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Abstract

Recent modernization efforts of the electrical grid led to the introduction of an ad-
ditional communications and computations-based layer in the infrastructure, with the
resulting new grid commonly referred to as smart grid. One of the aims of the smart
grid is to facilitate the integration of renewable and distributed energy sources on a
massive scale but these technologies bring benefits as well as challenges. Part of the
challenge is due to intermittent energy sources, such as wind and solar, which generate
energy at irregular intervals, leading to utilization problems for the grid. On the other
hand, upcoming storage technologies, such as electrical cars, hold the potential to store
and utilize this intermittent supply at a later time but bring challenges of their own, for
example efficient storage utilization and intermittent energy demand.

In this paper we present an algorithm that enables distributed solutions by utilizing
efficiently any storage capabilities in order to mitigate the effect of unreliable or non-
existent demand forecasts. Drawing upon computer science methodology, we define and
model the problem of unforecasted energy dispatch with storage as a scheduling problem
of tasks on machines. We show that both storage and the time parameter inherent
in the energy dispatch problem can be incorporated into a variant of the scheduling
problem, leading to a novel modeling that can be used to study further the energy
dispatch problem. In addition to presenting a simple but effective algorithm that solves
the aforementioned problem, we also prove analytically that this is done in a near optimal
way. Finally, we provide an extensive simulation study for a variety of scenarios, showing
that the presented algorithm is highly competitive to methods that use forecasts and
assume total knowledge about the demand requests.

1 Introduction

In recent years there has been an organized effort on an international level to modernize the
power grid by adding resilience properties, precise accounting and new services though the
use of information technologies, collectively leading to a new type of grid commonly called
smart grid. On the one hand these changes address a much needed modernization of the
aging grid, for example energy loses due to ineffective infrastructure and energy theft. On the
other hand, it is expected that these changes will enable the incorporation of renewable (e.g.
photovoltaic arrays and wind generator farms) and distributed (e.g. electric car fleets) energy
sources on a large scale. Nevertheless, these new generation technologies bring benefits as
well as challenges.

Currently there are established models and methods (cf [9] and bibliography therein) that
can forecast quite accurately the expected consumption on the power grid over the course
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of 24 hours, especially since consumers follow distinct diurnal patterns, and meet it with
adequate supply. However, the intermittent nature of renewable energy sources such as wind
generator farms challenges the way we utilize energy when it is available, compensate for
when it is not and rely on weather forecasts for the grids’ daily operation. On the other hand,
distributed energy sources such as electric car fleets can act as storage options and balance
the demand and supply of electrical energy but bring challenges of their own, for example
efficient storage utilization and intermittent energy demand. Since options for adapting or
forecasting the generation capabilities of these energy sources are currently limited, we focus
on solutions that adapt the demand and use storage capabilities to mitigate their intermittent
effects.

In the present work we model the problem of energy dispatch from producers to consumers
in the distribution level of the grid, using an extended online load balancing problem. By
drawing from the computer science methodology on scheduling tasks to machines, we present
a novel scheduling and resource dispatching algorithm that is able to cope with the inherent
unpredictability of renewable energy sources without the use of forecasts, as well as take
advantage of available storage options in the grid. Note that the aim is not to ignore the
possible benefits of forecasts but to show the benefits of alternative methods when coping
with uncertainty, e.g. when demand requests arrive in an arbitrary way (commonly referred
to as online) or when contingency plans must be drawn for the grid’s correct operation . At
the core of our modeling lies the transformation of the flexible load demand requests’ time
parameter (i.e. at which time does the requested energy need to be delivered) into a restricted
set of allowed machines in the task scheduling domain, as well as the incorporation of storage
in the optimization criteria. We also show analytically that the presented algorithm can make
efficient use of storage (if present) and is near optimal for the specific problem. Finally we
conduct an extensive simulation study for a variety of scenarios and show that the presented
algorithm is highly competitive to methods that use forecasts and assume total knowledge
about the incoming load demand requests for the same problem.

2 Problem background and definitions

System and problem definition We focus on the distribution system of the grid as a
high level abstraction. This includes a number of nodes being connected through a simple
topology, for example low voltage power lines in a radial feeder configuration [13] that con-
nects all nodes to the transmission system (see figure 1 for an example). These nodes issue
load demand requests on the feeder at irregular intervals, independently from each other,
and energy is being dispatched from generation sites to satisfy the demand. Note here that
energy dispatch can be coordinated by a central authority or be issued locally by a power
aggregator on a local distribution grid level. Since the algorithm works independent from
this parameter, as long as the interface is the same, this distinction is going to be disregarded
in the rest of the paper.

The load demand requests are commonly simple loads that consume energy at the mo-
ment they are requested, for example turning on the lights in a room. However, some of them
may be able to delay the energy consumption requested for a period of time, for example
laundry machines that can be programmed to start at a later time. Other requests may be
able to store energy in the system in some form, for example refrigerators that run part of
their cooling cycle at an earlier time (precooling). These two request characteristics are com-
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Figure 1: High level schematic representation of an example distribution level subgrid

monly called slide and slack respectively. Finally, some requests may be simply issued for
energy that will be stored in order to be used at a later time, for example charging electrical
vehicles’ batteries. We call these storage requests. Note here that, regardless of its specific
properties, every load demand request must be scheduled at the time of its issuing although
it can be served at the same or later time (depending on its type). Based on whether the
stored energy can be accessed only locally (on the node it was stored, i.e. a households’ heat
pump) or globally (by any node in a distribution system subgrid), it can be characterized
as local and global storage respectively. In the continuation we will refer to slack as storage
requests, even though they are based on a different mechanism, since they are similar in
their effects.

Adding to the complexity of energy dispatch, combined heat and power (CHP) plants offer
thermal energy dispatch along with electrical energy as part of their services. The thermal
energy these power plants produce can be used for a number of devices that would normally
require electrical energy (for example heating/cooling services) and can even be stored in
order to be used at a later time, for example in heat pumps. In the following sections we
are considering both electrical and thermal services offered in two separate feeder lines on
all nodes, an electrical and a thermal one respectively.

In the rest of the paper we focus on the unforecasted energy dispatch problem with storage,
defined as follows:

Definition 1 (Unforecasted energy dispatch problem with storage) Given a distri-
bution system subgrid, we call unforecasted energy dispatch problem with storage the problem
of dispatching generated electrical and thermal energy to end consumers without using fore-
casts and by taking into account any storage capabilities present, while trying to minimize
peak consumption.

Computing problem A similar problem to the energy dispatch problem mentioned above,
originates in the parallel processing community of computer engineering and is framed in
terms of machines (i.e. processors, computers) and tasks (i.e. threads, computer programs).
Consider a number of machines and tasks that we want to schedule to run on these machines.
The tasks are incurring a permanent load on the machines that are running and we have no
information on the total number of tasks, the tasks’ load or their time of arrival, i.e. the
tasks are arriving at arbitrary intervals (online). The problem of scheduling such tasks to
machines in a way that minimizes the maximum load on any machine is called the online
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load balancing problem. Depending on whether all tasks can run equally well on all machines,
with performance differences or only on specific machines, we can further characterize the
problem as having identical, related/unrelated or restricted machines respectively. Of par-
ticular relevance here is the third category, since the additional constraint to restrict tasks
into running only on specific machines fits our energy dispatch problem quite well, as we are
going to show below.

3 Modeling and transformation

Modeling details Following the description of the problem presented in the previous
section, we identify three orthogonal axis to characterize load demand requests:

elastic/inelastic, according to the ability to shift the demanded load over time or not,
respectively. Elastic loads can be scheduled to be serviced within a set of timeslots,
while inelastic loads must be serviced necessarily in a specific time slot.

electrical/thermal, depending on whether the demanded load can be serviced using
only electrical energy or both electrical and thermal, respectively.

storage/simple, according to the ability to store the demanded load for future use
or not, respectively1.

We are going to disregard the distinction between local and global storage since our
theoretical results apply equally to both types. For the same reason and for simplicity in the
experimental section we treat all storage as global. The latter choice is further motivated
by practical applications, since local storage can be made available on a global level as part
of an additional service layer offered by the utility or aggregator (for example batteries of
electric vehicles acting as distributed energy sources and providing energy for their immediate
neighborhood). For reasons of convention, throughout the rest of the paper we are assuming
that requests are scheduled in hourly timeslots and are coming in a diurnal pattern, i.e. each
request must define its allowed set (possibly a singleton) of hourly timeslots to be scheduled
in and the timeslots are labeled from 00:00 to 23:00, corresponding to the starting point of
the hour that they refer to.

Problem transformation We propose the transformation of the unforecasted energy dis-
patch problem with storage defined above into an extended online load balancing problem by
expressing load demand requests as an input sequence of tasks t0, . . . , tj , . . . to be run on ma-
chines and the electrical and thermal feeder lines as the machines themselvesMi, i = 0 . . . n−1
(figure 2). The additional restrictions about the usage of forecasts and the existence of stor-
age capabilities are accommodated as follows.

No forecasts The fact that no forecasts are being used about the incoming requests
corresponds to the online property of the load balancing problem: the tasks are arriving
at arbitrary intervals and no information exists about them prior to their arrival. The
dimension of time associated with requests (i.e. an elastic request can be scheduled in
any of a set of timeslots) is expressed by creating a copy of each electrical and thermal

1Note that in the continuation we will omit the “simple” characterization, implying that all loads will be
simple unless otherwise specified.
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feeder line for every timeslot. By adopting a diurnal and hourly scheduling period
we reach a total of n = 48 machines (24 electrical and 24 thermal, for convenience
numbered M0, . . . ,Mn

2
−1 and Mn

2
, . . . ,Mn−1 respectively), upon which the tasks can

be run.

Storage When a storage task runs on a machine it generates a load on the specific
machine but also a load credit that can be used in subsequent task runs on the same
or “future” machines of the same kind. This is the case since unused energy at a
specific timeslot is available in later timeslots, although it can be available in dimin-
ished amounts due to dissipation or low energy conversion efficiency. Note that in our
experiments we consider thermal energy to dissipate exponentially (meaning that less
energy is available in subsequent timeslots) while electrical energy does not dissipate.
This is done for convenience reasons and is not a limitation of the algorithm, since
our theoretical analysis applies the same when the algorithm operates with or without
dissipation or any kind of losses for any energy carrier. For the same reason we consider
storage tasks to be elastic.

We call the resulting problem from the above transformation an online load demand balancing
problem with storage, which is defined as follows:

Definition 2 (Online load demand balancing problem with storage)
Let Mi, i = 0 . . . n − 1 be a set of machines where variable load credit (i.e. storage) can
accumulate and t0, . . . , tj , . . . be an input task sequence of two task types, simple and storage,
with the following properties: each task tj of both types has load wj and restrictions on the
allowable machines it can run on, while storage tasks additionally create on all machines load
credit equal or less to their load (with the possibility of 0 on some but not all machines2). We
define the online load demand balancing problem with storage as the problem of assigning
the tasks to the machines while minimizing the maximum load on the machines.

An example instance of the transformed problem can be found in schematic form in figure
2.

4 A Greedy Algorithm

Our starting point is the known, greedy algorithm (which we will refer to simply as Greedy)
from online load balancing for machines and tasks:

Definition 3 [4] The Greedy algorithm assigns each incoming task tj to the machine that,
after being assigned tj will have the least load (breaking ties arbitrarily).

Based on the modeling that we propose in Section 3, we adapt the Greedy algorithm and
we augment it to support storage, getting the StorageGreedy algorithm presented here:

Definition 4 The StorageGreedy algorithm assigns each incoming task to the allowed
machine having the minimum load-storage difference (ties are broken arbitrarily).

In practice, the above definition can be expressed as follows: on a system level and for a
load demand request with specific restrictions, schedule the request to be executed on the

2The trivial case of load credit equal to 0 on all machines corresponds to simple tasks.
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Figure 2: An example of the online load balancing problem for electrical and thermal energy
requests with storage capabilities

allowed timeslot with the minimum load-storage difference. Note here that the scheduling is
taking place on the node that issued the request, where a copy of the algorithm is running.
These algorithmic copies run autonomously, with sole knowledge of the publicly available
scheduled totals of load and storage for different timeslots and for the different energy carriers
(electrical/thermal). We assume that loads are being registered to a timeslot as soon as they
are assigned to it and that the scheduled totals of load and storage are maintained in a way
that keeps them consistent with simultaneous reads/writes by the nodes (i.e. the load/storage
values are always correct). Figure 3 below shows an example execution of the algorithm.

The pseudocode of the algorithm running at each node can be found in algorithm 1 below,
along with a brief description of the variables and functions used. Note that all variables
are local except loadMachines and storageMachines which are common for all nodes and
contain respectively the load and storage of all machines.

Variables:

loadMachines, storageMachines Common variables (arrays) of all machines for
load and storage respectively. As mentioned above, we assume that all nodes have
access to the same information regarding load and storage content of the machines and
a mechanism exists that keeps their values consistent during simultaneous reads and
writes by the nodes.

taskId The unique identifier of the task to be scheduled by the node.

machineId The unique identifier of the machine with minimum load-storage differ-
ence, as returned by the function minMachine().

storTaskId, storageValue The unique identifier of the task that stored the energy
to be used and the actual value of the stored energy respectively, as returned by the
function findStorageTask().

remainingLoad, remainingStorage Intermediate variables containing the remain-
der of the task’s load and machine’s storage respectively, while the task is being assigned
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to the machine.

Functions:

minMachine() Returns the identifier of the machine with minimum load-storage
difference.

findStorageTask() Returns the identifier of a task that stored energy on a specific
machine. The selection process currently uses the heuristic rule of selecting the last task
that stored energy on the machine, although any number of rules can be implemented.

consumeStoredEnergy() Consumes the energy originally stored by task storTaskId.

produceStoredEnergy() Runs if taskId is a storage task and stores the appropri-
ate amount of energy, starting on machine machineId and continuing on subsequent
machines.

getAllowedMachines() Helper function that returns the set of allowed machines for
a given task.

getTaskLoad() Helper function that returns the load of a task.

As mentioned in the previous section, our algorithm can operate both with dissipating
and non-dissipating energy storage. In the case of non-dissipating storage, a storage task
that is run on a machine generates the same amount of storage on the same and subsequent
machines of the same type. In the case of dissipating storage, the amount of energy stored
in subsequent machines is less according to the appropriate dissipation rate (the further a
machine from the one the task run on, the less stored energy is available). When a task uses
energy stored on a machine, the appropriate amount is being subtracted from all machines
of the same type (either the same or diminished according to the appropriate dissipation
rate, in the case of non-dissipating and dissipating storage respectively), to reflect the fact
that this stored energy is no longer available for subsequent tasks.

Algorithm 1 Assign an incoming task taskId to the machine with minimum load-storage
difference
Input: loadMachines, storageMachines, taskId
Output: loadMachines, storageMachines

machineId← minMachine(loadMachines,storageMachines,getAllowedMachines(taskId))

remainingLoad← getTaskLoad(taskId)

remainingStorage← storageMachines[machineId]

while (remainingLoad > 0) ∧ (remainingStorage > 0) do
storageTaskId, storageValue← findStorageTask(machineId)

consumeStoredEnergy(remainingLoad,storageTaskId)

remainingLoad← remainingLoad−min(remainingLoad,storageValue)
remainingStorage← remainingStorage− storageValue

loadMachines[machineId]← loadMachines[machineId]+ remainingLoad

if loadMachines[machineId] is type(storage) then
produceStoredEnergy(machineId,taskId)
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Figure 3: An example run of the StorageGreedy algorithm (task loads shown at the left
side of each task). Step 1: the task scheduler places the first task to machine M24. Step
2: the second task is placed to the only allowed machine M0. Step 3: between the two
allowed machines M0 and M24, the one having minimum load-storage difference is M24. The
scheduler places the task there, uses up all available storage and adds the remaining load to
the machine.
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5 Theoretical analysis

In this section we follow a methodology similar to [4] and show that the performance of
the StorageGreedy algorithm is near optimal when compared with the optimal algorithm
OPT for the load demand balancing problem with storage. The appropriate metric for this
comparison is the competitive ratio, which is defined in the literature as follows.

Definition 5 [4] An online algorithm ALG has a competitive ratio c, compared to the
optimal algorithm OPT for the same optimization problem, if there is a constant α such
that for all finite input sequences I the following holds true for the solution costs ALG(I)
and OPT (I):

ALG(I) ≤ c ·OPT (I) + α

The following theorem shows that the solution cost of our algorithm lies within a factor
of ⌈logn⌉+1 when compared to the cost of the optimal algorithm, where n is the number of
machines (according to our modeling, n = 48). Note that no assumptions are made regarding
the dissipation of the stored energy and as a result the theorem applies both for dissipating
and non-dissipating storage.

Theorem 1 Algorithm StorageGreedy achieves a competitive ratio of ⌈log n⌉+1 for the
online load demand balancing problem with storage, where n is the number of machines.

Proof: Let σ = u1, u2, . . . , um be a sequence of tasks uk, each having load wk, with total

load W =
m∑
k=1

wk. We define l = OPT (σ) be the maximum load on the machines achieved

by the optimal algorithm OPT for that sequence. Clearly,

l ≥

m∑
k=1

wk

n
=

W

n

Also let M be the assignment of the aforementioned task sequence to machines, as gen-
erated by the StorageGreedy algorithm. To facilitate the proof we will partition M into
layers of size exactly l (see figure 4), by observing that each task can cross over layers at most
once. After using up the total stored energy that was available (including the possibility of
zero storage), each machine either has a workload of exactly l in a layer, implying that it
continues to run at the next layer, or less than l, in which case we conclude it finished running
tasks and will never resume. We will prove that there can be at most ⌈log n⌉+1 such layers
needed by the StorageGreedy algorithm, which will give the desired competitive ratio.

Let Wi be the sum of the weights of the tasks in layer i as assigned by the Storage-
Greedy algorithm and let Ri be the total load not yet assigned by StorageGreedy up to
and including layer i. It is easy to see that Wi = Ri−1 −Ri. To prove the above mentioned
competitive ratio it is enough to show that Wi ≥ Ri for every layer i, since it then follows
that

Ri ≤ Ri−1 −Ri ⇒ Ri ≤
Ri−1

2

and by solving the recursion we get

R⌈logn⌉ ≤
R0

n
=

W

n
≤ OPT (σ) .
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l

l
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zik
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task k

Figure 4: An example partitioning of assignment M into layers. By tik we denote the
available storage at machine Mj at the beginning of task’s k assignment and by zik the
assigned load of task k after the consumption of storage tik and before layer i was completed.

Any load remaining after layer logn can be assigned at the next layer logn+ 1, which gives
us the desired competitive ratio. Next we provide the notation necessary for the remainder
of the proof and we prove the inequality Wi ≥ Ri for every layer i.

Notation and definitions:

• Wij is the load of machine j at layer i. Note that Wi =
n∑

j=1
Wij .

• zik is the (partial) weight of task k assigned at layer i and contributes in the load of
the layer. Note that for every task k it can be zik > 0 in at most two successive layers.

• tik is the (partial) weight of task k assigned at layer i that runs using storage and
therefore does not contribute in the load of layer i.

• Oj is the set of tasks that the optimal algorithm OPT assigns to machine j.

• Oij is the subset of Oj that the StorageGreedy algorithm has not finished assigning
or running at the end of layer i.

• Rij is the total remaining weight of the tasks in Oij (excluding any partial weights zik

that might have been assigned in layer i). Note that Ri =
n∑

j=1
Rij . Since Rij is the

total weight of a subset of Oj it also follows that Rij ≤ l.

The desired inequality holds when Oij = ∅ or Wij = l since then we have Rij = 0 ≤Wij

and Rij ≤ l = Wij respectively. Below we examine the case Oij ̸= ∅ ∧Wij < l.
Since Wij < l we conclude that machine j has finished running tasks and will not run

in subsequent layers. However, the fact that Oij ̸= ∅ implies that there are tasks remaining
which the OPT algorithm would assign to machine j but now need to run on other machines.
Let k be such a task that belongs to Oij but runs on machine r instead of machine j, and let
Sr and Sj be their storage capabilities respectively at the time of the assignment. Note here
that task k must increase the load of machine j up to l for layer i and continue its execution
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past layer i since k ∈ Oij . This leads us to conclude that zik > 0 and tik = Sr, where zik and
tik are the partial weights of task k that contribute to the load of layer i or not respectively.

In order for task k to be assigned by the StorageGreedy algorithm to machine r
(instead of machine j), its load-storage difference at the time of assignment must be less
than or equal to the corresponding load-storage difference at machine j. Note here that
both machines worked fully in the previous i− 1 layers, otherwise they would have stopped
working already by the time they reached layer i. Therefore, the criterion that must be
satisfied is the following:

(i− 1) l +Wij − Sj ≥ (i− 1) l + (l − zik − Sr)

Wij ≥ l − zik − tik + Sj . (1)

On the other hand, by the definition of Rij we have

Rij =
∑
k∈Oij

wk − zik − tik =
∑
k∈Oij

wk −
∑
k∈Oij

zik −
∑
k∈Oij

tik

Rij ≤ l −
∑
k∈Oij

zik −
∑
k∈Oij

tik. (2)

Since Sj ≥ 0, from eq. 1 and 2 we get Wij ≥ Rij and by summing for all machines we finally
get Wi ≥ Ri, which proves the desired competitive ratio. �

6 Experimental evaluation

The experimental evaluation study was conducted using the Swedish load demand mix for
households [14], specifically the weekly mix for a four person family living in an apartment,
that defined the different types of loads for a typical household along with their partial
contribution in the daily total consumption. The data were elaborated further through the
use of four different energy consumption profiles corresponding to 24 hour periods, selected
from [9] as representative of the typical consumption patterns in distribution networks (figure
5). This allowed us to model different households (customer profiles) and different types of
loads (i.e. elastic/inelastic, storage etc), as well as extrapolate synthetic data that were used
as follows.

First, a number of scenarios were created along two axis: single or many households and
flexibility of load with/without storage capabilities. The first axis is of particular interest
since the algorithm can operate either on a household level (balancing the demand generated
within) or on a local distribution network level (balancing the demand of many households).
Subsequent scenarios were created with either a single household or four households using
a mix of the four consumption profiles. The second axis is important in practice since the
number of flexible loads and storage capabilities is currently limited but is expected to grow
in the near future. Since our algorithm can operate with any number of these elements,
we created three scenarios: a business-as-usual scenario, a moderate growth scenario and a
full smart household/neighborhood scenario (see figure 6). In the business-as-usual scenario
we assume all loads are simple electrical or thermal loads, with the exception of a small
percentage of shiftable electrical loads (e.g. laundry machines). In the moderate growth
scenario we included more shiftable electrical loads (e.g. refrigerators) and some thermal
storage (e.g. heat pumps). Finally, in the full smart household/neighborhood scenario we
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Figure 5: Different customer profiles used in creating synthetic data, as expressed by their
diurnal consumption patterns [9]
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Business as usual Smart house/neighborhoodModerate growth

Figure 6: Types of loads considered for the experimentation scenarios, as percentages on the
daily total

have included a fair amount of electrical storage (e.g. electrical cars) in addition to the
moderate growth modifications.

During our experiments we aim at minimizing the peak consumption and focus on the
comparison between our StorageGreedy algorithm and a simple, yet powerful algorithm
for the same problem when forecasts are used, called the LPT algorithm:

Definition 6 [6] For any finite input sequence of tasks, the Longest Processing Time (LPT)
algorithm sorts them by decreasing processing time and then assigns each task to the machine
that has the least load (breaking ties arbitrarily).

Note that the theoretical analysis of Section 5 compares the StorageGreedy algorithm to
the optimal algorithm OPT. However, since the OPT algorithm can be inappropriate due to
prohibitively computational overhead [4], we conduct the experimental study presented here
by comparing to the LPT algorithm, which is simple to implement and, for our problem,
produces solutions of comparable quality with complex, state-of-the-art algorithms [7].

The full schedules from the two algorithms for all scenarios can be found in figures 7 and
8 below. For reasons of brevity we present here the multiple household case only for the
smart neighborhood scenario (figure 8) since the results were very similar with the single
household case for the other scenarios (due to the lack of storage capabilities).
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Figure 7: Comparison of load demand curves for the Business as usual and Moderate growth
scenarios for one household

It is easy to see that for the business as usual and moderate growth scenarios there
are very small differences between the two algorithms. This is the case even though the
StorageGreedy algorithm has no access to forecasts and had to schedule incoming tasks
immediately. Furthermore, it shows to be competitive with algorithms that use forecasts
despite the lack of storage capabilities. Note here that the thermal energy consumption is a
lot less than the electrical energy consumption on all scenarios and any differences there do
not affect the end result.

In the smart household/neighborhood scenario the two algorithms have the opportunity
to make quite different choices due to the presence of storage. Indeed, the resulting schedules
differ to a greater extent but the StorageGreedy algorithm succeeds in lowering peak
consumption by taking advantage of storage. As a result, its overall schedule is smoother in
both the case of a single household and in the case of a four household neighborhood, even
though the latter is smoother due to the different consumption profiles used there balancing
out. Overall, during our experiments the StorageGreedy algorithm showed to be efficient
without using forecasts and being able to take advantage of storage capabilities, if present,
in order to further minimize peak consumption.

13



Smart neighborhood, 4HSmart house, 1H

time time

k
W

h
k

W
h

E
le

ct
ri

ca
l 

en
er

g
y

T
h

er
m

al
 e

n
er

g
y

Load Demand Balancing with 

forecasts

Online Demand Balancing

2

2,5

3

3,5

4

0

0,5

1

1,5

2

8

10

12

14

0

2

4

6

1,5

2

2,5

3

0

0,5

1

1,50,4

0,5

0,6

0,7

0,8

0

0,1

0,2

0,3

0,4

Figure 8: Comparison of load demand curves for the Smart house/neighborhood scenario for
one and four household(s)

7 Discussion and related work

A number of generic computing methods have been proposed in the literature to address the
energy dispatch problem but they are not directly comparable with the one presented here
since they differ significantly in their models and focus areas. For example, Gaing in [5] use
a particle swarm optimization heuristic method to solve the energy dispatch problem but
choose focus on its economic aspects. Similarly, Koutsopoulos and Tassiulas in [10] address
the same problem both in the offline and the online variations, but for the latter consider a
stochastic dynamic model for the incoming demand requests in order to study timing related
issues. Such a model differs significantly from ours, since for example a controller may choose
to defer the dispatch to a later time, and it is not directly comparable.

In the computer science literature, the online load balancing problem and its general-
ization, the online task scheduling problem, are well studied problems and many algorithms
exist for them (cf [4] and bibliography therein). Such algorithms include, for example, the
ones suggested by Shmoys et al [12] and Albers [1], as well as the one by Graham [6] used
here (cf also recent analysis and improvements by Johannes [7]). To the best of our knowl-
edge, no modeling of the energy dispatch problem exists, that is based on the online load
balancing problem. There are however recent approaches that address the online property of
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the energy dispatch problem, such as the ones by Johnson et al [8], Narayanaswamy et al [11]
and Barker et al [3]. The first two approaches make similar assumptions regarding the energy
dispatch problem with the ones considered here and they both study the offline as well as the
online variation of the problem. However, they both consider only one energy carrier (i.e.
electricity), the presented solutions are not distributed and they do not model the problem
in a generic setting as presented in Section 3. Furthermore, only Johnson et al in [8] include
storage in their solutions but they consider only constant losses in addition to the lossless
case, in contrast with the multiple types of losses considered here. In particular, Johnson et
al provide analytical results that show their online algorithms to be Hn-competitive under
certain conditions. In fact, the present paper addresses one of the open problems suggested
by them, namely the analytical proof of competitiveness for online algorithms, albeit for a
more generic setting than the one considered there. On the other hand, Narayanaswamy et
al [11] focus on cost-based optimization using convex programming techniques and show that
online algorithms for both offline and online variations perform better than certain “natu-
ral” algorithms found in literature. Finally, Barker et al [3] focus on a practical study that
examines the effects of a Least Slack First online algorithm, which schedules first the elastic
loads having the smallest allowed machines set. While not providing analytical results for
their algorithm, they show that in a smart house with minimal amount of elastic loads it is
possible to reduce demand peaks by over 20% in some cases.

The algorithm proposed here has a number of properties that render it particularly
suitable for use in a smart grid context:

Enables autonomy, collaboration and increases the grids’ responsiveness
Each node can make its own decisions using locally available information, increasing in
this way the overall responsiveness of the grid to unexpected changes such as a possibly
catastrophic failure. However, two or more nodes can communicate, e.g. via Zigbee
[2] or other local network smart grid equipment, in order to schedule their requests
in a more efficient way. For example, when both have the option to schedule their
requests at different timeslots or the same timeslot, they could coordinate to schedule
in different timeslots in order to avoid a consumption peak.

Offers a demand-side management solution and increases the grids’ adapt-
ability The main function of the algorithm is to make efficient use of stored energy,
as well as mitigate the effects of unpredictability in energy generation. This allows
intermittent energy sources such as renewable or distributed energy sources to be fully
utilized, leading to an increasingly adaptable grid where excess energy supply is uti-
lized and possibly stored and where excess energy demand is served efficiently in an
optimal way. Furthermore, the efficiency of the method leads to reduced consumption
peaks which in turn lessen the need for overprovisioning and installation of expensive
backup energy supply.

Parallel usage of both existent and future smart grid elements Since nodes
operate in an autonomous way, they can employ smart grid technologies supported by
the presented algorithm, such as distributed energy sources based on energy storage,
independently of other nodes and without affecting or being affected by them. This
means that both existent and smart grid technologies can be operational at the same
time, making the transition to a fully smart grid as smooth and natural as possible.
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8 Conclusions

In this paper we presented a novel modeling and an efficient algorithm for the unforecasted
energy dispatch with storage problem in smart grids. We showed that both storage and the
time parameter inherent in the energy dispatch problem can be incorporated into a variant
of the scheduling problem of tasks on machines, leading to a novel modeling that can be
used to study further the energy dispatch problem. We also presented a simple but effective
algorithm that can utilize efficiently any storage capabilities in order to mitigate the effect of
unreliable or non-existent demand forecasts, as well as proven analytically that this is done
in a near optimal way.

We complement our modeling and algorithm with an extensive simulation study for a
variety of scenarios, differing on two main axis: the consideration of one or more households
and the amount of flexible loads as well as their type. We found that the new algorithm
is highly competitive to methods that use forecasts and assume total knowledge about the
demand requests, giving solutions of similar or greater quality in all cases. In particular,
the new algorithm preformed better when the amount of flexible loads and storage options
was increased, which was expected since it is designed to take advantage of these options
if present. The performance of the new algorithm in the case of multiple households was
similar with the single household case except for a smoother load demand curve, since the
different customer profiles used for the creation of the households balance each other out, up
to a degree.

The modeling presented here could be extended and applied to a wide range of energy
dispatch problems, which we intend to address in future work. In this work we assumed
implicitly an infinite amount of supply (all demands are satisfied) but the same modeling
could be applied in cases where supply can be forecasted up to a degree and the unforecasted
demand must adapt to it by necessity (e.g. according to received price signals). Moving in
the same direction, it is possible to extend the present modeling in order to take into account
the case of online supply in addition to online demand. In this case, supply and demand not
only must be matched to each other as before but also in real time, without any forecasts.
An algorithm that addresses this problem can be the core of an advanced demand shaping
service, able to connect microproducers and microconsumers of electrical energy on a one-
to-one basis and in real time, leading to minimization of the storage facilities needed in the
system and to maximum utilization of renewable and distributed energy sources.
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