
Computers & Graphics (2021)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Fast Analytical Motion Blur with Transparency

Mads J. L. Rønnow1, Ulf Assarsson1, Marco Fratarcangeli1

Chalmers University of Technology, Gothenburg, Sweden

A R T I C L E I N F O

Article history:
Received February 10, 2021

Real-time rendering; Motion blur; Paral-
lel Computing

A B S T R A C T

We introduce a practical parallel technique to achieve real-time motion blur for textured
and semi-transparent triangles with high accuracy using modern commodity GPUs. In
our approach, moving triangles are represented as prisms. Each prism is bounded by the
initial and final position of the triangle during one animation frame and three bilinear
patches on the sides. Each prism covers a number of pixels for a certain amount of time
according to its trajectory on the screen. We efficiently find, store and sort the list of
prisms covering each pixel including the amount of time the pixel is covered by each
prism. This information, together with the color, texture, normal, and transparency of
the pixel, is used to resolve its final color. We demonstrate the performance, scalability,
and generality of our approach in a number of test scenarios, showing that it achieves a
visual quality practically indistinguishable from the ground truth in a matter of just a few
milliseconds, including rendering of textured and transparent objects. A supplementary
video has been made available online1.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

The Visual Effect industry (VFX) is currently undergoing a2

paradigm shift towards real-time content productions. Mod-3

ern game engines, in fact, are able to reproduce many realis-4

tic graphics techniques interactively which traditionally took a5

high amount of computation time. As a consequence, design6

and prototyping cycles are shorter, and more content can be7

produced in less time saving costly resources. Being able to8

produce vast amounts of content quickly is also useful to create9

training datasets for neural networks from scratch.10

To reach interactivity, however, some of these effects are still11

grossly approximated leading to visible artifacts. One of these12

effects is motion blur, which is essential to represent moving13

objects. Motion blur is a common optical effect in photographs14

and videos that occurs when the positions of objects change15

with respect to the camera point of view during the interval in16

time where the camera shutter is open. If the objects are moving17

1Supplementary video available here

rapidly, or the shutter interval is long enough, then the objects 18

leave a blurred streak in the direction of motion. It is impor- 19

tant to reproduce this effect to synthesize immersive and more 20

believable scenes, mimic specific camera models, or achieve 21

artistic effects. 22

The computation time for this type of effect is particularly crit- 23

ical for real-time interactive graphics, such as video games, 24

where the time budget available for rendering effects such as 25

motion blur is just a few milliseconds. For this reason, the ap- 26

proach used in modern game engines is to use computationally- 27

cheap, screen-space approaches in post-processing to achieve 28

motion blur (e.g., [1]). While being fast, these methods suffer 29

from occlusion issues and artifacts, in particular when used with 30

transparent geometries, or when background and foreground 31

objects move in conflicting directions. 32

Gribel et al. [2] provided precise directions on how to accurately 33

represent motion blur in a computer animation, which is generic 34

enough to represent any type of triangulated object, including 35

transparent, textured, shaded and any of these combined. The 36

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
https://www.dropbox.com/s/qeyep7osai03lq1/Supplementary_video_Fast_Analytical_Motion_Blur_with_Transparency.mp4?dl=1


2 Preprint Submitted for review / Computers & Graphics (2021)

O
ur

s
G

ro
un

d
tr

ut
h

Figure 1: A transparent cloth falls on top of a rotating sphere producing motion blurred images. Our results (top) are rendered in real-time and are visually
indistinguishable from the ground truth (bottom).

method is validated only in a software renderer though, and it1

is not possible to directly map it to modern graphics hardware2

to use it in a real-time application.3

In this work, we start from such directions and provide a practi-4

cal, efficient parallel implementation for a corresponding GPU-5

based algorithm. Instead of using analytic edge equations and6

depth functions for moving triangles [2], we represent each tri-7

angle trajectory, during each single time step, by a prism with8

uv coordinates and t values stored for each prism vertex. Con-9

servative 2D hulls of these prisms are then rasterized using a10

shader that computes the entry and exit points of the prism for11

a ray from the camera through the pixel. These points are pair-12

wise connected into intervals inside the prism, for which time,13

depth, and also texture coordinates (extracted from the intersec-14

tion points on the prism surface) are stored for both the start and15

end points of the interval. The intervals are then quickly sorted16

on time for each pixel, followed by a pass that resolves the final17

colors by sweeping the list of time-sorted intervals while using18

an active list of intervals dynamically sorted on depth [2]. We19

extend this step to handle textures during the color and trans-20

parency aggregation and present an efficient CUDA implemen-21

tation. The main benefits of our approach are:22

• Performance: our method fully exploits the massively23

parallel capabilities of modern GPUs, achieving a perfor-24

mance suitable for interactive graphics;25

• Scalability: we instantiate a thread for each pixel covered26

by a moving object. Since each pixel is handled by a single27

thread on the GPU, this makes our approach scalable in the28

number of threads that the graphics card can instantiate;29

• Generality: differently from previous GPU-based works30

[3], our approach can handle triangulated textured objects31

that are also transparent.32

2. Related work33

In this section, we first provide a brief overview of the related34

techniques in motion blur and conclude by motivating our own35

approach. 36

The first brute-force approaches proposed in the literature 37

blurred the current animation frame with previous ones [4, 5]. 38

These approaches are simple to implement and lead to accurate 39

results. The number of required previous frames, however, may 40

become quite large leading to a loss of performance in particu- 41

lar for high pixel resolutions. 42

Stochastic sampling approaches (e.g., [6, 7, 2, 8, 9, 10, 11]) 43

exploit computational features hardwired on modern GPUs to 44

randomly sample the triangles occluding a pixel both in time 45

and space. Stochastic methods are more efficient than the brute 46

force approach, but still require many samples per frame and 47

tend to suffer from sampling noise, which is magnified as the 48

per-frame length of the motion increases. Accuracy is achieved 49

by increasing the number of samples but this, in general, nega- 50

tively affects their performance, making them suitable only for 51

offline productions like movies. 52

Post-processing approaches (e.g., [12, 1, 13]) are fast and suit- 53

able for hard time budget applications and, for this reason, are 54

widely employed in modern game engines. In these approaches, 55

the dominant velocity of the triangles occluding a pixel is in- 56

cluded in the attributes of the pixel itself, and used to blur in 57

screen space. While these highly-parallel approaches are scal- 58

able and fast, they may suffer from the lack of robustness typ- 59

ical of screen-space approaches due to the loss of information 60

caused by the projection and rasterization from the 3D scene to 61

the 2D image space. This may lead to artifacts such as incorrect 62

blurring of the background, or errors when different moving ob- 63

jects traverse the same pixel in different directions. 64

A promising avenue for 3D post-processing approaches are 65

learning-based techniques [14, 15]. High performance is 66

achieved by using different flavors of neural networks to con- 67

vert pixel attributes (e.g., position, normal and color) to a num- 68

ber of screen-space effects, e.g., ambient occlusion, light scat- 69

tering and motion blur. Recently, motion blur effects have been 70

also applied to still images as an artistic style to convey motion 71



Preprint Submitted for review / Computers & Graphics (2021) 3

and to direct attention [16, 17, 18]. Recent developments in1

GPU hardware is enabling real-time ray tracing, including sup-2

port for ray-traced motion blur [19]. Though these hardware3

features still use stochastic sampling that needs high sampling4

counts to achieve the same image quality as analytical methods.5

Hybrid approaches, however, might be a viable path forward for6

analytical motion blur.7

In this work, we provide a practical, GPU-based implementa-8

tion of the theory provided by Gribel et al., which described a9

method for analytically rendering motion blur using triangle-10

edge equations with a time parameter [2]. In the same work,11

they also proposed a compression scheme removing the need12

for sorting unbounded per-pixel lists, together with a method for13

accurately blending different layers of colored triangles. The14

method was only validated on a software renderer and with a15

single color per triangle. Extensions to this work were made16

still using software rasterization [20]. The same blending tech-17

nique was used to implement a GPU version for opaque ge-18

ometry only, not supporting transparent objects [3]. The ac-19

tual performance of this method is unclear, mostly because it20

is not measured with respect to the main bottlenecks, namely21

the depth complexity of each pixel and how much each triangle22

moves on the screen for each frame.23

Our system optimizes for such factors, obtaining real-time24

performances while maintaining an accuracy close to ground25

truth. In fact, we use uncompressed time values (limited to26

16-bit floating point numbers), and represents the potentially27

curved edges of the moving triangle accurately with bilinear28

patches. Our approach scales well with the number of avail-29

able threads. We test our approach on a number of challenging30

scenes, achieving real-time performances even for high polyg-31

onal and pixel resolutions.32

3. Overview33

Let us assume our animation to be continuous in time instead34

of being a mere sequence of frames separated by discrete time35

steps. Let us also assume that the considered time span is de-36

fined between the instants when the camera shutter opens and37

closes, normalized between t = 0 and t = 1. Since time is con-38

tinuous in the considered time step, we would obtain an infinite39

sequence of rasterized images. In this ideal setting, the motion40

blurred image in a given time is simply the result of averaging41

together the infinite number of images. It is important to note42

that the color of a pixel is given by the color of the triangles43

covering it, weighted by the quantity of time the triangle covers44

the pixel while moving. A fast-moving triangle traversing the45

screen, for example, will have a small influence on the color46

of the covered pixels. A static, opaque triangle in front of the47

scene will define entirely the final color of the pixel.48

In a computer animation, motion is discrete, simulated by time49

steps, rather than being continuous. In this case, motion blurred50

images can be computed by averaging together a finite set of51

images produced with small increments in time between the52

opening and closing time of the shutter. This brute force ap- 53

proach scales poorly with the image resolution and it can be 54

highly inefficient [4, 5]. Nonetheless, the quality of the motion 55

blur is high and we consider it as our ground truth. If, for ex- 56

ample, we consider N images while the shutter is open, and if 57

a triangle is only present in a pixel for a single step, then that 58

pixel’s color will be 1/N of the triangle’s color. This effect is 59

shown in Fig. 2. 60

Figure 2: Two objects moving across the screen from left to right between two
frames, without motion blur (top) and with motion blur (bottom). The pixels at
the start and end positions are less saturated than the ones towards the center,
because the objects cover those pixels for a shorter amount of time.

In a scene with many triangles, they may occlude each other 61

when they move. With standard transparent rasterization, if an 62

occluder is opaque, then the occludee will be invisible. If the 63

occluder is semi-transparent, the occludee will be partially vis- 64

ible, i.e., the depth order of triangle fragments determines the 65

final pixel color. For motion blur, occlusion is handled simi- 66

larly by the ground truth method described above. Depth test- 67

ing can be used for opaque geometry, and blending with either 68

the OVER or the UNDER operator can be used for transparent 69

geometry [21]. The depth order of triangles can change during 70

the shutter window, and a triangle may be occluded in some of 71

the incremental steps but not in others. 72

Similar to previous work [3, 22, 23], we represent the triangle 73

trajectory with a prism, as depicted in Fig. 3 (left). The prism is 74

constructed from the triangle’s start and end position together 75

with bilinear patches from the extrusion of the triangle edges 76

along the linear vertex motions. 77

We cast a ray from a pixel center along the z-axis and store 78

the surface properties at the entry and exit intersection points of 79

the prism. Interpolated time values are embedded on the prism 80

surface as one of the surface properties, which we use to find 81

the time span for the triangle’s presence in the pixel. Other 82

properties include clip-space depth, UVs, normal, and texture 83

ID. Each of these (apart from the texture ID), as well as the 84

time property, are linearly interpolated between their respective 85

values of the start and end triangles. Linear interpolation is not 86

fully physically accurate, as discussed in Section 5.1. 87

Our system implements analytical motion blur efficiently on the 88

GPU and is composed of four steps (Fig. 4): 89



4 Preprint Submitted for review / Computers & Graphics (2021)

Figure 3: Left. A triangular prism shape represents the trajectory of a moving
triangle. Right. The prism has been cut open to reveal the two triangles and
three bilinear patches it is composed of in our representation. The dark grey
triangles represent the start and end positions of the triangle’s motion.

Step 1. Bound the screen-space area of a moving triangle. In1

order to bound, for each prism, the pixels that should cast prism2

intersecting rays, we compute a conservative clip-space hull of3

the prism. In a single parallel step, we compute the clip-space4

2D AABB of every moving triangle.5

Step 2. Render moving triangles. The AABB of each mov-6

ing triangle is rasterized with a fragment shader performing ray7

casting to find each primary ray’s entry and exit points of the8

prism. The shader also pairs the intersection points, based on9

their time order, into intervals and outputs them to a buffer capa-10

ble of storing an array per pixel. This involves a pre-pass. First,11

the depth complexities for all pixels is established. An exclu-12

sive sum over the depth complexities is computed to determine13

the start location of each pixel array as well as the buffer size14

needed to fit exactly all of them.15

Step 3. Sort intervals by time. The intervals for each pixel are16

sorted by entry time in order to find triangles that overlap in17

time within a pixel.18

Step 4. Pixel color resolve. This pass resolves the color con-19

tribution of each interval based on time overlap and occlu-20

sion with other intervals, and the duration of time a triangle21

is present within a pixel. This is combined with anisotropic tex-22

ture lookups to get the linearly interpolated texture colors based23

on the entry and exit UVs of the triangles.24

The theory of our method regarding rendering of motion blurred25

geometry is largely based on the work by Gribel et al. [2]. A26

short description of the method will be presented in the follow-27

ing section. We omit compression and aim for a more precise28

solution. An efficient GPU implementation is described, with29

support for transparency and texturing.30

4. Method31

4.1. Rendering prisms32

We represent the surface of the prism formed by a moving tri-33

angle directly with a set of triangles and bilinear patches as34

depicted on Fig. 3 (right). In previous works, the prism sides35

are approximated with triangles [3][22]. Our method, however, 36

models the prism sides accurately with bilinear patches. 37

In order to render a bilinear patch, we need to find a convex 38

set of vertices that conservatively contain its clip-space surface. 39

In practice, we use a single parallel step to compute an AABB 40

of the six clip-space vertices formed by each moving triangle’s 41

start and end positions that conservatively contains all five sides 42

of the the prism as sketched in (Fig. 4, step 1). The AABB 43

is subsequently rasterized, and for each fragment a ray is ex- 44

tended from the fragment center (x0, y0) along the z-axis poten- 45

tially intersecting prism surfaces along its trajectory as shown 46

in Fig. 5. To find the intersections between the ray and the 47

prism, we compute two ray/triangle intersection tests and three 48

ray/bilinear patch intersection tests. 49

A ray can intersect a bilinear patch twice and a triangle once, in 50

total up to 8 intersections can occur between a ray and a prism. 51

While Gribel et al. [2] found the intersection points by solving 52

time-dependent edge equations in a closed form, we found that 53

ray/triangle and ray/bilinear patch intersection computations to 54

be more practical and straightforward to implement. We use the 55

ray/bilinear patch intersection algorithm described by Reshetov 56

et al. [24] which, according to the author, achieves better rela- 57

tive performance compared to approximating the bilinear patch 58

with two triangles. Since a triangle is a special case of a bilin- 59

ear patch we can even use the same intersection test for all five 60

surfaces of the prism. 61

We handle all five intersection tests in a single fragment shader 62

invocation because it simplifies the following phases of our 63

method, in particular the sorting step. For the intersection tests, 64

we consider all the three clip-space bilinear patches together 65

with the two clip-space triangles when computing the convex 66

set. We also considered using convex hulls as was done by 67

McGuire et al. [25], but the AABB is robust and cheap enough 68

in our experience, and the amount of exceeding pixels leads to 69

a negligible performance penalty. 70

The prisms are rendered with two render passes similar to order- 71

independent transparency approaches [26] (Fig. 4, step 2). In 72

both render passes, the AABBs are rasterized as two triangles 73

forming a planar quad. For each AABB, the six clip-space ver- 74

tex positions, the vertex normals, and the three vertex UV co- 75

ordinates of the moving triangle are passed along in the shader 76

pipeline without interpolation. 77

These values are used in the fragment shader to compute three 78

ray/bilinear patch intersection tests and two ray/triangle inter- 79

section tests. The intersection tests output intersection samples 80

that include the depth, time, normal, and UV coordinates of the 81

triangle or bilinear patch at the point of intersection. In the first 82

render pass (2a), used to establish per-pixel depth complexi- 83

ties to know the required per-pixel array lengths, these sample 84

values are not computed and instead a counter is simply incre- 85

mented whenever an intersection is found, while in the second 86

pass (2d) they are stored in temporary arrays for each per-pixel 87



Preprint Submitted for review / Computers & Graphics (2021) 5

Figure 4: The stages of our motion blur system.

Figure 5: As a ray intersects with a prism there can be multiple intervals. The
ray intersects the left prism at two distinct points creating one interval I0, while
on the right the ray intersects the prism at six distinct points resulting in three
intervals I1, I2, and I3. The intersection points per-prism are sorted by time and
paired up into intervals. Time values between 0 and 1 are embedded on the
prism surfaces, illustrated here as a color from green to red.

fragment shader invocation, then sorted by their relative time1

values and paired into intervals. The ray/triangle intersection2

samples are either at t = 0 or t = 1, and hence do not need to3

be sorted by time if they are explicitly placed before and after4

the bilinear patch intersection samples. The ray/bilinear patch5

tests can have two intersection samples each, in total giving a6

maximum of six bilinear patch samples that need to be sorted7

by time.8

The first render pass is followed by an exclusive sum compu-9

tation over the depth complexity of every pixel (2b), and the10

allocation of required GPU memory for a global interval buffer11

(used to store intervals in the subsequent render pass) using the12

sum of the per-pixel depth complexities (2c). The second render13

pass (2d) stores the prism intervals in the global interval buffer14

which was allocated in the previous substage, with indexing15

based on the exclusive sum of the depth complexities as well as16

atomic counters that count the number of intervals stored so far17

for each pixel. At least two intersection sample points are pro-18

duced for each pixel with a prism covering it: an entry sample19

and an exit sample which define the interval in time and depth20

where the prism is present in the pixel. Each prism can in the-21

ory have up to four such intervals within a pixel. The samples22

are found with the ray intersection tests described earlier and as 23

mentioned above, the intersection samples between a ray and a 24

prism need to be sorted by time. This is in order to efficiently 25

pair them up into intervals based on time order. An interval is 26

160 bits wide and is defined as shown in Fig. 6. 27

Figure 6: An interval is defined by a start time (ts), end time (te), start depth
(zs), end depth (ze), start UV (uvs), end UV (uve), start normal (normals), and
a texture ID (texID).

For ray/triangle intersections, the three vertices of the triangle 28

and the barycentric coordinates at the hit point can be used to 29

interpolate the UV coordinates, normal and depth value, while 30

the time value is either 0 or 1 for the starting position or end po- 31

sition triangle respectively. For ray/bilinear patch intersections, 32

however, it is necessary to bilinearly interpolate based on the 33

four vertices of the patch and the bilinear coordinates at the hit 34

point. We store only the start normal in order to save memory 35

space. 36

4.2. Sorting intervals 37

In preparation for the color resolve, the intervals for each pixel 38

are sorted by ts (Fig. 4, step 3). We use the work by Hou et al. 39

2017 [27] (modified for our use case by key-only based sorting 40

and optimized by using CUB functions [28] for histogram and 41

exclusive sum computation) for a segmented sort that sorts all 42

intervals in the global interval buffer segmented by which pixel 43

they belong to. 44

4.3. Color resolve 45

We use a method similar to the one described by Gribel et al. [2] 46

to compute the final pixel color (Fig. 4, step 4), as detailed on 47

Fig. 7. We have extended the method to enable texture-mapped 48

triangles. With texturing, intervals can no longer be assumed 49

to have a static color from start to end, but instead the color is 50

based on a continuous range of texels limited by the start and 51

end texture UV coordinates stored in the interval as illustrated 52



6 Preprint Submitted for review / Computers & Graphics (2021)

on Fig. 8. The intervals for each pixel are sequentially resolved1

from t = 0 to t = 1 using an active interval list where the active2

intervals are kept sorted by depth.3

There are two main cases that complicate the color resolve: in-4

tervals that partially overlap in time and intervals that intersect.5

In Fig. 7, intervals I0 and I1 intersect at ti where they share depth6

and time values. In order to ensure the correct blending order7

of the two intersecting intervals, they are partitioned at the in-8

tersection point into four new intervals. To the left of the inter-9

section point, I1 is behind I0, while to the right, I0 is behind I1.10

Intervals must also be partitioned when another interval starts11

or ends within its time range, such as I2 ending within the time12

range of I1. This is necessary in order to be able to blend the13

colors of I1 and I2 in the range where they share time, and to14

not blend them in the range where only one of them is present.15

When an interval is partitioned, its UV values are partitioned as16

well by interpolation.17

Figure 7: Color resolve for a single pixel. At the top in Interval UV resolve, the
intervals are partitioned based on time and depth order due to blending order
requirements. In Pixel Color Blending, the partitioned UV ranges are used to
look up the texture color for each of the time partitions. These intermediate
values are shown in Ck . The final pixel color is shown in C f as the result of
averaging all the partitions together. In Ray/triangle Intersection Intervals, the
textured triangles are shown along with the entry and exit point for the inter-
secting ray from which the intervals are composed. For illustrative simplicity,
each interval belongs to its own triangle and each triangle has a single color,
each with some degree of transparency.

The blending order is swapped at intersection points, as is the18

case in Fig. 7 between intervals I0 and I1 at the intersection19

point ti. The boxes with UV I
a → UV I

b should be interpreted20

as: the texture coordinates for the anisotropic texture lookup21

should be the UV values from UV I
a to UV I

b, where I identifies 22

the interval and a and b distinguish either the interval’s start 23

UV
(
UV I

s

)
, end UV

(
UV I

e

)
or, as a result of partitioning, an 24

interpolated UV value: 25

UV I
t = lerp

(
UV I

s ,UV I
e ,

t − tI
s

tI
e − tI

s

)
26

Since the color contribution of each interval depends on the UV 27

coordinates at the start and end of the interval, partitioning an 28

interval will change its color contribution as the UV coordinates 29

are also partitioned. Therefore, the color contribution of each 30

partition, including lighting computations, cannot be trivially 31

resolved when the interval is created but must be resolved at 32

the partitioning stage. The UV coordinates and the interpolated 33

vertex normal need to be stored in the interval, as the color value 34

alone is not sufficient. The partitioning of intervals and the color 35

resolve is done with an active list approach as outlined in Al- 36

gorithm 1. The CUDA source code is provided on the web, 37

including details on further low-level optimizations. We ap- 38

proximate the continuous range of texels between the start and 39

end UVs using anisotropic filtering. For increased precision, the 40

range is split up in two x16 anisotropic lookups to simulate x32 41

anisotropic filtering. Similarly to Shurko et al. [22], we assume 42

that a ray moves linearly over a triangle surface, which makes 43

it possible to calculate hit point data by linear interpolating two 44

end points of an interval. 45

An interval intersection, such as the one depicted at the top in 46

Fig. 7 as ti, happens at a point where two intervals have equal 47

time and equal depth. This occurs precisely when the triangles 48

collide in the 3D world. 49

Figure 8: A triangle with a texture depicting the text Coffee with a grey back-
ground. The texel colors are filtered between an interval’s start UV (uvs) and
end UV (uve) resulting in the filtered color showed at the bottom.

4.4. Back-face culling 50

For semi-transparent objects we need to store all surface sam- 51

ples, while for opaque objects we can discard back facing sam- 52

ples. While our main contribution is an efficient general sys- 53

tem for analytical motion blur for transparent objects, mixed 54

scenes with both transparent and opaque objects are common, 55

which makes it important to have an implementation that can 56

efficiently render both within a scene. For this reason we have 57



Preprint Submitted for review / Computers & Graphics (2021) 7
O

ur
s

G
ro

un
d

tr
ut

h

Figure 9: Quality comparison with ground truth. Opaque and transparent pills fall into a transparent bottle while a background object moves to the left.

implemented an optional, non-conservative back-face culling1

method that discards prisms when the triangle is back-facing at2

both the start and the end positions (while precise methods do3

exist [10]). We used back-face culling on all opaque geometry.4

5. Results5

We have implemented and tested our motion blur system in6

OpenGL 4.6 and C++/CUDA 10.2 on an NVIDIA RTX 20807

system running Windows 10. We tested four scenes with vary-8

ing motion and fidelity: clothball, character running, charac-9

ter dancing, and falling pills. The tests have been performed10

at several different pixel resolutions: 1920x1080, 1024x1024,11

2048x2048, and 3840x2160.12

The clothball scene shows a transparent cloth falling on a13

rotating opaque sphere recorded at window resolutions of14

1024x1024 and 2048x2048. The two character scenes both15

show a moving transparent character model. The character run-16

ning was recorded at resolutions of 1920x1080 and 3840x2160,17

while the character dancing was recorded at 1024x1024 and18

2048x2048. The falling pills scene shows a mix of opaque19

and transparent pills falling down in a transparent bottle while20

a background object is scrolling towards the left, recorded at21

1920x1080 and 3840x2160. Back-face culling can only be used22

on opaque objects and is thus used only in the falling pills scene23

on the opaque pills and the background object, and in the cloth-24

ball scene on the opaque sphere. As shown in Fig. 10, back-face25

culling on an opaque version of the character dancing scene sig-26

nificantly increases performance with no noticeable visual er-27

rors introduced by the approximate back-facing determination.28

While all our scene benchmarks were run with interval inter-29

section handling on, in most cases intersections can be ignored30

without a significant loss in visual quality, because triangle col-31

lisions typically would be handled by a collision detection sys-32

tem before rendering the scene. If intersections are ignored, 33

the red-marked lines in Algorithm 1 can be removed. In some 34

pathological cases the image quality loss is significant, such as 35

the one shown in Fig. 11. In our benchmark scenes, the visual 36

difference is mostly undetectable by the human eye, while the 37

time per frame difference is only about 10%. 38

For quality evaluation, we compare with a brute force, ground 39

truth implementation with 1000 iterations per frame, as well as 40

a fast real-time post-process implementation [1]. The motion 41

blur produced by our method is noise-free and virtually indis- 42

tinguishable from the ground truth, as shown in Figures 1, 9, 43

and 12. 44

W
ith

B
F

cu
ll

W
ith

ou
tB

F
cu

ll

Figure 10: Performance comparison of using back-face culling on the character
dancing scene with a 1024x1024 resolution and opaque textures. The blue
graph shows the time per frame without back-face culling and the orange graph
shows the time per frame with back-face culling. As expected, the average time
per frame is significantly shorter with back-face culling at 6.67 ms compared to
15.72 ms without. The grey horizontal line indicates 60 FPS.

Experimental results are summarized in Table 1 while the 45



8 Preprint Submitted for review / Computers & Graphics (2021)

Algorithm 1: Per-pixel color resolve algorithm. (Op-
tional steps for colliding triangles are marked in red).
Input : Intervals for this pixel (sorted by ts): IL,

Active-interval list (empty at init): AL
Output: Final pixel color Cfinal
Initialize:

Cfinal = (0,0,0);
rs = 0.0, re = 1.0 ; // range of current time partition
index = 0 ; // index to interval in IL

while index < IL.size() or AL.size() > 0 do
if AL.size() = 0 then rs = IL[index].ts; // next ts in IL

// Find nearest resolve time re (the next interval start,
end or intersect event).

while index < IL.size() and IL[index].ts = rs do
// Loop to solve IL intervals with equal ts.
re = min(re, IL[index].te);
AL.insert(IL[index]) sorted by interval depth;
index++;

// Check if the next IL interval’s ts is the new nearest
resolve time re:

if index < IL.size() and IL[index].ts < re then
re = IL[index].ts;

p = FindNearestIntervalIntersection(AL);
ie = 0; je = 0;
if p.hasIntersection and p.t > rs and p.t < re then

ie = p.intervalALIndexi;
je = p.intervalALIndexj;
re = p.t; // time at intersection point

// All intervals for time range rs - re are now in AL,
with no intersections within this range.

// Blend AL interval colors (after texture lookups
and shading computations) front-to-back. If
transmittance threshold is reached, stop early.

Ck = ResolveIntervalsRange(AL, rs, re, lightPos);
Cfinal += (re - rs) · Ck;
// Colors have now been resolved up until time re.

// Swap intersecting intervals at re for correct blend
order in next partition time range:

swap(AL[je], AL[ie]); // Unlikely >1 intersection at re

Remove all intervals Ii from AL where Ii.te ≤ re.

rs = re; // Advance to next time partition
re = (isEmpty(AL)) ? 1.0 : min(Ii.te for all intervals

Ii in AL); // accelerated by tracking current
min(Ii.te) during AL interval removal above.

frame-by-frame timings of our tested scenes is shown in Fig. 13.1

Performance scales sub-linearly relatively to the resolution.2

The relation between frame time and intervals per pixel is out-3

lined in Fig. 15. The pixel color resolve step dominates the4

time per frame due to it sequentially handling the intervals in5

each pixel. The main bottleneck is in the pixels with the highest6

number of intervals. 7

While the post-process method [1] runs scenes such as falling 8

pills in the range of 1ms or less per frame, there are clear cases 9

that it has difficulty in handling. These include cases such as 10

multiple overlapping orthogonal motions and transparency, that 11

are handled well by our method, as shown in Fig. 16. Note 12

that our method supports order-independent transparency, while 13

the post-process method is limited to object order-dependent 14

transparency, without layer information. In the post-processing 15

method, transparent objects do not contribute to the motion vec- 16

tors used to create blur but are affected by them. The transpar- 17

ent bottle is thus ignored when calculating the motion blur of 18

the opaque pills (red and blue) inside it, but has blur applied 19

to it by motion vectors generated from the moving background, 20

while the transparent pills (yellow and blue) are not blurred in 21

their direction of motion. 22

Intersecting planes side-view diagram

Without intersection handling With intersection handling

Figure 11: Top. A red and a green quad are in front of an orthographic cam-
era and move along the z-axis. The red one moves from back to front, while
the green one moves from front to back. Bottom. Comparison of the results
obtained with and without intersection handling. Without intersection handling
(left), the resulting color belongs to the green quad entirely occluding the red
one. With intersection handling (right), the colors are instead correctly blended
resulting in the yellow color.

Our method is primarily optimized for rendering motion blur 23

with transparent objects. Thus, it is not possible to directly 24

compare with the performance of a method such as Hong et 25

al. [3] that takes advantage of the assumption that all objects are 26

opaque. Their paper also does not provide information about 27

depth complexity in their tested scenes, which makes it diffi- 28

cult to argue about relative performance based on tables alone. 29

Their scenes max out at 70 intervals per pixel, which is signifi- 30

cantly lower than all the scenes we tested except for one. Given 31

that the performance of these methods depends largely on depth 32

complexity, our method seems to compare favorably. 33

In order to compare our method with implementations that take 34

advantage of modern hardware’s ability to accelerate ray trac- 35



Preprint Submitted for review / Computers & Graphics (2021) 9

Clothball Character running Character dancing Falling Pills
63k tris 49k tris 49k tris 45k tris

315k prism faces 245k prism faces 245k prism faces 225k prism faces
1024x1024 2048x2048 1080p 4K 1024x1024 2048x2048 1080p 4K

Time per frame (ms) 9.4 27.4 24.5 53.7 19.3 41 8.3 29.2
Max. intervals per pixel 127.8 130.9 525.1 530.8 450.5 455.4 40.5 41.1

Number of intervals
(
×106

)
2.45 9.79 2.28 9.11 1.75 7.0 3.8 15.2

Max. GPU memory (MB) 175 688 189 746 133 523 281 1116

Table 1: Performance results. The values displayed are averages over all frames in the sequence, while Max. GPU memory is the maximum allocated GPU memory
over the entire sequence. Resolutions used are: 1024x1024, 1920x1080 (1080p), 2048x2048, and 3840x2160 (4K).

ing, including BVH traversal and hardware ray/triangle inter-1

section tests, we have implemented stochastic ray traced mo-2

tion blur in Optix 6.5 [29] and tested on the same hardware.3

As depicted in Fig. 14 we achieve better image quality than the4

ray traced method produces with 128 samples per pixel while,5

as Fig. 17 shows, being roughly an order of magnitude faster,6

even when excluding the BVH build time. In general, longer7

exposure time has a negative impact on performance. This cor-8

relation, however, seems to be stronger in our method than in9

the ray traced method.10

5.1. Limitations11

Our approach has three main limitations. Firstly, our prisms12

may not always faithfully represent the true trajectory of a rigid13

triangle, since we use linear motion vectors. An obvious such14

case include rotations [20]. Secondarily, linear interpolation15

of texture coordinates between entry and exit points is an ap-16

proximation. In fact, the uv coordinates may follow a curved17

path in texture space and time. Gribel et al. [2] show that the18

texture coordinates become rational polynomials of degree two19

in t. Similar to how Gribel et al. approximates depth using a20

linear depth function per time partition, our anisotropic texture21

lookups will approximate the texture-color integration linearly22

in texture space for the whole interval.23

Thirdly, lighting is computed with just the start normal of every24

interval to conserve memory bandwidth. This approximation25

and the linear uv interpolation introduce an error in the shad-26

ing, which, however, was not visually noticeable in all our test27

scenes.28

5.2. Discussion29

The color-resolve pass (Algorithm 1) can be seen as a deferred-30

shading step where the final colors are computed in the call to31

ResolveIntervalRange(). This function currently requires ac-32

cess to all relevant information to compute the final surface33

shading, in our case: normals, positions, lights, and UVs. We34

store most of this information within each interval for cache-35

locality reasons. Further data can be added at a linearly in-36

creased cost of the sorting step and overall bandwidth. At some37

point, indices into a separate buffer may be faster.38

A traditional deferred shading pipeline instead typically uses a39

G-buffer. If transparency is supported, the G-buffer may contain40

an array per pixel of all the visible semi-transparent fragments.41

One way to combine motion-blurred objects with a deferred- 42

shading pipeline for non-motion-blurred objects could be to 43

create an interval, I j, for each such G-buffer fragment, j, with 44

zs=ze=z, ts=0, te=1, uv= j, texID=GBuffer, where z is the 45

depth value for the G-buffer fragment. These intervals are 46

then merged with the intervals from motion blur before the 47

interval-sorting step. If the G-buffer does not support trans- 48

parency, or if motion-blurred objects are fully in front of or be- 49

hind the G-buffer pixels, then its colors could be precomputed 50

by a deferred-shader pass and stored with its created intervals. 51

O
ur

s
G

ro
un

d
tr

ut
h

O
ur

s
G

ro
un

d
tr

ut
h

Figure 12: Quality comparison with ground truth. Transparent characters run-
ning (top) and dancing (bottom).



10 Preprint Submitted for review / Computers & Graphics (2021)

Figure 13: (Top) Per frame timings for tested scenes. For screen resolutions of 1920x1080 and 1024x1024 (top), the timings generally stay within 30 frames per
second and within 60 frames per second for some scenes. For resolutions of 3840x2160 and 2048x2048 (bottom), timings go up to 100ms in the character running
scene. The grey horizontal lines indicate 60 and 30 FPS respectively.



Preprint Submitted for review / Computers & Graphics (2021) 11

Ground truth Our method Our method (magnified) Ray tracing Ray tracing (magnified)

exposure time x1 SSIM: 0.996 PSNR: 94.2 dB SSIM: 0.913 PSNR: 84.5 dB

Ground truth Our method Our method (magnified) Ray tracing Ray tracing (magnified)

exposure time x2 SSIM: 0.997 PSNR: 95.13 dB SSIM: 0.908 PSNR: 84.2 dB

Ground truth Our method Our method (magnified) Ray tracing Ray tracing (magnified)

exposure time x1 SSIM: 0.999 PSNR: 104.3 dB SSIM: 0.946 PSNR: 85.2 dB

Ground truth Our method Our method (magnified) Ray tracing Ray tracing (magnified)

exposure time x2 SSIM: 0.999 PSNR: 104.8 dB SSIM: 0.937 PSNR: 85.1 dB

Figure 14: Qualitative comparison between ground truth (left), our method (middle) and stochastic ray traced motion blur, 128 samples per pixel (right), at different
exposure times. Below each image, the normalized difference between the synthesized result and the ground truth is shown as a grayscale image, together with the
structural similarity index measure (SSIM), and the peak signal-to-noise ratio (PSNR). Our results are indistinguishable from the ground truth, and are obtained one
order of magnitude faster than stochastic ray traced motion blur.



12 Preprint Submitted for review / Computers & Graphics (2021)

Figure 15: Time per frame of the first 60 frames of the character dancing scene
related with interval counts per frame. The time per frame is largely dependent
on the number of intervals per frame and on the length of the longest pixel
lists. The average number of intervals considers also empty pixels hence the
magnification x200.

Ours Post-process

St
at

ic
ba

ck
gr

ou
nd

M
ov

in
g

ba
ck

gr
ou

nd

Figure 16: Quality comparison with a post-process implementation [1]. With a
static background (top) the post-process method performs relatively well; only
the transparent pills are not blurred. With a moving background, the post-
process method produces undesirable blur on the semi-transparent bottle, and
the pills are blurred largely in the direction of motion of the moving background
instead of their own.

6. Conclusion1

We have presented an efficient GPU rasterization-based method2

for analytical noise-free motion blur. By representing dynamic3

triangles as prisms and ray tracing their surfaces in clip space,4

followed by sorting, and finally color resolving depth-time in-5

tervals, our method gives results very similar to the brute force6

reference while producing superior quality images compared7

to post-process methods. Our method can deal with cases that8

are difficult for post-process methods, such as transparency and9

conflicting motion, and for the scenes we have tested, it runs in10

real-time, generally higher than 30 frames per second at 1080p.11

In future work, we would like to add shadowing and im-12

prove performance further by parallelizing the color resolve13

of each pixel. Back-face culling could be made accurate by14

implementing the method described by Munkberg & Akenine-15

Möller [10]. For slightly better precision, a watertight version16

of the ray/triangle intersection algorithm could be used [30];17

unfortunately, to the best of our knowledge there is not yet a18

watertight ray-bilinear patch intersection algorithm.19

Figure 17: Per frame timings with varying exposure times of our method (blue)
against the per frame timings of ray traced motion blur with 128 samples per
pixel (orange) excluding the BVH build time. Our method achieves roughly an
order of magnitude faster frame timings.

7. Acknowledgements 20

This section is left intentionally empty for this submission ver- 21

sion. 22

References 23

[1] Guertin, JP, McGuire, M, Nowrouzezahrai, D. A fast and stable feature- 24

aware motion blur filter. In: High Performance Graphics. Eurographics 25

Association; 2014, p. 51–60. 26

[2] Gribel, CJ, Doggett, M, Akenine-Möller, T. Analytical motion blur 27

rasterization with compression. In: High Performance Graphics. Euro- 28

graphics Association; 2010, p. 163–172. 29

[3] Hong, MP, Oh, K. Real-time motion blur using extruded triangles. Mul- 30

timedia Tools Appl 2018;77(11):13323–13341. 31

[4] Korein, J, Badler, N. Temporal anti-aliasing in computer generated 32

animation. SIGGRAPH Comput Graph 1983;17(3):377–388. 33

[5] Haeberli, P, Akeley, K. The accumulation buffer: Hardware support for 34

high-quality rendering. SIGGRAPH Comput Graph 1990;24(4):309–318. 35

[6] Akenine-Möller, T, Munkberg, J, Hasselgren, J. Stochastic rasteriza- 36

tion using time-continuous triangles. In: ACM SIGGRAPH/Eurographics 37

Graphics Hardware. GH ’07; Eurographics Association; 2007, p. 7–16. 38

[7] Fatahalian, K, Luong, E, Boulos, S, Akeley, K, Mark, WR, Hanrahan, 39

P. Data-parallel rasterization of micropolygons with defocus and motion 40

blur. In: High Performance Graphics. Eurographics Association; 2009, p. 41

59–68. 42

[8] Brunhaver, JS, Fatahalian, K, Hanrahan, P. Hardware implementation 43

of micropolygon rasterization with motion and defocus blur. In: High 44

Performance Graphics. Eurographics Association; 2010, p. 1–9. 45

[9] Boulos, S, Luong, E, Fatahalian, K, Moreton, H, Hanrahan, P. Space- 46

time hierarchical occlusion culling for micropolygon rendering with mo- 47

tion blur. In: High Performance Graphics. Eurographics Association; 48

2010, p. 11–18. 49

[10] Munkberg, J, Akenine-Möller, T. Backface culling for motion blur and 50

depth of field. Journal of Graphics Tools 2011;15:123–139. 51

[11] Vaidyanathan, K, Toth, R, Salvi, M, Boulos, S, Lefohn, A. Adaptive 52

image space shading for motion and defocus blur. In: High-Performance 53

Graphics. Eurographics Association; 2012, p. 13–21. 54

[12] McGuire, M, Hennessy, P, Bukowski, M, Osman, B. A reconstruction 55



Preprint Submitted for review / Computers & Graphics (2021) 13

filter for plausible motion blur. In: Interactive 3D Graphics and Games.1

ACM; 2012, p. 135–142.2

[13] Guertin, JP, Nowrouzezahrai, D. High Performance Non-linear Mo-3

tion Blur. In: Lehtinen, J, Nowrouzezahrai, D, editors. Symposium on4

Rendering - Experimental Ideas & Implementations. Eurographics Asso-5

ciation; 2015,.6

[14] Nalbach, O, Arabadzhiyska, E, Mehta, D, Seidel, HP, Ritschel, T.7

Deep shading: Convolutional neural networks for screen space shading.8

Computer Graphics Forum 2017;36(4):65–78.9

[15] Brooks, T, Barron, JT. Learning to synthesize motion blur. In: The IEEE10

Conference on Computer Vision and Pattern Recognition (CVPR). 2019,.11

[16] Luo, X, Salamon, NZ, Eisemann, E. Adding motion blur to still images.12

In: Graphics Interface. 2018,.13

[17] Lancelle, M, Dogan, P, Gross, M. Controlling motion blur in synthetic14

long time exposures. Computer Graphics Forum 2019;38(2):393–403.15

[18] Luo, X, Salamon, NZ, Eisemann, E. Controllable motion-blur effects in16

still images. IEEE Transactions on Visualization and Computer Graphics17

2020;26(7):2362–2372.18

[19] NVIDIA, . NVIDIA AMPERE Whitepaper; 2020 (accessed19

November 26, 2020). URL: https://www.nvidia.com/20

content/dam/en-zz/Solutions/geforce/ampere/pdf/21

NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.22

pdf.23

[20] Gribel, CJ, Munkberg, J, Hasselgren, J, Akenine-Möller, T. Theory and24

analysis of higher-order motion blur rasterization. In: High-Performance25

Graphics. Eurographics Association; 2013, p. 7–15.26

[21] Porter, T, Duff, T. Compositing digital images. SIGGRAPH Comput27

Graph 1984;18(3):253–259.28

[22] Shkurko, K, Yuksel, C, Kopta, D, Mallett, I, Brunvand, E. Time29

interval ray tracing for motion blur. IEEE Transactions on Visualization30

and Computer Graphics 2017;PP(99).31

[23] Brochu, T, Edwards, E, Bridson, R. Efficient geometrically exact con-32

tinuous collision detection. ACM Trans Graph 2012;31(4).33

[24] Reshetov, A. Cool Patches: A Geometric Approach to Ray/Bilinear Patch34

Intersections. Berkeley, CA: Apress; 2019, p. 95–109.35

[25] McGuire, M, Enderton, E, Shirley, P, Luebke, D. Real-time stochastic36

rasterization on conventional gpu architectures. In: High Performance37

Graphics. Eurographics Association; 2010, p. 173–182.38

[26] Maule, M, Comba, JLD, Torchelsen, R, Bastos, R. Memory-efficient39

order-independent transparency with dynamic fragment buffer. In: SIB-40

GRAPI Graphics, Patterns and Images. 2012, p. 134–141.41

[27] Hou, K, Liu, W, Wang, H, Feng, W. Fast segmented sort on gpus. 2017,42

p. 1–10.43

[28] NVIDIA, . CUB 1.8.0; 2020 (accessed November 26, 2020). URL: http:44

//nvlabs.github.io/cub/.45

[29] NVIDIA, . Optix 6.5; 2020 (accessed November 26, 2020). URL: https:46

//developer.nvidia.com/optix.47

[30] Woop, S, Benthin, C, Wald, I. Watertight ray/triangle intersection.48

Journal of Computer Graphics Techniques (JCGT) 2013;2(1):65–82.49

https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
http://nvlabs.github.io/cub/
http://nvlabs.github.io/cub/
http://nvlabs.github.io/cub/
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix

	Introduction
	Related work
	Overview
	Method
	Rendering prisms
	Sorting intervals
	Color resolve
	Back-face culling

	Results
	Limitations
	Discussion

	Conclusion
	Acknowledgements

