
Getting Π right in Set

Thierry Coquand (thanks to discussion with Peter and Andreas)

Oct. 11, 2006

Getting Π right in Set [1]

Universes

Introduced in three steps: 71 (V ∈ V), 72 (one universe) and 75 (sequence
of universes)

Also 75: conversion as judgement and new method (due to Peter Hancock)
for showing decidability of conversion

Analogy: computation of a term and evaluation

The normal form of a term is its semantics

nf(M) =↓ [[M]]

1

Getting Π right in Set [2]

Type theory with universes

It is easier to say what a PER model should be than to define the syntax of
such a type theory

2

Getting Π right in Set [3]

PER model

Untyped universe of computations (domain model, or terms with β, ι equality)
with an application operation

We have a notion of constructors: we know when a term is of the form N or
U or Π x f

Constructors are one-to-one

We can then define: a PER of types and whenever A = B a PER associated
to A (which is the same as the PER associated to B)

3

Getting Π right in Set [4]

PER model

Small types: N = N and 0 = 0 : N and u = v : N implies s u = s v : N

If A1 = A2 small types and u1 = u2 : A1 implies F1 u1 = F2 u2 small types
then Π A1 F1 = Π A2 F2 small types

Then v1 = v2 : Π A1 F1 iff u1 = u2 : A1 implies v1 u1 = v2 u2 : F1 u1

4

Getting Π right in Set [5]

PER model

We define then the PER of all types

U = U and X1 = X2 : U iff X1 = X2 small types

N = N and 0 = 0 : N and u = v : N implies s u = s v : N

If A1 = A2 and u1 = u2 : A1 implies F1 u1 = F2 u2 then Π A1 F1 = Π A2 F2

Then v1 = v2 : Π A1 F1 iff u1 = u2 : A1 implies v1 u1 = v2 u2 : F1 u1

5

Getting Π right in Set [6]

PER model

If A is a small type then A is a type

The untyped universe of computation is a combinatory algebra (model of
λ-calculus)

We have K such that K x y = x and we can define A → B to be Π A (K B)

Then v1 = v2 : A → B iff u1 = u2 : A implies v1 u1 = v2 u2 : B

Extensional equality?? Almost!

6

Getting Π right in Set [7]

PER model

v : N → N iff v u : N if u : N

In general much more elements in the model than the ones that are definable

Even on definable elements, equality at type N → N is not decidable
(extensional equality)

On “pure” typed lambda terms, equality is decidable (it is β, η equality)

7

Getting Π right in Set [8]

PER model

One can add unit types or singleton types or even the types [A] that have the
definitions

[A] = [B] iff A = B

a = b : [A] iff a : A and b : A

8

Getting Π right in Set [9]

General notion of PER model

Reminiscent of Frege structure

We have first a model D of untyped λ-calculus with constructors Π, N, s, 0
and U

Let PER(D) the set of PER on D. If X ∈ PER(D) we write |X| the set of
elements u such that X(u, u)

If X ∈ PER(D) and F : |X| → PER(D) such that X(u1, u2) implies
F (u1) = F (u2) then Π(X, F) is the PER defined by Π(X, F)(v1, v2) iff
X(u1, u2) → F (u1)(v1 u1, v2 u2)

9

Getting Π right in Set [10]

General notion of PER model

A PER model for type theory with universe consists of an element T ∈
PER(D) with a function El : |T | → PER(D) such that El(u1) = El(u2) if
T (u1, u2)

Furthermore if T (A1, A2) and we have A1(u1, u2) implies T (F1 u1, F2 u2)
then T (Π A1 F1,Π A2 F2) and then El(Π A1 F1) = Π(El(A1), λu.El(F1 u))

To have a universe we require also T (U,U) and El(U)(A,B) implies T (A,B)
and the PER El(U) is closed under the product operation

10

Getting Π right in Set [11]

A special PER model

D domain of “semantical” values

T the set of “syntactical” normal terms

T ::= λx.T | Π x : T.T | s T | 0 | S

S ::= x ~T we write ν, ν′, . . . an element of S

We assume that D has a copy of S

11

Getting Π right in Set [12]

A special PER model

We add the elements ν as small types

We add ν1 = ν1 : ν

Also ν1 = ν1 : N

We define two functions ↑A: S → D and ↓A: D → T by induction on A type

12

Getting Π right in Set [13]

A special PER model

↑Π A F ν = λu. ↑F u (ν (↓A u))

↓Π A F v = λx. ↓F (↑A x) (v (↑A x))

↑U ν =↑N ν =↑ν′ ν = ν

↓U ν =↓N ν =↓ν′ ν = ν

↓U=⇓

⇓Π A F v = Πx :⇓ A. ⇓ (F (↑A x))

↓N (s u) = s (↓N u), ↓N 0 = 0

13

Getting Π right in Set [14]

Implementation of the type-checker

The values ↑A x corresponds exactly to the notion of generic values that are
used in the implementation of core agda

The method gives a nice correctness proof of the implementation and extends
for sigma types, record types, singleton types . . .

14

Getting Π right in Set [15]

A special PER model

To make this definition rigourous, the simplest way seems to follow a
syntactical approach

(I learnt this from Klaus Aehlig and Felix Joachimski and from Per Martin-Löf’s
talk on normalisation by evaluation)

We have untyped lambda-calculus with constants

Constructors Π, U, N and Up

We have functions defined by recursion and pattern matching

15

Getting Π right in Set [16]

Up and Down calculus

↑ (Π A F) t = λu. ↑ (F u) (t (↓ A u))

↓ (Π A F) v = λx. ↓ (F (↑ A x)) (v (↑ A x))

↑ U t =↑ N t =↑ (Up t′) t = Up t

↓ U (Up t) =↓ N (Up t) =↓ (Up t′) (Up t) = t

↓ U = ⇓

⇓ (Π A F) v = Πx :⇓ A. ⇓ (F (↑ A x))

↓ N(s u) = s (↓ N u), ↓ N 0 = 0

16

Getting Π right in Set [17]

Defined function

If we want to represent a “syntactical” function add, defined by

add x 0 = x, add x (s y) = s (add x y)

then we should have also the clause

add x (Up y) =↑ N (add (↓ N x) y)

We can then prove add : N → N → N

17

Getting Π right in Set [18]

η expansion

↓A↑A ν is the η-expansion of ν at type A

(This decomposition of η expansion has been discovered by Klaus Aehlig and
Felix Joachimski)

For instance, what is the η-expansion of ν at type N → N : λx.ν x

At type Π U (λX.X → X) it is λX.λx.ν X x

In general the η expansion of ν at type A is not reducible at this type

18

Getting Π right in Set [19]

First main result

If A1 = A2 and u1 = u2 : A1 then ↓A1 u1 =↓A2 u2 (same normal form)

If A1 = A2 then ↑A1 ν =↑A2 ν : A1

For u1, u2 : A this gives a (decidable) necessary condition for u1 = u2 : A

It is not sufficient in general . . .

but it is if u1 and u2 are semantics of well-typed terms!

19

Getting Π right in Set [20]

First main result

In particular if T = ΠX : U.X → X we have ↑ T ν : T

Notice that the natural η expansion of ν is not of type ν

This solves the problem of how to define η expansion with universes!

20

Getting Π right in Set [21]

The free model

We want a decision procedure for equality of well-typed terms

We should have: if ` A then [[A]] type and if ` M1 = M2 : A then
[[M1]] = [[M2]] : [[A]]

To conclude it is enough to show:

If ` M : A then ` M =↓[[A]] [[M]] : A

21

Getting Π right in Set [22]

The free model

How to define the typing relations ` M : A?

A lot of possible choices: we can take most of the rules that are valid in the
model

For instance if one wants, one can take an explicit substitution rule

One can also look for a minimal set of rules: usual typing rules with conversion
as judgement

22

Getting Π right in Set [23]

Rules for the Logical Framework

We have a special primitive constant Π of arity 2 and we write

(x : A) → B for

Π A (λx.B)

We have also a special primitive constant U of arity 0, and a special primitive
constant El of arity 1

23

Getting Π right in Set [24]

Type-checking rules

rules for contexts

() correct

Γ correct Γ ` A

Γ, x:A correct

rules for types

Γ correct

Γ ` U

Γ ` M : U

Γ ` M

Γ, x:A ` B

Γ ` (x:A) → B

24

Getting Π right in Set [25]

Type-checking rules

rules for terms
Γ correct (x:A) ∈ Γ

Γ ` x:A

Γ, x:A ` M : B

Γ ` λx.M : (x:A) → B

Γ ` N : (x:A) → B Γ ` M : A

Γ ` N M : B[M]

25

Getting Π right in Set [26]

Type-checking rules

type equality rule
Γ ` M : A Γ ` A = B

Γ ` M : B

26

Getting Π right in Set [27]

Type-checking rules

conversion rules

Γ ` A

Γ ` A = A

Γ ` A = B

Γ ` B = A

Γ ` A = B Γ ` B = C

Γ ` A = C

Γ ` M : A

Γ ` M = M : A

Γ ` M = N : A

Γ ` N = M : A

Γ ` M = N : A Γ ` N = P : A

Γ ` M = P : A

Γ ` M = N : A Γ ` A = B

Γ ` M = N : B

27

Getting Π right in Set [28]

Soundness of the PER semantics

All these rules are valid in the PER semantics

If Γ ` A and ρ1 = ρ2 : Γ then Aρ1 = Aρ2

If Γ ` A1 = A2 and ρ1 = ρ2 : Γ then A1ρ1 = A2ρ2

This is direct by induction on typing derivations

In particular if ` M : A we know that [[M]] : [[A]] and we can consider
↓[[A]] [[M]]

To show that ` M : A implies ` M =↓[[A]] [[M]] : A one introduces a logical

relation (this is the core of the method)

28

Getting Π right in Set [29]

A logical relation

One define R(A,X) for ` A and X type and if this holds one defines
RA,X(M,u) for ` M : A and u : X

This is quite subtle and where all the checks should be done

If ` C = (x : A) → B and Z = Π X F and R(A,X) and RA,X(M,u)
implies R(B[M], F u) then we have R(C,Z)

If ` C = N then R(C,N) and RC,N(M,u) means M =↓N u : N

29

Getting Π right in Set [30]

A logical relation

To make the definition works we have to add the non standard conversion rule
(which is semantically valid)

Γ, x : A1 ` B1 Γ, x : A2 ` B2 Γ ` (x : A1) → B1 = (x : A2) → B2

Γ ` A1 = A2 Γ, x : A1 ` B1 = B2

30

Getting Π right in Set [31]

A logical relation

The rest of the argument is more standard: we introduce new constants cA

for ` A with the unique rule ` cA : A

We prove then that if R(A,X) holds

RA,X(M,u) implies ` M =↓A u : A

if ` ν = ν′ : A then RA,X(ν, ↑A ν′)

We can also show R(A, [[A]]) if ` A and R
A,[[A]](M, [[M]]) if ` M : A by

induction on derivations

It follows that we have ` M =↓[[A]] [[M]] : A if ` M : A

31

Getting Π right in Set [32]

Forget the syntax?

One has the following result: if ` M1 : A and ` M2 : A then [[M1]] = [[M2]] :
[[A]] is decidable

This suggests the following result, which would be “syntax independent” (no
mention of how we build the free model in the statement)

If A in normal form then it is decidable whether or not [[A]] type, for all PER
models, holds

If M,A in normal form then it is decidable whether or not [[M]] : [[A]], for all
PER models, holds in the model

32

Getting Π right in Set [33]

This proof

Perfect for the Logical Framework

Can one avoid the use of the non standard conversion rule?

How did Martin-Löf 75 managed without adding the non standard conversion
rules?

33

