewrite system. The example is a re-
fined version of Russell’s counterexample. Instead of taking the non terminating
rule R € R — - R € R, we take the terminating rule

ReR—Vy(y~R=-y€R)

where y ~ z stands for Vz (y € x = z € x). Modulo this rule, the proposition
- R € R has the proof

=6 (ER @ (x— X)) &)

and the proposition R € R has the proof
=y (€ (x = (r (€ RX)))
The proposition L has the proof
(m ')

This proof only reduces to itself and thus it does not terminate. It is easy to
check that more generally, there are no cut free proofs of L because there no
uniform proofs of this proposition.

5.4 Reducibility candidates

Let us try to characterize some congruences for which cut elimination holds.
We wish to use a cut elimination proof similar to that of predicate logic.
The main problem is that we cannot take the set of all strongly terminating
proof-terms for the set of reducible proof-terms of an atomic proposition. For
instance if P, () and R are three proposition symbol and we have the rule

P—Q@=R

then a proof of P is also a proof of = R and thus, to belong to |P|, besides
being strongly terminating, a proof-term must be such that whenever it reduces
to an introduction & — #' for all proof #" of |@|, the proof (7" /£)7" belongs to
|R|. In this case we can take the set of all strongly terminating proofs for |Q|
and |R| and the set |Q = R)| for |P| and a proof similar to that of predicate
logic permits to establish cut elimination modulo this rule.
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However, generalizing this method may be difficult when we have non termi-
nating rules or rules introducing quantifiers. For instance consider the proposi-
tion symbols P and @ and the rule

Q—PAQ

defining |Q| as |P A @] would be circular, as to know |P A Q)| we need to know
|P| and |@|. In the same way, consider a predicate symbol P of one argument,
an individual symbol ¢ and the rule

P(c) — Vz P(x)

Defining |P(c)| as the set |Vz P(z)| would be circular as to know |Vz P(z)| we
need to know |P(t)| for all terms ¢, including c.

Thus we shall prove in a first step that cut elimination holds provided we
know how to assign a set of proofs |A| to each atomic proposition A in such a
way that the sets of reducible proofs - defined relatively to these sets - of two
equivalent propositions are identical. In a second step we shall give examples
where such sets can be constructed including the two examples above and simple
type theory.

Not any set of proof-terms is a good candidate for |A|. Indeed, we have seen
that to let the cut elimination proof go through we needed the sets of reducible
proofs to verify the properties of propositions 4.4.1, 4.4.2, 4.4.3 and 4.4.4 that
are used in the cut elimination proof. Thus, at least, the sets of reducible proofs
of atomic propositions must verify these properties. This leads to the following
definition.

Definition 5.4.1 (Girard’s reducibility candidate) A set R of proof-terms
is a reducibility candidate if

o if 1 € R, then 7 is strongly terminating,
e ifT€ R and m — 7' then 7' € R,
e qll variables belong to R,

o if m is an elimination and if for every ©' such that 1 —' 7', ' € R then
m™€E R.

Let C be the set of all reducibility candidates.

Assigning a reducibility candidate to each atomic proposition xfl, is equivalent
to assign to each predicate symbol P of n arguments a function P that maps n-
uples of terms to reducibility candidates. Then, we define the set |P(t1, ..., t,)]
as P(t1,...,tn). Thus we want to prove that if we know how to assign such a
function to each predicate symbol, in such a way that the sets of reducible proofs
defined relatively to these functions are such that two equivalent propositions
have the same set of reducible proofs, then cut elimination holds modulo this
congruence.
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This can be generalized: to have cut elimination it is sufficient to assign,
to each predicate symbol P of n arguments, a function P that maps n-uples of
elements of an arbitrary set M to reducibility candidates and to associate to
each term ¢ an element |t| of M. Then we define |P(t1, ..., tn)| as P(|t1], ..., |tn]).
If the sets of reducible proofs defined relatively to these functions are such that
two equivalent propositions have the same set of reducible proofs, then cut
elimination holds modulo this congruence.

There are many similarities between this definition and the definition of a
model. In particular the fact that if A = B then |A| = |B| can be read as
the validity of the congruence in this structure. The only difference with the
notion of model is that the functions P do not map n-uples of elements of M
to truth values 0 or 1, but to reducibility candidates. Hence such structures are
many-valued models where truth values are reducibility candidates. We shall
call them pre-models. As we want to apply this result to many-sorted theories
also, we directly give the definition for many-sorted predicate logic modulo.

5.5 Pre-model

Definition 5.5.1 (Pre-model) Let L be a many sorted first-order language.
A pre-model for L is given by:

e for every sort T, a set Mr,

e for every function symbol f of rank (Ti,...,Tn,U), a function f from
Mg, % ...x Mr, to My,

o for every predicate symbol P of rank (Ty, ..., Ty), a function P from Mr, x
oo X MT" to C.

Definition 5.5.2 Let t be a term and ¢ an assignment mapping all the free
variables of t of sort T to elements of M. We define the object |t| by induction
over the height of t.

d |$|¢7 :¢($):
b |f(t177tn)|¢ :f(|t1|¢77|tn|¢)

Definition 5.5.3 Let A be a proposition and ¢ an assignment mapping all the
free variables of A of sort T to elements of M. We define the set |A|y of
proof-terms by induction over the height of A.

o A proof-term 7 is an element of |P(t1,...,tn)|¢ if it is in
P(|t1|¢>’ s |tn|¢>)-
o A proof-term w is an element of ||y if m is strongly terminating.

o A proof-term 7 is an element of | L|y if w is strongly terminating.



5.5. PRE-MODEL 75

o A proof-term 7 is an element of |AA B|y if m is strongly terminating and
when 7 reduces to a proof-term of the form (mi,7m2) then m and w2 are
elements of |A|y and |B|.

o A proof-term 7 is an element of |AV B|y if m is strongly terminating and
when 7 reduces to a proof-term of the form i(my) (resp. j(mw2)) then m
(resp. ma) is an element of |Aly (resp. |Bly).

o A proof-term 7 is element of |A = Bl|y if it is strongly terminating and
when w reduces to a proof-term of the form & — w1 then for every @' in
|Alg, (7' /€)1 is an element of |B|g.

o A proof-term w is an element of Nz A|y if it is strongly terminating and
when 7 reduces to a proof-term of the form x — m then for every term t
of sort T (where T is the sort of x) and every element E of My, (t/x)m
is an element of |A|4y(2,B)-

o A proof-term w is an element of |3z A|g if 7 is strongly terminating and
whenever m reduces to a proof-term of the form (t,m ) there exists an
element E of My (where T is the sort of x) such that w1 is an element of

Definition 5.5.4 A pre-model is a pre-model of a congruence = if, whenever
A = B, then for every assignment ¢, |A|y = |Bls.

Proposition 5.5.1 For every proposition A and assignment ¢, |Als is a re-
ducibility candidate

Proof. By induction over the height of A.

If A is an atomic proposition, |A|, is a reducibility candidate by definition.

If A is a composed proposition, then, by definition, |A|4 contains only termi-
nating proof-terms. It is routine to prove closure by reduction. It is also routine
to check that all variables are members of |A|4.

Now, we assume that 7 is a an elimination and that for every 7' such that
m —! 7', 7' € |A|ls. We want to prove that « is in |A4|,. Following the
definition of |A|y, we first prove that 7 is strongly terminating and then that if
it reduces to an introduction, the sub-proofs belong to the appropriate sets.

We first prove that 7 is strongly terminating. Let 7 = 71,72, .. be a reduc-
tion sequence issued from 7. If this sequence is empty it is finite. Otherwise we
have 7 —! 75 and hence 75 is an element of |A|g thus it is strongly terminating
and the reduction sequence is finite.

Then we prove that if 7 reduces to an introduction then the sub-proofs
belong to the appropriate sets. Let # = 71, 72,... 7, be a reduction sequence
issued from 7 and such that m, is an introduction. This sequence cannot be
empty because 7 is an elimination and hence not an introduction. Thus 7 —1
Ty — Tp. We have my € |A|y and thus if 7, is an introduction the sub-proofs
belong to the appropriate sets.
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Proposition 5.5.2 (Substitution) Given any proposition A, termt and vari-
able © we have
|(t/2)Alp = [Alst(a,1e1,)

Proof. By induction on the height of A.

We can now prove the main theorem of this chapter: if a system has a
pre-model then proof-terms modulo this system terminate.

Proposition 5.5.3 Let = be a congruence and M be a pre-model of =. If
I'F= 7 : A then the proof-term 7 is strongly terminating.

Proof. As|A|g is areducibility candidate, it is sufficient to prove that if T F 7 : A
then the proof-term 7 is an element of |A|g. More generally, we prove, by
induction over the height of the proof-assignment tree, that if ' - 7 : A,

e # is a substitution mapping term variables to terms,
e ¢ is an assignment mapping variables to elements of the model,

e ¢ is a substitution mapping some proof variables associated to proposition
Bin T to an element of |B|y,

then o is an element of |A|y.

e Axiom. If 7 is a variable &, we have (£ : B) € I' with B= A. If £ isin
the domain of definition of o, then o6& = o€ is an element of |B|s = |A|4,
otherwise 00¢ = o€ = £ is an element of |A|, because |A|y is a candidate.

e T-intro. The proof-term 7 has the form I. We have g8 = I. This proof-
term is normal, hence it is strongly terminating. Hence, the proof-term
o0l is in |Als.

e A-intro. The proof-term 7 has the form (p;, p2) where p; is a proof of
some proposition B and ps a proof of some proposition C. We have
o0 = {a0p1,00py). Consider a reduction sequence issued from this proof-
term. This sequence can only reduce the proof-terms ofp; and ofp,. By
induction hypothesis these proof-terms are in |B|s and |C|g. Thus the
reduction sequence is finite.

Furthermore, all reducts of 0fm have the form (p}, py) where p} is a reduct
of dfp1 and pfy one of op,. The proof-terms pj and p, are in |Bl|s and
|C|y because these sets are candidates.

Hence, the proof-term o8(p1, p2) is in |Ag.

e V-intro. The proof-term 7 has the form i(p) (resp. j(p)) and p is a proof
of some proposition B. We have o001 = i(afp) (resp. j(cfp)). Consider
a reduction sequence issued from this proof-term. This sequence can only
reduce the proof-terms ofp. By induction hypothesis this proof-term is
an element of |B|g. Thus the reduction sequence is finite.
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Furthermore, all reducts of g7 have the form i(p') (resp. j(p')) where p’
is a reduct of ofp. The proof-term p' is an element of |B|y because this
set is a candidate.

Hence, the proof-term o0i(p) (respectively o0j(p)) is an element of |A|4.

e =-intro. The proof-term 7 has the form £ — p where £ is a proof variable
of some proposition B and p a proof of some proposition C. We have
obm = £ — 08p, consider a reduction sequence issued from this proof-
term. This sequence can only reduce the proof-term o6p. By induction
hypothesis, the proof-term ¢6p is an element of |C|4, thus the reduction
sequence is finite.

Furthermore, all reducts of ofm have the form £ — p’ where p' is a reduct
of 00p. Let T be any proof of | B|4, the proof-term (7/£)p’ can be obtained
by reduction from ((7/£) o 0)8p. By induction hypothesis, the proof-term
((1/€) o o)8p is an element of |C|s. The proof-term (7/€)p’ is an element
of |Cl4 because this set is a candidate.

Hence, the proof-term o0& — p is an element of [A|4.

e V-intro. The proof-term 7 has the form = — p where p is a proof of some
proposition B. We have gfr = x — op.

Consider a reduction sequence issued from the proof-term ofr = = +— ofp.
This sequence can only reduce the proof-term ofp. Let E be an element
of Mt (where T is the sort of z). By induction hypothesis, the proof-term
ofp is an element of |B|s4( £y, thus the reduction sequence is finite.

Furthermore, all reducts of gfm have the form =z — p’ where p' is a
reduct of ofp. The proof-term (t/z)p’ is obtained by reducing the proof-
term ((t/z)o)((t/z) o 8)p. By induction hypothesis again, the proof-term
((t/x)o)((t/x) 00)p is an element of |B|y4(, gy- The proof-term (t/x)p' is
an element of |B|y,(, gy, because this set is a candidate.

Hence 06(z — p) is an element of |A]4.

e J-intro. The proof-term m has the form (¢,p), A = 3z B and p is a
proof of (t/z)B. We have ofr = (6t,00p). Consider a reduction sequence
issued from this proof-term. This sequence can only reduce the proof-term
ofp. By induction hypothesis this proof-term is in |(¢/x)B|s. Thus the
reduction sequence is finite.

Furthermore, let E = |t|¢. Any reduct of of7 has the form (6t, p’) where
p' is a reduct of o8p. The proof-term p' is an element of |(¢t/x)B|y, i.e. of
|B|g+(z,5), because | Bly4 (s, k) is a candidate.

Hence, the proof-term o6(t, p) is an element of |A|4.

e l-elim. The proof-term 7 has the form d, (p) where p is a proof of L.
We have o6 = §, (68p). By induction hypothesis, the proof-term ofp
is an element of |L|s. Hence, it is strongly terminating. Let n be the
maximum length of reduction sequences issued from this proof-term. We
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prove by induction on n that J, (66p) is in |A|s. Since this proof-term is
an elimination, we only need to prove that every of its one step reducts
is in |A|s. The reduction can only take place in ofp and we apply the
induction hypothesis.

Hence, the proof-term 064, (p) is an element of |A|4.

o A-elim. We only detail the case of left elimination. The proof-term =«
has the form fst(p) where p is a proof of some proposition A A B. We
have ofr = fst(c0p). By induction hypothesis the proof-term ofp is in
|A A Bls. Hence, it is strongly terminating. Let n be the maximum
length of a reduction sequence issued from this proof-term. We prove by
induction on n that fst(ofp) is in the set |A|g. Since this proof-term is
a elimination we only need to prove that every of its one step reducts is
in |B|s. If the reduction takes place in ofp then we apply the induction
hypothesis. Otherwise ap has the form (p}, py) and the reduct is p}. By
the definition of |A A B|4 this proof-term is in |A|g.

Hence, the proof-term o0fst(p) is an element of |A|.

e V-elim. The proof-term 7 has the form §(p1,£p2 xp3) where p; is a proof
of some proposition B V C' and ps and ps are proofs of A. We have
o = §(cbp1,£00pa2, xobps3). By induction hypothesis, the proof-term
ofp is in the set |BV Cly, and the proof-terms 06p, and ofp3 are in the
set |A|,. Hence, these proof-terms are strongly terminating. Let n, n' and
n'' be the maximum length of reduction sequences issued from these proof-
terms. We prove by induction on n + n' + n" that §(c6p1,a0Eps, xa6ps3)
is in |A|. Since this proof-term is an elimination we only need to prove
that every of its one step reducts is in |A|4. If the reduction takes place in
00p1, 08p2 or ofps then we apply the induction hypothesis. Otherwise, if
o0p; has the form i(p') (resp. j(p')) and the reduct is (p'/€)obps (resp.
(p'/x)o8ps). By the definition of |[BVC|4 the proof-term p’ isin |B|4 (resp.
|Cl). Hence by induction hypothesis ((p'/§)oo)0p2 (resp. ((p'/x)o0)8ps)
is in |A|¢

Hence, the proof-term 006(p1,£p2, xp3) is an element of [A|4.

e =-¢lim. The proof-term 7 has the form (p; p2) and p; is a proof of
some proposition B = A and ps a proof of the proposition B. We have
o0 = (660p; 06py). By induction hypothesis 00p; and gfp, are in the sets
|B = A|s and |B|s. Hence these proof-terms are strongly terminating.
Let n be the maximum length of a reduction sequence issued from o6p;
and n' the maximum length of a reduction sequence issued from ofp,. We
prove by induction on n + n' that (66p, o8p2) is in the set |A|4. Since
this proof-term is an elimination we only need to prove that every of its
one step reducts is in |A|. If the reduction takes place in 08p; or in 06p,
then we apply the induction hypothesis. Otherwise ofp; has the form
& — p' and the reduct is (c6p2/€)p’. By the definition of |B = Al4 this
proof-term is in |A|4.
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Hence, the proof-term o0(p1 p2) is an element of |A|4.

e V-elim. The proof-term 7 has the form (p t) where p is a proof of some
proposition Yz B and A = (t/z)B. We have o6 = (c6p 6t). By induc-
tion hypothesis, the proof-term ofp is in |Va B|s. Hence, it is strongly
terminating. Let m be the maximum length of a reduction sequence is-
sued from this proof-term. We prove by induction on n that (cfp 6t)
is in the set |A|s. As this proof-term is an elimination, we only need
to prove that every of its one step reducts is in |A|g. If the reduction
takes place in ofp then we apply the induction hypothesis. Otherwise
o0p has the form z — p’ and the reduct is n(6t/z)p'. By the definition
of |Vz Bl|g this proof-term is in |B|g (5, gy for all E. Thus, it is in is in
IBlo+(ajt1sy = |(t/2)Blg = |Als.

Hence, the proof-term o0(p t) is an element of |A|4.

e J-elim. The proof-term 7 has the form d3(p1,2€p2) where p; is a proof
of some proposition 3z B and p is a proof of A. We have ofr =
03(00p1, x€abps). By induction hypothesis, the proof-term o8p; is in the
set |3z B|s and the proof-term ofp, is in the set |Als. Hence, these
proof-terms are strongly terminating. Let m and n' be the maximum
length of reduction sequences issued from these proof-terms. We prove
by induction on n + n' that d3(c0p1,z€00ps) is in |Als. As this proof-
term is an elimination, we only need to prove that every of its one step
reducts is in |A|s. If the reduction takes place in 08p; or ofp, then we
apply the induction hypothesis. Otherwise, ofp; has the form (¢, p’) and
the reduct is (p'/€)(t/2)00ps = ((¢'/€) o (t/2)0)((t/x) o O)pa. By the
definition of |3z B|y, there exists an element E of such that the proof-
term p' is in |B|g4(s,ky- Thus, by induction hypothesis, the proof-term
((¢'/€) o (t/)0)((t/) © B)ps is in |Alg (s, ive. in | A].

Hence, the proof-term 06d5(p1,{xp2) is an element of |A|4.

5.6 Pre-model construction

5.6.1 The term case

Proposition 5.6.1 If a congruence is defined by a rewrite system or a set of
equalities on terms, but not on propositions, then it has a pre-model and hence
proof reduction terminates modulo this congruence.

Proof. We associate the set of strongly terminating proofs for all atomic propo-
sitions.

Corollary 5.6.2 All equational theories are consistent, have the disjunction
property and the witness property.
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5.6.2 Quantifier free rewrite systems

Definition 5.6.1 (Quantifier free) A rewrite system is quantifier free if no
quantifier appears on the right hand side of any of its rules.

Proposition 5.6.3 A quantifier free, confluent, and terminating rewrite sys-
tems has a pre-model, hence proof reduction terminates modulo such a rewrite
system.

Proof. By induction over proposition height, we associate a set of proof-terms
to each each normal closed quantifier free proposition.

¥(A) = {m|w st ter.} if A is atomic

¥(T) = {n | st. ter.}

(L) = {x|m st ter.}
Y(AAB) = {m|mst ter. Am — (m,m) =>m € ¥(A) Am € ¥(B)}
U(AVB) = {m|wst ter. Am—i(m) =>m € C(A)Am — i(m) = m € ¥(B)}
Y (A=B) = {r|wst.ter. A\m—E{—m =>Vr' € ¥(A) (7' /€)m € ¥(B)}

We define a pre-model as follows. Let M7 be the set of normal closed terms of
sort T'.

(tiseostn) = Fltis..oitn)d

f
Plti,eoostn) = TPty ta)) b

where A | (resp. t ) is the normal form of the proposition A (resp. term t).
We prove, by an easy induction, that |A|s = |B|s when A = B.

5.6.3 Positive rewrite systems

For some rewrite systems, pre-models can be built by a fixed point construction.

Definition 5.6.2 A rewrite system is positive if it rewrites atomic propositions
to propositions containing only positive occurrences of atomic propositions.

Definition 5.6.3 A pre-model is syntactical if
o My = Tr/ = where Tr is the set of closed terms of sort T,

o if f is a function symbol, f is the function that maps the classes ey, ..., e, to
the class of the term f(t1,...,t,) where t1,...,t, are elements of eq, ..., e,
(since the relation = is a congruence, this does not depend of the choice
of representatives).

A syntactical pre-model is defined solely by the interpretation of predicate
variables.
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Definition 5.6.4 Let M and M, Iie two syntactical pre-models. We write 151
for the denotation of P in My and Py for the denotation of P in My

We say that M1 < My if and only if for any predicate symbol P and closed
terms ti,...,t, we have

A~

Pi(t1,...,tn) C Py(ty,...,t,)
The set of syntactical pre-models is a complete lattice for the order <.

Proposition 5.6.4 Let R be a confluent and terminating rewrite system. If the
system R is positive then it has a pre-model, hence proof reduction terminates
modulo R.

Proof. Let F be the function mapping syntactical pre-models to syntactical
pre-models defined by

FM)(P)(t1,---tn) =|Pt1,---1tn) 4 |10

As the system R is positive the function F is monotone. Hence, as the set of
syntactical pre-models is a complete lattice, it has a fixed point. This fixed
point is a pre-model of the rewrite system.

Proposition 5.6.5 Let R be a rewrite system such that any atomic proposition
has at most one one-step reduct. If the system R is positive then it has a pre-
model, hence proof reduction terminates modulo R.

Proof. Let F be the function mapping syntactical pre-models to syntactical
pre-models defined by

f(M)(P)(tb:tn) = |P(t177tn) + |M,(D

where A+ is the unique one-step reduct of A if it exists and A otherwise. Again,
since the system R is positive the function F is monotone and again, since the
set of syntactical pre-models is a complete lattice, it has a fixed point. This
fixed point is a pre-model of the rewrite system.

5.6.4 Type theory and type theory with infinity

Proposition 5.6.6 (Girard’s theorem) Simple type theory has a pre-model,
hence proof reduction terminate in simple type theory.

Proof. We construct a pre-model as follows. The essential point is that we
anticipate the fact that objects of sort o actually represent propositions, by
interpreting them as reducibility candidates.

M, = {0}
M, = C
Mry = M[J]VIT
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Sruy a > (b (¢ alc)(b(c))))
Kry = a— (b—a)
a(a,b) = a(d)
€a) = a
T = {m | 7 st. ter.}
1 = {m|mst. ter.}
Ala,b) = {m|mst. tet.Am — (w1, m2) = m € aAms € b}
V(a,b) = {m|mst. ter.A(m — i(m) = m € a) A (m — i(m2) = m € b)}
=(a,b) = {n|7wst. ter. A\m — > m = V' €a (7' /&)m € b}
Vr(a) = {r|=st. ter. Am — & — m =Vt of type T VE € My (t/z)m € a(E)}
Ir(a) = {r|mst. ter. Am — (t,m) = IE € Mr w5 € a(E)}

It is easy to check that |A|, = |B|s when A = B.

Proposition 5.6.7 Simple type theory with infinity has a pre-model, hence
proof reduction terminates in simple type theory with infinity.

Proof.
M, = N
M, = C
MT—)U M[IJVIT
0 0,
Su = n—n+1,
Pred = n—ifn=0thenOelsen —1,
Null = nw— {rm|7st. ter.},
Sty = ar (b (e ale)(b(c))))
KT,U = ar»r (b = a)
a(a,b) = a(b)
Ea) = a
T = {7 | 7 st. ter.}
1 = {r|mst. ter.}
Ala,b) = {m|mst. ter. Am — (m1,m2) = ™1 € a ATz € b}
V(a,b) = {n|xst. ter. A(m —> i(m) = m € a) A(m —> i(m2) = m2 € b)}
=>(a,b) = {r|7wst. ter. Am— € m =V €a (n'/€)m € b}
Vr(a) {m | 7 st. ter. Am — x> m =Vt of type T VE € My (t/x)m € a(E)}
Jr(a) = {m|7st ter.Am — (t,m) = IE € My m € a(E)}

It is easy to check that |A|s = |B|s when A = B.

Remark. In the pre-model above T and 1 are interpreted by the same reducibil-
ity candidate (while in a model they are interpreted by a different truth value)
hence the interpretation of Null is simply the constant function equal to this
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candidate. Thus it is not necessary to interpret the type ¢ as N and we could
also take M, = {0}.












