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Abstract

In this paper we describe GPU-Quicksort, an efficient Quicksort algorithm suitable
for highly parallel multi-core graphics processors. Quicksort has previously been consid-
ered an inefficient sorting solution for graphics processors, but we show that in CUDA,
NVIDIA’s programming platform for general purpose computations on graphical proces-
sors, GPU-Quicksort performs better than the fastest known sorting implementations for
graphics processors, such as radix and bitonic sort. Quicksort can thus be seen as a viable
alternative for sorting large quantities of data on graphics processors.
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1 Introduction

In this paper, we describe an efficient parallel algorithmic implementation of Quicksort, GPU-
Quicksort, designed to take advantage of the highly parallel nature of the graphics cards
(GPUs) and their limited cache memory. Quicksort has long been considered one of the fastest
sorting algorithms in practice for single processor systems and is also one of the most studied
sorting algorithms, but until now it has not been considered an efficient sorting solution for
GPUs [23]. We show that GPU-Quicksort presents a viable sorting alternative and that it can
outperform other GPU-based sorting algorithms such as GPUSort and radix sort, considered
by many to be two of the best GPU-sorting algorithms. GPU-Quicksort is designed to take
advantage of the high bandwidth of GPUs by minimizing the amount of bookkeeping and
inter-thread synchronization needed. It achieves this by i) using a two-phase design to keep
the inter-thread synchronization low, ii) coalescing read operations and constraining threads
so that memory accesses are kept to a minimum. It can also take advantage of the atomic
synchronization primitives found on newer hardware to, when available, further improve its
performance.

Today’s graphics cards contain very powerful multi-core processors, for example, NVIDIA’s
highest-end graphics processor currently boasts 128 cores. Outside of gaming this computa-
tional power goes mostly unused. But since the processors are specialized for compute-
intensive, highly parallel computations, they could be used to assist the CPU in solving
problems that can be efficiently data-parallelized.

Previous work on general purpose computation on GPUs have used the OpenGL interface,
which is a rather clunky way, being primarily designed for performing graphics operations and
gives a poor abstraction to the programmer that wishes to use it for non-graphics related tasks.
NVIDIA is attempting to remedy this situation by providing programmers with CUDA!, a
programming platform for doing general purpose computation on GPUs. ATI has similar
project called Close to the Metal.

Although simplifying programming a lot, one still needs to be aware of the strengths
and limitations of the new platform to be able to take full advantage of it. Algorithms that
work great on standard single processor systems most likely need to be altered extensively to
perform well on GPUs, which have limited cache memory and instead uses massive parallelism
to hide memory latency.

This means that directly porting efficient sorting algorithms from the single processor do-
main to the GPU domain would most likely yield very poor performance. This is unfortunate,
since the sorting problem is very well suited to be solved in parallel and is an important ker-
nel for sequential and multiprocessing computing and a core part of database systems. Being
one of the most basic computing problems, it also plays a vital role in plenty of algorithms
commonly used in graphics applications, such as visibility ordering or collision detection.

Quicksort was presented by C.A.R. Hoare in 1961 and uses a divide-and-conquer method
to sort data [13]. A sequence is sorted by recursively dividing it into two subsequences, one
with values lower and one with values higher than specific pivot value that is selected in each
iteration. This is done until all elements are sorted.

LCompute Unified Device Architecture



1.1 Related Work

With Quicksort being such a popular sorting algorithm, there have been a lot of different
attempts to create an efficient parallelization of it. The obvious way is to take advantage
of its inherent parallelism by just assigning a new processor to each new subsequence. This
means, however, that there will be very little parallelization in the beginning, when the
sequences are few and large [5].

Another approach has been to divide each sequence to be sorted into blocks that can
then be dynamically assigned to available processors [11,26]. However, this method requires
extensive use of atomic FAA? which makes it too expensive to use on graphics processors.

Blelloch suggested using prefix sums to implement Quicksort and recently Sengupta et
al. used this method to make an implementation for CUDA [2,23]. The implementation was
done as a demonstration of their segmented scan primitive, but it performed quite poorly and
was an order of magnitude slower than their radix-sort implementation in the same paper.

Since most sorting algorithms are memory bandwidth bound, there is no surprise that
there is currently a big interest in sorting on the high bandwidth GPUs. Purcell et al. [21]
have presented an implementation of bitonic merge sort on GPUs based on an implementation
by Kapasi et al. [15]. Kipfer et al. [16,17] have shown an improved version of the bitonic sort
as well as an odd-even merge sort. Gref et al. [9] introduced an approach based on the
adaptive bitonic sorting technique found in the Bilardi et al. paper [1]. Govindaraju et al. [8]
implemented a sorting solution based on the periodic balanced sorting network method by
Dowd et al. [4] and one based on bitonic sort [6]. They later presented a hybrid bitonic-radix
sort that used both the CPU and the GPU to be able to sort vast quantities of data [7].
Sengupta et al. [23] have presented a radix-sort and a Quicksort implementation. Recently,
Sintorn et al. [25] presented a hybrid sorting algorithm which splits the data with a bucket
sort and then uses merge sort on the resulting blocks. The implementation requires atomic
primitives that are currently not available on all cards.

In the following section we present the system model. In Section 3.1 we give an overview
of the algorithm and in Section 3.2 we go through it in detail. We prove its time and space
complexity in Section 4. In Section 5 we show the results of our experiments and in Section
5.4 and Section 6 we discuss the result and conclude.

2 The System Model

CUDA is NVIDIA’s initiative to bring general purpose computation to their graphics pro-
cessors. It consists of a compiler for a C-based language which can be used to create kernels
that can be executed on the GPU. Also included are high performance numerical libraries for
FFT and linear algebra.

General Architecture The high range graphics cards from NVIDIA that supports
CUDA currently boasts 16 multiprocessors, each multiprocessor consisting of 8 processors
that all execute the same instruction on different data in lock-step. Each multiprocessor sup-
ports up to 768 threads, has 16KiB of fast local memory and a maximum of 8192 available
registers that can be divided between the threads.

Scheduling Threads are logically divided into thread blocks that are assigned to a specific
multiprocessor. Depending on how many registers and how much local memory the block of

2Fetch-And-Add reads an integer from the memory, increments it by a given amount and writes it back to
the memory, all in one atomic step.
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Figure 1: A graphical representation of the CUDA hardware model

threads requires, there could be multiple blocks assigned to a single multiprocessor. If more
blocks are needed than there is room for on any of the multiprocessors, the leftover blocks
will be run sequentially.

The GPU schedules threads depending on which warp they are in. Threads with id 0..31
are assigned to the first warp, threads with id 32..63 to the next and so on. When a warp
is scheduled for execution, the threads which perform the same instructions are executed
concurrently (limited by the size of the multiprocessor) whereas threads that deviate are
executed sequentially. Hence it’s important to try to make all threads in the same warp
perform the same instructions most of the time. See Figure 1 for a graphical description of
the way threads are grouped together and scheduled.

Two warps cannot execute simultaneously on a single multiprocessor, so one could see the
warp as the counter-part of the thread in a conventional SMP system. All instructions on
the GPU are SIMD, so the threads that constitute a warp can be seen as a way to simplify
the usage of these instructions. Instead of each thread issuing SIMD instructions on 32-word
arrays, the threads are divided into 32 sub-threads that each works on its own word.

Synchronization Threads within a thread block can use the multiprocessors shared local
memory and a special thread barrier-function to communicate with each other. The hardware
thread barrier-function is possible since the thread scheduling is done in hardware and not in
software, as is usually the case on conventional SMP systems.

There is however no barrier-function for threads from different blocks. The reason for
this is that when more blocks are executed than there is room for on the multiprocessors, the
scheduler will wait for a thread block to finish executing before it swaps in a new block. This
makes it impossible to implement a barrier function in software and the only solution is to



wait until all blocks have completed.

Some newer cards support atomic instructions such as CAS (Compare-And-Swap) and
FAA.

Memory Data is stored in a large, but slow, global memory that supports both gather and
scatter operations. There is no caching available automatically when accessing this memory,
but each thread block can use its own, very fast, shared local memory to temporarily store data
and use it as a manual cache. By letting each thread access consecutive memory locations,
it’s possible to allow read and write operations to coalesce, which will increase performance.

This is in direct contrast with the conventional SMP systems, where one should try to let
each thread access its own part of the memory so as to not thrash the cache.

Because of the lack of caching, a high number of threads are needed to hide the memory
latency. These threads should preferably have a high ratio of arithmetic to memory operations
to be able to hide the latency well.

The shared memory is divided into memory banks that can be accessed in parallel. If two
threads write to or read from the same memory bank, the accesses will be serialized. Due to
this, one should always try make threads in the same warp write to different banks. If all
threads read from the same memory bank, a broadcasting mechanism will be used, making it
just as fast as a single read. A normal access to the shared memory takes the same amount
of time as accessing a register.

3 The algorithm

The following subsection gives an overview of GPU-Quicksort. Section 3.2 will then go into
the algorithm in more details.

3.1 Overview

The method used by the algorithm is to recursively partition the sequence to be sorted, i.e.
to move all elements that are lower than a specific pivot value to a position to the left of the
pivot and to move all elements with a higher value to the right of the pivot. This is done
until the entire sequence has been sorted.

In each partition iteration a new pivot value is picked and as a result two new subsequences
are created that can be sorted independently. After a while there will be enough subsequences
available that each thread block can be assigned one. But before that point is reached, the
thread blocks need to work together on the same sequences. For this reason, we have divided
up the algorithm into two, albeit rather similar, phases.

First Phase In the first phase, several thread blocks might be working on different parts
of the same sequence of elements to be sorted. This requires appropriate synchronization
between the thread blocks, since the results of the different blocks needs to be merged together
to form the two resulting subsequences.

Newer graphics processors provide access to atomic primitives that can aid somewhat in
this synchronization, but they are not yet available on the high-end cards and there is still
the need to have a thread block barrier-function between the partition iterations, something
that cannot be implemented using the available atomic primitives.

The reason for this is that the blocks might be executed sequentially and we have no way
of knowing in which order they will be run. So the only way to synchronize thread blocks is
to wait until all blocks have finished executing. Then one can assign new sequences to them.



Exiting and reentering the GPU is not expensive, but it’s also not delay-free since parameters
needs to be copied from the CPU to the GPU, which means that we want to minimize the
number of times we have to do that.

When there are enough subsequences so that each thread block can be assigned its own,
we enter the second phase.

Second Phase In the second phase, each thread block is assigned its own subsequence
of input data, eliminating the need for thread block synchronization. This means that the
second phase can run entirely on the graphics processor. By using an explicit stack and
always recurse on the smallest subsequence, we minimize the shared memory required for
bookkeeping.

Hoare suggested in his paper [14] that it would be more efficient to use another sorting
method when the subsequences are relatively small, since the overhead of the partitioning
gets too large when dealing with small sequences. We decided to follow that suggestion and
sort all subsequences that can fit in the available local shared memory using an alternative
sorting method.

In-place On conventional SMP systems it’s favorable to perform the sorting in-place,
since that gives good cache behavior. But on the GPUs with their limited cache memory
and the expensive thread synchronization that is required when hundreds of threads need
to communicate with each other, the advantages of sorting in-place quickly fade. Here it’s
better to aim for reads and writes to be coalesced to increase performance, something that is
not possible on conventional SMP systems. For these reasons it’s better, performance-wise,
to use an auxiliary buffer instead of sorting in-place.

So, in each partition iteration, data is read from the primary buffer and the result is
written to the auxiliary buffer. Then the two buffers switch places and the primary becomes
the auxiliary and vice versa.

3.1.1 Partitioning

The principle of two phase partitioning is outlined in Figure 2. A sequence to be partitioned
is selected and it’s then logically divided into m equally sized sections (Step a), where m is
the number of thread blocks available. Each thread block is then assigned a section of the
sequence (Step b).

The thread block goes through its assigned data, with all threads in the block accessing
consecutive memory so that the reads can be coalesced. This is important, since reads being
coalesced will significantly lower the memory access time.

Synchronization The objective is to partition the sequence, i.e. to move all elements
that are lower than the pivot to a position to the left of the pivot in the auxiliary buffer and
to move the elements with a higher value to the right of the pivot. The problem here is how
to synchronize this in an efficient way. How do we make sure that each thread knows where
to write in the auxiliary buffer? It should also be noted that it’s important to minimize the
amount of synchronization communication between threads since it will be quite expensive
as we have so many threads.

Cumulative Sum A possible solution is to let each thread read an element and then
synchronize the threads using a barrier function. By calculating a cumulative sum?® of the
number of threads that want to write to the left and that wants to write to the right of the
pivot, each thread would know that x threads with a lower thread id than its own are going

3The terms prefix sum or sum scan are also used in the literature.
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Figure 2: Partitioning a sequence

to write to the left and that y threads are going to write to the right. Each thread then knows
that it can write its element to either bufy1 or buf,_(,11), depending on if the element is
higher or lower than the pivot.

A Two-Pass Solution But calculating a cumulative sum is not free, so to improve
performance we go through the sequence two times. In the first pass each thread just counts
the number of elements it has seen that have value higher (or lower) than the pivot (Step
c¢). Then when the block has finished going through its assigned data, we use these sums
instead to calculate the cumulative sum (Step d). Now each thread knows how much memory
the threads with a lower id than its own needs in total, turning it into an implicit memory-
allocation scheme that only needs to run once for every thread block, in each iteration.

In the first phase, were we have several thread blocks accessing the same sequence, an
additional cumulative sum need to be calculated for the total memory used by each thread
block (Step e).

Now when each thread knows where to store its elements, we go through the data in a



second pass (Step g), storing the elements at their new position in the auxiliary buffer. As a
final step, we store the pivot value at the gap between the two resulting subsequences (Step
h). The pivot value is now at its final position which is why it doesn’t need to be included in
any of the two subsequences.

Algorithm 1 Parallel Quicksort
procedure PQSORT(size, dP"™, d*T)
minlength, flip «— mZZ;:eq’ false
work, done «— {(0, size, flip, piv)}, 0
while work # 0 A jwork| + |done| < maxseq do
ws, TS ZUEU}OT]C %,@
for all v € work do
Vend —Vstart ‘| )

T — (Ustarta Vend, U, ( WS
zsU{zx}
fori—0,i<z°—1,i«—1i+1do
start «— x° + ws - 1
bl — bl U {(z, start, start + ws)}
bl —blU{(z,z° +ws- (x¢—1),2°)}
gqsort (bl, dPT™ | dT);
for all x € xs do
if x® — xVstert < minlength then
done — done U {(zVstert 2% flip, piv)}
else
work «— work U {(zVstert x® flip, piv)}

if xVend — ¢ < minlength then
done «— done U {(z¢, x"n4, flip, piv)}
else
work «— work U {(z¢, z%d, flip, piv)}
dprim’ dau:r’ flzp - dau:p7 dpm'm, _'flip
if flip then

dprim daur  Joux dprim
) )

done +— done U work
lgsort(done, dP"™™, d*T);

3.2 Detailed Description
The following subsection describes the algorithm in more detail.

3.2.1 The First Phase

The goal of the first phase is to divide the data into a large enough number of subsequences
that can be sorted independently.

Work Assignment In the ideal case, each subsequence should be of the same size, but
that is often not possible, so it’s better to have some extra sequences and let the scheduler
balance the workload. Based on that observation, a good way to partition is to only partition



Algorithm 2 First Phase Kernel
procedure GQSORT(bl, dP™'™ du*)
b« blpiq
ltiids gtiia < 0,0
7 — bstart + tid
for i <" i — i+ T do

if & < b®" then
ltyiq — g + 1
if @™ > b.z.p then
Gttid < gtria +1
It, gt «— accum(lt), accum(gt)
Istart <+ FAA(D™,lt7)
gstart «— FAA(b™, —gtr)
Lfromyq = lstart + ltyq
gfromyq = gstart + gtyq
7 — bstart + tid
for i < b j — i +T do
if @™ < pivot then
rom — "
lfrom < [from+1
if Id > pivot then
trom < di"
gfrom — gfrom—1

if FAA(b®,—1) =1 then
for i — b ,i < b ,i—i+1do

d?uz — bxp

subsequences that are longer than minlength = n/maxseq and to stop when we have mazseq
number of sequences.

In the beginning of each iteration, all sequences that are larger than minlength are as-
signed thread blocks relative to their size. In the first iteration, the original sequence will be
assigned all available thread blocks. The sequences are divided so that each thread block gets
an equally large section to sort, as can be seen in Figure 2 (Step a and b).

First Pass When a thread block is executed on the GPU, it will iterate through all the
data in its assigned sequence. Each thread in the block will keep track of the number of
elements that are greater than the pivot and the number of elements that are smaller than
the pivot. This information is stored in two arrays in the shared local memory; with each
thread in a half warp? accessing different memory banks to increase performance.

The data is read in chunks of 1" words, where 1" is the number of threads in each thread
block. The threads read consecutive words so that the reads coalesce as much as possible.

Space Allocation Once we have gone through all the assigned data, we calculate the
cumulative sum of the two arrays. We then use the atomic FAA-function to calculate the
cumulative sum for all blocks that have completed so far. This information is used to give

4A warp is 32 consecutive threads that are always scheduled together.



Algorithm 3 Second Phase Kernel

procedure LQSORT(sl, d"¢, d/alse)
wset = {slyiq}
while wset # () do
v« minsize(wset) where v = (v%,v°,v?)
pivot «— median(d%g, dg’; dq()53+ve)/2)
i, lttid7 gttid — v 4 tid, 0, 0
for i <v® i« i+ 7T do
if dfb < pivot then
lttid — lttid +1
if d%’b > pivot then
gtiia < glyia +1
alt, agt — accum(lt), accum(gt)
altiia, agtia < v° + altyiq, v — agtiia
1 —v°+tid
for i <v®i«— i+ 7T do
if d;’b < pivot then

7’ altyg — Y altyg — 1
if d¥ > pivot then
— b
da;])ttidv agttid — d;) ,agttid +1

i v+ alty + tid
for i < v —agty.i—i+T do
d/alse — pivot
T {(’Usu altT)? (,Ue —agtr, agtT)}
for all s € r do
if s**¢ < MINSIZE then
altsort(sstm‘t gsize dvb dfalse)
else
wset «— wset U {(Sf, i + Ssize’ _\Ub)}

each thread a place to store its result, as can be seen in Figure 2 (Step c-f).

FAA is as of the time of writing not available on all GPUs. An alternative if one wants to
run the algorithm on the older, high-end cards, is to divide the kernel up into two kernels and
do the block cumulative sum on the CPU instead. This would make the code more generic,
but also slightly slower on new hardware.

Second Pass Using the cumulative sum, each thread knows where to write elements that
are greater or smaller than the pivot. Each block goes through its assigned data again and
writes it to the correct position in the current auxiliary array. It then fills the gap between the
elements that are greater or smaller than the pivot with the pivot value. We now know that
the pivot values are in their correct final position, so there is no need to sort them anymore.
They are therefore not included in any of the newly created subsequences.

Are We Done? If the subsequences that arise from the partitioning are longer than
minlength, they will be partitioned again in the next iteration, provided we don’t already
have more than maxseq sequences. If we do, the next phase begins. Otherwise we go through



another iteration. (See Algorithm 1 and 2).
3.2.2 The Second Phase

When we have acquired enough independent subsequences, there is no longer any need for
synchronization between blocks. Because of this, the entire phase two can be run on the GPU
entirely. There is however still the need for synchronization between threads, which means
that we will use the same method as in phase one to partition the data. That is, we will count
the number of elements that are greater or smaller than the pivot, do a cumulative sum so
that each thread has its own location to write to and then move all elements to their correct
position in the auxiliary buffer. (See Algorithm 3).

Stack To minimize the amount of fast local memory used, there being a very limited
supply of it, we always recurse on the smallest subsequence. By doing that, Hoare have
showed [14] that the maximum recursive depth can never go below log,(n). We use an
explicit stack as suggested by Hoare and implemented by Sedgewick in [22], always storing
the smallest subsequence at the top.

Overhead When a subsequence’s size goes below a certain threshold, we use an alternative
sorting method on it. This was suggested by Hoare since the overhead of Quicksort gets too
big when sorting small sequences of data. When a subsequence is small enough to be sorted
entirely in the fast local memory, we could use any sorting method that can be made to sort
in-place, doesn’t require much expensive thread synchronization and performs well when the
number of threads approaches the length of the sequence to be sorted. See Section 5.2 for
more information about algorithm used.

3.2.3 Cumulative sum

When calculating the cumulative sum, it would be possible to use a simple sequential imple-
mentation, since the sequences are so short (< 512). But it’s calculated so often that every
performance increase counts, so we decided to use the parallel cumulative sum implementation
described in [10] which is based on [2]. Their implementation was an ezclusive cumulative
sum so we had to modify it to include the total sum. We also modified it so that it accumu-
lated two arrays at the same time. By using this method, the speed of the calculation of the
cumulative sum was increased by 20% compared to using a sequential implementation.

Another alternative would have been to let each thread use FAA to create a cumulative
sum, but that would have been way too expensive, since all the threads would have been
writing to the same variable, leading to all additions being serialized. Measurements done
using 128 threads show that it would be more than ten times slower than the method we
decided to use.

4 Complexity

THEOREM 1. The average time complexity for GPU-Quicksort is O(nlog(n)).

Proof. For the analysis we combine phase one and two since there is no difference between
them from a complexity perspective. Each partition iteration requires going through the data,

calculating the cumulative sum and going through the data again writing the result to its

correct position. Going through the data twice takes O(TQ—%) steps, where T is the number of

threads per thread block and B is the number of blocks.
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According to [2] the accumulate function has a time complexity of O(™4¢= +log(T')). Since
we only calculate the cumulative sum on arrays the size of T, we can simplify it to O(log(7T')).

Assuming that all elements are equally likely to be picked as a pivot we get an average
running time of

Tn) = O(22 +1og(T)) + 20 T() n>m,
Taltsort (n) n < m.

where m is the maximum size of the sequences that can be sorted by the alternative sorting
method. The value of m is constant and is limited by the maximum amount of available
shared memory on the card, which means that the worst case complexity of the alternative
sort is not dependent on n. The alternative sort can thus be seen as having complexity O(1).
This together with the fact that both T" and B are constants independent of n gives us

T(n) = O(n) + 23215 T(i) n>m,
o) n<m.

Assuming that m < n we can set m = 1 which gives us the standard Quicksort recurrence
relation, which is proved to be O(nlog(n)) in e.g. [18]. O

THEOREM 2. The space complexity for GPU-Quicksort is O(5B + 2n), where B is the
amount of thread blocks used.

Proof. The first phase needs more global memory than the second phase, since it has to keep
track on which thread blocks are accessing the same sequence, something which is not needed
in the second phase where all thread blocks have their own sequence.

To keep track of which part of the sequence each thread block is partitioning, two words
are required for every block (start of sequence and end of sequence). Each block also needs to
know the index to the tuple containing the start and end of the shared sequence. This index
takes up one word and there is a maximum of B tuples each being two words in size (start
and end of sequence).

If all these values are summed up, it gives us a space complexity of O(5B + 2n) for
GPU-Quicksort. O

5 Experimental Evaluation

5.1 Hardware

We ran the experiments on a dual-processor dual-core AMD Opteron 1.8GHz machine. Two
different graphics cards were used, the low-end 8600GTS 256MiB NVIDIA graphics card
with 4 multiprocessors and the high-end 8800GTX 768MiB NVIDIA graphics card with 16
multiprocessors, each multiprocessor having 8 processors each.

The 8800GTX provides no support for atomic operations. Because of this, we used an
implementation of the algorithm that exits to the CPU for block-synchronization, instead of
using FAA.

11
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5.2 Algorithms used

We compared GPU-Quicksort to the following state-of-the-art GPU sorting algorithms:

GPUSort Uses bitonic merge sort. By Govindaraju et. al. [6].

Radix-Merge Uses radix sort to sort blocks that are then merged. By Harris et. al. [10].

Global Radix Uses radix sort on the entire sequence. By Sengupta et. al. [23].

Hybridsort Splits the data with a bucket sort and uses merge sort on the resulting blocks.
By Sintorn and Assarsson [25].

STL-Introsort This is the Introsort implementation found in the C++ Standard Library.
Introsort is based on Quicksort, but switches to heap-sort when the subsequences get smaller
than a certain value. Since it’s highly dependent on the computer system and compiler used,
we only included it to give a hint as to what could be gained by sorting on the GPU instead
of on the CPU [20].

We could not find an implementation of the Quicksort algorithm used by Sengupta et al.,
but they claim in their paper that it took over 2 seconds to sort 4M uniformly distributed
elements on an 8800GTX, which makes it much slower than STL sort [23].
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We only measured the actual sorting phase, we did not include in the result the time
it took to setup the data structures and to transfer the data on and off the graphics card.
The reason for this is the different methods used to transfer data which wouldn’t give a fair
comparison between the GPU-based algorithms. Transfer times are also irrelevant if the data
to be sorted is already available on the GPU. Because of those reasons, this way of measuring
has become a standard in the literature.

On the 8800GTX we used 256 thread blocks, each block having 256 threads. When a
sequence got below 1024 elements in size, we sorted it using bitonic sort. On the 8600GTS
we lowered the amount of thread blocks to 128 since it has fewer multiprocessors. All imple-
mentations were compiled with the -O3 optimization flag.

We used different pivot selection schemes for the two phases. In the first phase we took
the average of the minimum and maximum element in the sequence. We used this more com-
putationally expensive method here because it’s vital to have an even size of the subsequences
that are assigned to each multiprocessor in the next phase.

In phase two it is not as important to have evenly sized partitions since everything is
being run locally on the GPU, but with better pivot selection we achieve better performance.
Keeping track of the maximum and minimum elements became too expensive in this phase,
so instead we picked the median of the first, middle and last element as the pivot, a method
suggested by Singleton [24]. This gives a good pivot even when faced with totally sorted data.

The full source code of GPU-Quicksort can be downloaded for free for non-commercial
use [3].

5.3 Input Distributions

For benchmarking we used the following distributions which are defined and motivated in [12].
The source of the random uniform values is the Mersenne Twister [19].

Uniform Values are picked randomly from 0 — 231,

Zero A constant value is used. The actual value is picked at random.

Bucket The data set is divided into p blocks, where p € Z*, which are then each divided
into p sections. Section 1 in each block contains randomly selected values between 0 and
231 . . 931 932
o 1. Section 2 contains values between > and &> - 1 and so on.

Gaussian The Gaussian distribution is created by always taking the average of four
randomly picked values from the uniform distribution.

Staggered The data set is divided into p blocks, where p € Z*. The staggered distribution

is then created by assigning values for block i, where i < |£], so that they all lie between

2
(26 — 1)%) and ((21)(% —1)). For blocks where i > | £, the values all lie between ((2i —

p—2)2) and ((2i —p—1)%- —1).

We decided to use a p value of 128. The reason for this is that when we started doing
experiments we used 128 thread blocks and later on we could not detect any performance
difference for any algorithm when changing this value.

The results presented in Figure 3 and 4 are based on experiments sorting sequences of
integers. We have done experiments using floats instead, but found no difference in perfor-

mance.

5.4 Discussion

In this section we discuss GPU sorting in the light of the experimental result.
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Since sorting on GPUs has received a lot of attention it might be reasonable to start
with the following question; is there really a point in sorting on the GPU? If we take
a look at the radix-merge sort in Figure 4 we see that it performs comparable to the CPU
reference implementation. Considering that we can run the algorithm concurrently with other
operations on the CPU, it makes perfect sense to sort on the GPU.

If we look at the other algorithms we see that they perform at twice the speed and more
compared to Introsort, the CPU reference. On the faster GPU in Figure 3, the difference in
speed can be up to 8 times the speed of the reference! Even if one includes the time it takes to
transfer data back and forth to the GPU, less than 8ms per 1M element, it is still a massive
performance gain that can be made by sorting on the GPU. Clearly there are good reasons
to use the GPU as a general purpose co-processor.

But why should one use Quicksort? Quicksort has a worst case scenario complexity
of O(n?), but in practice, and on average when using a random pivot, it tends to be close
to O(nlog(n)), which is the lower bound for comparison sorts. In all our experiments GPU-
Quicksort has shown the best performance or been among the best. As can be seen when
comparing the performance on the two GPUs, GPU-Quicksort shows a speedup by around 3
times on the faster GPU. The faster GPU has a memory bandwidth that is 2.7 times higher
but has a slightly slower clock speed, indicating that the algorithm is bandwidth bound and
not computation bound, which was the case with the Quicksort in [23].

Is it better than radix? On the CPU, Quicksort is normally seen as a faster algorithm
as it can potentially pick better pivot points and doesn’t need an extra check to determine
when the sequence is fully sorted. The time complexity of radix sort is O(32n), which is
higher than O(nlog(n)) for n < 232. Optimizations are possible to lower this constant, such
as constantly checking if the sequence has been sorted, but when dealing with longer keys that
can be expensive. Quicksort being a comparison sort also means that it is easier to modify it
to handle different key types.

Is the hybrid approach better? The hybrid approach uses atomic instructions that
were only available on the 8600GTS. We can see that it outperforms both GPU-Quicksort
and the global radix sort on the uniform distribution. But it loses speed on the staggered
distributions and becomes immensely slow on the zero distribution. In the paper by Sintorn
and Assarsson they state that the algorithm drops in performance when faced with already
sorted data, so they suggest randomizing the data first. This however lowers the performance
and wouldn’t affect the result in the zero distribution.

This hybrid approach is useful when one knows that the distribution will be uniform
and not partially sorted, but Quicksort is more general and is thus more practical when the
distribution is unknown.

How are the algorithms affected by the faster card? GPUSort doesn’t increase
as much in performance as the other algorithms when run on the faster card. This is an
indication that the algorithm is more computationally bound than the other algorithms. It
goes from being much faster than the slow radix-merge to perform on par and even a bit
slower than it.

The global radix sort showed a 3x speed improvement, as did GPU-Quicksort. As men-
tioned earlier, this shows that the algorithms most likely are bandwidth bound.

How are the algorithms affected by the different distributions? All algorithms
showed about the same performance on the uniform, bucket and Gaussian distributions.
GPUSort always shows the same result independent of distributions since it is a sorting
network, which means it always performs the same number of operations regardless of the
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distribution.

The staggered distribution was more interesting. On the slower GPU the hybrid sorting
was more than twice as slow as on the uniform distribution. GPU-Quicksort also dropped in
speed and started to show the same performance as GPUSort. This can probably be attributed
to the choice of pivot selection which was more optimized for uniform distributions.

The zero distribution, which can be seen as an already sorted sequence, affected the
algorithms to different extent. The STL reference implementation increased dramatically in
performance since it always got even partitions regardless of the pivot chosen and never had
to swap elements positions. GPUSort performs the same number of operations regardless of
the distribution, so there was no change there. The hybrid sort didn’t like this distribution
at all and showed terrible performance. The reason for this is that all elements ended up in
the same bucket. GPU-Quicksort shows the best performance since it will pick the only value
that is available in the distribution as the pivot value, which will then be marked as already
sorted. This means that it just have to do two passes through the data and can sort the zero
distribution in O(n) time.

6 Conclusions

In this paper we present GPU-Quicksort, a parallel Quicksort algorithm designed to take
advantage of the high bandwidth of GPUs by minimizing the amount of bookkeeping and
inter-thread synchronization needed.

The bookkeeping is minimized by constraining all thread blocks to work with only one (or
part of a) sequence of data at a time. This way pivot values do not need to be distributed to
all thread blocks and thus no extra information needs to be written to the global memory.

The two-pass design of GPU-Quicksort has been introduced to keep the inter-thread syn-
chronization low. First the algorithm goes through the sequence to sort, counting the number
of elements that each thread sees that have a higher (or lower) value than the pivot. By
calculating a cumulative sum of these sums, in the second phase, each thread will know where
to write its assigned elements without any extra synchronization. The small amount of inter-
block synchronization that is required between the two passes of the algorithm can be reduced
further by taking advantage of the atomic synchronization primitives that are available on
newer hardware.

A previous implementation of Quicksort for GPUs by Sengupta et. al. turned out not to
be competitive enough in comparison to radix sort or even CPU based sorting algorithms [23].
According to the authors this was due to it being more dependent on the processor speed than
on the bandwidth. This is in contrast with GPU-Quicksort which is bandwidth bound, which
means that it gains significantly from the high bandwidth of GPUs and scales in performance
as bandwidth increases.

In experiments we compared GPU-Quicksort with some of the fastest known sorting algo-
rithms for GPUs, as well as with the C++ Standard Library sorting algorithm, Introsort, for
reference. We used several input distributions and two different graphics processors, the low-
end 8600GTS with 32 cores and the high-end 8800GTX with 128 cores, both from NVIDIA.
What we could observe was that GPU-Quicksort performed better on all distributions on the
high-end processor and on par with or better on the low-end processor.

A significant conclusion, we think, that can be drawn from this work, is that Quicksort is
a practical alternative for sorting large quantities of data on graphics processors.
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