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Abstract

In deregulated energy markets, consumers -ranging from households to data
centers- have access to multiple offers, often through multiple suppliers and en-
ergy carriers (i.e. electric, thermal) or through local generation, such as renew-
able energy sources and energy storage. Ideally, supply should match demand,
leading to a balanced power grid, but this is challenging in practice: while some
generation sources can be planned in advance (e.g. utility offers), others can
be planned to a limited degree or cannot be planned altogether (e.g. storage
and renewable energy sources respectively). In this context, we focus on how to
address systematically this complex resource allocation problem in the presence
of multiple actors.

In this work, utilizing a proposed modeling of the energy dispatch problem
as an online scheduling problem, we model supply-following demand in terms
of the Adwords problem, in order to provide algorithmic solutions of measur-
able quality. Building on previous work, we extend the Adwords problem to
incorporate load credit (i.e. storage) and we present and analyze online algo-
rithms that can schedule demand, given availability constraints on supply, with
guaranteed competitive ratio. In systems where demands are small compared
to the individual supply, we prove a

(
1− 1

e

)
-competitive ratio. For cases where

this does not hold, we extend the Adwords problem to utilize dynamic budgets,
and present an algorithm with a 1

2 -competitive ratio. We also provide examples
of algorithmic performance in real world scenarios, by utilizing long term, fine-
grained data from a pilot project in Sweden, while taking into account renewable
generation on site.

1 Introduction

Until recently, electric power grids were operating under the paradigm of a utility
service: the utility company must provide energy to the consumer consistently, by
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satisfying all incoming demands regardless of supply. Along with the increasing pene-
tration of renewable energy sources (e.g. photovoltaic arrays, wind generator farms),
as well as loads that are distributed or that may have less regular patterns compared
to households (e.g. electric car fleets, data centers), this paradigm has began shifting
towards a market-oriented one, where generated energy comes from many different
sources and is brokered to consumers through utilities or electricity vendors.

Under such a paradigm and the associated enhanced power grid (often referred to
as Smart Grid [1]), end consumers have the opportunity to utilize energy from various
sources (e.g. utility company, local storage) and decide based on some information,
most commonly price-related, associated to the sources. While research on the ap-
propriate pricing information (or pricing signal [2]) and tariff structure needed on the
utility side is ongoing, the question remains: how to ensure high resource (i.e. energy)
utilization on a system level, in the presence of multiple energy offers, such as storage
and renewable energy sources, that can be controlled up to a certain degree or not at
all.

In this work, we look at the problem of resource utilization from a perspective
orthogonal to pricing: instead of looking into techniques that can be used to influence
end consumers into consuming energy at opportune times (such as pricing signals),
we assume the existence of multiple such mechanisms (in the form of multiple offers)
and address the utilization problem of available energy supply through flexibility in
demand (or supply-following demand [3]).

This new perspective allows for connections to be made between the energy uti-
lization problem and the well known Adwords problem [4] and, based on these connec-
tions, we provide two algorithms that can solve the utilization problem in a variety of
supply-related assumptions, along with their rigorous analysis for online guarantees.
In parallel, we identify an extension of the Adwords problem that includes dynamic
budgets and is particularly relevant here, and address it through our algorithms. We
also show the functionality of the proposed algorithms through the use of real genera-
tion and consumption data in relevant experiments, focusing on their ability to shape
demand according to supply, as well as on the utilization of the renewable energy
sources available.

The rest of the paper is structured as follows. In section 2 we define our problem
formally and provide necessary background knowledge. A novel modeling for the
energy utilization problem based on the Adwords problem is presented in section 3,
along with two algorithms that utilize the modeling, together with their analysis. The
experimental study that evaluates the algorithmic solution against real consumption
data from a pilot housing project can be found in section 4. In section 5 we provide
an extensive discussion on the properties of our algorithms, both analytically and
experimentally, as well as of the proposed modeling. Finally, we conclude with some
closing remarks in section 6.
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1.1 Related work

A number of approaches in the literature exist regarding the problem of supply-
following demand. In [5], Kok et al focus on both the supply and demand, and use a
hierarchical mechanism and a market structure to match consumers with producers,
with the ultimate goal of reducing peaks in consumption. On the other hand, Barker
et al [6] focus on background consumption loads (i.e. loads that the consumer does
not interact with), and by applying scheduling techniques such as a variation of the
Earliest Deadline First algorithm, they shift demand during the day in order to reduce
peaks in consumption. The works of Lu et al [7] and Tu et al [8] are closer to the
context of the current work, since both present online algorithms with proven compet-
itive ratios. However, they do so for special cases of interest: in [7], Lu et al focus on
fast-responding generators (e.g. gas or diesel turbines) and present an algorithm that
operates for any combination of demand, supply and price, and in [8], Tu et al focus
on data centers and on a cost minimization problem where price is a parameter. In
addition, Georgiadis et al [9] present a novel modeling and an online algorithm that
can schedule flexible demand in order to reduce peaks in consumption in scenarios
where forecasts are unreliable or not available (e.g. renewable energy sources, energy
storage). Nevertheless, one common element of all approaches above is that the op-
timization goal is the reduction of peak demand in the considered time period, while
the criterion in this work is utilization of all available supply1. To our knowledge, this
is the first work that addresses the supply-following demand problem on this basis.

On the other hand, there is significant research interest on pricing policies about
Smart Grids. For example, both [2] and [10] compare different pricing schemes in
real world scenarios and make recomendations in their individual contexts: [2] shows
that a real time tariff can have a positive outcome in reducing consumption, while
[10] points the risk of automated solutions adopting the exact same behavior under
the same pricing signals and suggests the introduction of different prices to different
customers, among other remedies (cf also [10] for a short survey on pricing policies).
In their respective works, Mohsenian-Rad et al [11], Caron and Kesidis [12], Wijaya et
al [13] and Carpenter et al [14] look into pricing mechanisms from a game-theoretical
approach, albeit with some differences. Both Mohsenian-Rad et al [11] and Caron and
Kesidis [12] focus on the distributed elements of their respective approaches, while
Caron and Kesidis [12] introduce elements from online analysis by identifying both
cases of complete and incomplete knowledge. Wijaya et al [13] on the other hand pro-
ceeds to explicitly cut down peaks of demand, before applying their game-theoretic
approach. Finally, Carpenter et al [14] conduct experiments in a real world setting
and find surprisingly that their game-theoretic approach manages to increase peaks
of demand, contrary to other finding in the literature. As mentioned above, the algo-
rithms and the modeling presented in this work can be applied in parallel with any of
the above approaches to pricing mechanisms.

1I.e. a peak might be desirable in a specific time where supply is too high, e.g. due to increased
wind generation.
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consumersupplier
energy dispatch

Figure 1: A schematic representation of the energy dispatch problem

2 Background

2.1 Scheduling for the energy dispatch problem

Following [9], this paper utilizes a high level abstraction of the distribution grid, with
consumer sites (or nodes) issuing load demand requests at arbitrary intervals, and
energy being dispatched from supplier sites (or nodes) to satisfy these demand re-
quests (energy dispatch problem, cf figure 1). We identify properties of interest for
these requests, such as elasticity, storage capabilities and specific energy carrier uti-
lization (i.e. thermal/electric) in order to model time flexibility for the delivery of the
requested energy, the ability to store the requested energy for later use and the ability
to utilize specific energy carriers for the satisfaction of the request, respectively. By
regarding demands originating from consumer nodes as tasks and the supplier nodes
themselves as machines, the aforementioned problem of energy dispatch from suppliers
to consumers can be modeled as a scheduling problem of tasks to machines: issued
load demands correspond to incoming tasks that need to be assigned to a machine, or
equivalently, to be serviced by a supplier node. The machines correspond both to the
different energy carriers available to tasks but also to the timeslots that each carrier is
subdivided in, i.e. if a carrier is available for the next window of slots, e.g. 24 hours,
and we consider 1 hour timeslots, then 24 machines will be dedicated to this carrier.
When an incoming task is assigned to a machine, it incurs a load equal to the corre-
sponding demand request. More formally, let Mi, i = 0, . . . , n− 1 be a set of machines
where variable load credit (i.e. storage) can accumulate and t0, . . . , tj, . . . be an input
task sequence of two task types, simple and storage, with the following properties:
each task tj of both types has load wj and restrictions on the allowable machines it
can run on, while storage tasks additionally create on all machines load credit equal
or less to their load wj (with the possibility of 0 on some but not all machines). Note
that the total number of machines n is equal to the number of timeslots over all energy
carriers considered.

The example of figure 2 illustrates the above modeling: two energy carriers exist
(i.e. thermal and electric), each with 24 hourly timeslots (total of 48 machines), storage
tasks are marked with an S while simple tasks are not and, as an example, task tj has
a set of allowed machines equal to {M46,M47}.

The scheduling problem described above is NP-complete [15], and as such, research
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Figure 2: An example of the online load balancing problem for electrical and thermal
energy requests with storage capabilities

efforts have been focused on approximation algorithms that solve it in a time com-
plexity as close to the optimal algorithm as possible. Moreover, in this work we focus
on the online version of the problem, and evaluate the proposed algorithmic solution
using the concept of the competitive ratio [15]:

Definition 1 (Competitive ratio [15]) For a maximization problem, we call an al-
gorithm ALG c-competitive if there is a constant α such that for all finite input se-
quences I,

ALG (I) ≤ c ·OPT (I) + α,

where ALG (I) is the cost associated with the solution produced by ALG for input I
and OPT (I) is the corresponding cost for the optimal algorithm OPT and the input
I.

2.2 The Adwords problem

The following generalization of the online vertex-weighted bipartite matching problem
called Adwords [4] is considered here: in a bipartite graph G = (U ∪ V,E) with
bipartition (U, V ) where nodes v ∈ V arrive (alt. are revealed) online, each node
u ∈ U has a budget Bu, and edges (u, v) ∈ E have bids biduv (fig. 3). When an new
node v arrives, it is matched to a neighbor u by spending an amount of biduv from
its budget. When a node spends its entire budget it becomes unavailable, while the
overall goal is to maximize the total budget spent. An important distinction that leads
to different variations of the Adwords problem is whether the following assumption
holds:

Definition 2 (Small bids assumption) For each u, v, biduv is very small compared
to Bu.
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Figure 3: A schematic representation of the Adwords problem in graph form

The defining characteristic of cases where this assumption does not hold is the
treatment of nodes with nearly exhausted budgets. Such nodes u continue to bid biduv
for nodes v ∈ V (since their budgets are not exhausted) but they may be unable to pay
the full amount of the bid, due to their limited budget. A possible design choice regard-
ing this problem is to consider a payable amount of min (biduv, Bu − biduv) instead of
biduv, but this leads inevitably to fundamentally different solutions and analyses from
cases where the small bids assumption holds [4].

In the continuation of this work, the above mentioned scheduling-based modeling
for the energy dispatch problem will be connected to the Adwords problem, in order
to present algorithms that can that can schedule demand, given availability constraints
on supply, with guaranteed competitive ratio. The next section presents two different
algorithms, addressing cases where the small bids assumption holds or not respectively,
along with the formal proofs of their competitive ratios when compared to offline
algorithms that assume perfect knowledge of the problem.

3 Modeling, algorithms and analysis

The fundamental modeling described above still applies here: incoming load demand
requests are considered tasks that are arriving online and need to be assigned to
machines, which in turn correspond to both the different energy carriers available
to tasks, as well as the timeslots that each energy carrier is subdivided in. In the
following, we will consider also different suppliers that provide services of possibly the
same type of energy carriers, each of which corresponds to a distinct set of machines.
For example, these can be different utilities or energy vendors that provide competitive
electricity services to end customers. Note that the optimization goal considered in this
paper, sometimes also called supply-following demand in the literature [3], is distinctly
different from the minimization of consumption peaks in [9]:

Definition 3 (Supply-following energy dispatch) We consider the energy dispatch
problem from suppliers to consumers, with a given availability of the suppliers’ energy
as well as a set of features regarding the consumers’ load requests (i.e. load elastic-
ity, energy storage, utilization of alternative energy carriers) that may or may not be
present on all requests. We define as supply-following energy dispatch the problem of
maximizing the utilization of the given supply by using the individual features of load
requests.

6



Legend

Machines

M23M1M0 M24 M47

S
S

S

Incoming tasks

tj

{M0,M24}

wj

Load

Storage

Budget

Figure 4: An example of task assignment to machines with budget information

In order to systematically address the supply-following energy dispatch problem, we
refine the concept of utilization, mentioned in the previous definition, by introducing an
additional parameter: that of an individual budget for each machine. This parameter
expresses naturally the supplier’s available quantity of energy through a particular
energy carrier for a particular timeslot, and can be used to express an upper bound in
a machine’s allowable load and therefore quantify the machine’s utilization.

Figure 4 shows an example of a single supplier with two energy carriers, electric
and thermal, and different budget information for each timeslot. In this example, task
tj that can utilize both the electric machine M0 and the thermal machine M24 can be
assigned to machine M0. However, since machine M0 has a limited budget compared
to M24, this might not be possible for similar tasks in the future since the machine
will stop accepting tasks as soon as its budget is exhausted. In fact, exhausting the
budgets of all machines is the desirable state of the system, since a supplier’s goal
is to utilize (i.e. sell) all available capacity, while avoiding to go over budget due to
unforeseen events (i.e. extreme weather conditions calling for extra capacity).

3.1 Problem modeling

Using the above mentioned budget information, we formulate the supply-following
energy dispatch problem in terms of the modeling and utilize it as an optimization
goal in the rest of the paper:

Definition 4 (SupplyBudgetUtilization) Consider the energy dispatch problem
from suppliers to consumers, modeled using the machines and tasks modeling of section
2 (i.e. including the possibility of storage accumulation on machines), where suppliers
have budgets on the available energy for the different energy carriers and timeslots,
and where servicing a demand by a supplier implies using part of its budget. We
consider the problem of maximizing the budget utilization on the suppliers’ energy
carriers (equiv. machines) over all energy carriers and timeslots considered, in the
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presence of the consumers’ expressed demands (equiv. tasks) with their associated
restrictions.

Note that due to a finite total budget, we consider a static timeframe equal to the
set of timeslots, as well as a finite number of generated tasks within this timeframe.
This assumption fits well the energy market practice of considering a daily operations
cycle regarding energy procurement and distribution to the end consumer (day-ahead
markets). In fact, the following algorithms, analysis and modeling apply also when
considering a rolling window as a timeframe, since machines are allowed to enter or
leave at any point (cf section 5).

In order to solve the SupplyBudgetUtilization problem, we allow machines
to bid on incoming tasks (subjected to the tasks’ individual characteristics) using the
“funds” of their budgets, which allows the direct mapping of the SupplyBudgetUti-
lization problem to the Adwords problem mentioned above. In the continuation,
we will use the generic expression biduv for the bid of machine u for task v, which
represents any suitable bidding metric. We will also denote with U and V the sets of
machines and tasks respectively and we will use the term “node” for both machines
and tasks, when it is clear from the context where we are referring to.

Note that the concept of machines bidding for tasks may seem initially counterin-
tuitive: for example, in electricity markets, consumers’ demand requests are satisfied
by paying suppliers for the requested amount of energy for a particular timeslot. How-
ever, the connection between the two cases can be easily understood by taking into
account ordinary market price information about the individual machines, and noting
that price and bid are inverse measures: the more expensive a machine is, the larger
the bid that the machine will have to make for a particular task (cf also section 5).

Finally, note that the small bids assumption mentioned in section 2 is valid in the
SupplyBudgetUtilization problem we described above: we assume that the energy
budgets of utilities and energy vendors are big when compared to the bids towards
individual energy demands of, e.g., household appliances and generic consumer devices.
In section 3 we will see a version of the SupplyBudgetUtilization problem where
the small bids assumption is not valid any more, corresponding to e.g. small, local
scale generation or storage.

3.2 The SGSupplyAdwords algorithm

In order to solve the SupplyBudgetUtilization problem with the small bids as-
sumption, we follow a bidding process, according to which machines bid on each new
task, and the task gets assigned on the “winning” machine, which in turn subtracts
the bid from its budget. Following [16], we do not simply award the task to the
highest bidder but we modify the bid by a factor that takes into account the cur-
rently spent amount of the bidder’s budget, and we award the task to the highest
modified bidder instead. The introduction of this factor aims at “promoting” bidders
that have spent only a small percentage of their respective budgets and “demoting”
bidders that have nearly exhausted their budgets, in order to keep more machines
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(and thus more supplier options) available for a longer time whenever possible. It
also takes into account any available storage, by “promoting” machines with storage
against others of the same spend budget2 level which do not possess any. The proposed
SGSupplyAdwords algorithm (i.e. Smart Grid Supply Adwords), which solves the
SupplyBudgetUtilization problem with a competitive ratio of 1− 1

e
, can be found

below.

Definition 5 (Algorithm SGSupplyAdwords) Assign a new task v to machine
u that maximizes the expression

biduv

(
1− e

lu−su
bu
−1
)
, (1)

where biduv is the bid of machine u for task v and lu, su are the load and storage of
machine u respectively at the time of arrival of task v, and bu is the budget of machine
u.

Note that the modified bid is used only to determine the winning machine but not
to “pay” for the task: the winning machine u always subtracts the original bidding
amount biduv for task v from its budget. Naturally, when a machine runs out of
available budget it stays deactivated, does not participate in future bidding processes
and cannot be assigned any further tasks. In the following theorem, we prove that,
under the small bids assumption, the above algorithm is

(
1− 1

e

)
-competitive.

Theorem 1 The SGSupplyAdwords algorithm solves the SupplyBudgetUti-
lization problem under the small buds assumption and achieves a competitive ratio
of 1− 1

e
.

Proof: Let v ∈ V be an arbitrary node that OPT assigns on node u∗, while SG-
SupplyAdwords assigns on node u. From the definition of SGSupplyAdwords
we know that ∀v ∈ V

bidu∗v

(
1− e

lu∗−su∗
bu∗

−1
)
≤ biduv

(
1− e

lu−su
bu
−1
)
. (2)

Since the value of storage s is bounded from below by 0, it is easy to see that ∀v ∈ V

bidu∗v

(
1− e

lu∗
bu∗
−1
)
≤ bidu∗v

(
1− e

lu∗−su∗
bu∗

−1
)
. (3)

Note that we start with zero storage on all nodes, and we need to assign load to (equiv.
spend from budgets of) machines in order to generate any storage. Therefore, we can

2In the rest of the paper we will use the expression “spend budget” (or simply “spend”) to refer to
the absolute amount of a node’s budget that has been spent, and the expression “spend percentage”
to denote the spend budget’s relevant value to the total budget of the node.
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bound storage s from above by the budget sum
∑
u∈U

bu for every node u ∈ U and write

biduv

(
1− e

lu−su
bu
−1
)
≤ biduv

(
1− e

lu
bu
−

∑
u∈U

bu

bu
−1

)
⇒

biduv

(
1− e

lu−su
bu
−1
)
≤ biduv

(
1− e

lu
bu
−1A

)
,∀v ∈ V, (4)

where A = e−

∑
u∈U

bu

bu . Finally, by combining equations 2, 3 and 4, we get ∀v ∈ V :

bidu∗v

(
1− e

lu∗
bu∗
−1
)
≤ biduv

(
1− e

lu
bu
−1A

)
. (5)

In the remainder of the proof, we are going to utilize a discrete variation of equation
5, by assuming that, at the end of the algorithm’s run, each node will belong to one of
k discrete levels, depending on how much of their budget was spent, i.e. instead of the
continuous spend percentage lu

bu
of node u we will write the discrete form i

k
if node u

belongs to the i-th discrete level3. Note that we assume a large discretization constant
k and due to the small bids assumption we assume every bid to be much smaller than
1
k2

.
We call nodes of type i (for i ∈ [1, k]) all nodes u ∈ U who have spent between

i−1
k
bu and i

k
bu of their budget bu at the end of the algorithm, and let αi be the total

amount obtained by the optimal allocation from nodes of type i (with
k∑

i=1

αi = α being

the total spend budget of the OPT algorithm). Let slab i be the set of the amount of
budget spent by nodes u ∈ U in the

[
i−1
k
bu,

i
k
bu
)

segment of their budget bu, and let
βi be the amount of this cumulative spend budget. From the definition of αi and βi
we have:

βi =

α−
∑
j<i

αj

k
,∀i ∈ [1, k] (6)

Let î and ĵ be the types of nodes u∗ and u respectively at the time of node v’s
arrival. By replacing the expressions lu∗

bu∗
and lu

bu
in equation 5 with the corresponding

discrete versions, we get:

bidu∗v

(
1− e

î
k
−1
)
≤ biduv

(
1− e

ĵ
k
−1A

)
, ∀v ∈ V. (7)

Since the expression
(

1− e î
k
−1
)

is monotonically decreasing and for the type i of node

u∗ at the end of the algorithm it is î < i, we have

bidu∗v

(
1− e

i
k
−1
)
≤ bidu∗v

(
1− e

î
k
−1
)
,∀v ∈ V

3Obviously the two expressions are equivalent for k →∞.
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and by equation 7 finally

bidu∗v

(
1− e

i
k
−1
)
≤ biduv

(
1− e

ĵ
k
−1A

)
, ∀v ∈ V. (8)

Equation 8 is valid for all v ∈ V , and summing up all equivalent expressions we get∑
v∈V

bidu∗v

(
1− e

i
k
−1
)
≤

∑
v∈V

biduv − A
∑
v∈V

biduv

(
e

ĵ
k
−1
)

=

= ALG− A
∑
v∈V

biduv

(
e

ĵ
k
−1
)
, (9)

where ALG is the total spend of the SGSupplyAdwords algorithm. By grouping
elements of the sums of equation 9 according to types i and ĵ, and using the definitions
of αi and βi, we get the equivalent expression

k∑
i=1

αi

(
1− e

i
k
−1
)
≤ ALG− A

k∑
i=1

βi

(
e

i
k
−1
)
. (10)

Using equation 6 in order to express βi in terms of αi, equation 10 becomes

k∑
i=1

αi

(
1− e

i
k
−1
)
≤ ALG− A

k∑
i=1

α−
∑
j<i

αj

k

(
e

i
k
−1
)

=

= ALG− A α

ek

k∑
i=1

e
i
k + A

1

ek

k∑
i=1

∑
j<i

αje
i
k . (11)

For the expression
k∑

i=1

∑
j<i

αje
i
k we have:

k∑
i=1

∑
j<i

αje
i
k = Sk

k∑
i=1

αi −
k∑

i=1

αiSi, (12)

where Si =
i∑

j=1

e
j
k = e

i+1
k −e

1
k

e
1
k−1

.

By combining equations 11 and 12, together with the fact that
k∑

i=1

αi = α, we get:

α− 1

e

k∑
i=1

αie
i
k ≤ ALG− A α

ek
Sk + A

1

ek

(
Sk

k∑
i=1

αi −
k∑

i=1

αiSi

)
=

= ALG− A 1

ek

k∑
i=1

αiSi =

= ALG− A 1

ek

e
1
k

e
1
k − 1

k∑
i=1

αi

(
e

i
k − 1

)
. (13)

By taking the limit of equation 13 for k →∞ we finally get α− 1
e
α ≤ ALG, which

completes the proof. �
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3.3 Extended modeling and the SGSupplyGreedy algorithm

There are cases where the modeling of renewable energy sources as accumulation of
storage on machines cannot capture the intricacies of the underlying problem. For ex-
ample, quite often there is a marginal cost (associated with renewable energy sources)
that cannot be expressed as energy spent to acquire one unit of stored energy but
rather in some other form of value, e.g. currency. Such energy sources can be con-
sidered as individual suppliers with price and budget information, and they can be
modeled using the proposed modeling of section 3.2, with one important difference:
since the amount of storage or renewable energy can increase or decrease, depending
on e.g. weather conditions, their available budget is necessarily dynamic, increasing
or decreasing accordingly4.

The budget dynamicity mentioned above affects the applicability of the small bids
assumption in this context. Although valid in cases of large-scale suppliers (i.e. utilities
and energy vendors) and relatively small individual load demands, there exist also
cases where the small bids assumption no longer applies. This is particularly true
when small-scale storage or renewable energy sources (e.g. local photovoltaics) act
as suppliers using the proposed modeling of dynamic budgets: assuming their budget
starts at zero and gradually increasing, e.g. as more storage accumulates on a battery
array, their available capacity can be directly comparable to individual load demands.
Therefore, it can no longer be assumed that bids are small when compared to the total
budget amounts. Below we present an algorithm that takes this fact into account and
uses generic bids.

Definition 6 (Algorithm SGSupplyGreedy) When the next node v ∈ V arrives,
allocate v to the node u of maximum biduv.

Theorem 2 The SGSupplyGreedy algorithm solves the SupplyBudgetUtiliza-
tion problem under generic bids and achieves a competitive ratio of 1

2

Proof: We want to bound the loss (compared to the optimal OPT algorithm) in
spend budget that our algorithm SGSupplyGreedy achieves. For every u ∈ U , let
Bu, Su be the total budget and the final spend (of the budget) by algorithm SGSup-
plyGreedy respectively. Let V

′
be the set of tasks v for which SGSupplyGreedy

receives a less than optimal bid. By partitioning the set V
′

into sets V
′
u according to

the nodes u ∈ U that the OPT algorithm would assign each task v ∈ V ′ unto, we will
bound the sum

∑
u∈U

Lossu, where

Lossu =
∑
v∈V ′u

(optv − algv)

and optv, algv are the values obtained for the assignment of task v by algorithms OPT
and SGSupplyGreedy respectively.

4Of course we assume that a budget cannot decrease further than the already assigned load to
the respective machine at any point. Nevertheless, since tasks are also assigned to machines that
correspond to future timeslots, this may happen in practice. In these cases, appropriate mechanisms
must be put in place to “complement” the missing amount of energy accordingly.

12



From the definition of OPT, and since the set V
′
u can include all neighbors of node

u, we have
Lossu =

∑
v∈V ′u

(optv − algv) ≤ Ou −
∑
v∈V ′u

algv (14)

where Ou is the total spend of the OPT algorithm on node u at the end of the
algorithm’s run.
Now we look at the assignment of a node v ∈ V ′u that SGSupplyGreedy “misplaces”
to another node instead of node u that OPT assigns it to. Note that the spends of
both OPT and SGSupplyGreedy algorithms, as well as the budget of node u have
intermediate values, since both algorithms have not finished their run and can spend
more, while budgets are dynamic and may change their value until the algorithms
finish. Let S̃u,v, Õu,v and B̃u,v be the spend by algorithms SGSupplyGreedy, OPT
and the budget of node u, respectively, at the time of the assignment decision of node
v. Since algorithm SGSupplyGreedy assigns node v ∈ V ′u to a node different than

u, we know that the spend S̃u,v is at least as much as B̃u,v − algv (otherwise it could
be assigned to u)

S̃u,v ≥ B̃u,v − algv,∀v ∈ V
′

u

and since Õu,v ≤ B̃u,v, we get

S̃u,v ≥ Õu,v − algv, ∀v ∈ V
′

u. (15)

Defining as δv and εv the differences Su− S̃u,v and Ou− Õu,v respectively, and applying
to equation 15, we get

Su ≥ Ou + δv − εv − algv,∀v ∈ V
′

u (16)

and finally through equation 14:

Lossu ≤ Su + εv − δv + algv −
∑
v∗∈V ′u

algv∗ ,∀v ∈ V
′

u (17)

Let Tu =
∣∣V ′u∣∣ be the amount of nodes that OPT assigns on node u while SGSup-

plyGreedy assigns to different nodes. By summing equation 17 for all v ∈ V
′
u we

get: ∑
v∈V ′u

Lossu ≤
∑
v∈V ′u

Su +
∑
v∈V ′u

(εv − δv)− (Tu − 1)
∑
v∈V ′u

algv ⇒

Tu · Lossu ≤ Tu · Su +
∑
v∈V ′u

(εv − δv)− (Tu − 1)
∑
v∈V ′u

algv ⇒

Lossu ≤ Su +
1

Tu

∑
v∈V ′u

(εv − δv − (Tu − 1) algv).

We will prove by induction on Tu that εv − δv − (Tu − 1) algv ≤ 0 and by extension
that Lossu ≤ Su. For the induction step we assume that εv − δv − (Tu − 1) algv ≤ 0
and we notice that εv − δv − Tualgv = (εv − δv − (Tu − 1) algv) − algv ≤ 0, which

13
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Figure 5: Relationship between budget and spend of OPT and SGSupplyGreedy
algorithms of node u at the time of node v’s arrival (left), and the corresponding

metrics at the end of the algorithms’ run (right). The differences δv = Su − S̃u,v and

εv = Ou − Õu,v are also shown.

proves trivially the desired result. We now focus on the base case of Tu = 1, that
is the SGSupplyGreedy algorithm assigns on node u all nodes that OPT assigns
there except one, and we will prove that εv − δv ≤ 0.

Let v be the only node (i.e. Tu = 1) from all OPT node assignments to node u that
SGSupplyGreedy fails to assign on u (fig. 5). We need to prove that εv − δv ≤ 0 or
equivalently:

εv − δv ≤ 0⇒
Ou − Õu,v −

(
Su − S̃u,v

)
≤ 0⇒

Ou − Su ≤ Õu,v − S̃u,v. (18)

In equation 18, Õu,v − S̃u,v expresses the difference between the spend of OPT
and SGSupplyGreedy on node u at the time of node v’s arrival, and Ou − Su

expresses the same difference at the end of both algorithms’ run. Since SGSupply-
Greedy assigns to node u at least all nodes other than v that OPT assigns there,
the difference between OPT and SGSupplyGreedy cannot have widened more that
it was at the time of node v’s arrival. In fact, it may have been reduced further,
since SGSupplyGreedy has the possibility of assigning additional nodes on node
u that OPT does not. Therefore, equation 18 holds, and we have proven that
εv − δv − (Tu − 1) algv ≤ 0 and by extension

Lossu ≤ Su, ∀u ∈ U. (19)

Using equation 19 it is easy to see that

OPT − ALG =
∑
u∈U

Lossu ≤
∑
u∈U

Su = ALG,

where OPT and ALG are the total spends on all nodes achieved by the OPT and SG-
SupplyGreedy algorithms respectively, leading to competitive ratio 1

2
for algorithm

SGSupplyGreedy.
�
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4 Experimental study

While in the previous section we have shown analytically the worst-case guarantees
of the algorithms’ performance (in the form of competitive ratios), in this section we
conduct an experimental study using real world data to look into their performance in
practice. Since the Adwords problem is NP-complete in the generic case [4], we cannot
compare SGSupplyAdwords and the optimal algorithm in practice, but instead we
conduct a comparison with a business-as-usual (BAU) scenario, where demands are
being scheduled upon their arrival on the same timeslot (i.e. no flexibility is assumed
and no resource allocation technique is being applied). In the rest of this section we
describe the experimental setup in detail, followed by the presentation and discussion
of the experiments.

4.1 Experiment setup

Source data Regarding consumption, we use detailed data from all household de-
vices (including lighting) of a pilot housing project at the south of Sweden, gathered
over a period of approximately 3 months (March to May). The elasticity assumed
for each device depends on its type, with some devices being low-elastic (capable of 0
to 2 hours delay - freezer, fridge), some devices being high-elastic (0-4 hours delay -
dishwasher, tumble dryer, washing machine, electric car) and many being completely
inelastic (lighting, TV/multimedia, general purpose sockets). As a source of storage,
we use an array of photovoltaic panels installed at the housing project.

Regarding energy budgets and price information per timeslot, data from the Swedish
transmission system operator (Svenska Kraftnät) [17] and the Nordic spot market
(Nordpool) [18] have been considered respectively. In both cases, the appropriate data
specific for the south of Sweden (zones SN4 and SE4 respectively) for the dates under
consideration were used.

Mode of operation For the following experimentations, timeslots of duration of
1 hour have been used along with a timeframe of total 24 hours (24 timeslots), and
renewable energy sources are modeled as a form of storage, that is available energy
that we can use within each timeslot. Regarding energy carriers, only electricity is
relevant for the data considered here and therefore we will use the terms ’timeslots’
and ’machines’ interchangeably. Note that even though a timeframe of 24 timeslots
is considered at any point in time, this is in fact a rolling window of width 24, as the
algorithms are running continuously. As a result, at every timeslot one new machine
gets created and one is being discarded.

Scenarios We investigate three scenarios:

• BAU: In this business-as-usual (BAU) scenario, no elasticity is assumed and
demands are being executed in the order of arrival. This is equivalent to the
replay of the data as they were collected originally from the different devices.
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Category
name

Category
frequency
(% of
timeslots)

Spend budget
change in category
(range)

Spend budget to-
tals in BAU (Wh)

AdaptiveFull
average budget
change

AdaptiveSimple
average budget
change

HighWinners 18% [+100%, +25000%] 118697
+220% +222%

Low Winners 37% [0%, +100%) 235938 +76%
+77%

Low Losers 45% [-100%, 0%) 290959 -57% -57%

Table 1: Results for the FullBudgets set of experiments

• AdaptiveFull: This is a direct implementation of algorithm SGSupplyAd-
words.

• AdaptiveSimple: This is a variation of algorithm SGSupplyAdwords, which
doesn’t include the storage term su in equation 1, used here to study the benefits
of storage and renewable energy inclusion in the proposed algorithm.

Relation between bids and prices For the experimental part of this work, we
define a bid by machine u towards task v as biduv = dv

pu
, where dv and pu are the load

demand of task v and price of machine u respectively5. Since budgets must be in the
same units as the bids, we also normalize the energy budgets of the machines with
their respective prices.

Experiments Two different sets of experiments where conducted:

• The FullBudgets set, using full budget and price information: In this set, the
full budget and price information available was considered. The aim here is to
compare the amount of spend budgets of timeslots, to the corresponding amount
in the BAU case. We also look into the unused renewable energy (i.e. storage)
that AdaptiveFull and AdaptiveSimple leave in each timeslot, compared
to the one left in BAU.

• The SimpleBudgets set, using simplified budget and price information: By
keeping budgets and prices the same for all nodes (equal to 30 kWh and 1
respectively), in this set we look into a simplified version of the SupplyBud-
getUtilization problem which is equivalent to the peak-reduction problem
with a flat pricing scheme. This allows us to focus on the effect of the algo-
rithms on peak demand reduction, as well as look deeper into renewable energy
utilization.

4.2 FullBudgets

Results for this set are shown on table 1. We distinguish three categories of timeslots:
High Winners (HW), Low Winners (LW) and Low Losers (LL):

5We assume machines offer the same price to all tasks and 0 < pu ≤ 1,∀u ∈ U , where U is the set
of all machines.
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Figure 6: Unused storage per timeslot for the FullBudgets set

• HW are timeslots with initially low spend percentage (of their total budgets),
that are experiencing an increase in the range of [100%, 25000%].

• LW are timeslots that achieve modest increase in their spend percentages (range
of [0%, 100%]) and cumulatively comprise a modest amount of spend budget (in
Wh).

• LL are likewise timeslots that see their spend percentages reduced to a modest
degree (range of [-100%,0%]) and define a slightly larger total amount of spend
budgets than LW.

The AdaptiveFull algorithm lowers the spend budgets of LL, and raises the HW
and LW budgets, in an effort to not let any timeslots spend their whole budget before
the others. Note that the small difference between the AdaptiveFull and Adap-
tiveSimple algorithms (220% and 222% respectively on the HW and LW categories)
is due to the inability of AdaptiveSimple to utilize the available storage. Although
seemingly counter-intuitive, it is easy to see that since AdaptiveSimple cannot use
storage efficiently, it requests energy from the grid to service incoming tasks and ends
up increasing spend percentages overall.

On the other hand, the differences between AdaptiveFull and AdaptiveSimple
are more clearly seen when looking at the amount of storage they leave unused. In
figure 6 we see the unused storage per timeslot, sorted by descending amount for all
timeslots.

It is easy to see that AdaptiveFull outperforms AdaptiveSimple by reducing
the amount of unused storage particularly on the highest amounts (percentages 0%
to approx. 4%). In the same figure 6 the BAU scenario is also given for reference

17



Peak energy (Wh)

P
ea

k
 r

ed
u
ct

io
n
 (

%
)

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

Figure 7: Peak reduction per peak amplitude for the SimpleBudgets set

purposes. Note that BAU manages to perform better than both AdaptiveFull
and AdaptiveSimple in the expense of taking budget and price information into
account, and without optimizing specifically for storage utilization. In contrast, both
AdaptiveFull and AdaptiveSimple try to keep all budgets in a non-exhausted
state for as long as possible, sometimes at the expense of readily available storage.
Nevertheless, the AdaptiveFull algorithm takes this parameter too into account,
leading to an increased storage utilization by approximately 7% on average, compared
to the AdaptiveSimple algorithm.

Overall, the Pearson correlation coefficient of the three considered scenarios BAU,
AdaptiveSimple and AdaptiveFull (compared to the budget sequence) is respec-
tively 0.0481, 0.062 and 0.0633, showing that the AdaptiveFull algorithm resembles
the budget sequence closer (higher Pearson correlation coefficient) than both BAU and
AdaptiveSimple.

4.3 SimpleBudgets

As mentioned above, by keeping the parameters of budget and price fixed, we can see
how the algorithms behave from the viewpoint of peak demand reduction, as well as
storage utilization. The exact peak reduction per peak of varying amplitude can be
seen in figure 7 for the AdaptiveFull algorithm (shown alone for reasons of clarity),
and in summary form in table 2 for both AdaptiveFull and AdaptiveSimple.

It is easy to see that both AdaptiveFull and AdaptiveSimple perform signifi-
cantly better than BAU, ranging from 9% to 28% improvement, by managing to lower
both peaks of high and low consumption. On the other hand, also in this case the
difference between AdaptiveFull and AdaptiveSimple can be seen more clearly
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Category
name

Category
frequency
(% of
timeslots)

Peak en-
ergy range
(Wh)

Peak en-
ergy totals
(Wh)

AdaptiveFull
average peak
reduction

AdaptiveSimple
average peak
reduction

Peaks of high
consumption

32% [650, 2972] 209080 9.18%
22.46%

9.16%
22.54%

Peaks of low
consumption

68% [0, 650) 134820 28.68% 28.74%

Table 2: Results for the SimpleBudgets set of experiments
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Figure 8: Unused storage per timeslot for the SimpleBudgets set

when looking at the amount of storage they leave unused, and figure 8 shows the un-
used storage per timeslot, sorted by descending amount for all timeslots. Even though
AdaptiveSimple does not prioritize storage utilization, it manages to leave less stor-
age unused compared to the BAU scenario. However, for the same reason, it uses
storage blindly, by exhausting storage in timeslots with small offers (percentages 1.2%
to 3.3%) but leaving a lot of storage unused in bigger offers (percentages 0% to 1.2%).
In contrast, the AdaptiveFull algorithm manages to utilize storage in a smooth way,
by ignoring smaller offers when the opportunity to utilize bigger ones arises. Overall,
AdaptiveFull utilizes approximately 19% more storage than AdaptiveSimple.

5 Discussion

In the previous section, the AdaptiveFull algorithm (being a direct implementation
of algorithm SGSupplyAdwords) is shown to achieve better utilization of available
storage compared to the AdaptiveSimple variant, that does not include the stor-
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age term su in equation 1. This is expected in practice since AdaptiveFull will
promote machines with storage, and makes better utilization of storage overall, since
machines exhaust their budgets in a slower rate (compared to the AdaptiveSimple
case) and are able to service load demands for longer periods. In practice, this means
that e.g. utility companies can service a higher amount of consumers using the same
amount of supply, leading to higher resource utilization. However, note that theorem
1 applies equally to both variants, giving them the same competitive ratio. This is
only natural since competitive ratio is based on the worst case analysis, which is the
same for both variants. Note also that budget spending and storage utilization are
two distinct benefits of the presented algorithms: even in cases where budget cannot
be spent further (i.e. no suitable tasks exist), the AdaptiveFull variant manages to
spend less primary (i.e. not stored) energy by utilizing storage more efficiently than
AdaptiveSimple.

On the other hand, in the theoretical analysis part of the current work (section 3),
we do not take into account price information that might be available on machines. In
fact, by assuming non-equal bids biduv for different tasks v (originating from the same
machine u), our algorithms and modeling are as generic as possible in that respect
and can take into account i.e. cases where a supplier offers different prices to different
customers for the same goods and timeslot, allowing for relevant research on pricing
signals (cf [2] and references therein) to connect with the current work.

In addition to the above, a number of benefits, implied in the competitive ratio
analysis of theorem 1, are particularly relevant to the domain of Smart Grids considered
in this work. As observed by Mehta et al in [16] for a similar algorithm for the
Adwords problem, it is possible for machines to have different budgets and also to
enter the bidding process at different times. Since machines can also leave at different
times, it is possible to continuously run the algorithm in a rolling window of timeslots
(as was done in section 4), by allowing new machines to enter and old to leave the
bidding process at every timeslot. This fact, together with the dynamic budgets
introduced in section 3.3, shows the flexibility and expressiveness of the modeling
proposed in section 3, since it can describe many aspects of dynamicity on generation
and consumption on Smart Grids.

6 Conclusion

In this paper, we model supply-following demand in Smart Grids in terms of the
Adwords problem, in order to provide algorithmic solutions of measurable quality. In
doing so, we extend the Adwords problem to incorporate load credit (i.e. storage) and
we present and analyze online algorithms that can schedule demand, given availability
constraints on supply with guaranteed competitive ratio. In systems where demands
are small compared to the individual supply, we prove a

(
1− 1

e

)
-competitive ratio. For

cases where this does not hold, we extend the Adwords problem to utilize dynamic
budgets, and present an algorithm with a 1

2
-competitive ratio. Using real data from a

pilot housing project, we show the effectiveness of the proposed algorithmic solution
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both in shaping demand to follow closely the available supply, but also in utilizing
available storage and renewable energy options.

Since we approach supply-following demand from a direction orthogonal to research
related to pricing mechanisms, our methods can be applied together with any pricing
mechanism but also in cases where pricing signals are not available. It would therefore
be interesting to look into the combined effects of different pricing mechanisms and the
methodology proposed in the current work, in order to study possible synergies between
different solutions. On the other hand, since the methodology itself is modular, it can
be extended to describe and address additional cases of interest in Smart Grids, such
as direct consumer-producer couplings and the inclusion of forecasts.
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