Introduction to Coq

Yves Bertot

August 2005
Running Coq

- the plain command: `coqtop`
 - use your favorite line-editor,
- the compilation command: `coqc`
- the interactive environment: `coqide`
- with the Emacs environment: open a file with suffix "\.v"
- Also Pcoq developed at Sophia
- All commands terminate with a period at the end of a line.
The Check command

- Useful first step: load collections of known facts and functions.
 Require Import Arith. Require Import ArithRing.
 Require Import Omega.

- First know how to construct well-formed terms.
 Check 3.
 3 : nat
 Check plus.
 plus : nat → nat → nat
 Check (nat → (nat → nat)).
 nat → nat → nat : Set
 Check (plus 3).
 plus 3 : nat → nat
Basic constructs

- abstractions, applications.
 \[
 \text{Check } \ (\text{fun } x \to \text{plus } x \ x). \\
 \text{fun } x: \text{nat} \Rightarrow x + x : \text{nat} \to \text{nat}
 \]

- product types.
 \[
 \text{Check } \ (\text{fun } (A: \text{Set})(x:A) \to x). \\
 \text{fun } (A: \text{Set})(x:A) \Rightarrow x : \forall A : \text{Set}, A \to A
 \]

- Common notations.
 \[
 \text{Check } (3 = 4). \\
 3 = 4 : \text{Prop} \\
 \text{Check } (\text{fun } (A: \text{Set})(x:A) \to (3, x)). \\
 \text{fun } (A: \text{Set})(x:A) \Rightarrow (3, x) : \forall A : \text{Set}, A \rightarrow \text{nat} \times A
 \]
Basic constructs (continued)

- Logical statements.
 \[
 \text{Check (forall } x \ y, \ x \leq y \rightarrow y \leq x \rightarrow x = y). \\
 \forall x \ y : \text{nat}, \ x \leftrightarrow y \rightarrow y \leftrightarrow x \rightarrow x = y : \text{Prop}
 \]

- proofs.
 \[
 \text{Check } \text{le}_S. \\
 \text{le}_S : \forall n \ m : \text{nat}, \ n \leq m \rightarrow n \leq S m \\
 \text{Check (le}_S \ 3 \ 3). \\
 \text{le}_S \ 3 \ 3 : 3 \leq 3 \rightarrow 3 \leq 4 \\
 \text{Check } \text{le}_n. \\
 \text{le}_n : \forall n : \text{nat}, \ n \leq n \\
 \text{Check (le}_S \ 3 \ 3 (\text{le}_n \ 3)). \\
 \text{le}_S \ 3 \ 3 (\text{le}_n \ 3) : 3 \leq 4
 \]
Logical notations

- conjunction, disjunction, negation.
 Check \((\forall A \ B, A \land (B \lor \neg A))\).
 \(\forall A \ B:Prop, A \land (B \lor \neg A) : Prop\)

- Well-formed statements are not always true or provable.

- Existential quantification.
 Check \((\exists x:nat, x = 3)\).
 \(\exists x:nat, x = 3 : Prop\)
Know what function is hidden behind a notation:
Locate "_ + _".

Notation Scope

"x + y" := sum x y : type_scope
"x + y" := plus x y : nat_scope

(default interpretation)
Computing

- Unlike Haskell, ML, or OCaml, values are not computed by default.
 Check (plus 3 4).
 \[3+4: \text{nat}\]

- A command to require computation.
 Eval compute in ((3+4)*5).
 \[= 35: \text{nat}\]

- A proposition is not a boolean value.
 Eval compute in ((3+4)*5=61).
 \[= 35=61: \text{Prop}\]

- Fast computation is not the main concern.
Definitions

- Define an object by providing a name and a value.
 Definition ex1 := fun x => x + 3.
 \(\text{ex1 is defined}\)

- Special notation for functions.
 Definition ex2 (x:nat) := x + 3.
 \(\text{ex2 is defined}\)

- See the value associated to definitions.
 Print ex1.
 \(\text{ex1 = fun x : nat \Rightarrow x + 3 : nat \rightarrow nat}\)
 Argument scope is [nat_scope]
 Print ex2.
 \(\text{ex2 = fun x : nat \Rightarrow x + 3 : nat \rightarrow nat}\)
 Argument scope is [nat_scope]
Sections

Sections make it possible to have a local context.

Section sectA.

Variable A:Set.

\(A\) is assumed

Variables \((x:A)(P:A\rightarrow\text{Prop})(R:A\rightarrow A\rightarrow\text{Prop})\).

\(x\) is assumed

...

Hypothesis Hyp1 : \(\text{forall } x\ y, R\ x\ y \rightarrow P\ y\).

...

Check \((\text{Hyp1 } x \ x)\).

\(Hyp\ x\ x : R\ x\ x \rightarrow P\ x\)
Sections (continued)

- Definitions can use local variables.

 Definition ex3 (z:A) := Hyp1 z z.

 Print ex3.

 \[\text{ex3} = \text{fun z:A} \Rightarrow \text{Hyp1 z z : forall z:A, R z z} \Rightarrow P z \]

- Defined values change at closing time.

 End sectA.

 \[\text{ex3 is discharged.} \]

 Print ex3.

 \[\text{ex3 = fun (A:Set)(P:A} \Rightarrow \text{Prop})(R:A} \Rightarrow A} \Rightarrow \text{Prop})(\text{Hyp1:forall x y:A, R x y} \Rightarrow P y)(z :A) \Rightarrow \text{Hyp1 z z : forall(A:Set)(P:A} \Rightarrow \text{Prop})(R:A} \Rightarrow A} \Rightarrow \text{Prop}, (\text{forall x y:A, R x y} \Rightarrow P y) \Rightarrow \text{forall z:A, R z z} \Rightarrow P z \]
Parameters and Axioms

- Declaring variables and Hypotheses outside sections.
- Proofs will never be required for axioms.
- Make it possible to extend the logic.
- Make partial experiments easier.
- Beware of inconsistency!
Goal directed proof

- Finding inhabitants in types.
- Recursive technique:
 - observe a type in a given context.
 - find the shape of a term with holes with this type.
 - restart recursively with the new holes in new contexts.
- The commands to fill holes are called tactics.
 - arrow or forall types are function types and can be filled by an abstraction: the context increases (tactic intro).
 - For other types one may use existing functions or theorems (tactics exact, apply).
 - special tactics take care of classes of constructs (tactics elim, split, exist, rewrite, omega, ring).
- When no hole remains, the proof needs to be saved.
Example proof

Theorem example2 : \(\forall a \ b: \text{Prop}, \ a \land b \rightarrow b \land a. \)
1 subgoal

\[
\forall a \ b : \text{Prop}, \ a \land b \rightarrow b \land a
\]

Proof.
intros a b H.
1 subgoal
1 subgoal

\[
a : \text{Prop}
b : \text{Prop}
H : a \land b
\]

\[
b \land a
\]
Example proof (continued)

split.
2 subgoals
...

$H : a \land b$

subgoal 2 is:

$\quad a$
Example proof (continued)

elim H.
...
\[H : a \land b \]

\[a \rightarrow b \rightarrow b \]

...
intros H1 H2.
...
\[H1 : a \]
\[H2 : b \]
Example proof (continued)

```
exact b
1 subgoal ...
  -------------------------------
  a
intuition.
Proof completed.
Qed.
intros a b H.
...
  intuition.
example2 is defined
```
Second example

Theorem square_lt : forall n m, n < m -> n*n < m*m.
Proof.
intros n m H.
SearchPattern (___ < __).
\mult_S_lt_compat_l:
 forall n m p : nat, m < p -> S n * m < S n * p
\mult_lt_compat_r:
 forall n m p : nat, n < m -> 0 < p -> n * p < m * p
Check le_lt_trans.
\le_lt_trans : forall n m p : nat, n <= m -> m < p -> n < p
apply le_lt_trans with (n * m).

... $H : n < m$

$n * n \leq n * m$

...

SearchPattern (_ * _ \leq _ * _).

mult_le_compat_l: forall n m p : nat, n \leq m \rightarrow p * n \leq p * m

mult_le_compat_r: forall n m p : nat, n \leq m \rightarrow n * p \leq m * p

...

Check lt_le_weak.

lt_le_weak : forall n m : nat, n < m \rightarrow n \leq m
Second example (continued)

apply mult_le_compat_l; apply lt_le_weak; exact H.
...

\[H : n < m \]

\[\text{-------------} \]

\[n \times m < m \times m \]

apply mult_lt_compat_r.

2 subgoals
...

\[H : n < m \]

\[\text{-------------} \]

\[n < m \]

subgoal 2 is:

\[0 < m \]

assumption.
Second example (continued)

Show.
 \[H : n < m \]
 \[\text{-----------------------------} \]
 \[0 < m \]

omega.

Proof completed.

Qed.
Proofs : a synopsis

<table>
<thead>
<tr>
<th></th>
<th>⇒</th>
<th>∀</th>
<th>∧</th>
<th>∨</th>
<th>∃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis</td>
<td>apply</td>
<td>apply</td>
<td>elim</td>
<td>elim</td>
<td>elim</td>
</tr>
<tr>
<td>goal</td>
<td>intros</td>
<td>intros</td>
<td>split</td>
<td>left or right</td>
<td>exists ∨</td>
</tr>
<tr>
<td></td>
<td>¬</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothesis</td>
<td>elim</td>
<td>rewrite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>goal</td>
<td>intro</td>
<td>reflexivity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Automatic tactics: auto, auto with database, intuition, omega, ring, fourier, field.
- Possibility to define your own tactics: Ltac.
Automatic tactics

- **intuition** Automatic proofs for 1st order intuitionistic logic,
- **omega** Presburger arithmetic on types `nat` and `Z`,
- **ring** Polynomial equalities on types `Z` and `nat` (no subtraction for the latter)
- **fourier** Inequations between linear formulas in `R`,
- **field** Equations between fractional expressions in `R`.
Forward reasoning

- apply only supports backward reasoning (it does not implement \(\forall\)-elimination or \(\exists\)-elimination),
- Problem “I have \(H : \forall x, P\ x\)” how can I add \(P\ a\) to the context”
 - assert \((H2 : P\ a)\), prove this by apply \(H\) and proceed,
 - alternatively generalize \((H\ a);\ intros\ H2\).
- Problem “I have \(H : A \rightarrow B\)” how can add \(B\) to the context and have an extra goal to prove \(A\).
 - Use assert again,
 - alternatively use “\(\text{lapply}\ H;[\text{intros}\ H2 — idtac]\)”.

Yves Bertot
Introduction to Coq
Inductive types

- Inductive types extend the recursive (algebraic) data-types of Haskell, ML,
- An inductive type definition provides three kinds of elements:
 - A type (or a family of types),
 - Constructors,
 - A computation process (case-analysis and recursion),
 - A proof by induction principle.

```coq
Inductive bin : Set :=
  L : bin
| N : bin -> bin -> bin.
```
Pattern-matching and structural recursion.

```
Fixpoint size (t1:bin): nat :=
  match t1 with
    L => 1
  | N t1 t2 => 1 + size t1 + size t2
end.

Fixpoint flatten_aux (t1 t2:bin) {struct t1} : bin :=
  match t1 with
    L => N L t2
  | N t’1 t’2 =>
    flatten_aux t’1 (flatten_aux t’2 t2)
end.
```
Recursive definition (continued)

```
Fixpoint flatten (t:bin) : bin :=
  match t with
    | L => L
    | N t1 t2 => flatten_aux t1 (flatten t2)
  end.
```
Proof by induction principle

- Quantification over a predicate on the inductive type,
- Premises for all the cases represented by the constructors,
- Induction hypotheses for the subterms in the type.
Proof by induction principle

- Quantification over a predicate on the inductive type,
- Premises for all the cases represented by the constructors,
- Induction hypotheses for the subterms in the type.

Check `bin_ind`.

\[
\text{bin_ind : forall } P:\text{bin} \rightarrow \text{Prop},
\]

\[
P L \rightarrow
\]

\[
(\text{forall } b:\text{bin}, P b \rightarrow \text{forall } b0:\text{bin}, P b0 \rightarrow P (N b b0)) \rightarrow
\]

\[
\text{forall } b : \text{bin}, P b
\]
Proof by induction principle

- Quantification over a predicate on the inductive type,
- Premises for all the cases represented by the constructors,
- Induction hypotheses for the subterms in the type.

Check bin_ind.

\[\text{bin_ind : } \forall P : \text{bin} \rightarrow \text{Prop}, \]
\[P L \rightarrow (\forall b : \text{bin}, P \ b \rightarrow \forall b0 : \text{bin}, P \ b0 \rightarrow P \ (N \ b \ b0)) \rightarrow \forall b : \text{bin}, P \ b \]

- The tactic \texttt{elim} uses this theorem automatically.
Example proof by induction

Theorem forall_aux_size :
 forall t1 t,
 size(flatten_aux t1 t) = size t1 + size t + 1.
Proof.
 intros t1; elim t1.
...

subgoal 2 is:
 size (flatten_aux (N b b0) t) = size (N b b0) + size t + 1
Proof by induction (continued)

simpl.
...
forall t : bin, S (S (size t)) = S (size t + 1)
...
intros; ring_nat.
Proof by induction (continued)

\[
\text{forall } t : \text{bin}, \text{size (flatten_aux L t)} = \text{size L} + \text{size t} + 1
\]

simpl.

\[
\text{forall } t : \text{bin}, S (S (\text{size t})) = S (\text{size t} + 1)
\]

intros; ring nat.

- This goal is solved.
Proof by induction (continued)

\[
\begin{align*}
\forall b : \text{bin}, \\
(\forall t : \text{bin}, \text{size} (\text{flatten}_\text{aux} b t) = \text{size} b + \text{size} t + 1) & \Rightarrow \forall b0 : \text{bin}, \\
(\forall t : \text{bin}, \text{size} (\text{flatten}_\text{aux} b0 t) = \text{size} b0 + \text{size} t + 1) & \Rightarrow \forall t : \text{bin}, \text{size} (\text{flatten}_\text{aux} (N b b0) t) = \text{size} (N b b0) + \text{size} t + 1
\end{align*}
\]

intros b Hrecb c Hrec t; simpl.

\[
\begin{align*}
\text{size} (\text{flatten}_\text{aux} b (\text{flatten}_\text{aux} c t)) = & S (\text{size} b + \text{size} c + \text{size} t + 1)
\end{align*}
\]
Proof by induction (continued)

...

$H_{rec} : \text{forall } t : \text{bin}, \text{size}(\text{flatten}_\text{aux} c t) = \text{size } c + \text{size } t + 1$

t : \text{bin}

\[\begin{array}{l}
\text{size}(\text{flatten}_\text{aux} b (\text{flatten}_\text{aux} c t)) = S(\text{size } b + \text{size } c + \text{size } t + 1) \\
\text{rewrite } H_{rec} b. \\
\text{...} \\
\text{size } b + \text{size}(\text{flatten}_\text{aux} c t) + 1 = S(\text{size } b + \text{size } c + \text{size } t + 1) \\
\text{rewrite } H_{rec}; \text{ring nat.} \\
\text{Qed.}
\end{array} \]
Inductive type and equality

- For inductive types of type `Set`, `Type`,
 - Constructors are distinguishable (strong elimination),
 - Constructors are injective.
 - Tactics: `discriminate` and `injection`.
- Not for inductive type of type `Prop`, bad interaction with impredicativity.
Theorem discriminate_example : forall t1 t2, L = N t1 t2 -> 2 = 3.

... intros t1 t2 H.

...
 H : L = N t1 t2

 2 = 3
 discriminate H.

Proof completed.

▷ With no argument, discriminate finds an hypothesis that fits.
Injection example

Theorem injection_example :
 forall t1 t2 t3, N t1 t2 = N t3 t3 -> t1 = t2.
...
intros t1 t2 t3 H.
 H : N t1 t2 = N t3 t3

 t1 = t2
...
injection H.
...

 t2 = t3 -> t1 = t3 -> t1 = t2
intros H1 H2; rewrite H1; auto.
Proof completed.
Usual inductive data-types in Coq

- Most number types are inductive types,
 - Natural numbers à la Peano, the induction principle coincides with mathematical induction, \(\mathbb{nat} \),
 - Strictly positive integers as sequences of bits, \(\mathbb{positive} \),
 - Integers, as a three-branch disjoint sum, \(\mathbb{Z} \),
 - Strictly positive rational numbers can also be represented as an inductive type.
- Data structures: lists, binary search trees, finite sets.
Inductive propositions

- Dependent inductive types of sort Prop,
- The types of the constructors are logical statements,
- The induction principle is a simplified,
- Easy to understand as a minimal property for which the constructor hold.
Inductive proposition example

Inductive even : nat -> Prop :=
 even0 : even 0
| evenS : forall x:nat, even x -> even (S (S x)).

- even is a function that returns a type,
- When x varies, even x intuitively has one or zero element.
Simplified induction principle

Check even_ind.

\[
\text{even_ind} : \forall P : \text{nat} \rightarrow \text{Prop},
\]

\[
P 0 \rightarrow
\]

\[
(\forall x : \text{nat}, \text{even} x \rightarrow P x \rightarrow P (S (S x))) \rightarrow
\]

\[
\forall n : \text{nat}, \text{even} n \rightarrow P n
\]

- quantification over a predicate on the potential arguments of the inductive type,
- No universal quantification over elements of the type, only implication (*proof irrelevance*).
Example proof by induction on a proposition

Theorem even_mult : forall x, even x -> exists y, x = 2*y.
intros x H; elim H.
...
exists y : nat, 0 = 2 * y
subgoal 2 is:
forall x0 : nat,
even x0 -> (exists y : nat, x0 = 2 * y) ->
exists y : nat, S (S x0) = 2 * y
Proof by induction on a proposition (continued)

exists 0; ring_nat.
intros x0 Hevenx0 IHx.

...
IHx : exists y : nat, x0 = 2 * y
exists y : nat, S (S x0) = 2 * y

destruct IHx as [y Heq]; rewrite Heq.
(*alternative to elim IHx; intros y Heq; rewrite Heq *)
exists (S y); ring_nat.
Qed.
Inversion

- sometimes assumptions are false because no constructor proves them,
- sometimes the hypothesis of a constructor have to be tree because only this constructor could have been used.
Example inversion

\[
\text{not_even_1 : } \neg\text{even 1.}
\]
\[
\text{intros even1. }\ldots
\]
\[
\text{even1 : even 1}
\]

\[
\text{False}
\]
\[
\begin{array}{c}
\text{inversion even1.}
\hline
\text{Qed.}
\end{array}
\]
Usual inductive propositions in Coq

- The order \leq on natural numbers (type le).
- The logical connectives.
- The accessibility predicate with respect to a binary relation,
Logical connectives as inductive propositions

- Parallel with usual present of logic in sequent style,
- Right introduction rules are replaced by constructors,
- Left introduction is automatically given by the induction principle.
Inductive view of False

- No right introduction rule: no constructor.

\[
\text{Inductive False : Prop := .}
\]
\[
\text{Check False_ind.}
\]
\[
\text{False_ind} \\
\quad : \forall P : \text{Prop}, \text{False} \rightarrow P
\]
Inductive view of and

- one constructor,
- two left introduction rules, but can be modeled as just one.

Print and.

\[
\text{Inductive and (A : Prop) (B : Prop) : Prop :=}
\]
\[
\begin{align*}
\text{conj : A} & \rightarrow B \rightarrow A \land B \\
\end{align*}
\]

Check and_ind.

\[
\text{and_ind}
\]
\[
: \forall A B P : \text{Prop}, (A \rightarrow B \rightarrow P) \rightarrow A \land B \rightarrow P
\]
Inductive view of or

Print or.

Inductive or (A : Prop) (B : Prop) : Prop :=
 or_introl : A → A \/ B | or_intror : B → A \/ B

Check or_ind.

or_ind : forall A B P : Prop, (A→P)→(B→P)→A \/ B→P
Inductive view of exists

Print ex.

\begin{align*}
\text{Inductive } \text{ex} & \ (A : \text{Type}) \ (P : A \rightarrow \text{Prop}) : \text{Prop} := \\
\text{ex_intro} & \ : \ \text{forall} \ x : A, \ P \ x \rightarrow \ \text{ex} \ P
\end{align*}

Check ex_ind.

\begin{align*}
\text{ex_ind} & \ : \ \text{forall} \ (A : \text{Type}) \ (P : A \rightarrow \text{Prop}) \ (P0 : \text{Prop}), \\
& \ (\text{forall} \ x : A, \ P \ x \rightarrow \ P0) \rightarrow \ \text{ex} \ P \rightarrow \ P0
\end{align*}
Inductive view of eq

Print eq.
\[\text{Inductive eq } (A : \text{Type}) (x : A) : A \to \text{Prop} :=\]
\[\text{refl_equal} : x = x\]
Check eq_ind.
\[\text{eq_ind} : \forall (A : \text{Type}) (x : A) (P : A \to \text{Prop}),\]
\[P x \to \forall y : A, x = y \to P y\]
Dependently typed pattern-matching

- Well-formed pattern-matching constructs where each branch has a different type,
- Still a constraint of being well-typed,
- Determine the type of the whole expression,
- Verify that each branch is well-typed,
- Dependence on the matched expression.
Syntax of dependently typed pattern-matching

- `match e as x return T with
 p_1 => v_1
 | p_2 => v_2
 ...`
- The whole expression has type $T[e/x]$,
- Each value v_1 must have type $T[p_1/x]$.
Example of dependently typed programming

Print nat.

Inductive nat : Set := O : nat | S : nat -> nat

Fixpoint nat_ind (P:nat->Prop)(v0:P 0) (f:forall n, P n -> P (S n)) (n:nat) {struct n} : P n :=
 match n return P n with
 O => v0
 | S p => f p (nat_ind P v0 f p)
 end.

- Dependently-typed programming for logical purposes
Dependent pattern-matching with dependent inductive types

Fixpoint even_ind2 (P:nat->Prop)(v0:P 0)
 (f:forall n, P n -> P (S (S n)))
 (n:nat) (h:even n) {struct h} : P n :=
 match h in even x return P x with
 even0 => v0
 | evenS a h' => f a (even_ind2 P v0 f a h')
end.