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Abstract

In this article, we propose a distributed scheme to compute distance-based clusters. We first
present a mechanism based on the flow of distributed tokens called walkers, circulating randomly
between a source and a sink to compute a shortest path. This mechanism is a discrete emulation of
the slime mould (Physarum polycephalum) dynamics presented in [16]: each node observes the flow of
walkers going through each adjacent edge and uses this flow to compute the probabilities with which
it sends the walkers through each edge. Then, based on this mechanism, we show how several sources
compute a shortest path DAG to a given sink. Finally, given some clusterheads acting like sinks, we
prove that this process converges to distance-based clusters (i.e. nodes join the clusterhead to which
they are closest) with shortest-path DAGs. The algorithm is designed with a special focus on dynamic
networks: the flow locally adapts to the appearance and disappearance of links and nodes, including
clusterheads.

1 Introduction

We focus on overlay construction over networks, in a way that nodes are clustered around specified
clusterheads. Clustering can facilitate locality and scalability properties in a variety of networks –
wireless, ad-hoc, sensor networks – for services such as routing, data aggregation, resource finding and
sharing in neighborhoods. The latter is instrumental for realizing interest-based groups and facilitating
grouping based on gradient proximity measures [27]. When it comes to resource sharing, load balancing
is aligned with clustering; it forms an incentive to achieve and a way to enforce fairness and group
participation in collaboration.

In particular the overlay we are aiming for here should define for each node efficient ways of reaching
the closest clusterhead through shortest paths (using an application related distance metric); moreover,
nodes at equal distances from several clusterheads should connect to all of them, thus also forming
bridges among clusters. We are interested in methods that do not need global knowledge of the network
and have strong locality and self-organizing properties and small, lightweight messages [21].

Towards this goal one of the basic instruments will be based on an adaptation of random walks we call
self-biased walkers. Random walks have been shown to be effective in the searching, dissemination and
construction of overlay networks as a statistical process that associates with important parameters and
properties of the corresponding network [18]. We will show that the proposed walkers adaptively develop
bias towards corresponding shortest paths and can effectively simulate a process of natural computation,
in particular the slime mould Physarum polycephalum. We will further show how to use this basic form
of computation towards achieving the aforementioned goal of this work.

In their seminal work, Nakagaki et al [25] found that they could use the slime mould Physarum
polycephalum in order to solve simple mazes, by placing food at the exits, introducing the mould into the
maze and letting it reach the food using extensible tube-like protuberances (pseudopodia). The mould
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not only solved the maze but did so efficiently, by forming shortest paths between the entry and the
exit points of the maze. In doing so, the mould changes the diameter of its pseudopodia, depending
on whether the particular protuberance is vital in the nutrient circulation. Based on these works and
with further experimentations, researchers succeeded in reproducing the transportation networks of the
Tokyo metropolitan area [26] and countries such as Brazil [15] by placing food in population centers and
having the mould connect them.

The mechanism through which the mould achieves the quality of its solutions remains an open
research question. Several authors [25, 23, 24, 26] suggested an electric circuit model, where nodes
are connected through resistors with a diameter property that can affect the amount of current that
passes through them. This diameter corresponds roughly to the pseudopodia diameter of the mould and
tends to follow the electric current flow: if the flow becomes greater the diameter increases, otherwise it
decreases. For the exact relation between diameter Dij and current Qij passing through a resistor (i, j)
though, several mechanisms have been proposed, for example

[23]
dDij

dt
= f (|Qij |)−Dij (1)

[25]
dDij

dt
= |Qij |µ − aDij (2)

[24]
dDij

dt
= |Qij | −Dij (3)

[26]
dDij

dt
=

|Qij |γ

1 + |Qij |γ
−Dij (4)

which lead to different dynamics. It has been conjectured that the usage of these dynamics can lead
to efficient algorithms in applications that involve shortest paths and similar transportation problems.
To our knowledge, the distributed algorithm presented here is the first such algorithm.

Related work on Physarum In the Physarum-related literature, a number of different dynamics have
been explored to explain the mould’s behavior, focusing on the different forms of function f(·) of equation
1 [26, 19, 23, 16]. Specifically Ito et al [19] use the equation 3 for the diameter dynamics and prove that
their model is able to solve transportation problems, while the diameters converge exponentially to their
final values. Miyaji and Onishi [24] use equation 3 and prove analytically that the dynamics converge
for planar graphs with a unique shortest path between source and sink nodes, to a flow that uses only
the shortest path. Bonifaci et al [16] move one step further by proving that dynamics based on equation
3 similarly converge to the unique shortest path for all graphs, provided a unique short path between
source and sink exists. Furthermore, they show that in the generic case of multiple sources and sinks,
the dynamics are attracted to a set of equilibria that are candidate solutions for the transportation
problem. Recently the Physarum dynamics have been proposed to address common computer science
problems such as the work of Johannson and Zou [20] on Linear Programming problems and Li et al
[22] on routing protocols for sensor networks: the first proposes a method to encode any linear program
into the physarum dynamics and solve it efficiently, while the second adapts two Physarum mechanisms,
path growth and path evolution, to efficiently route messages in a wireless sensor network.

Related work on clustering A number of methods have been proposed in the literature to construct
clusters in unstructured networks. For example, the algorithms of [2, 4, 8, 9] produce clusters with radius
one. Each cluster has a node called a clusterhead and all other nodes in that cluster are neighbors of the
clusterhead. Clusters can be built using a hierarchical method: the clustering algorithm is iterated on the
overlay network obtained by considering clusters as nodes, until a single cluster is obtained [7, 10, 12].
On the other hand, the solution given in [1] builds k-hop clusters (clusters of radius k) and in [6], a
self-stabilizing1 O(n)-time algorithm is given for computing a minimal k-dominating set; this set can
then be used as the set of clusterheads for a k-clustering. Other clustering algorithms are based on
random walks [3, 5]. In [5] the clusters are built around bounded-size connected dominating sets, while

1A self-stabilizing system is a system that eventually recovers a normal behavior after a transient fault.
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in [3] the algorithm recursively breaks the network into two clusters as long as every cluster size satisfies
a lower bound.

These solutions are bottom-up processes while we propose a top-down approach [11] by relying on
predefined clusterheads. We then compute clusters consisting of the nodes that are closer to a given
clusterhead than to any other. Our algorithm has a focus on topological changes: the use of a flow-
based process allows the system to reconfigure after a topological change without affecting nodes of
other clusters. In particular, a topological change can affect the cluster in which it occurs and possibly
neighboring clusters, but not further nodes.

To our knowledge, the present paper is the first work that uses the Physarum dynamics together with
a discrete probabilistic tool such as self-biased walks in order to solve a distributed problem, namely
node clustering.

Outline In the algorithm presented here we show how adaptive self-biased walkers can emulate the
dynamics of the Physarum. In section 2 we introduce the necessary notation and definitions. We then
proceed by showing the algorithm for the walkers and furthermore how to use the method in order
to enable each node in a network, in a distributed way, to determine the direction towards its closest
clusterhead (using a distance metric noted by L in the following) (section 3). In section 4 we study
experimentally the behavior of the algorithm in terms of resulting cluster computation, reaction to
changes in the graph and cost. We complete our presentation with our conclusions and future work in
section 5.

2 Definitions and notation

We consider a distributed system, consisting of nodes with computation capabilities and communication
edges between them, in the form of an undirected graph G = (V,E), |V | = n, |E| = m. Nodes have no
id and the system is anonymous. We treat synchronous systems and c-asynchronous, i.e. i: in a round,
all processors receive all pending messages and treat them and ii: in a round for a given node, no node
has executed more than c rounds. Each edge (i, j) has also a length Lij > 0 that we assume is known to
both endnodes and a time-varying diameter Dij (t) > 0.

A discrete time biased walk on a graph with a bias function C (here, the conductance) is a process
by which a node is chosen at each step according to the following rule: if node i holds the walker at step
t, then any neighbor j of i will hold it at step t + 1 with probability Pij =

Cij∑
k∈Γi

Cik
, where Γi is the set

of immediate neighbors of node i. Such a process can easily be implemented in a distributed system.
In their seminal work, Doyle and Snell [17] connected random walks on weighted undirected graphs

and electric circuits, by showing that a random walker behaves in a way similar to the simplistic view
of electrical current as movement of electrons, provided every edge (i, j) is treated as a resistor with
conductance Cij (t)2 equal to the edge’s weight. In fact they showed that, when a unit current is injected
into the graph, the electrical current Qij (t) flowing over a resistor (i, j) corresponds to the mean number
of walker crossings over the respective edge. Recent work showed that it is possible to use this paradigm
in order to form and study overlay networks in an efficient way [28, 29]. These results imply that the
electrical current flow can be emulated by counting the mean number of walker crossings of an edge and
be used to form a clustering overlay.

The connection between the physarum dynamics and electrical networks, as well as between electrical
networks and random walks, is the basis for the implementation presented in this paper.

In the rest of the paper we define the conductance Cij (t) of an edge (i, j) to be equal to Cij (t) =
Dij(t)
Lij

.

The transition probability of the biased walker from node i to node j now becomes Pij (t) =
Cij(t)∑

k∈Γi

Cik(t) .

2Note that all electrical measures are necessarily time-varying in order to simulate the Physarum dynamics.
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The mould dynamics are defined by the evolution of the edge diameters of the network and here we
follow the definition of Bonifaci et al [16] in its discrete form:

Dij(t+ 1) = Dij(t) + ε(|Qij(t)| −Dij(t))

= (1− ε)Dij(t) + ε|Qij(t)| (5)

3 Distributed emulation of Physarum dynamics: PECan algorithm

The PECan (Physarum walkErs Clustering) algorithm we present here is based on monitoring the flow
of walkers on each edge and then adjusting probabilities accordingly. This flow is used as an estimation
of the electrical current flowing on edges, and the diameter D is updated accordingly.

The algorithm assumes there is a unit flow of walkers that are created at nodes called sources and
destroyed at nodes called sinks. At each round, every node counts the number of walkers going in and
out each of its adjacent edges and updates its flow information. Instant flow, meaning the flow measured
during a round, may vary abruptly from round to round, due to the discrete stochastic nature of the
system. To avoid sharp changes, we take into account past observations. However, to allow the system to
evolve with newer observations, we measure the flow with a discount factor applied to past observations.
In practice the flow estimation Q is computed as

Qij (t+ 1) = αQij (t) + (1− α)#wij(t) (6)

where #wij(t) is the observed flow, i.e. the number of walkers that have crossed (i, j) in this direction at
round t minus the number that have crossed in the opposite direction, and α ∈ [0, 1] a parameter. This
formula is such that if #wij eventually reaches a probability distribution with an average, Qij stabilizes
to this average.

Equation 5 expresses the fact that Dij(t+1) is a weighted average of Dij(t) and |Qij(t)|, and equation
6 that Qij(t+ 1) itself is a weighted average of Qij(t) and #wij(t). Asymptotically, the sign of Q should
stabilize or Q tends to 0. Thus, asymptotically, Dij(t + 1) will be a weighted average of Dij(t) and
#wij(t). By taking α′ = (1 − ε)α, the diameter Dij then follows asymptotically equation 6. In the
following we take Dij(t+ 1) = |Qij(t)| and the transition probabilities are then:

Pij (t+ 1) =
|Qij (t)| /Lij∑

k∈Γi

|Qik (t)| /Lik
(7)

As we show in the following lemma, the dynamics converge to the same point as the one of Bonifaci et
al [16] in the case of single source and single sink, namely by setting the diameter of edges on shortest
paths equal to 1 (as well as 0 to all the others).

Lemma 1 If there is a unique shortest path from source to sink and the dynamics stabilize, the diameter
of edges on the shortest path converge to 1 while those not on the shortest path to 0. 3

The α parameter has a strong influence on the behavior of the system: a conservative α (close to 1)
slows down the convergence, while a small α may make the system converge to a suboptimal solution
(which a slight modification of the system dynamics can solve), or entail sharp changes in the values of
Qij even after the system seems to have converged, thus making the solution “unstable”.

Any path between the source and the sink is a fixed point of these dynamics (even if only shortest
paths are attractive): if Qij is set to 1 on all edges of a non-shortest path from the source to the sink and
to 0 everywhere else, then the system does not evolve anymore. However, such a solution is an “unstable
equilibrium”, as shown by [16] in the continuous case. To solve these situations, we add a β parameter,

3Please find the missing lemma proof in the Appendix.
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the role of which is to prevent the system from converging fully. The β parameter is a lower bound on
the probability that a node sends the walker across an adjacent edge. Thus, if close to a non-optimal
(repulsive) solution, the system will be driven away from it. If close to an optimal (attractive) solution,
the system will tend to get closer to it, even if β hinders this progression.

The β parameter also allows to initialize the system with a null flow, by setting Qij to 0 for all edges
on all nodes. The algorithm presented below then ensures that Qij is really a flow:

• for any nodes i and j, Qij = −Qji
• for any node i that is not a source or a sink, if it does not hold a token in this round,

∑
j Qij = 0

• for a source (resp. a sink),
∑

j Qij tends to 1 (resp. minus the number of sources).

To build clusters, all clusterheads will be sinks, and all nodes willing to join a cluster will be sources.

3.1 Monitoring the flow and routing walkers

A node i has one variable Qij for each adjacent edge (i, j). This variable is used to monitor the flow.
Each time a walker comes in through a given edge (i, j), Qij is increased and each time a walker comes
out through it, it is decreased. At each round, the value of Qij is scaled down.

The only type of messages we use is a Walker message, with no content, and there are three types
of nodes:

• sinks, that at each round update their flow information with equation 6 according to the number
of received walkers and subsequently delete them;

• ordinary nodes, that at each round update their flow information and forward received walkers;

• sources, which act as ordinary nodes but send an extra token per round.

Depending on the choice of sources and sinks, this algorithm may be used to compute various related
distributed structures: shortest paths, shortest path DAGs and distance-based clusters. We detail those
properties in the next section.

Procedure 1 Upon a Walker reception
from j

win[j]← win[j] + 1

Procedure 2 At each round, on an ordinary node
(resp. source node)

win ← 0 (resp. 1)
for any adjacent node j do

wout[j]← 0
win ← win + win[j]
Qij ← Qij − α(1− α)win[j]
Qij ← αQij

for i = 0 to win do
Choose a neighbor k at random

according to Q/L
Send Walker to k
wout[k]← wout[k] + 1

for any adjacent node j do
Qij ← Qij + (1− α)wout[j]

Procedure 3 At each round, on a sink node

for any adjacent node j do
Qij ← Qij − α(1− α)win[j]
Qij ← αQij

Procedure 4 Choose a neighbor at random ac-
cording to Q/L

sum← 0
for each adjacent node j do

if Qij/Lij > β then
sum← sum+Qij/Lij

else
sum← sum+ β

v ← random value in [0, sum]
j ← first neighbor of i; sum← Qij/Lij
while sum < v do

j ← next neighbor of i
if Qij/Lij > β then

sum← sum+Qij/Lij

else
sum← sum+ β

return(j)

When receiving a walker, a node updates the weight of the edge through which it has come. Then,
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if it is not a sink, it chooses a neighbor at random according to Q/L, sends the walker to it and updates
the out-edge value (procedures 2, 4 and 1).

Note that choosing a neighbor according to Q/L consists of i choosing a random neighbor j with a

probability proportional to
Qij

Lij
. If this probability

Qij

Lij
is smaller than a parameter β we replace it by β,

thus a neighbor has always a positive probability of being chosen.
Ordinary nodes, at each round, forward the received walkers and update their variables. The array

win (resp. wout) stores the number of walkers received (resp. sent) on each adjacent edge, so as to update
the outgoing flow after the walkers have been sent. Additionally, sources create a new walker at each
round and send it: they act as ordinary nodes, except for the computation of win, to which 1 is added to
account for the extra token that the source creates during the round (procedure 2). On the other hand,
sinks delete all received tokens but they keep track of the incoming flow (procedure 3).

Note that messages are received one step after they have been sent, so that Qji has been multiplied
by α before i receives the walker sent by j. Thus, to maintain the symmetry Qij = −Qji,∀(i, j) and
for the flow to be valid, we are led to subtract α(1 − α). On the other hand, note that when a node
sends several messages to the same neighbor in a given round, these walkers can be replaced by a single
weighted walker, at the expense of introducing a content in the walkers. We ran the algorithm in both
settings and called the messages in the latter setting aggregated messages.

The above algorithm has two parameters, α and β. The α parameter is used to “smoothen” the flow
evaluation. The β parameter ensures that all edges will be used, which is necessary for the system not
to get “trapped” in a suboptimal solution (non shortest paths to the sink with weight 1, which are fixed
points of the system dynamics, but repulsive ones). In particular, if topological changes occur, the β
parameter allows walkers to visit new and possibly better paths.

3.2 Using flows to solve clustering

When several nodes produce walkers, all of them compute shortest paths to the single sink. The optimal
substructure property of the shortest paths problem [13] ensures that the process actually converges to
a shortest path DAG. Indeed, for a given sink, starting from the point where they meet, two shortest
paths from two different sources to the same sink are the same (or, if shortest paths are not unique, can
be the same).

When several sinks are present, the flows do not distinguish between them. The system acts as if
they were a unique sink, consisting in the merging of all sinks, and the shortest paths computation leads
to flow running along the shortest path to the closest sink.

Consider now a system in which some clusterheads behave as sinks, and nodes seeking clusters behave
like sources. After some time, the algorithm will converge to flows circulating along shortest paths from
sources to sinks. Thus, nodes sending flow to a given sink are closer to this sink than to any other, and
have to join this cluster. In this way, any node will be able to route a message to its sink, by sending
the message along its edge with the strongest outgoing flow.

Moreover, the flow brings some extra information: since all sources generate a unit flow, the flow
that a sink receives is the number of nodes that are members of its cluster. Similarly, suppose that the
shortest paths are unique. Then the flow coming from an edge on a node indicates to this node the size
of the corresponding subtree, and all nodes have a local knowledge of the shortest path tree of their
cluster. If the shortest paths are not unique they define a DAG, and the flow indicates the number of
descendants on this side of the DAG, possibly counted partially as descendants of several nodes.

The clusterhead can then launch a new phase of the algorithm and use the DAG to inform all nodes
of its presence if required, allowing to meet the classical clustering specification.
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3.3 c-asynchronous case

Synchronicity and round-based distributed processing of messages is a strong assumption. We can relax
it to c-asynchronicity, meaning that in a round for a given node, no node has executed more than c
rounds.

With respect to slower nodes, a fast source may appear as generating up to c walkers per round.
This output cannot be distinguished from a situation where the faster node is replaced with a central
node connected to c other nodes in a star formation. The computations of other nodes will run alike
and lead to shortest paths to these nodes. Since the shortest paths to these virtual nodes all go through
the central node, the computed shortest paths will be consistent.

A fast ordinary node, or a fast sink, will output the right number of walkers (all received walkers
are sent forth and received in the next round by slower neighbors), and thus will not interfere with
the dynamics. A slow ordinary node (or a slow sink) will also output the right number of walkers on
average, but its output will burst periodically while being null the rest of the time. If α is too low
(putting the focus on short-term monitoring of the flow) and/or the processor too slow, this may hinder
the convergence of the system. Nevertheless, with a bound on c depending on α and β, the system and
dynamics will converge to shortest paths.

Note that a slow node generates a weaker flow, if seen by the perspective of a faster one. This flow
is taken into account if it is not lower than β. Indeed, if it is lower than β it will be replaced by β in the
routing of walkers and the slow node will not contribute to the dynamics.

4 Simulation results on clustering

The scheme presented in the previous section computes shortest paths between sources and sinks.
We ran simulations with different settings:

• one source, one sink (shortest path);

• all nodes are sources, except for one node which is a sink (shortest paths DAG);

• all nodes are sources, except for two nodes which are sinks (distance-based clustering with shortest
path DAGs);

• all nodes are sources and sinks have dynamically changed.

We simulated the algorithm on unweighted 10× 10 grids, on unweighted random graphs (100 nodes,
p = 0.2) and on randomly weighted grids (weights were integer drawn uniformly at random between
1 and 10). Grids were chosen because the structure of the shortest paths in those graphs is easy to
describe, and because they are far from being unique. Random graphs are intended to be closer to
real-world distributed systems.

The simulations were run using DASOR [14]. All graphical results in this section show arrows
proportional to the flow. The simulation campaign is at its beginning and we do not claim statistical
accuracy of these data. Each presented figure is the average of 100 simulation results, together with its
standard deviation: the number of messages, of aggregated messages (i.e. weighted messages representing
several walkers, as explained in the previous section), the convergence time or measures of the distance
to the solution (detailed for each measure in the relevant subsection) were recorded for each simulation,
and then averaged for each round of simulations in a given setting.

4.1 Preliminary: Shortest path (1 source 1 sink setting)

When there is only one source and only one sink in the system, the system dynamics allow to compute
a shortest path (or several of them) between the source and the sink.

We considered that the system had achieved convergence when the strongest flow ran from the sink
to the source on a shortest path, and remained so until the end of the simulation (2000 rounds).
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Figure 1: Flow of walkers on shortest paths (with some remaining extra flow)

In an unweighted 10×10 grid with a source and a sink located at opposite corners, with α = 0.995 and
β = 0.01, on average, the system converges in 560 rounds (standard deviation: 142), 147,808 messages
(standard deviation: 68,407) and 52,095 messages (standard deviation: 19,306) if we aggregate them.

In a randomly weighted grid (with weights uniformly distributed between 1 and 10) with a source and
a sink located at opposite corners, with α = 0.995 and β = 0.01, convergence took 691 round on average
(standard deviation: 576), 9,542,305 messages (standard deviation: 9,684,811) and 205,930 aggregated
messages (standard deviation: 163,589).

In a random graph with 100 nodes and p = 0.2 with random source and sink, with α = 0.999 and
β = 0.01), convergence was realized after 31 rounds (standard deviation: 12), 38,905 messages (standard
deviation: 22,515), or 18,930 aggregated messages (standard deviation: 9219).

Those simulation results confirm the convergence of the discrete dynamics to shortest paths (see
figure 1). Time and messages complexity are of the order of the ones of existing distributed shortest
path algorithm (O(n) and O(mn) respectively) on the two unweighted settings. The results on weighted
grids need to be further investigated, with different choices of α and β.

4.2 Shortest paths DAG of a cluster: n sources 1 sink setting

In these simulations, we measured convergence by counting the average number of nodes the main
outgoing flow of which was not directed to a node closer to the sink than the current node (between
parentheses are the standard deviations). All nodes are sources, but for one node (a corner node in the
case of the grid) that is a sink.

25 rounds 50 rounds 100 rounds 200 rounds

convergence 44.5 (5.19) 37.98 (3.19) 1.51 (0.15) 0.48 (0.07)
#msg 26,004 (175) 104,772 (756) 385,795 (3200) 1,238,815 (11,024)

#ag msg 6,339 (43) 14,306 (107) 29,295 (244) 58,384 (606)

Figure 2: Reconfiguration results on a 10× 10 grid with two sinks and α = 0.975 and β = 0.02

50 rounds 100 rounds 200 rounds 400 rounds

convergence 38.77 (5.77) 12.86 (3.12) 4.28 (2.01) 1.28 (1.25)
#msg 85,408 (4,292) 140,042 (12,289) 191,531 (16,858) 269,050 (23,304)

#ag msg 51,912 (1,529) 88,148 (5,122) 125,615 (7,518) 179,860 (10,515)

Figure 3: Convergence results on a random graph with 100 nodes and p = 0.2, with one sink α = 0.999
and β = 0.01

These results (figures 2 and 3) show that the algorithm converges to a shortest path DAG quite
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Figure 4: Flow of the walkers on a shortest paths
DAG

Figure 5: Computation of two clusters with their
shortest paths DAGs

fast for most nodes (see 4), and then takes time to reach full convergence. In a grid, aggregation of
walkers reduces highly the number of exchanged messages. The very conservative choice of α explains
why convergence is slow in the second round of simulations. The high number of messages in the first
round of simulations make the use of aggregated walkers interesting.

4.3 Clustering (n sources, several sinks setting)

The simulations were ran on a 10× 10 grid, starting from an initial configuration with a unique source
at a corner.

In these simulations, we measured convergence by counting the average number of nodes the main
outgoing flow of which was not directed to a node closer to the sink than the current node (between
parentheses are the standard deviations). All nodes are sources, but for two nodes (opposite corner
nodes in the case of the grid) that are sinks.

25 rounds 50 rounds 100 rounds 200 rounds

convergence 19.4 (4.37) 3.89 (2.28) 1.33 (1.24) 0.55 (0.79)
#msg 24,394 (231) 92,060 (1,082) 290,887 (4,414) 710,330 (11,769)

#ag msg 6,192 (51) 13,666 (109) 27,607 (283) 54,230 (687)

Figure 6: Convergence results on a 10× 10 grid with two sinks and α = 0.975 and β = 0.02

50 rounds 100 rounds 200 rounds 400 rounds

convergence 39.3 (6.5) 12.41 (3.43) 4 (2.05) 1.08 (1.13)
#msg 86,601 (5,148) 147,325 (36,828) 205,162 (105,107) 303,000 (298,876)

#ag msg 51,427 (5,230) 87,955 (9,376) 126,313 (9,942) 180,939 (12,371)

Figure 7: Convergence results on a random graph with 100 nodes and p = 0.2, with two sinks and
α = 0.999 and β = 0.01

The results with several sinks (figures 6 and 7) illustrate the reduction in the complexity of the
algorithm when several sinks are present. The use of these dynamics allows to compute a clustering, as
illustrated by figure 5: nodes can use their incoming flows to reach the closest clusterhead.

4.4 Reconfiguration of clusters after a topological change

The process presented is tolerant to topological changes: starting from a configuration with flows running
to a given sink, thanks to the β parameter, the apparition of a new sink, or a change in a sink make the
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flow so as to adapt to the new situation. The nodes concerned by the change in the situation see their
flow change; nodes to which they were related are also subject to a change in the flow circulation. But
the dynamics of further nodes is not affected by this topological change.

The simulations were ran on a 10× 10 grid, starting from an initial configuration with a unique sink
at the bottom right corner, and a consistent stable flow (all nodes send all incoming flow to their bottom
neighbor if they have one, or to their right neighbor). Then, two rounds of simulation were ran: one with
a new sink appearing at the opposite corner, and another with the original sink becoming an ordinary
node, and a new sink appearing at the opposite corner.

In these simulations, we measured convergence by counting the average number of nodes the main
outgoing flow of which was not directed to the a node closer to the sink than the current node (between
parentheses are the standard deviations). All nodes are sources, but for two nodes (opposite corner
nodes in the case of the grid) that are sinks.

In these simulations, we measured the average time before two nodes or less remain with a flow
directed to a node not closer to the sink than the current one. The parameters were α = 0.92 and
β = 0.02.

25 rounds 50 rounds 100 rounds 200 rounds

convergence 27.11 (3.2) 6.74 (2.52) 1.27 (1.08) 1.21 (1.05)
#msg 24,703 (205) 94,083 (842) 303,169 (3,159) 739,326 (7810)

#ag msg 5,001 (48) 12,329 (87) 26,618 (205) 54,212 (477)

Figure 8: Convergence results on a 10× 10 grid after the apparition of a second sink, with α = 0.92 and
β = 0.02

The reconfiguration of the algorithm after a topological change is carried out rapidly for most nodes.
A closer examination of the simulation shows that the nodes closer to the clusterhead that was already
in place do not modify much their flow structure (see figure 9).

5 Conclusions

Based on the analogy between the growth of the mould Physarum and the behavior of electrical flow,
we proposed a randomized distributed algorithm in which walkers emulate electrical current (as studied
by [17]), while the resistance of the edges are modified by the flow according to a discrete-time version
of the equations in [16].

Figure 9: Convergence after a new sink has appeared (on the left, initial configuration; on the right,
configuration after convergence)
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As expected, the simulations show that the dynamics of this algorithm converge to flows running
along shortest paths from sources to sinks. This algorithm is local, and uses only one type of message,
with no content. This may compensate partially for the high number of messages needed to reach full
convergence. Also, it may be noted that most nodes find a path to their clusterhead in the very first
rounds. After a topological change, nodes soon find their new cluster.

This work provides an insight on flows of walkers, and on the interest of biasing the walkers in a
non-markovian fashion (the future moves of walkers depend on their past moves). Interesting questions
following these results are the choice of the algorithm parameters and a more comprehensive study of
the theoretical foundations of this discrete process.
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6 Appendix

6.1 Analysis of algorithm’s dynamics

The Physarum dynamics followed by the PECan algorithm, as well as their specific implementation,
are defined by equations 5 and 6. Combining these two equations we get the following expression for the
edge diameters:

Dij (t+ 1) = (1− ε)Dij (t) + ε |Qij (t)| =

=


(1− ε)Dij (t) + ε |αQij (t− 1) + (1− α) · 1| , (Xt, Xt+1) = (i, j)
(1− ε)Dij (t) + ε |αQij (t− 1)− (1− α) · 1| , (Xt, Xt+1) = (j, i)
(1− ε)Dij (t) + ε |αQij (t− 1)| , (Xt, Xt+1) 6= (i, j) , (j, i)

=



(1− α′)Dij (t) + α′,
∀ (i→ j,Qij (t− 1) ≥ 0)
∨ (j → i, Qij (t− 1) < 0)

(1− (2ε− α′))Dij (t) + α′,
∀
(
i→ j,− (1−a)

a ≤ Qij (t− 1) < 0
)

∨
(
j → i, 0 ≤ Qij (t− 1) < (1−a)

a

)
(1− α′)Dij (t)− α′,

∀
(
i→ j,Qij (t− 1) < − (1−a)

a

)
∨
(
j → i, Qij (t− 1) ≥ (1−a)

a

)
(1− α′)Dij (t) , otherwise

(8)

where α′ = ε (1− α).
In the following lemma we use lemma 14 of [16] which states that, if a unique shortest path between

source and sink exists, the flow over any edge not on the shortest path converges to zero. The lemma
is applicable here since it uses the same definitions of electrical metrics (i.e. Dij(t), Cij(t)), the same
dynamics (equation 5) and Ohm’s law of electric currents which is also valid in our case. The following
lemma verifies that the diameter takes the value 1 on edges belonging to the shortest path and 0
otherwise, and shows that the PECan algorithm’s implementation of the specific dynamics follows
closely the analysis of Bonifaci et al [16].

Lemma 1 If there is a unique shortest path from source to sink and the dynamics stabilize, the diameter
of edges on the shortest path converge to 1 while those not on the shortest path to 0.

Proof: Let τ be the stabilization time after which there is no flow over edges not belonging on the
shortest path (lemma 14 of [16]). Since the flow is defined by equation ??, it implies that the walker
moves only over edges on the unique shortest path between source and sink. For each edge (i, j) on the
shortest path, the walker will move always in the direction of the flow, after which point we know from
equation 8 that Dij (t+ 1) = (1− α′)Dij (t) + α′. Solving the recursion we get

Dij (t+ 1) =
(
1− α′

)
Dij (t) + α′ =

=
(
1− α′

)t+1−τ
Dij (τ) + α′

1− (1− α′)t+1−τ

1− (1− α′)
=

=
(
1− α′

)t+1−τ
(Dij (τ)− 1) + 1

which means that for t→ +∞ we get Dij → 1, since α′ ≤ 1.
Similarly, for each edge (i, j) not on the shortest path the walker will not move through it. Solving

the recursion gives

Dij (t+ 1) =
(
1− α′

)
Dij (t) =

=
(
1− α′

)t+1−τ
Dij (τ)

which means that for t→ +∞ we get Dij → 0. �
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