
Guarded Recursion
in Dependent Type Theory

Anton Setzer

1. Interactive Programs.

2. Theory of Coalgebras.

3. Guarded Recursion.

4. Alternative Syntax?

Anton Setzer: Guarded Recursion in Dependent Type Theory 1

1. Interactive Programs
Formalisation of Interactive Programs in Dependent
Type Theory and reasoning about their correctness.

Interface for (non-state dependent) interactive program
given by

a set of commands C : Set,
a set of responses depending on commands
R : C → Set.

Anton Setzer: Guarded Recursion in Dependent Type Theory 2

Examples of Commands/Responses
writestring (s : String) : C

“write string to console”.
R (writestring s) = {∗}.

“empty response”.

readtemperature : C

“read temperature from a sensor”.
R readtemperature = Temperature.

Anton Setzer: Guarded Recursion in Dependent Type Theory 3

Interactive Program
An interactive program is given by a loop

Program

Response Command

World

Anton Setzer: Guarded Recursion in Dependent Type Theory 4

IO A

In a monadic version we allow as well termination,
returning an element a : A.

We obtain IO : Set → Set.

Then we have that elements of IO A are of the form

return (a : A)

or
do (c : C) (next : R c → IO A) .

IO A 6= data return (a : A) | do (c : C) (next : R c → IO A)

since interactive programs might run for ever.

Anton Setzer: Guarded Recursion in Dependent Type Theory 5

Codata
Instead

IO A = codata return (a : A)

| do (c : C) (next : R c → IO A)

Anton Setzer: Guarded Recursion in Dependent Type Theory 6

Execution of p : IO A

Execution p : IO A means iteratively
reducing p to weak head normalform

if result is
return a

program stops returns a,
if result is

do c next

command c is executed in real world, if response is
r : R c, execution continues with executing
next r : IO A.

Anton Setzer: Guarded Recursion in Dependent Type Theory 7

Execution of p : IO A

Execution of p is not the same as normalisation.

Differently from Haskell order between commands and
responses is guaranteed (even if we have lazy
evaluation).

Direct reasoning about elements of IO A possible.

Above very generic. For writing programs one can have
more userfriendly versions possible like

IO A = codata return (a : A)

| writestring (s : String) (next : IO A)

| readtemperature (next : Temperature → IO A)

Anton Setzer: Guarded Recursion in Dependent Type Theory 8

2. Coalgebras
We consider stritly positive functors F : Set → Set.

λX.A is strictly positive.
λX.X is strictly positive.
If A : Set and Fa are strictly positive (a : A), so are

λX.Σa : A.Fa X,
λX.Πa : A.Fa X.

Precise formalisation possible as a universe of
operators (which is a type).

Morphism part F f : F A → F B for f : A → B can be
defined.

Closure under F∞, F ∗ possible (not considered here).

Strictly positive functors closed under +:
λX.F0 X + F1 X = λX.Σi : {0, 1}.Fi X.

Anton Setzer: Guarded Recursion in Dependent Type Theory 9

Codata
As a specific case we consider

F X = C1 (. . . , b : B, . . . , x : X, . . . , f : A → X, . . .)

+ · · ·

+Cn (. . .)

E.g.

FN X = 0 + S (x : X)

FStream X = cons (n : N) (x : X)

Anton Setzer: Guarded Recursion in Dependent Type Theory 10

Coalgebras
F∞

0 = weakly final coalgebra of F .
In case of FN X = 0 + S (x : X) we have

F∞

N,0= codata 0 | S (n : FN,0)

= N
∞

In case of FStream X = cons (n : N) (x : X) we have

F∞

Stream,0= codata cons (n : N) (s : F∞

Stream,0)

= Stream .

Anton Setzer: Guarded Recursion in Dependent Type Theory 11

Monadic Version of F∞
0

F∞ X = (FX)∞0 where
FX Y = return (x : X) + continue (x : F Y).

E.g. (essentially)

F∞

Stream X = codata return (x : X)

| cons (n : N) (s : F∞

Stream X)

F∞

N
X = codata return (x : X)

| 0

| S (x : F∞

N
X)

Anton Setzer: Guarded Recursion in Dependent Type Theory 12

Coalgebras Categorically
We have F∞

0 : Set,

elim : F∞

0 → F F∞

0 ,

s.t. whenever we have f : A → F A there exists a
g : A → F∞

0 s.t.

A
f

- F A

F∞

0

g

?

elim
- F F∞

0

F g

?

Anton Setzer: Guarded Recursion in Dependent Type Theory 13

Formation and Elimination Rules
Formation Rule for F∞

0

F∞

0 : Set

Elimination Rule for F∞

0

a : F∞

0

elim a : F F∞

0

Anton Setzer: Guarded Recursion in Dependent Type Theory 14

Special Cases
1.

N
∞ : Set

n : N
∞

elim n : 0 + S (n : N
∞)

2.
Stream : Set

l : Stream
elim l : cons (n : N) (s : Stream)

Anton Setzer: Guarded Recursion in Dependent Type Theory 15

Agda
Formation Rules corresponds to formation of

A : Set = codata C1 (· · ·) | · · · | Ck (· · ·)

Elimination rule corresponds to possibility of case
distinction.

Anton Setzer: Guarded Recursion in Dependent Type Theory 16

Intro-/Equality Rules

A
f

- F A

F∞

0

intro A f

?

elim
- F F∞

0

F (intro A f)

?

Introduction Rule
A : Set f : A → F A

intro A f : A → F∞

0

Equality Rule

elim (intro A f a) = F (intro A f
︸ ︷︷ ︸

:A→F∞

0

)(f a
︸︷︷︸

:F A

) : F F∞

0

Anton Setzer: Guarded Recursion in Dependent Type Theory 17

3. Guarded Recursion
Let

F X = C1 (. . . , b : B, . . . , x : X, . . . , h : E → X, . . .)

+ · · ·

+ Cn (. . . , b : B′, . . . , x : X, . . . , h : E′ → X, . . .)

f : A → F A means f a is of the form
Ci (. . . , b : B, . . . , a : A, . . . , h : E → A, . . .).

Let g = intro A f : A → F∞.

Then the equality rules expresses

elim (g a) = (F g) (f a)

Anton Setzer: Guarded Recursion in Dependent Type Theory 18

Guarded Recursion
f a of the form Ci (. . . , b : B, . . . , a : A, . . . , h : E → A, . . .).

Then (F g) (f a) is

Ci (. . . , b : B, . . . , g a, . . . , g ◦ h, . . .)

elim (g a) = (F g) (f a) means that

elim (g a) = Ci (. . . , b : B, . . . , g a, . . . , g ◦ h, . . .)

So the introduction rule means that we can define
g : A → F∞

0 s.t.

elim (g a) = Ci (. . . , b : B, . . . , g a, . . . , g ◦ h, . . .)

Anton Setzer: Guarded Recursion in Dependent Type Theory 19

Generalised Intro/Equality Rule
Generalised Introduction Rule

A : Set f : A → F (F∞ (A + F∞

0))

intro′ A f : A → F∞

0

Generalised Equality Rule

elim′ (intro′ A f a)

= F (g ◦ F∞ ([intro′ A f, λx.x]
︸ ︷︷ ︸

(A+F∞

0
)→F∞

0

)

︸ ︷︷ ︸

F∞ (A+F∞

0
)→F∞ F∞

0

) (f a
︸︷︷︸

:F (F∞ (A+F∞

0
))

)

where g : F∞ F∞

0 → F∞

0 .

Can be essentially reduced to the above.

Anton Setzer: Guarded Recursion in Dependent Type Theory 20

Generalised Guarded Recursion
In case

F X = C1 (. . . , b : B, . . . , x : X, . . .)

+ · · ·

+ Cn (. . . , b : B′, . . . , x : X, . . .)

the rules mean:

we can define f : A → F∞

0 s.t.

elim (f a) = Ci (. . . , b, . . . ,Cj (. . . ,Ck (. . . , t, . . .), . . .), . . .) . . .) . . .)

where t : F∞

0 or t = f a′.

Anton Setzer: Guarded Recursion in Dependent Type Theory 21

Agda
So the introduction/equality rules mean that if

A = codata C1 (. . .) | · · · | Cn (. . .)

we can define
g : B → A

where

elim (g a) = t

where t is a guarded recursion pattern.

Dependent version possible as well.

Anton Setzer: Guarded Recursion in Dependent Type Theory 22

Constructors
A = codata C1 (. . .) | · · · | Cn (. . .)

A convenient syntactic sugar would be to have
Ci a0 · · · an : A

which is the b given by

b : A

where

elim b = Ci a0 · · · an

Anton Setzer: Guarded Recursion in Dependent Type Theory 23

Example
Stream = codata cons (n : N) (s : Stream).

Define

f : N → Stream

where

elim (f n) = cons n (f (n + 1))

Define

g : N → Stream

where

elim (g n) = cons n (cons (n + 1) (g (n + 2)))

Anton Setzer: Guarded Recursion in Dependent Type Theory 24

Bisimulation
Bisim : Stream → Stream → Set

Bisim s s′ =
case elim s of

(cons n t)

−→ case elim s′ of

(cons n′ t′)

−→ codata bisim (p : n == n′) (q : Bisim t t′)

.

Anton Setzer: Guarded Recursion in Dependent Type Theory 25

Proof by Coninduction

mutual

lem1 : (n : N) → Bisim (f n) (g n)

where

elim (lem1 n) = bisim (refl n) (lem2 (n + 1))

{−note that
elim (f n) = cons n (f (n + 1))

elim (g n) = cons n (cons (n + 1) (g (n + 2))) −}

lem2 : (n : N) → Bisim (f n) (cons n (g (n + 1)))

where

elim (lem2 n) = bisim (refl n) (lem1 n)

{−note that
elim (f n) = cons n (f (n + 1))

elim (cons n (g (n + 1)) = cons n (g (n + 1)) −}

Anton Setzer: Guarded Recursion in Dependent Type Theory 26

4. Alternative Syntax?
Algebraic data types are given by their introduction
rules.

Coalgebraic types are given by their elimination rule.

Maybe we should have instead of the above

N
∞ = coalg

elimN : data 0 | S (n : N
∞)

Stream = coalg

elimStream : record (n : N) (s : Stream)

or
Stream = coalg

head : N

tail : Stream

Anton Setzer: Guarded Recursion in Dependent Type Theory 27

Alternative Syntax?
Then we would have,

if n : N then

n.elimN : data 0 | S (n : N
∞)

if s : Stream then

n.elimStream : record (n : N) (s : Stream)

And we have

f : N → N
∞

where

(f n).elim = S (f n)

Anton Setzer: Guarded Recursion in Dependent Type Theory 28

Alternative Syntax?
Or we have if

Stream = coalg

head : N

tail : Stream

then we can define

f : N → Stream

where

(f n).head = n

(f n).tail = f (n + 1)

Anton Setzer: Guarded Recursion in Dependent Type Theory 29

Alternative Syntax?

Bisim (s, s′ : Stream) = coalg

head= : s.head == s′.head

tail= : Bisim s.tail s′.tail

Anton Setzer: Guarded Recursion in Dependent Type Theory 30

Alternative Syntax?
Then

N
∞ = codata 0 | S (n : N

∞)

would be an abbreviation for

N
∞ = coalg

case : data 0 | S (n : N
∞)

0 : N
∞

where

0.case = 0

S : N
∞ → N

∞

where

(S n).case = S n

Anton Setzer: Guarded Recursion in Dependent Type Theory 31

Conclusion
IO A is a special case of codata.

Convenient syntax for codata.

“data” types are determined by their introduction rules
elimination rules are “derived” and impredicative.

“codata” types are determined by their elimination rules
introduction rules are “derived” and impredicative.

Guarded recursion not to be read as an equality
creating infinite terms.

elim n = S n rather than n = S n.

Bisimulation dependent codata type.

Proofs of bisimulation can be done by guarded
recursion.

Anton Setzer: Guarded Recursion in Dependent Type Theory 32

	
	1. Interactive Programs
	Examples of Commands/Responses
	Interactive Program
	$IO ;A$
	Codata
	Execution of $p: IO ;A$
	Execution of $p: IO ;A$
	2. Coalgebras
	Codata
	Coalgebras
	Monadic Version of $F^infty _0$
	Coalgebras Categorically
	Formation and Elimination Rules
	Special Cases
	Agda
	Intro-/Equality Rules
	3. Guarded Recursion
	Guarded Recursion
	Generalised Intro/Equality Rule
	Generalised Guarded Recursion
	Agda
	Constructors
	Example
	Bisimulation
	Proof by Coninduction
	4. Alternative Syntax?
	Alternative Syntax?
	Alternative Syntax?
	Alternative Syntax?
	Alternative Syntax?
	Conclusion

