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1. Interactive Programs
Formalisation of Interactive Programs in Dependent
Type Theory and reasoning about their correctness.

Interface for (non-state dependent) interactive program
given by

a set of commands C : Set,
a set of responses depending on commands
R : C → Set.
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Examples of Commands/Responses
writestring (s : String) : C

“write string to console”.
R (writestring s) = {∗}.

“empty response”.

readtemperature : C

“read temperature from a sensor”.
R readtemperature = Temperature.

Anton Setzer: Guarded Recursion in Dependent Type Theory 3



Interactive Program
An interactive program is given by a loop

Program

Response Command

World
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IO A

In a monadic version we allow as well termination,
returning an element a : A.

We obtain IO : Set → Set.

Then we have that elements of IO A are of the form

return (a : A)

or
do (c : C) (next : R c → IO A) .

IO A 6= data return (a : A) | do (c : C) (next : R c → IO A)

since interactive programs might run for ever.
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Codata
Instead

IO A = codata return (a : A)

| do (c : C) (next : R c → IO A)
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Execution of p : IO A

Execution p : IO A means iteratively
reducing p to weak head normalform

if result is
return a

program stops returns a,
if result is

do c next

command c is executed in real world, if response is
r : R c, execution continues with executing
next r : IO A.
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Execution of p : IO A

Execution of p is not the same as normalisation.

Differently from Haskell order between commands and
responses is guaranteed (even if we have lazy
evaluation).

Direct reasoning about elements of IO A possible.

Above very generic. For writing programs one can have
more userfriendly versions possible like

IO A = codata return (a : A)

| writestring (s : String) (next : IO A)

| readtemperature (next : Temperature → IO A)
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2. Coalgebras
We consider stritly positive functors F : Set → Set.

λX.A is strictly positive.
λX.X is strictly positive.
If A : Set and Fa are strictly positive (a : A), so are

λX.Σa : A.Fa X,
λX.Πa : A.Fa X.

Precise formalisation possible as a universe of
operators (which is a type).

Morphism part F f : F A → F B for f : A → B can be
defined.

Closure under F∞, F ∗ possible (not considered here).

Strictly positive functors closed under +:
λX.F0 X + F1 X = λX.Σi : {0, 1}.Fi X.
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Codata
As a specific case we consider

F X = C1 (. . . , b : B, . . . , x : X, . . . , f : A → X, . . .)

+ · · ·

+Cn (. . .)

E.g.

FN X = 0 + S (x : X)

FStream X = cons (n : N) (x : X)
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Coalgebras
F∞

0 = weakly final coalgebra of F .
In case of FN X = 0 + S (x : X) we have

F∞

N,0= codata 0 | S (n : FN,0)

= N
∞

In case of FStream X = cons (n : N) (x : X) we have

F∞

Stream,0= codata cons (n : N) (s : F∞

Stream,0)

= Stream .
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Monadic Version of F∞
0

F∞ X = (FX)∞0 where
FX Y = return (x : X) + continue (x : F Y ).

E.g. (essentially)

F∞

Stream X = codata return (x : X)

| cons (n : N) (s : F∞

Stream X)

F∞

N
X = codata return (x : X)

| 0

| S (x : F∞

N
X)
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Coalgebras Categorically
We have F∞

0 : Set,

elim : F∞

0 → F F∞

0 ,

s.t. whenever we have f : A → F A there exists a
g : A → F∞

0 s.t.

A
f

- F A

F∞

0

g

?

elim
- F F∞

0

F g

?
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Formation and Elimination Rules
Formation Rule for F∞

0

F∞

0 : Set

Elimination Rule for F∞

0

a : F∞

0

elim a : F F∞

0
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Special Cases
1.

N
∞ : Set

n : N
∞

elim n : 0 + S (n : N
∞)

2.
Stream : Set

l : Stream
elim l : cons (n : N) (s : Stream)
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Agda
Formation Rules corresponds to formation of

A : Set = codata C1 (· · · ) | · · · | Ck (· · · )

Elimination rule corresponds to possibility of case
distinction.
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Intro-/Equality Rules

A
f

- F A

F∞

0

intro A f

?

elim
- F F∞

0

F (intro A f)

?

Introduction Rule
A : Set f : A → F A

intro A f : A → F∞

0

Equality Rule

elim (intro A f a) = F (intro A f
︸ ︷︷ ︸

:A→F∞

0

)( f a
︸︷︷︸

:F A

) : F F∞

0
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3. Guarded Recursion
Let

F X = C1 (. . . , b : B, . . . , x : X, . . . , h : E → X, . . .)

+ · · ·

+ Cn (. . . , b : B′, . . . , x : X, . . . , h : E′ → X, . . .)

f : A → F A means f a is of the form
Ci (. . . , b : B, . . . , a : A, . . . , h : E → A, . . .).

Let g = intro A f : A → F∞.

Then the equality rules expresses

elim (g a) = (F g) (f a)
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Guarded Recursion
f a of the form Ci (. . . , b : B, . . . , a : A, . . . , h : E → A, . . .).

Then (F g) (f a) is

Ci (. . . , b : B, . . . , g a, . . . , g ◦ h, . . .)

elim (g a) = (F g) (f a) means that

elim (g a) = Ci (. . . , b : B, . . . , g a, . . . , g ◦ h, . . .)

So the introduction rule means that we can define
g : A → F∞

0 s.t.

elim (g a) = Ci (. . . , b : B, . . . , g a, . . . , g ◦ h, . . .)
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Generalised Intro/Equality Rule
Generalised Introduction Rule

A : Set f : A → F (F∞ (A + F∞

0 ))

intro′ A f : A → F∞

0

Generalised Equality Rule

elim′ (intro′ A f a)

= F (g ◦ F∞ ([intro′ A f, λx.x]
︸ ︷︷ ︸

(A+F∞

0
)→F∞

0

)

︸ ︷︷ ︸

F∞ (A+F∞

0
)→F∞ F∞

0

) ( f a
︸︷︷︸

:F (F∞ (A+F∞

0
))

)

where g : F∞ F∞

0 → F∞

0 .

Can be essentially reduced to the above.
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Generalised Guarded Recursion
In case

F X = C1 (. . . , b : B, . . . , x : X, . . .)

+ · · ·

+ Cn (. . . , b : B′, . . . , x : X, . . .)

the rules mean:

we can define f : A → F∞

0 s.t.

elim (f a) = Ci (. . . , b, . . . ,Cj (. . . ,Ck (. . . , t, . . .), . . .), . . .) . . .) . . .)

where t : F∞

0 or t = f a′.
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Agda
So the introduction/equality rules mean that if

A = codata C1 (. . .) | · · · | Cn (. . .)

we can define
g : B → A

where

elim (g a) = t

where t is a guarded recursion pattern.

Dependent version possible as well.
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Constructors
A = codata C1 (. . .) | · · · | Cn (. . .)

A convenient syntactic sugar would be to have
Ci a0 · · · an : A

which is the b given by

b : A

where

elim b = Ci a0 · · · an
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Example
Stream = codata cons (n : N) (s : Stream).

Define

f : N → Stream

where

elim (f n) = cons n (f (n + 1))

Define

g : N → Stream

where

elim (g n) = cons n (cons (n + 1) (g (n + 2)))
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Bisimulation
Bisim : Stream → Stream → Set

Bisim s s′ =
case elim s of

(cons n t)

−→ case elim s′ of

(cons n′ t′)

−→ codata bisim (p : n == n′) (q : Bisim t t′)

.
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Proof by Coninduction

mutual

lem1 : (n : N) → Bisim (f n) (g n)

where

elim (lem1 n) = bisim (refl n) (lem2 (n + 1))

{−note that
elim (f n) = cons n (f (n + 1))

elim (g n) = cons n (cons (n + 1) (g (n + 2))) −}

lem2 : (n : N) → Bisim (f n) (cons n (g (n + 1)))

where

elim (lem2 n) = bisim (refl n) (lem1 n)

{−note that
elim (f n) = cons n (f (n + 1))

elim (cons n (g (n + 1)) = cons n (g (n + 1)) −}
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4. Alternative Syntax?
Algebraic data types are given by their introduction
rules.

Coalgebraic types are given by their elimination rule.

Maybe we should have instead of the above

N
∞ = coalg

elimN : data 0 | S (n : N
∞)

Stream = coalg

elimStream : record (n : N) (s : Stream)

or
Stream = coalg

head : N

tail : Stream
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Alternative Syntax?
Then we would have,

if n : N then

n.elimN : data 0 | S (n : N
∞)

if s : Stream then

n.elimStream : record (n : N) (s : Stream)

And we have

f : N → N
∞

where

(f n).elim = S (f n)
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Alternative Syntax?
Or we have if

Stream = coalg

head : N

tail : Stream

then we can define

f : N → Stream

where

(f n).head = n

(f n).tail = f (n + 1)
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Alternative Syntax?

Bisim (s, s′ : Stream) = coalg

head= : s.head == s′.head

tail= : Bisim s.tail s′.tail
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Alternative Syntax?
Then

N
∞ = codata 0 | S (n : N

∞)

would be an abbreviation for

N
∞ = coalg

case : data 0 | S (n : N
∞)

0 : N
∞

where

0.case = 0

S : N
∞ → N

∞

where

(S n).case = S n
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Conclusion
IO A is a special case of codata.

Convenient syntax for codata.

“data” types are determined by their introduction rules
elimination rules are “derived” and impredicative.

“codata” types are determined by their elimination rules
introduction rules are “derived” and impredicative.

Guarded recursion not to be read as an equality
creating infinite terms.

elim n = S n rather than n = S n.

Bisimulation dependent codata type.

Proofs of bisimulation can be done by guarded
recursion.
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