Getting Π right in Set

Thierry Coquand (thanks to discussion with Peter and Andreas)

Oct. 11, 2006

Universes

Introduced in three steps: 71 ($V \in V$), 72 (one universe) and 75 (sequence of universes)

Also 75: conversion as judgement and new method (due to Peter Hancock) for showing decidability of conversion

Analogy: computation of a term and evaluation

The normal form of a term is its semantics

 $nf(M) = \downarrow \llbracket M \rrbracket$

[1]

Type theory with universes

It is easier to say what a PER model should be than to define the syntax of such a type theory

Untyped universe of computations (domain model, or terms with β , ι equality) with an application operation

We have a notion of constructors: we know when a term is of the form N or U or $\Pi \; x \; f$

Constructors are one-to-one

We can then define: a PER of types and whenever A = B a PER associated to A (which is the same as the PER associated to B)

Small types: N = N and 0 = 0 : N and u = v : N implies $s \ u = s \ v : N$

If $A_1 = A_2$ small types and $u_1 = u_2 : A_1$ implies $F_1 \ u_1 = F_2 \ u_2$ small types then $\prod A_1 \ F_1 = \prod A_2 \ F_2$ small types

Then $v_1 = v_2 : \prod A_1 F_1$ iff $u_1 = u_2 : A_1$ implies $v_1 u_1 = v_2 u_2 : F_1 u_1$

4

We define then the PER of all types U = U and $X_1 = X_2 : U$ iff $X_1 = X_2$ small types N = N and 0 = 0 : N and u = v : N implies $s \ u = s \ v : N$ If $A_1 = A_2$ and $u_1 = u_2 : A_1$ implies $F_1 \ u_1 = F_2 \ u_2$ then $\Pi \ A_1 \ F_1 = \Pi \ A_2 \ F_2$ Then $v_1 = v_2 : \Pi \ A_1 \ F_1$ iff $u_1 = u_2 : A_1$ implies $v_1 \ u_1 = v_2 \ u_2 : F_1 \ u_1$

If A is a small type then A is a type

The untyped universe of computation is a combinatory algebra (model of λ -calculus)

We have K such that K x y = x and we can define $A \to B$ to be $\prod A (K B)$

Then $v_1 = v_2 : A \to B$ iff $u_1 = u_2 : A$ implies $v_1 \ u_1 = v_2 \ u_2 : B$

Extensional equality?? Almost!

 $v:N\to N$ iff $v\ u:N$ if u:N

In general much more elements in the model than the ones that are definable

Even on definable elements, equality at type $N \rightarrow N$ is not decidable (extensional equality)

On "pure" typed lambda terms, equality is decidable (it is β , η equality)

[7]

One can add unit types or singleton types or even the types $\left[A\right]$ that have the definitions

$$[A] = [B] \text{ iff } A = B$$
$$a = b : [A] \text{ iff } a : A \text{ and } b : A$$

General notion of PER model

Reminiscent of Frege structure

We have first a model D of untyped $\lambda\text{-calculus}$ with constructors $\Pi, N, s, 0$ and U

Let PER(D) the set of PER on D. If $X \in PER(D)$ we write |X| the set of elements u such that X(u, u)

If $X \in PER(D)$ and $F : |X| \to PER(D)$ such that $X(u_1, u_2)$ implies $F(u_1) = F(u_2)$ then $\Pi(X, F)$ is the PER defined by $\Pi(X, F)(v_1, v_2)$ iff $X(u_1, u_2) \to F(u_1)(v_1 \ u_1, v_2 \ u_2)$

General notion of PER model

A PER model for type theory with universe consists of an element $T \in PER(D)$ with a function $El : |T| \to PER(D)$ such that $El(u_1) = El(u_2)$ if $T(u_1, u_2)$

Furthermore if $T(A_1, A_2)$ and we have $A_1(u_1, u_2)$ implies $T(F_1 \ u_1, F_2 \ u_2)$ then $T(\prod A_1 \ F_1, \prod A_2 \ F_2)$ and then $El(\prod A_1 \ F_1) = \prod(El(A_1), \lambda u.El(F_1 \ u))$

To have a universe we require also T(U,U) and El(U)(A,B) implies T(A,B)and the PER El(U) is closed under the product operation

 \boldsymbol{D} domain of "semantical" values

 ${\cal T}$ the set of "syntactical" normal terms

 $T ::= \lambda x.T \mid \Pi x : T.T \mid s T \mid 0 \mid S$

 $S ::= x \vec{T}$ we write ν, ν', \ldots an element of S

We assume that D has a copy of S

We add the elements ν as small types

We add $\nu_1 = \nu_1 : \nu$

Also $\nu_1 = \nu_1 : N$

We define two functions $\uparrow_A: S \to D$ and $\downarrow_A: D \to T$ by induction on A type

$$\begin{aligned} &\uparrow_{\Pi \ A \ F} \ \nu = \lambda u. \uparrow_{F \ u} \left(\nu \ (\downarrow_A \ u) \right) \\ &\downarrow_{\Pi \ A \ F} \ v = \lambda x. \downarrow_{F \ (\uparrow_A \ x)} \left(v \ (\uparrow_A \ x) \right) \\ &\uparrow_U \ \nu = \uparrow_N \ \nu = \uparrow_{\nu'} \ \nu = \nu \\ &\downarrow_U \ \nu = \downarrow_N \ \nu = \downarrow_{\nu'} \ \nu = \nu \\ &\downarrow_U = \Downarrow \\ &\downarrow_U = \Downarrow \\ &\downarrow_N \ (s \ u) = s \ (\downarrow_N \ u), \qquad \downarrow_N \ 0 = 0 \end{aligned}$$

Implementation of the type-checker

The values $\uparrow_A x$ corresponds exactly to the notion of *generic* values that are used in the implementation of core agda

The method gives a nice correctness proof of the implementation and extends for sigma types, record types, singleton types ...

To make this definition rigourous, the simplest way seems to follow a *syntactical* approach

(I learnt this from Klaus Aehlig and Felix Joachimski and from Per Martin-Löf's talk on normalisation by evaluation)

We have untyped lambda-calculus with constants

Constructors Π, U, N and Up

We have functions defined by recursion and pattern matching

Up and Down calculus

$$\uparrow (\Pi \ A \ F) \ t = \lambda u. \uparrow (F \ u) \ (t \ (\downarrow A \ u))$$

$$\downarrow (\Pi \ A \ F) \ v = \lambda x. \downarrow (F \ (\uparrow A \ x)) \ (v \ (\uparrow A \ x))$$

$$\uparrow U \ t = \uparrow N \ t = \uparrow (\mathsf{Up} \ t') \ t = \mathsf{Up} \ t$$

$$\downarrow U \ (\mathsf{Up} \ t) = \downarrow N \ (\mathsf{Up} \ t) = \downarrow (\mathsf{Up} \ t') \ (\mathsf{Up} \ t) = t$$

$$\downarrow U = \ \downarrow$$

$$\Downarrow (\Pi \ A \ F) \ v = \Pi x : \Downarrow A. \Downarrow (F \ (\uparrow A \ x))$$

$$\downarrow N(s \ u) = s \ (\downarrow N \ u), \qquad \downarrow N \ 0 = 0$$

Defined function

If we want to represent a "syntactical" function add, defined by

 $add \ x \ 0 = x, \qquad add \ x \ (s \ y) = s \ (add \ x \ y)$

then we should have also the clause

 $add \ x \ (\mathsf{Up} \ y) = \uparrow N \ (add \ (\downarrow N \ x) \ y)$

We can then prove $add: N \to N \to N$

η expansion

 $\downarrow_A \uparrow_A \nu$ is the η -expansion of ν at type A

(This decomposition of η expansion has been discovered by Klaus Aehlig and Felix Joachimski)

For instance, what is the η -expansion of ν at type $N \to N$: $\lambda x.\nu x$

At type $\Pi \ U \ (\lambda X.X \to X)$ it is $\lambda X.\lambda x.\nu \ X \ x$

In general the η expansion of ν at type A is not reducible at this type

First main result

If $A_1 = A_2$ and $u_1 = u_2 : A_1$ then $\downarrow_{A_1} u_1 = \downarrow_{A_2} u_2$ (same normal form) If $A_1 = A_2$ then $\uparrow_{A_1} \nu = \uparrow_{A_2} \nu : A_1$ For $u_1, u_2 : A$ this gives a (decidable) necessary condition for $u_1 = u_2 : A$

It is not sufficient in general ...

but it is if u_1 and u_2 are semantics of well-typed terms!

First main result

In particular if $T = \Pi X : U.X \to X$ we have $\uparrow T \ \nu : T$

Notice that the natural η expansion of ν is not of type ν

This solves the problem of how to define η expansion with universes!

[20]

The free model

We want a decision procedure for equality of well-typed terms

We should have: if $\vdash A$ then $\llbracket A \rrbracket$ type and if $\vdash M_1 = M_2 : A$ then $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket : \llbracket A \rrbracket$

To conclude it is enough to show:

If $\vdash M : A$ then $\vdash M = \downarrow_{\llbracket A \rrbracket} \llbracket M \rrbracket : A$

The free model

How to define the typing relations $\vdash M : A$?

A lot of possible choices: we can take most of the rules that are valid in the model

For instance if one wants, one can take an explicit substitution rule

One can also look for a minimal set of rules: usual typing rules with *conversion* as judgement

Rules for the Logical Framework

We have a special primitive constant Π of arity 2 and we write

- $(x:A) \to B$ for
- $\Pi \ A \ (\lambda x.B)$

We have also a special primitive constant U of arity 0, and a special primitive constant El of arity 1 $\,$

rules for contexts

	Γ correct	$\Gamma \vdash A$	
() correct	$\Gamma, x:A$ co	$\Gamma, x:A$ correct	

rules for types

$$\frac{\Gamma \text{ correct}}{\Gamma \vdash \mathsf{U}} \quad \frac{\Gamma \vdash M : \mathsf{U}}{\Gamma \vdash M} \quad \frac{\Gamma, x : A \vdash B}{\Gamma \vdash (x : A) \to B}$$

rules for terms

 $\frac{\Gamma \text{ correct } (x{:}A) \in \Gamma}{\Gamma \vdash x{:}A}$

$$\frac{\Gamma, x: A \vdash M : B}{\Gamma \vdash \lambda x. M : (x:A) \to B}$$

 $\frac{\Gamma \vdash N: (x:A) \to B \quad \Gamma \vdash M:A}{\Gamma \vdash N \; M: B[M]}$

type equality rule

$$\frac{\Gamma \vdash M: A \quad \Gamma \vdash A = B}{\Gamma \vdash M: B}$$

conversion rules

$$\frac{\Gamma \vdash A}{\Gamma \vdash A = A} \qquad \frac{\Gamma \vdash A = B}{\Gamma \vdash B = A} \qquad \frac{\Gamma \vdash A = B}{\Gamma \vdash A = C}$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash M = M : A} \qquad \frac{\Gamma \vdash M = N : A}{\Gamma \vdash N = M : A} \qquad \frac{\Gamma \vdash M = N : A}{\Gamma \vdash M = P : A}$$

$$\frac{\Gamma \vdash M = N : A \qquad \Gamma \vdash A = B}{\Gamma \vdash M = N : B}$$

[27]

27

Soundness of the PER semantics

All these rules are valid in the PER semantics

If $\Gamma \vdash A$ and $\rho_1 = \rho_2 : \Gamma$ then $A\rho_1 = A\rho_2$

If
$$\Gamma \vdash A_1 = A_2$$
 and $\rho_1 = \rho_2 : \Gamma$ then $A_1\rho_1 = A_2\rho_2$

This is direct by induction on typing derivations

In particular if $\vdash M : A$ we know that $\llbracket M \rrbracket : \llbracket A \rrbracket$ and we can consider $\downarrow \llbracket A \rrbracket \llbracket M \rrbracket$

To show that $\vdash M : A$ implies $\vdash M = \bigcup_{[A]} [M] : A$ one introduces a logical relation (this is the core of the method)

A logical relation

One define R(A, X) for $\vdash A$ and X type and if this holds one defines $R_{A,X}(M, u)$ for $\vdash M : A$ and u : X

This is quite subtle and where all the checks should be done

If $\vdash C = (x : A) \rightarrow B$ and $Z = \prod X F$ and R(A, X) and $R_{A,X}(M, u)$ implies R(B[M], F u) then we have R(C, Z)

If $\vdash C = N$ then R(C, N) and $R_{C,N}(M, u)$ means $M = \downarrow_N u : N$

A logical relation

To make the definition works we have to add the non standard conversion rule (which is semantically valid)

$$\frac{\Gamma, x: A_1 \vdash B_1}{\Gamma \vdash A_1 = A_2} \qquad \begin{array}{c} \Gamma \vdash (x: A_1) \to B_1 = (x: A_2) \to B_2 \\ \Gamma \vdash A_1 = A_2 \qquad \Gamma, x: A_1 \vdash B_1 = B_2 \end{array}$$

30

A logical relation

The rest of the argument is more standard: we introduce new constants c^A for $\vdash A$ with the unique rule $\vdash c^A : A$

We prove then that if R(A, X) holds

 $R_{A,X}(M,u)$ implies $\vdash M = \downarrow_A u : A$

if
$$\vdash \nu = \nu' : A$$
 then $R_{A,X}(\nu, \uparrow_A \nu')$

We can also show $R(A, \llbracket A \rrbracket)$ if $\vdash A$ and $R_{A, \llbracket A \rrbracket}(M, \llbracket M \rrbracket)$ if $\vdash M : A$ by induction on derivations

It follows that we have $\vdash M = \lim_{[A]} [M] : A \text{ if } \vdash M : A$

Forget the syntax?

One has the following result: if $\vdash M_1 : A$ and $\vdash M_2 : A$ then $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket : \llbracket A \rrbracket$ is *decidable*

This suggests the following result, which would be "syntax independent" (no mention of how we build the free model in the statement)

If A in normal form then it is decidable whether or not $[\![A]\!]$ type, for all PER models, holds

If M, A in normal form then it is decidable whether or not $\llbracket M \rrbracket : \llbracket A \rrbracket$, for all PER models, holds in the model

This proof

Perfect for the Logical Framework

Can one avoid the use of the non standard conversion rule?

How did Martin-Löf 75 managed without adding the non standard conversion rules?