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1. Interactive Programs

# Formalisation of Interactive Programs in Dependent
Type Theory and reasoning about their correctness.

# Interface for (non-state dependent) interactive program
given by
s aset of commands C : Set,

s a set of responses depending on commands
R : C — Set.
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Examples of Commands/Response

® writestring (s : String) : C
s “write string to console”.
R (writestring s) = {x}.
s ‘empty response”.

® readtemperature : C

s ‘“read temperature from a sensor”.

R readtemperature = Temperature.
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Interactive Program

An Interactive program is given by a loop

Program

Response Command

World
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10 A

#® |In a monadic version we allow as well termination,
returning an element « : A.

® We obtain IO : Set — Set.
® Then we have that elements of IO A are of the form

return (a : A)

or
do (c:C) (next:Rec—10 A) .

[0 A # datareturn (a: A) | do (¢: C) (next: R ¢ — 10 A)

since interactive programs might run for ever.
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Codata

® |Instead

[0 A = codata return (a : A)
| do (¢ : C) (next: Rc— 10 A)
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Execution of p: IO A

# Execution p : IO A means iteratively
s reducing p to weak head normalform

s Ifresultis
return a

program StOpS returns a,
s If resultis
do ¢ next

command c is executed in real world, if response is
r : R ¢, execution continues with executing
next r : 10 A.
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Execution of p: IO A

Execution of p Is not the same as normalisation.

o Differently from Haskell order between commands and
responses is guaranteed (even if we have lazy
evaluation).

Direct reasoning about elements of IO A possible.

°

°

# Above very generic. For writing programs one can have
more userfriendly versions possible like

IO A = codata return (a : A)
| writestring (s : String) (next : 10 A)

| readtemperature (next : Temperature — 10 A
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2.

Coalgebras

9

We consider stritly positive functors F' : Set — Set.
s MX.A is strictly positive.
s AX.X Is strictly positive.

s If A:Set and F,, are strictly positive (a : A), so are
s ANXYa:AF, X,
s MNX.Ila: AF, X.

Precise formalisation possible as a universe of
operators (which is a type).

Morphismpart ' f : F A— F Bfor f: A — B can be
defined.

Closure under F*°, I possible (not considered here).

Strictly positive functors closed under +:
MX.Fy X +F1 X =XX.%i:{0,1}.F; X.
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Codata

#® As a specific case we consider

FX=C(..,.0:B,....;0:X,....f: A= X,...)
+Cp (...)

Fy X 04S (z: X)
Fstream X = cons (n: N) (z: X)
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Coalgebras

o F° =weakly final coalgebra of F.
s Incaseof Fy X =0+ S (z: X) we have

FRo=codata 0| S (n: Fnp)
— N

s In case of Fgiream X = cons (n : N) (z : X) we have

Fdtream,0= codata cons (n : N) (s : F& . 0)

— Stream .
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Monadic Version of F©

® [ X = (F¥X)5° where
FAY = return (z : X) + continue (z : F'Y).

#® E.g. (essentially)

F&oeam X = codatareturn (z : X)
| cons (n: N) (5 FSoeam X)
F® X = codatareturn (z : X)
| 0
| S (z: FF© X)
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Coalgebras Categorically

# We have Fg° : Set,
® clim: Fg° — F Fg°,

#® s.t. whenever we have f: A — F A there exists a
g: A—Fg°s.t

A / - A

g F g

F§° —— F F{°
elim

Anton Setzer: Guarded Recursion in Dependent Type Theory

13



Formation and Elimination Rules

o Formation Rule for Fg®
Fo” @ Set
# Elimination Rule for Fg°

a:F8O
elima:FF8°
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Special Cases

1.
N : Set,
n : N
elimn: 048 (n: N)
2.
Stream : Set
[ : Stream

elim [ : cons (n : N) (s : Stream)
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Agda

# Formation Rules corresponds to formation of
A:Set =codataCy (+--) || Cg (---)

# Elimination rule corresponds to possibility of case
distinction.
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Intro-/Equality Rules

A / ~-F A
intro A f F (intro A f)
F° L FFY
elim

® Introduction Rule
A : Set f:A—FA
introA f: A— Fy°

# Equality Rule

elim (intro A fa) = F (intro A f)( fa): F Fg°

N e’ N~
:A—Fg° F A

Anton Setzer: Guarded Recursion in Dependent Type Theory

17



3. Guarded Recursion

® Let

FX=C(..,.b:B,....;0:X,....,h: E—X,...)
_|_ « o
+Cp(...,0:B,....,x:X,...,h: ' = X,...)

® f:A—F Ameans f ais of the form
Ci(...,.0:B,...;a: A, ....h : E— A ...).

® letg=introA f: A— F*®.

#® Then the equality rules expresses

elim (g a) = (F g) (f a)
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Guarded Recursion

faoftheformC; (...,06:B,...,a:A,....,.h: E— A, ...).
® Then (Fg)(fa)ls

Ci(....,b:B,....,ga,...,g0h,...)
® clim (ga) = (F g) (f a) means that
elim (ga)=C; (...,b:B,...,ga,...,g0h,...)

® So the introduction rule means that we can define
g: A—Fg°s.t

elim(ga)=C; (...,b:B,...,ga,...,g0h,...)

Anton Setzer: Guarded Recursion in Dependent Type Theory

19



Generalised Intro/Equality Rule

® Generalised Introduction Rule

A:Set f:A—-F(F>* (A+F))
intro’ A f: A — Fg°

#® Generalised Equality Rule

elim’ (intro’ A f a)

= F F (]i / .
(go ([intro zilrf, Ax.z])) ( iﬁ )
(A+Fg)—Fge F (Fo° (A+Fg°))

\ . J/
N

Foe (A+F8°)—>F°° FSO

where g : F*° Fg° — Fg°.

# Can be essentially reduced to the above.
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Generalised Guarded Recursion

® |n case

FX=C(..,0:B,...,z:X,...)
_|_ « ..
+Cp(...,0:B,...,x:X,...)

the rules mean:
o we can define f: A — F° s.t.

elim(fa):Ci (...,b,...,Cj (,Ck (...,t,...),...),... cel )

where ¢t : Fg° ort = f d'.

Anton Setzer: Guarded Recursion in Dependent Type Theory

21



Agda

# S0 the introduction/equality rules mean that if

A=codataCy (...) || Cpn (...)
we can define
g:B— A
where
elim (g a) =t

where t Is a guarded recursion pattern.
#® Dependent version possible as well.
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Constructors

A=codataCy (...) |-+ | Cp (...)
#® A convenient syntactic sugar would be to have
Ciag--- ap: A

which is the b given by

b: A
where

elmb=C; a9 an

Anton Setzer: Guarded Recursion in Dependent Type Theory

23



Example

#® Stream = codata cons (n : N) (s : Stream).

® Define
f N — Stream
where
elim (fn)=consn (f (n+1))
® Define

g : N — Stream
where
elim (g n) = cons n (cons (n+1) (¢ (n+ 2)))
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Bisimulation

#® Bisim : Stream — Stream — Set
® Bisim s s =
case elim s of
(cons n t)
—— case elim s’ of
(cons n' t')

— codata bisim (p : n ==n') (¢ : Bisim ¢ t')
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Proof by Coninduction

mutual
lem; : (n: N) — Bisim (f n) (g n)
where
elim (lem; n) = bisim (refl n) (lemo (n + 1))
{—note that
elim (fn) =consn (f (n+1))
elim (g n) = cons n (cons (n+1) (g (n+2))) —}
lems : (n: N) — Bisim (f n) (consn (¢ (n+ 1)))
where
elim (lemg n) = bisim (refl n) (lemy n)
{—note that
elim (f n) =consn (f (n+1))
elim (consn (g (n+ 1)) =consn (g (n+ 1)) —}
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4. Alternative Syntax?

# Algebraic data types are given by their introduction
rules.

# Coalgebraic types are given by their elimination rule.
# Maybe we should have instead of the above

N®° = coalg
elimpy : data 0| S (n:N*)
Stream = coalg
elimgiream : record (n: N) (s : Stream)
or
Stream = coalg
head : N
tail : Stream
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Alternative Syntax?

® Then we would have,
o Ifn: N then

n.elimy : data 0 | S (n : N°°)
s If 5 : Stream then
n.elimgipeam : record (n : N) (s : Stream)
o And we have

f:N— N*
where

(fn)elim=S(fn)
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Alternative Syntax?

® Or we have If

Stream = coalg
head : N
taill : Stream

then we can define

f : N — Stream
where
(f n).head =n
(f n)taill=f (n+1)
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Alternative Syntax?

9

Bisim (s, s’ : Stream) = coalg
head—
tail—

s.head == s’ .head

Bisim s.tail s’.tail
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Alternative Syntax?

# Then
N°° = codata 0| S (n : N°°)

would be an abbreviation for

N = coalg
case : data 0 | S (n : N°°)
0 : N&©
where
O.case =0
S : N°© — N
where

(Sn).case =Sn
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Conclusion

°

IO A is a special case of codata.

°

Convenient syntax for codata.

# “data” types are determined by their introduction rules
s elimination rules are “derived” and impredicative.

# “codata” types are determined by their elimination rules
s Introduction rules are “derived” and impredicative.

# Guarded recursion not to be read as an equality
creating infinite terms.
s elim n = S nrather than n =S n.

°

Bisimulation dependent codata type.

# Proofs of bisimulation can be done by guarded
recursion.
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