Guarded Recursion
In Dependent Type Theory

Anton Setzer

1. Interactive Programs.
2. Theory of Coalgebras.
3. Guarded Recursion.
4. Alternative Syntax?

Anton Setzer: Guarded Recursion in Dependent Type Theory

1. Interactive Programs

Formalisation of Interactive Programs in Dependent
Type Theory and reasoning about their correctness.

Interface for (non-state dependent) interactive program
given by
s aset of commands C : Set,

s a set of responses depending on commands
R : C — Set.

Anton Setzer: Guarded Recursion in Dependent Type Theory

Examples of Commands/Response

® writestring (s : String) : C
s “write string to console”.
R (writestring s) = {x}.
s ‘empty response”.

® readtemperature : C

s ‘“read temperature from a sensor”.

R readtemperature = Temperature.

Anton Setzer: Guarded Recursion in Dependent Type Theory 3

Interactive Program

An Interactive program is given by a loop

Program

Response Command

World

Anton Setzer: Guarded Recursion in Dependent Type Theory

10 A

#® |In a monadic version we allow as well termination,
returning an element « : A.

® We obtain IO : Set — Set.
® Then we have that elements of IO A are of the form

return (a : A)

or
do (c:C) (next:Rec—10 A) .

[0 A # datareturn (a: A) | do (¢: C) (next: R ¢ — 10 A)

since interactive programs might run for ever.

Anton Setzer: Guarded Recursion in Dependent Type Theory

Codata

® |Instead

[0 A = codata return (a : A)
| do (¢ : C) (next: Rc— 10 A)

Anton Setzer: Guarded Recursion in Dependent Type Theory

Execution of p: IO A

Execution p : IO A means iteratively
s reducing p to weak head normalform

s Ifresultis
return a

program StOpS returns a,
s If resultis
do ¢ next

command c is executed in real world, if response is
r : R ¢, execution continues with executing
next r : 10 A.

Anton Setzer: Guarded Recursion in Dependent Type Theory

Execution of p: IO A

Execution of p Is not the same as normalisation.

o Differently from Haskell order between commands and
responses is guaranteed (even if we have lazy
evaluation).

Direct reasoning about elements of IO A possible.

°

°

Above very generic. For writing programs one can have
more userfriendly versions possible like

IO A = codata return (a : A)
| writestring (s : String) (next : 10 A)

| readtemperature (next : Temperature — 10 A

Anton Setzer: Guarded Recursion in Dependent Type Theory 8

2.

Coalgebras

9

We consider stritly positive functors F' : Set — Set.
s MX.A is strictly positive.
s AX.X Is strictly positive.

s If A:Set and F,, are strictly positive (a : A), so are
s ANXYa:AF, X,
s MNX.Ila: AF, X.

Precise formalisation possible as a universe of
operators (which is a type).

Morphismpart ' f : F A— F Bfor f: A — B can be
defined.

Closure under F*°, I possible (not considered here).

Strictly positive functors closed under +:
MX.Fy X +F1 X =XX.%i:{0,1}.F; X.

Anton Setzer: Guarded Recursion in Dependent Type Theory

Codata

#® As a specific case we consider

FX=C(..,.0:B,....;0:X,....f: A= X,...)
+Cp (...)

Fy X 04S (z: X)
Fstream X = cons (n: N) (z: X)

Anton Setzer: Guarded Recursion in Dependent Type Theory

10

Coalgebras

o F° =weakly final coalgebra of F.
s Incaseof Fy X =0+ S (z: X) we have

FRo=codata 0| S (n: Fnp)
— N

s In case of Fgiream X = cons (n : N) (z : X) we have

Fdtream,0= codata cons (n : N) (s : F& . 0)

— Stream .

Anton Setzer: Guarded Recursion in Dependent Type Theory

11

Monadic Version of F©

® [X = (F¥X)5° where
FAY = return (z : X) + continue (z : F'Y).

#® E.g. (essentially)

F&oeam X = codatareturn (z : X)
| cons (n: N) (5 FSoeam X)
F® X = codatareturn (z : X)
| 0
| S (z: FF© X)

Anton Setzer: Guarded Recursion in Dependent Type Theory

12

Coalgebras Categorically

We have Fg° : Set,
® clim: Fg° — F Fg°,

#® s.t. whenever we have f: A — F A there exists a
g: A—Fg°s.t

A / - A

g F g

F§° —— F F{°
elim

Anton Setzer: Guarded Recursion in Dependent Type Theory

13

Formation and Elimination Rules

o Formation Rule for Fg®
Fo” @ Set
Elimination Rule for Fg°

a:F8O
elima:FF8°

Anton Setzer: Guarded Recursion in Dependent Type Theory

14

Special Cases

1.
N : Set,
n : N
elimn: 048 (n: N)
2.
Stream : Set
[: Stream

elim [: cons (n : N) (s : Stream)

Anton Setzer: Guarded Recursion in Dependent Type Theory

15

Agda

Formation Rules corresponds to formation of
A:Set =codataCy (+--) || Cg (---)

Elimination rule corresponds to possibility of case
distinction.

Anton Setzer: Guarded Recursion in Dependent Type Theory

16

Intro-/Equality Rules

A / ~-F A
intro A f F (intro A f)
F° L FFY
elim

® Introduction Rule
A : Set f:A—FA
introA f: A— Fy°

Equality Rule

elim (intro A fa) = F (intro A f)(fa): F Fg°

N e’ N~
:A—Fg° F A

Anton Setzer: Guarded Recursion in Dependent Type Theory

17

3. Guarded Recursion

® Let

FX=C(..,.b:B,....;0:X,....,h: E—X,...)
| « o
+Cp(...,0:B,....,x:X,...,h: ' = X,...)

® f:A—F Ameans f ais of the form
Ci(...,.0:B,...;a: A,h : E— A ...).

® letg=introA f: A— F*®.

#® Then the equality rules expresses

elim (g a) = (F g) (f a)

Anton Setzer: Guarded Recursion in Dependent Type Theory

18

Guarded Recursion

faoftheformC; (...,06:B,...,a:A,....,.h: E— A, ...).
® Then (Fg)(fa)ls

Ci(....,b:B,....,ga,...,g0h,...)
® clim (ga) = (F g) (f a) means that
elim (ga)=C; (...,b:B,...,ga,...,g0h,...)

® So the introduction rule means that we can define
g: A—Fg°s.t

elim(ga)=C; (...,b:B,...,ga,...,g0h,...)

Anton Setzer: Guarded Recursion in Dependent Type Theory

19

Generalised Intro/Equality Rule

® Generalised Introduction Rule

A:Set f:A—-F(F>* (A+F))
intro’ A f: A — Fg°

#® Generalised Equality Rule

elim’ (intro’ A f a)

= F F (]i / .
(go ([intro zilrf, Ax.z])) (iﬁ)
(A+Fg)—Fge F (Fo° (A+Fg°))

\ . J/
N

Foe (A+F8°)—>F°° FSO

where g : F*° Fg° — Fg°.

Can be essentially reduced to the above.

Anton Setzer: Guarded Recursion in Dependent Type Theory 20

Generalised Guarded Recursion

® |n case

FX=C(..,0:B,...,z:X,...)
| « ..
+Cp(...,0:B,...,x:X,...)

the rules mean:
o we can define f: A — F° s.t.

elim(fa):Ci (...,b,...,Cj (,Ck (...,t,...),...),... cel)

where ¢t : Fg° ort = f d'.

Anton Setzer: Guarded Recursion in Dependent Type Theory

21

Agda

S0 the introduction/equality rules mean that if

A=codataCy (...) || Cpn (...)
we can define
g:B— A
where
elim (g a) =t

where t Is a guarded recursion pattern.
#® Dependent version possible as well.

Anton Setzer: Guarded Recursion in Dependent Type Theory

22

Constructors

A=codataCy (...) |-+ | Cp (...)
#® A convenient syntactic sugar would be to have
Ciag--- ap: A

which is the b given by

b: A
where

elmb=C; a9 an

Anton Setzer: Guarded Recursion in Dependent Type Theory

23

Example

#® Stream = codata cons (n : N) (s : Stream).

® Define
f N — Stream
where
elim (fn)=consn (f (n+1))
® Define

g : N — Stream
where
elim (g n) = cons n (cons (n+1) (¢ (n+ 2)))

Anton Setzer: Guarded Recursion in Dependent Type Theory

24

Bisimulation

#® Bisim : Stream — Stream — Set
® Bisim s s =
case elim s of
(cons n t)
—— case elim s’ of
(cons n' t')

— codata bisim (p : n ==n') (¢ : Bisim ¢ t')

Anton Setzer: Guarded Recursion in Dependent Type Theory

25

Proof by Coninduction

mutual
lem; : (n: N) — Bisim (f n) (g n)
where
elim (lem; n) = bisim (refl n) (lemo (n + 1))
{—note that
elim (fn) =consn (f (n+1))
elim (g n) = cons n (cons (n+1) (g (n+2))) —}
lems : (n: N) — Bisim (f n) (consn (¢ (n+ 1)))
where
elim (lemg n) = bisim (refl n) (lemy n)
{—note that
elim (f n) =consn (f (n+1))
elim (consn (g (n+ 1)) =consn (g (n+ 1)) —}

Anton Setzer: Guarded Recursion in Dependent Type Theory

26

4. Alternative Syntax?

Algebraic data types are given by their introduction
rules.

Coalgebraic types are given by their elimination rule.
Maybe we should have instead of the above

N®° = coalg
elimpy : data 0| S (n:N*)
Stream = coalg
elimgiream : record (n: N) (s : Stream)
or
Stream = coalg
head : N
tail : Stream

Anton Setzer: Guarded Recursion in Dependent Type Theory 27

Alternative Syntax?

® Then we would have,
o Ifn: N then

n.elimy : data 0 | S (n : N°°)
s If 5 : Stream then
n.elimgipeam : record (n : N) (s : Stream)
o And we have

f:N— N*
where

(fn)elim=S(fn)

Anton Setzer: Guarded Recursion in Dependent Type Theory

28

Alternative Syntax?

® Or we have If

Stream = coalg
head : N
taill : Stream

then we can define

f : N — Stream
where
(f n).head =n
(f n)taill=f (n+1)

Anton Setzer: Guarded Recursion in Dependent Type Theory

29

Alternative Syntax?

9

Bisim (s, s’ : Stream) = coalg
head—
tail—

s.head == s’ .head

Bisim s.tail s’.tail

Anton Setzer: Guarded Recursion in Dependent Type Theory

30

Alternative Syntax?

Then
N°° = codata 0| S (n : N°°)

would be an abbreviation for

N = coalg
case : data 0 | S (n : N°°)
0 : N&©
where
O.case =0
S : N°© — N
where

(Sn).case =Sn

Anton Setzer: Guarded Recursion in Dependent Type Theory

31

Conclusion

°

IO A is a special case of codata.

°

Convenient syntax for codata.

“data” types are determined by their introduction rules
s elimination rules are “derived” and impredicative.

“codata” types are determined by their elimination rules
s Introduction rules are “derived” and impredicative.

Guarded recursion not to be read as an equality
creating infinite terms.
s elim n = S nrather than n =S n.

°

Bisimulation dependent codata type.

Proofs of bisimulation can be done by guarded
recursion.

Anton Setzer: Guarded Recursion in Dependent Type Theory

32

	
	1. Interactive Programs
	Examples of Commands/Responses
	Interactive Program
	$IO ;A$
	Codata
	Execution of $p: IO ;A$
	Execution of $p: IO ;A$
	2. Coalgebras
	Codata
	Coalgebras
	Monadic Version of $F^infty _0$
	Coalgebras Categorically
	Formation and Elimination Rules
	Special Cases
	Agda
	Intro-/Equality Rules
	3. Guarded Recursion
	Guarded Recursion
	Generalised Intro/Equality Rule
	Generalised Guarded Recursion
	Agda
	Constructors
	Example
	Bisimulation
	Proof by Coninduction
	4. Alternative Syntax?
	Alternative Syntax?
	Alternative Syntax?
	Alternative Syntax?
	Alternative Syntax?
	Conclusion

