

Technical Report No. 12-04

Adaptive distributed b-matching in overlays
with preferences

GIORGOS GEORGIADIS
MARINA PAPATRIANTAFILOU

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY/
GOTEBORG UNIVERSITY
Goteborg, Sweden, 2012

Adaptive distributed b-matching in overlays with preferences⋆

Giorgos Georgiadis, Marina Papatriantafilou

Department of Computer Science and Engineering, Chalmers University of Technology, S-412 96 Göteborg,
Sweden

Email: {georgiog,ptrianta}@chalmers.se, Fax: +46-31-7723663

Abstract. An important function of overlay networks is the facilitation of connection, interac-
tion and resource sharing between peers. The peers may maintain some private notion of how a
“desirable” peer should look like and they share their bounded resources with peers that they
prefer better than others. Recent research proposed that this problem can be modeled and stud-
ied analytically as a many-to-many matching problem with preferences. The solutions suggested
by the latter proposal guarantee both algorithmic convergence and stabilization, however they
address static networks with specific properties, where no node joining or leaving is considered.
In this paper we present an adaptive, distributed algorithm for the many-to-many matching
problem with preferences that works over any network, provides a guaranteed approximation
for the total satisfaction in the network and guarantees convergence. In addition, we provide a
detailed experimental study of the algorithm that focuses on the levels of achieved satisfaction as
well as convergence and reconvergence speed. Finally, we improve, both for static and dynamic
networks, the previous known approximation ratio.

1 Introduction

Overlay networks play an increasingly important role in today’s world: from social networks to ad hoc
communication networks, people and machines connect, interact and share resources through novel
overlay networks laid over Internet’s infrastructure or other communication substrate. Unstructured
overlays in particular aim at connecting peers with minimal assumptions on the protocols to be used,
while addressing universal challenges: peers are willing to share both concrete resources, such as
bandwidth, and abstract ones, such as attention span, but these resources are naturally limited and
usually the contributors expect something in return. As an example, in a generic, fully distributed
scenario each peer may rate its neighbors according to one or more individual metrics (e.g. distance,
interests, available resources) but choose to connect to only a handful of them due to its own resource
scarcity. The challenge in this scenario is to maintain a high level of the implemented service on a
network scale, while at the same time adapt to and tolerate the high dynamicity commonly found in
these networks, with peers leaving, joining or changing ratings about their neighbors at any time.

This kind of connection problem with limited resources and reciprocal relations between contribu-
tors gives rise to a natural modeling using undirected graphs where nodes have limited (but different)
connection capacities. It is essentially a form of a matching problem in a graph, where nodes must be
matched one to one with some neighbor of theirs in a maximal way on the graph level. The particular
form of matching which is relevant here is many-to-many matching with preferences (commonly re-
ferred to as stable fixtures [1] or b-matching with preferences [2] problem), where each node maintains
a preference list of its neighbors (rated from most to least preferable) and a total quota of desired
connections bi for each node i. The goal for each node in this setting is to be able to form the desired
amount of connections with the highest quality (most preferred) neighbors.

Although current literature includes efficient algorithms for many-to-many matching with pref-
erences that can produce a stable configuration if one exists, recent research showed [2] that the
problem does not always admit stable solutions. Furthermore, most suitable algorithms from litera-
ture are centralized and cannot be deployed in a distributed setting such as the unstructured overlay

⋆ Work supported by the European Union 7th Framework Programme (FP7/2007-2013) under grant agree-
ment No. 257007 and the Swedish Foundation for Strategic research (SSF), grant nr. IMF11-0051.

networks considered here. In addition to the above, none of the currently available distributed al-
gorithms for the b-matching problem can handle the dynamic aspect of overlay networks (e.g. node
arrivals/departures and preference changes). Concrete examples of previous work, along with their
relation to the present study, can be found in the subsection below.

In this paper we focus on the problem of adaptive, distributed many-to-many matching problem
with preferences. Using the metric of node satisfaction [2] that can be used for measuring the quality
of a node’s connections, we build on earlier work that modeled the problem from an optimization
perspective. The contribution is threefold:

(i) We show an improved approximation ratio, that can also be applied to existing algorithms and
imply improved bounds for their satisfaction guarantees.

(ii) We propose an adaptive, distributed algorithm for the problem, which guarantees that the cal-
culated solution maximizes the total satisfaction in the network within the newly shown bound:

an approximation of 1
4

(
1 + b−1

max

(
1 +

1−b−1
max

2s+b−1
max

))
in every case, where bmax is the maximum con-

nection quota in the graph and s = Lmax

Lmin
is the ratio of the maximum and minimum neighbor

list sizes in the graph, Lmax and Lmin respectively. To the extend of our knowledge it is the first
algorithm that can handle dynamicity while solving the many-to-many matching problem, with
node joining, leaving and preference changes fully supported. Its key features include the use
of only local information, a given approximation bound and a guaranteed convergence once the
changes complete.

(iii) We also provide a extensive experimental study of the behavior of the algorithm under a variety
of scenarios, including normal operation but also operation under high stress. Under normal
operation, we focus on the levels of achieved satisfaction as well as convergence and reconvergence
speed. Specifically, we show that the resulting satisfaction is high but also remains on high levels
during and after reconvergence, while reconvergence is achieved in an efficient way under a variety
of changes. Besides, motivated by [3,4] we conducted experiments that focus on the stability of
the network under join/leave attacks, by exposing it to high churn rates, and observed that it
withstands the attacks while maintaining graceful satisfaction values throughout them.

1.1 Related work

Matching problems are well studied in their centralized form and an extensive literature exists, in-
cluding solutions for the many-to-many variants (cf for example [1,5,6,7]). However, it has been shown
[8] that exact solutions of even simple matching problems cannot be derived locally in a distributed
manner, leading to a significant research interest for approximation distributed algorithms [9,10,11].
Prominent examples of this research area are the one-to-one weighted matching algorithms of Manne
et al. [12] and Lotker et al. [10,13], with the former having proven self-stabilization properties and the
latter having variants that can handle joins and leavings of nodes. However, whether it is possible to
extend these techniques to many-to-many matchings remains an open research question. On the other
hand, Koufogiannakis et al. [14] proposed a randomized δ-approximation distributed algorithm for
maximum weighted b-matching in hypergraphs (with δ = 2 for simple graphs) but it addresses only
static graphs and its elaborate nature makes its extension to support a dynamic setting non-trivial.

Additionally to the approaches above, there is an extensive research focus on many-to-many
matchings with preferences [2,15,16,17]. First Gai et al. in [16] proved that in the case of an acyclic
preference system there is always a stable configuration, and also supplied examples of preference
systems based on global or symmetric metrics. Mathieu in [2] introduced the measure of node satis-
faction as a metric aimed to describe the quality of the proposed solutions. Georgiadis et al. in [18]
modeled the b-matching with preferences problem as an optimization problem that uses satisfaction
to achieve convergence. The authors showed an approximation is possible through the reduction of the
original problem to a many-to-many weighted matching problem. However, the proposed algorithm
is only suitable for static networks, since it cannot adapt to and guarantee convergence after changes
in the topology of the network (joins/leavings) or nodes’ preferences. Previously Lee [17] had used a
similar credit metric in order to optimize the proposed solutions from their heuristic algorithms.

2

2 Problem definition and system model

In this paper we use standard terms and notions from the literature [1,2,13,18]) which we briefly
describe here for self-containment. We represent an overlay network as an undirected graph G(V,E)
with |V | = n, |E| = m, where V is the set of overlay peers and E the set of potential connections.
Each node i has degree di and keeps a preference list Li of all nodes in its neighborhood Γi

1. Let Ri(j)
denote the rank of node j in node i’s preference list, with Ri(·) ∈ {0, 1, . . . , |Li| − 1}, attributing 0 to
its most desirable neighbor. Each node i wants to maintain at most bi connections to the best possible
nodes according to its preference list and rank function, and at no point it can exceed this number. In
the following sections we will refer to two nodes as neighboring nodes when they are connected by an
edge in graph G and connected or matched nodes when they are matched by a matching algorithm.
The problem of trying to find a many-to-many matching that respects the individual preferences and
connection quotas bi is a form of a generalized stable roommates problem called the stable fixtures
problem [1] or b-matching [2]. We call adaptive b-matching the dynamic form of b-matching, where
nodes can join, leave or change preferences at any time. In the remaining of this paper we will refer
to these events simply as changes. We will also consider an asynchronous model for messages and
will not consider link or node failures, i.e. messages arrive asynchronously but do not get lost and
nodes depart gracefully or their absence can be detected by other means (for example special periodic
“alive” messages).

In order to measure the success of a node i’s efforts in establishing its bi connections, we make use
of the notion of satisfaction Si (defined in [2] and analyzed in [18]) to be equivalent to the following:

Si =
ci
bi

−

∑
j∈Ci

(Ri (j)−Qi (j))

biLi
(1)

where Ci (with |Ci| = ci ≤ bi) is an ordered list of node i’s established connections in decreasing
preference and Qi (j) is the rank of node j in the connection list Ci of node i. According to the above
formula, Si takes values between 0 and 1, depending on how many and which connections a node has
formed. A satisfaction value 1 is achieved by a node that has formed all bi desired connections with
its bi most preferable neighbors, while a penalty is inserted for each non-optimal connection that it
forms. Note that we can write formula 1 as:

Si =
∑
j∈Ci

(
Li −Ri (j)

biLi

)
+

∑
j∈Ci

(
Qi (j)

biLi

)
=

∑
j∈Ci

Ss
i,j +

∑
j∈Ci

Sd
i,j = Ss

i + Sd
i (2)

We refer to the quantities Ss
i and Sd

i as the a priori part and the a posteriori part of node i’s satisfaction
respectively, as the former summation terms are computable for each j regardless of whether it is
matched with i or not, while the latter summation’s terms are computable only for those j that are
matched with i by the solution.

The truncatedS maximizing satisfaction b-matching problem Georgiadis et al. in [18] mod-
eled the b-matching problem as an optimization problem that uses satisfaction to achieve convergence,
and defined the problem of maximizing the total sum of node satisfaction as the maximizing satis-
faction b-matching problem. That paper showed that an approximation to the original problem is
possible by forming edge weights w(i, j) using only both endpoints’ marginal a priori part of satis-
faction Ss

i,j and Ss
j,i,

w (i, j) = Ss
i,j + Ss

j,i =

(
Li −Ri (j)

biLi

)
+

(
Lj −Rj (i)

bjLj

)
. (3)

When the above approximation is used for satisfaction calculations, the satisfaction for each node i is
essentially computed by using only the a priori part of satisfaction in formula 2. The resulting problem,

1 In the rest of the paper and when it is clear from context, we will use notation Li to denote both the list
and its length.

3

called here truncatedS maximizing satisfaction b-matching problem, has been proven equivalent to a
many-to-many weighted matching problem with edge weights as defined in formula 3 [18]. Note here
that a simple weighted matching problem is defined as the problem of finding a set of edges whose
weight sum is maximized and which have no common endpoints between them. The many-to-many
variant used here replaces the constraint on no common endpoints with node capacities that need to
be respected, in this case the connection quotas bi per node i.

In the analysis of the algorithm we will also use the notion of a locally heaviest edge [19]. Let Eij

be the set of edges having either of nodes i and j as an endpoint (but not both):

Eij = {(i, ni) |ni ∈ Γi\j} ∪ {(j, nj) |nj ∈ Γj\i} (4)

An edge (i, j) is called locally heaviest if it has the greatest weight among all edges e ∈ Eij :

w (i, j) > w (e) , e ∈ Eij (5)

3 Improved approximation ratio

Before proceeding to the presentation and analysis of the algorithm, we show an improved approxi-
mation ratio for the problem under study. As shown in the proof, the new ratio applies both for the
static case of [18] and the dynamic case studied here.

Theorem 1. The truncatedS maximizing satisfaction b-matching problem is a
1
2

(
1 + b−1

max

(
1 +

1−b−1
max

2s+b−1
max

))
-approximation of the maximizing satisfaction b-matching problem, where

bmax is the maximum connection quota in the graph and s = Lmax

Lmin
is the ratio of the maximum and

minimum neighbor list sizes in the graph, Lmax and Lmin respectively.

Proof. Since only Ss
i is used in the modified maximizing satisfaction b-matching problem, we are

interested to study the ratio

ri =
Ss
i

Ss
i + Sd

i

(6)

and specifically its minimum value rmin. Knowing this minimum value we can conclude that the total
satisfaction of the modified problem Smod is a rmin-approximation of the total satisfaction of original
b-matching problem Sorig, since

Smod =

n∑
i=1

Ss
i =

n∑
i=1

ri
(
Ss
i + Sd

i

)
≥ rmin

n∑
i=1

(
Ss
i + Sd

i

)
= rminSorig (7)

where n = |V | is the number of nodes in the graph.
Initially, consider the scenario where every node i is connected with its bottom-most bi neighbors.

Using the above notation, by lemma 1 of [18] we know that

S mod =
n∑

i=1

Ss
i =

n∑
i=1

bi + 1

2Li
(8)

Sorig =

n∑
i=1

(
Ss
i + Sd

i

)
=

n∑
i=1

bi
Li

(9)

S mod ≥ 1

2

(
1 +

1

bmax

)
Sorig. (10)

where 1
2

(
1 + 1

bmax

)
is the previous known approximation of the modified maximizing satisfaction

b-matching problem.
However, note that each node i that connects with its bi bottom-most neighbors must have been

rejected by its Li−bi > 0 top-most ones. This means that these neighbors j cannot connect to their bj

4

bottom-most neighbors since in the worst case the last place must be occupied by node i. In this case,
the worst possible scenario connects them to bj neighbors starting at the previous to last position
and moving without gaps towards more preferable neighbors. We write B for the set of nodes that
connect to their bottom-most neighbors and we call these nodes bottom-choosers. Note here that we
discuss a worst case scenario and therefore we do not include nodes with Li− bi = 0 in set B; in such
a case the bi bottom-most neighbors are the same as the bi top-most ones, which is the best possible
outcome for node i.

Since both bottom-choosers and non-bottom-choosers are connected to their desirable number of
neighbors but the former are connected to their bottom-most neighbors while the later are connected
to their bottom-most-but-one neighbors, for each node bci ∈ B we have

Ss
bci =

1− Lbci
−bbci

Lbci

bbci
+ . . .+

1− Lbci
−1

Lbci

bbci
=

bbci + 1

2Lbci

(11)

Sd
bci =

0

bbciLbci

+ . . .+
bbci − 1

bbciLbci

=
bbci − 1

2Lbci

(12)

while for each node nbi ∈ V/B we have

Ss
nbi =

1− Lnbi
−bnbi

−1

Lnbi

bnbi

+ . . .+
1− Lnbi

−2

Lnbi

bnbi

=
bnbi + 3

2Lnbi

(13)

Sd
nbi =

0

bnbiLnbi

+ . . .+
bnbi − 1

bnbiLnbi

=
bnbi − 1

2Lnbi

(14)

Using equations 8 to 14 we get:

S
′

mod

S
′
orig

=

n∑
i=1

Ss
i +

∑
i∈V/B

1
Li

n∑
i=1

(
Ss
i + Sd

i

)
+

∑
i∈V/B

1
Li

=

S mod +
∑

i∈V/B

1
Li

Sorig +
∑

i∈V/B

1
Li

. (15)

For reasons of clarity, in the remaining proof we are going to refer to quantities
∑

i∈V/B

1
Li

and

∑
i∈V/B

1
Li

/
Sorig with Q and q respectively, as well as qmin for the minimum value of the latter.

Using the above notation and equations 10 and 15 we get:

S
′

mod

S
′
orig

≥
1
2

(
1 + 1

bmax

)
Sorig +Q

Sorig +Q
≥

1
2

(
1 + 1

bmax

)
Sorig + qmin · Sorig

Sorig + qmin · Sorig
=

1
2

(
1 + 1

bmax

)
+ qmin

1 + qmin
(16)

In order to calculate qmin we bound the sum
∑

i∈V/B

1
Li

as follows:

∑
i∈V/B

1

Li
≥ |V/B| 1

Lmax
≥ min (|V/B|) 1

Lmax
= (n−max |B|) 1

Lmax
(17)

where Lmax is the maximum neighbor list size in the graph. For |B| we observe that each bottom-
chooser corresponds to Li − bi non-bottom-choosers (its Li − bi top-most neighbors), and summing
up for the whole graph we have

n = |B|+
∑
i∈B

Li − bi ≥ |B|+ |B|min
i∈B

(Li − bi) = |B|+ |B| ⇒ |B| ≤ n

2
(18)

since min
i∈B

(Li − bi) = 1.

5

For every node i we define Li − bi = ciLi, where ci is the percentage of list Li that is covered by
Li − bi. By the same definition we have bi

Li
= 1− ci. By equations 17,18 and the above definition we

get:

q =

∑
i∈V/B

1
Li

Sorig
=

∑
i∈V/B

1
Li

n∑
i=1

bi
Li

=

∑
i∈V/B

1
Li

n∑
i=1

(1− ci)
≥

(
n− n

2

)
1

Lmax

n (1− cmin)
=

1

2Lmax (1− cmin)
(19)

From equations 16,19 and using the observation that 1− cmin = max bi
Li

≤ bmax

Lmin
, we get:

S
′
mod

S
′
orig

≥

(
bmax+1
2bmax

)
+ 1

2(1−cmin)Lmax

1 + 1
2(1−cmin)Lmax

=
(bmax + 1) (1− cmin)Lmax + bmax

2bmax (1− cmin)Lmax + bmax

=
1

2

(bmax + 1) (1− cmin)Lmax + bmax

bmax (1− cmin)Lmax + 1
2
bmax

=
1

2

(
1 +

(1− cmin)Lmax + 1
2
bmax

bmax (1− cmin)Lmax + 1
2
bmax

)
=

1

2

(
1 +

1

bmax

(1− cmin)Lmax + 1
2
bmax

(1− cmin)Lmax + 1
2

)
=

1

2

(
1 +

1

bmax

(
1 +

bmax − 1

2 (1− cmin)Lmax + 1

))
≥ 1

2

(
1 +

1

bmax

(
1 +

bmax − 1

2 bmax
Lmin

Lmax + 1

))

=
1

2

(
1 +

1

bmax

(
1 +

1− 1
bmax

2Lmax
Lmin

+ 1
bmax

))

=
1

2

(
1 + b−1

max

(
1 +

1− b−1
max

2s+ b−1
max

))
(20)

where s = Lmax

Lmin
is the ratio of the maximum and minimum neighbor list sizes in the graph, Lmax

and Lmin respectively, which proves the desired approximation ratio.

The above theorem does not make any assumptions on whether the problem/graph is static or dy-
namic. Hence it leads to an improved approximation bound for the Local Information-based Dis-
tributed (LID) algorithm in [18] that solves the b-matching with preferences problem.

Corollary 1. The LID algorithm solves the b-matching with preferences problem with
1
4

(
1 + b−1

max

(
1 +

1−b−1
max

2s+b−1
max

))
-approximation.

4 Adaptive matching algorithm

The adaptive matching algorithm builds on the modeling of the Local Information-based Distributed
(LID) algorithm [18] and utilizes the notion of node satisfaction to optimize the matching; for self-
containment we summarize it here. The core idea of the LID algorithm is that every node maintains
a preference list of all its neighbors and regards every potential connection as able to give a fraction
of satisfaction, amounting to 1 for a full connection quota with top choices or less in the case of
sub-optimal choices (0 for no connections). The network optimization goal we are considering is to
maximize the total sum of individual node satisfaction while respecting individual node preferences
and connection quotas. During initialization of the algorithm every node i exchanges approximated
marginal a priori parts of satisfaction scores Ss

i,j with its neighbors j and forms edge weights w (i, j)
using the scores it receives. Already at this point, the first approximation over the original maximizing

6

satisfaction many-to-many matching is being employed by using the approximated form of marginal
satisfaction. Using the resulting weights for the matching effectively converts the original problem into
a maximum weight many-to-many matching problem, which the nodes proceed to solve by choosing
greedily only locally heaviest edges. This second approximation (i.e. choosing locally heaviest edges

instead of globally heaviest ones) along with the first one jointly lead to a 1
4

(
1 + b−1

max

(
1 +

1−b−1
max

2s+b−1
max

))
-

approximation solution of the original problem but also lead to valuable properties for the algorithm:
on the one hand to a simple, fully distributed scheme and on the other to provable termination even
when cycles are present among node preferences (cf lemma 5 in [18]).

In a dynamic setting, where nodes join/leave the network or change preferences about their neigh-
bors at any time, there is a partial or full solution that is disturbed by a specific operation. In this
case it is desirable to “repair” the solution instead of recomputing it from the beginning. It would
also be advantageous to limit the repairs to the neighborhood of the operation, so that far enough
nodes would remain unaffected. Note that the locally-heaviest-edge property that we are using here
seems ideal for this purpose: it only makes sense to preserve and use it further to support dynamicity.

In the adaptive algorithm AdaptiveLID presented here, all three cases of dynamicity mentioned
above (join/leave/change) are supported. In the case of a joining (resp. departing) node, neighboring
nodes add (resp. delete) it to (resp. from) their preference lists. On the other hand, when a node
changes preferences no change occurs to the neighboring nodes’ preference lists but edge weights may
change radically. A common thread between these cases is that the nodes directly involved in the
operations must recalculate their marginal satisfactions for their neighbors and exchange them so that
their adjacent edges have the correct weights. Afterwards, they must re-evaluate their connections:
if they are not locally heaviest any more, the nodes abandon the least weighted ones and try to get
matched with the locally heaviest ones. Note here that this method avoids the recalculation of the
solution over the whole network, instead limiting it to a neighborhood around the network area where
the dynamic operation took place. An additional benefit is that the involved nodes maintain their
current connections unless proven to be non-optimal, i.e. they change them only if necessary.

In literature, many of the algorithms for matching with preferences are inspired by the proposal-
refusal algorithm of Gale and Shapley [6]. This also the case with AdaptiveLID but it addresses
a different problem with unique characteristics: while the Gale-Shapley algorithm is focused on ab-
solute stability, AdaptiveLID solves an optimization problem and aims for the maximum possible
satisfaction. So, for example, it is important to guarantee that no cycles exist in the case of Gale-
Shapley algorithm since, given the distributed nature of the algorithm, a reply may not be possible
to be given immediately by a node to another node’s proposal. This is not necessary in the case of
AdaptiveLID since any cycles in preference orders are broken by reducing the original problem to an
acyclic weighted many-to-many matching, upon which the algorithm operates (cf also lemma 3). On
the other hand, it is important for the AdaptiveLID algorithm to tolerate and work under changes
in the underlying network and by focusing on optimization it achieves exactly that (cf lemma 5).

The AdaptiveLID algorithm uses at each node i five sets (Pi,Ki, Ai, Ri, Bi) and an incoming
message queue queuei, and sends three kinds of messages (PROP, REJ and WAKE):

– A node i sends PROP messages to propose to its heaviest-weight neighbors the establishment
of a connection. If an asked node also sends a PROP message to node i then the connection is
established (locked): note that this will happen in both endpoints. Set Pi stores the neighbors to
which node i proposed with a PROP message, Ai stores the neighbors which approached node
i with a PROP message, Ki stores the locked neighbors, Bi stores the neighbors that rejected
node i and Ri the neighbors that node i rejected. Sets B∗

i and A∗
i are copies of sets Bi and Ai

respectively that do not contain neighbors of edges heavier than the edge of the worst connected
neighbor.

– A node sends a REJ message when it has locked as many neighbors as it could. Nodes can send
additional PROPmessages to available neighbors if they receive aREJmessage. PROPmessages
are sent to neighbors in decreasing ranking order and there are at most bi such unanswered
messages originated from i at any time.

7

– Node i is constantly checking if its PROP messages are addressed to heaviest-weight neighbors,
as ranking can change due to a change in the network. If it detects a better available node than
the currently proposed ones, it sends a REJ message to the worst connected neighbor and a
PROP to the better candidate. However, if the better candidate has simultaneously rejected and
been rejected by node i, node i sends only a WAKE message.

Algorithm 1 AdaptiveLID()

ReceiveMsgs()

SendMsgs()

BookkeepingUpdates()

Procedure 1 ReceiveMsgs()

for msg ∈ queuei do
if msg.type = PROP then

Ai ← Ai ∪msg.sender
Bi ← Bi −msg.sender

if msg.type = REJ then
Bi ← Bi ∪msg.sender
Ai ← Ai −msg.sender
Ki ← Ki −msg.sender
Pi ← Pi −msg.sender

if msg.type = WAKE then
Bi ← Bi −msg.sender

Procedure 2 SendMsgs()

while (|Γi − Pi − (Bi −Ri)| ̸= 0) ∧ (|Pi| < bi) do
find heaviest edge neighbor c that belongs

in (Γi − Pi − (Bi −Ri))
if c ̸= null then

if c ∈ Bi then
send a WAKE msg to c
Ri ← Ri − c

else
send a PROP msg to c
Pi ← Pi ∪ c
Ri ← Ri − c

Function 1 GetWorstNode(node i)

return

{
l : w (l, i) = min

j∈Pi

w (j, i)

}

Function 2 GetBestNode(node i)

return

{
h : w (h, i) = max

j∈(Γi−Pi−(Bi−Ri))
w (j, i)

}

Procedure 3 BookkeepingUpdates()

Ti ← (Pi −Ki) ∩Ai

if |Ti| ̸= 0 then
Ai ← Ai − Ti

Ki ← Ki ∪ Ti

match node i to all nodes in Ti

if (|Γi − Pi − (Bi −Ri)| ̸= 0)∧ (|Pi| ̸= 0)∧ (|Ki| ̸= 0)
then

l← GetWorstNode(i)
h← GetBestNode(i)
while (l ̸= null) ∧ (h ̸= null) do

if w (h, i) > w (l, i) then
if h ∈ Bi then

send a WAKE msg to h
Ri ← Ri − h

else
send a REJ msg to l
Ai ← Ai − l
Ri ← Ri ∪ l
Pi ← Pi − l
Ki ← Ki − l
send a PROP msg to h
Pi ← Pi ∪ h
Ri ← Ri − h

l← GetWorstNode(i)
h← GetBestNode(i)

else if Pi = Ki then
for j ∈ (Γi −Ri −B∗

i +A∗
i − Pi) do

send a REJ msg to j
Ai ← Ai − j
Ri ← Ri ∪ j

break

else
break

unmatch node i from all nodes in Bi

5 Analysis

The following lemmas prove that the algorithm always converges after a finite amount of steps or,
in the case of changes in the network, in a finite amount of steps after the changes stop. Although
implied by the distributed nature of the algorithm, it is useful to note that the algorithm continues
to run at all nodes regardless of any changes that are happening in the network. In fact, as we show
in the experimental section, it manages to maintain a reduced but steady level of service while under

8

extremely heavy stress or possibly a network attack. However, convergence can be guaranteed after
all changes complete since any changes that might occur require appropriate readjustment by the
distributed algorithm.

Lemma 1. In a failure free execution, edge weight updates that are caused by node or preference
changes complete in a finite amount of time.

Proof. When a node joins (leaves) the network, it gets inserted to (deleted from) neighboring nodes’
preference lists, causing changes that need to be communicated to their own neighbors. The same
happens to the node itself when it changes its own preference list. Therefore every change causes a
weight update that propagates at maximum distance 2 and to a bounded amount of nodes (bounded by
the size of distance 2 neighborhood from the originating node). Note that the neighbor’s neighbors (or
the immediate neighbors in the case of simple preference change) accept the weight update passively
and do not propagate it further. Since we assumed that nodes do not fail and messages do not get
lost, it is evident that all nodes are fully updated in a finite amount of time after the change.

We define as available with respect to node i, a node j in the neighborhood of node i that has neither
been proposed by node i nor rejected node i.

A node j is a locally heaviest node in the neighborhood of node i at some point in time if there
are no available nodes that are endpoints of heavier edges. Note that when the endpoints of an edge
consider simultaneously each other locally heaviest, the edge between them is a locally heaviest edge.

Lemma 2. In a finite amount of time after a node or preference change, every node cancels all
proposals towards neighbors that are no longer locally heaviest and issues an equal amount towards
available neighbors that are locally heaviest.

Proof. Every change triggers weight updates at distance 1 (nodes that the joining/leaving node
connects to/disconnects from or direct neighbors of a node that changes preferences) and possibly at
distance 2 (neighbor’s neighbors of a joining/leaving node). By lemma 1 the weight updates complete
in a finite amount of time. When procedure 3 executes next in any node i at distance 1 or 2 from
the change, it will repeatedly examine nodes that are either available or have simultaneously rejected
and been rejected by node i, as long as they are heavier than the proposed node of lowest weight.
Every time it encounters a node of the latter category it sends a WAKE message, prompting the
node to revoke its rejection, whereas every time it encounters a node of the former category it sends
a PROP message, preceded by a REJ to the proposed node of lowest weight 2. In any case, at the
end of procedure 3’s execution all proposals from node i to its neighbors that are no longer locally
heaviest are canceled and complementary proposals are sent to available neighbors that are locally
heaviest, and the same is true for every node in the network.

Lemma 3. The AdaptiveLID algorithm terminates for every node i ∈ V after changes complete.

Proof. For the static case, lemma 5 of [18] applies and the algorithm terminates. For the dynamic
case, a change may cause some proposals to be canceled and reissued on nodes at distance 1 or 2
(lemma 2). The only cases where the algorithm may not terminate on these nodes is when they wait
indefinitely for a neighbor’s answer or their preference list “oscillates”, with proposals being canceled
and reissued on the same neighbors in an alternatingly way over time. By lemma 1 we can ignore
weight updates since they complete in a finite amount of time.

For the first case, a node can wait indefinitely only if a communication cycle exists: each node
ni mod k in a group of nodes {n0, n1, . . . , nk−1} sends a PROP message to node n(i+1) mod k and
awaits for an answer in order to reply back to node n(i−1) mod k, that is w(ni mod k, n(i+1) mod k) >
w(ni mod k, n(i−1) mod k). By adding all such equations on the cycle and using properties of the

2 Note that whether a node is considered locally heaviest or not may change during a single execution of
procedure 3.

9

modulo operator we get

k−1∑
i=0

w
(
ni mod k, n(i+1) mod k

)
>

>
k−1∑
i=0

w
(
ni mod k, n(i−1) mod k

)
=

=
k−1∑
i=0

w
(
n(i+1) mod k, ni mod k

)
=

=
k−1∑
i=0

w
(
ni mod k, n(i+1) mod k

)
(21)

which is a contradiction.
For the second case, by lemma 3 and since we assumed that the changes are completed, we have

that any potential canceling and reissuing of proposals finishes in a finite amount of time and therefore
no oscillations occur.

Lemma 4. For every node i, algorithm AdaptiveLID chooses all locally heaviest edges that are
adjacent to it, if there is enough quota bi available, or otherwise chooses bi of them that are heavier
than any unchosen one.

Proof. For a static network, lemma 4 of [18] is applicable. For a dynamic network, by lemma 2, after
a finite amount of time every node i cancels all proposals to neighbors which are no longer locally
heaviest after a change and proposes to locally heaviest ones. Some of these proposals will result
in a match if the receiving node also considers the originating node locally heaviest. The same will
happen to all proposed nodes, as long as the originating and receiving nodes have available quotas.
If some node lacks in available quota, we know that its matched incident edges are heavier than its
unmatched locally heaviest, since by lemma 2 it would have to cancel the appropriate proposals and
issue new ones towards locally heaviest neighbors.

Lemma 5. The AdaptiveLID algorithm when run on a network with changes produces the same
matching with the LID algorithm that is run on the same network after the changes complete.

Proof. By lemma 3 we get that the AdaptiveLID algorithm terminates for every node and by lemma
4 we know that at termination it has chosen only locally heaviest edges of maximum weight. Since
by lemma 4 of [18] the static algorithm also selects locally heaviest edges of maximum weight at
termination, it follows that the two algorithms make the same choices for the same networks.

From lemma 5 and theorem 1, as well as lemma 2 and theorem 2 of [18], we get the following theorem
about the approximation ratio of AdaptiveLID:

Theorem 2. The AdaptiveLID algorithm solves the adaptive b-matching with preferences problem

with 1
4

(
1 + b−1

max

(
1 +

1−b−1
max

2s+b−1
max

))
-approximation.

Observation 1 Following the main argument of the classic Chandy and Misra [20] Drinking Philoso-
phers algorithm, we observe that the convergence complexity is bounded by the longest increasing edge
weight path in the network.

6 Experimental study

The following extensive experimental study complements the preceding analytical part with useful
observations and conclusions about the behavior of the AdaptiveLID algorithm in a variety of
scenarios. Focus was given on the performance of the algorithm in regard to the following points:

10

– Behavior on different types of networks
– Behavior during different operations (joins, leaves, preference changes and churn)
– Convergence and reconvergence times
– Satisfaction levels, both in normal operation and under heavy stress (i.e. during a network-level

attack)
– Fairness properties of satisfaction-based optimization

The following experiments were conducted using the PeerSim [21] platform in a synchronous
way, i.e. execution proceeded in rounds, where each node in each round made a receive-respond-
process step, unless it had nothing to execute. This synchronous execution mode is not necessary for
the algorithm but it is used here to measure the time needed by the AdaptiveLID algorithm to
converge. For every network instance used, a matching was calculated and the following operations
were performed on a varying amount of nodes (1% to 50% of the network size, in increments of 1%):
join/leave, where nodes enter/exit the network simultaneously, preference change, where existing
nodes change the ranking of their neighbors in their preference lists simultaneously, and churn, where
existing nodes exit and an equal amount of new nodes enter the network simultaneously. For the first
three cases the network was left to reconverge after one operation, while in the case of churn the
operation was repeated for several rounds before the network was left to reconverge. Each of these
operations was conducted on networks of size n = 100, 250, 500, 750 and 1000 nodes, considering 30
network instances for each size, and the results presented here are mean values over these instances.

6.1 Network types

The networks used during the experiments were power-law and random networks, created with the
Barabási-Albert (BA) [22] and Erdős-Rényi (ER) [23] procedures respectively. These networks were
selected for their different node degree distributions: in power-law networks the vast majority of nodes
has very low degree and few nodes have very high degree (power-law distribution), while in ER random
networks all nodes have comparable degrees (binomial distribution). In fact, high degree nodes in BA
networks are connected mostly with many low degree ones, which leads to the creation of very different
neighborhoods around individual nodes for these two network types. This difference, coupled with
the algorithm’s ability to perform local repairing operations, leads to the varying behaviors that can
be seen in the experiments below.

On the other hand, both network types had node preferences formed uniformly at random since
previous research [2,16] showed that (a) a strict matching solution can not always be found when
they are used and (b) the measured satisfaction of unconverged instances can be relatively low. These
characteristics make random preferences the challenging test case to evaluate the performance of the
algorithm.

6.2 Convergence and reconvergence

The mean value and standard deviation of convergence speed for a variety of network sizes can be
found in figure 1. It is easy to see that the convergence speed depends on the type of the network. For
example, BA networks of size 1000 take almost twice the amount of time to converge than networks of
size 100, while ER networks of size 1000 need less than twice the amount of time needed by networks
of size 100 and only slightly higher amount of time than the networks of size 500 and 750.

Likewise, the time needed for reconvergence can be seen in figures 2 and 3, for networks of size
1000 of both types and for the four types of operations under consideration. By focusing on low
percentages of affected nodes (i.e. up to 20% of the network size, which is a high volume of change),
it is easy to see that reconvergence is obtained in most cases for a fraction of the rounds needed for
initial convergence. For join and leave operations reconvergence is expressed not in rounds but in
relation to the convergence time, since network sizes change significantly. Note here that this extreme
change in network sizes leads in some cases to percentages greater than 100%, i.e. more rounds are
needed for the reconvergence than for the initial convergence. For the preference change and churn

11

100 250 500 750 1000
6

7

8

9

10

11

12

13

14

15

0 200 400 600 800 1000 1200
6

7

8

9

10

11

12

13

14

15

16

Fig. 1. Convergence speed per network size

operations this is not the case: the network size remains the same either because no node joins or
leaves (preference change case) or the amount of nodes joining and leaving is the same (churn case)
and the reconvergence time is expressed is rounds.

In the case of join operations, nodes arrive at the network and want to join the already established
equilibrium of connections by being more attractive choices for some of the nodes they are neighbors
with. This creates cascade effects of nodes rejecting old connections in favor of the newcomers, the
rejected nodes trying to repair their lost connections and so on. Naturally, the more nodes wanting to
join the network the bigger upheaval is created. A similar effect is generated during leave operations,
where previously rejected nodes suddenly become attractive choices for nodes that were left behind
by departing nodes. Note here that the BA networks reconverge much faster than the corresponding
ER networks in the case of join operations. This happens because new nodes (being of low degree)
connect preferentially to relatively few high degree nodes, limiting the extension of the upheaval in
the network. In the case of leave operations the same behavior poses a challenge since departing nodes
may happen to be of high degree themselves, leaving behind a lot of low degree nodes to repair their
connections. Notice though that in both cases (ER or BA networks), when a substantial percentage
of the network departs (i.e. above 35%) the remaining nodes repair their connections much easier
since they have more unformed connections than established ones.

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

120

Fig. 2. Reconvergence speed per operation, joins/leaves, n = 1000

Preference change affects both network types in the same way: a node that changes preferences
destroys some connections, creating waves of changes in its neighborhood. For the case of BA networks,

12

it may happen that a node changing preferences is a high degree one, causing a lot of nodes to repair
their connections. However, this effect dies off quickly, since most of its neighbors are of low degree,
leading to an overall performance similar to the ER case.

The two network types show their differences more prominently under churn (figure 3). For the
ER networks, a joining node under churn can be seen as a “reincarnation” of a leaving node with all
its previous connections dropped and its preferences changed, since both of them have comparable
node degrees. However, the churn operation is detrimental for the BA network since the joining
nodes are of low degree and the departing ones of potentially much higher degree. As a result the
degree distribution itself is changing, leading to higher reconvergence times (cf join operation). This
phenomenon can be seen more clearly when looking at networks of different sizes (figure 5): high
churn for small networks is not particularly problematic (small slope on graph for 100 nodes) since
degree variation is limited, but for networks of size 1000 it is quite detrimental, leading to higher
reconvergence times (high slope on graph for 1000 nodes).

0 10 20 30 40 50 60
8

9

10

11

12

13

14

15

16

Fig. 3. Reconvergence speed per operation, preference change/churn, n = 1000

Fig. 4. Reconvergence speed for preference change and churn (Erdős-Rényi)

In both cases though, by comparing the churn and preference change graphs in figure 3 it is
easy to see that, somewhat counterintuitively, it takes progressively more time for the algorithm to
reconverge when more nodes change preferences but the reconvergence time stays more or less the

13

0 10 20 30 40 50 60
2

4

6

8

10

12

14

0 10 20 30 40 50 60
3

4

5

6

7

8

9

10

11

Fig. 5. Reconvergence speed for preference change and churn (Barabási-Albert)

same even for high values of churn or it is consistently lower than preference change, as is the case in
BA networks. Figures 4 and 5 shows this phenomenon in more detail for all network sizes.

The reason behind this behavior is that in churn situations there are more parallel events taking
place: a new, joining node that replaces a leaving one starts as an empty slate and sends an amount of
PROP messages equal to the desired number of connections. On the other hand, a node that changes
preferences might need to repair only some of its connections (which are now suboptimal) by sending
appropriate PROP messages. However, in both cases some responding nodes might decline, which
will lead to additional PROP messages to be send and so on, until the issuing nodes are satisfied or
no available nodes are left.

One may even wish to compare the two situations from the point of view of what is a desirable
action by a node who changes preferences: to improve existing connections or to perform a leave and
come back (thus contributing to churn). This is especially meaningful in the case of ER networks,
since for BA networks churn is consistently cheaper in any case due to their special structure and
the parallelism mentioned above. In the case of ER networks, comparing the reconvergence times
of the two situations, churn has the advantage over preference change in high values. This is only
natural since in that case more nodes start with no connections and all possibilities are explored in
parallel. In contrast, having high values of preference change means that more nodes want to repair
their connections but other nodes have already connections that they want to maintain, leading to
longer times of reconvergence. It could be useful in practical terms if there was a mechanism able
to detect high volume of preference changes in the network and enforce a policy of pseudo-churn,
with nodes dropping all connections when changing preferences. However, as it is shown below, the
amount of satisfaction under churn is far less than the satisfaction under preference change before
reconvergence, which is a significant argument in favor of improving connections instead of dropping
them and starting again.

6.3 Satisfaction

The mean satisfaction in the network achieved by the AdaptiveLID algorithm for a variety of
network sizes can be found in figure 6, along with the values of minimum and maximum satisfaction
in the network. Note that satisfaction is slightly lower in the case of BA networks due to differences
in topology (i.e. minimum satisfaction is lower due to the large amount of low degree nodes) but
it follows the same behavior as in the ER case. It is easy to see that the AdaptiveLID algorithm
achieves consistently high satisfaction values, which are also increasing as network sizes increase. Of
particular interest is that (a) the minimum satisfaction in the network is being increased also, meaning
that individual nodes enjoy high levels of satisfaction too, implying asymptotically improved fairness

14

properties as well and (b) the minimum satisfaction does not affect significantly the mean satisfaction,
which implies that the number of nodes having low satisfaction is consistently very low compared to
the size of the network.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

100 250 500 750 1000 100 250 500 750 1000
0

0.2

0.4

0.6

0.8

1

Fig. 6. Satisfaction per network size

Even though the reconvergence results showed that the algorithm can efficiently repair its solution
once churn stops, it is interesting to see the levels of achieved satisfaction while churn is in progress.
The relative satisfaction for ER networks under churn (to the one achieved before churn starts) can
be found in figure 7: the different graphs from top to bottom correspond to the relative satisfaction
when churn affects 5% to 50% of the network’s nodes (in steps of 5%), for a network of 100 nodes. It
is obvious that the amount of satisfaction achieved remains fairly constant during churn and depends
greatly on the amount of churn. However, even though churn is an intense operation, it is possible to
retain a significant percentage of the original satisfaction, even for churn as high as 50% (i.e. when
half of the network is changing at every round).

On the other hand the satisfaction drop is significant compared to the one caused by preference
change. Figure 8 shows the relative satisfaction for both preference change and churn on ER networks,
right after the change happens, for various amounts of affected nodes, supporting our argument in
favor of improving connections instead of rebuilding them from the beginning.

0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7. Satisfaction while churn is in progress, af-
fecting 5% to 50% of the network’s nodes (in steps
of 5%, top to bottom)

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 8. Satisfaction right after preference change
or churn per amount of affected nodes

15

7 Conclusions

The adaptive algorithm AdaptiveLID for distributed matching with preferences proposed in this
paper provides a method to form overlays with preferences with guaranteed satisfaction and con-
vergence, as shown in the analysis. The paper also shows an improved approximation ratio for the
maximizing satisfaction problem, which holds both for static and dynamic networks.

Besides, an extensive experimental study of the proposed algorithm encompasses a variety of
scenarios, including ones that put the algorithm under heavy stress and that have been previously
used in literature to simulate network attacks. In these scenarios the algorithm succeeds in maintaining
a reduced but steady level of network service while under attack, and resumes to normal service levels
after the attack stops. Furthermore, the algorithm shows attractive properties with respect to the
satisfaction it can achieve and the convergence time (and hence overhead) it needs. In particular, the
experiments clearly strengthen the argument that it is preferable to improve connections and adapt
to changes instead of rebuilding all the connections from the ground up.

To the best of our knowledge it is the first adaptive method with satisfaction and convergence
guarantees for this problem. We expect that this contribution will be helpful for future work in
the area, since the method can facilitate overlay construction with guarantees in a wide range of
applications, from peer-to-peer resource sharing, to overlays in intelligent transportation systems and
adaptive power grid environments.

References

1. Irving, R.W., Scott, S.: The stable fixtures problem - a many-to-many extension of stable roommates.
Discrete Appl. Math. 155(16) (2007) 2118–2129

2. Mathieu, F.: Self-stabilization in preference-based systems. Peer-to-Peer Networking and Applications
1(2) (sept 2008) 104–121

3. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm
for self-stabilizing skip graphs. In: Proceedings of the 28th ACM symposium on Principles of distributed
computing. PODC ’09, ACM (2009) 131–140

4. Awerbuch, B., Scheideler, C.: Towards a scalable and robust dht. Theory of Computing Systems 45
(2009) 234–260 10.1007/s00224-008-9099-9.

5. Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17 (1965) 449–467
6. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly

69 (1962) 9–15
7. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms. MIT Press, Cam-

bridge, MA, USA (1989)
8. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: SODA ’06: Proceedings

of the seventeenth annual ACM-SIAM symposium on Discrete algorithms, ACM (2006) 980–989
9. Hoepman, J.H.: Simple distributed weighted matchings. CoRR cs.DC/0410047 (2004)

10. Lotker, Z., Patt-Shamir, B., Rosen, A.: Distributed approximate matching. In: PODC ’07: Proceedings of
the twenty-sixth annual ACM symposium on Principles of distributed computing, ACM (2007) 167–174

11. Wattenhofer, M., Wattenhofer, R.: Distributed weighted matching. In: 18th Annual Conference on
Distributed Computing (DISC). (2004) 335–348

12. Manne, F., Mjelde, M.: A self-stabilizing weighted matching algorithm. In: Stabilization, Safety, and
Security of Distributed Systems. Volume 4838 of LNCS. Springer (2007) 383–393

13. Lotker, Z., Patt-Shamir, B., Pettie, S.: Improved distributed approximate matching. In: SPAA ’08:
Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures, ACM
(2008) 129–136

14. Koufogiannakis, C., Young, N.E.: Distributed fractional packing and maximum weighted b-matching via
tail-recursive duality. In: Proceedings of the 23rd international conference on Distributed computing,
Springer-Verlag (2009) 221–238

15. Cechlárová, K., Fleiner, T.: On a generalization of the stable roommates problem. ACMTrans. Algorithms
1(1) (2005) 143–156

16. Gai, A.T., Lebedev, D., Mathieu, F., de Montgolfier, F., Reynier, J., Viennot, L.: Acyclic preference
systems in p2p networks. In: Proceedings of the 13th International Parallel Processing Conference (Euro-
Par), Rennes, France (2007) 825–834

16

17. Lee, H.: Online stable matching as a means of allocating distributed resources. Journal of Systems
Architecture 45(15) (1999) 1345–1355

18. Georgiadis, G., Papatriantafilou, M.: Overlays with preferences: Approximation algorithms for matching
with preference lists. In: Proceedings of 24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’10), IEEE Computer Society Press (April 2010)

19. Preis, R.: Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs.
STACS 99 (1999) 259–269

20. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Transactions on Programming
Languages and Systems 6(4) (1984) 632–646

21. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator http://peersim.sf.net.
22. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286 (1999) 509–512
23. Bollobás, B.: Random Graphs. Academic Press, New York (1985)

17

