
 
 
 
 
 
 
 
 
 
 
 
 

Technical Report No. 11-13 
 
 
 
 

Adaptive overlay construction through 
dynamic distributed matching with 
preferences 
 
GIORGOS GEORGIADIS       
MARINA PAPATRIANTAFILOU     
 

  

 
 
 
 
 
 
 
 
Department of Computer Science and Engineering    
CHALMERS UNIVERSITY OF TECHNOLOGY/  
GOTEBORG UNIVERSITY 
Goteborg, Sweden, 2011 



Adaptive overlay construction through dynamic
distributed matching with preferences

Giorgos Georgiadis, Marina Papatriantafilou

Department of Computer Science and Engineering, Chalmers University of
Technology, S-412 96 Göteborg, Sweden

Email: {georgiog,ptrianta}@chalmers.se, Fax: +46-31-7723663

Abstract. An important function of overlay networks is the facilitation
of connection, interaction and resource sharing between peers with lim-
ited resources. It is usually the case that the peers maintain some private
notion of how a “desirable” peer should look like and they share their
limited resources with peers that they prefer better than others. Recent
research proposed that this problem can be modeled as a many-to-many
matching problem with preferences and studied analytically. However,
the proposed solutions studied the problem on static networks, where no
node joining or leaving is considered.
In this paper we present a dynamic, distributed algorithm for the many-
to-many matching problem with preferences that utilizes a simple scheme,
provides a guaranteed approximation for the total satisfaction in the net-
work and guarantees the convergence after changes complete. We also
provide a detailed experimental study of the algorithm that focuses on
the levels of achieved satisfaction as well as convergence and reconver-
gence speed.

1 Introduction

Overlay networks play an increasingly important role in today’s world:
from social networks to ad hoc communication networks, people and ma-
chines connect, interact and share resources through novel overlay net-
works laid over Internet’s infrastructure. Unstructured overlays in specific
aim at connecting peers with minimal assumptions on the protocols to
be used but face universal challenges: peers are willing to share both con-
crete resources (i.e. bandwidth) and abstract ones (i.e. attention span)
but these resources are naturally limited and usually the contributors
expect something in return. For example, in a fully distributed scenario
each peer may rate its neighbors according to one or more individual
metrics (i.e. distance, interests, available resources) but chose to connect
to only a handful of them due to its own resource scarcity. The challenge
in this scenario is to maintain a high level of the implemented service
on a network scale, while at the same time adapting and tolerating the



high dynamicity commonly found in these networks, with peers leaving,
joining or changing ratings about their neighbors at any time.

This kind of connection problem with limited resources resembles a
matching problem in a graph, where nodes must be matched one to one
with some neighbor of theirs in a maximal way on a graph level. The par-
ticular form of matching which is relevant here is many-to-many matching
with preferences (commonly referred to as stable fixtures [1] or b-matching
[2] problem), where each node maintains a preference list of its neighbors
(rated from most to least preferable) and a total quota of desired con-
nections. The goal for each node in this setting is to be able to form the
desired amount of connections with the highest quality (most preferred)
neighbors. However, a recently proposed metric of node satisfaction [2]
can be used to measure the quality of a node’s connections, giving an
optimization dimension into the many-to-many matching problem.

In this paper we present a dynamic, distributed algorithm for the
many-to-many matching problem with preferences that utilizes a simple
scheme, provides a guaranteed approximation for the total satisfaction
in the network and guarantees the convergence after changes complete.
To the extend of our knowledge it is the first algorithm that can handle
dynamicity while solving the many-to-many matching problem, with node
joining, leaving and preference changes fully supported. Its key features
include the use of only local information, a given approximation bound
and a guaranteed convergence once the changes complete. We also provide
a detailed experimental study of the algorithm that focuses on the levels
of achieved satisfaction as well as convergence and reconvergence speed.
We show that the resulting satisfaction is high but also remains on high
levels before reconvergence in many scenarios. Moreover, reconvergence
is achieved in an efficient way under a variety of changes.

1.1 Related work

Matching problems are well studied in their centralized form and an ex-
tensive literature exists, including solutions for the many-to-many vari-
ants (cf for example [3,4,5,1]). However, it has been shown [6] that exact
solutions of even simple matching problems cannot be derived locally in a
distributed manner, leading to a significant research interest for approxi-
mation distributed algorithms [7,8,9]. Prominent examples of this research
area are the one-to-one weighted matching algorithms of Manne et al
[10] and Lotker et al [8], with the former having proven self-stabilization
properties and the latter having variants that can handle joins and leav-
ings of nodes. However, whether it is possible to extend these techniques



to many-to-many matchings remains an open research question. On the
other hand, Koufogiannakis et al [11] recently proposed a randomized δ-
approximation distributed algorithm for maximum weighted b-matching
in hypergraphs (with δ = 2 for simple graphs) but it addresses only static
graphs and its elaborate nature makes its extension to support a dynamic
setting non-trivial.

Additionally to the approaches above, there is an extensive research
focus on many-to-many matchings with preferences [12,13,2,14]. First Gai
et al in [13] proved that in the case of an acyclic preference system there
is always a stable configuration, and also supplied examples of preference
systems based on global or symmetric metrics. Mathieu in [2] introduced
the measure of node satisfaction as a metric aimed to describe the quality
of the proposed solutions, the same one we use here as an optimization
metric. Previously Lee [14] had used a similar credit metric in order to
optimize the proposed solutions from their heuristic algorithms.

2 Problem definition and system model

In this paper we use standard terms and notions from the literature
[1,2,15,16]) which we briefly describe them here for self-containment.
We represent an overlay network as an undirected graph G(V,E) with
|V | = n, |E| = m, where V is the set of overlay peers and E the set of po-
tential connections. Each node i has degree di and keeps a preference list
Li of all nodes in its neighborhood Γi. Let Ri(j) denote the rank of node
j in node i’s preference list, with Ri(·) ∈ {0, 1, . . . , |Li| − 1}, attributing 0
to its most desirable neighbor. Each node i wants to maintain at most bi
connections to the best possible nodes according to its preference list and
rank function, and at no point it can exceed this number. In the following
sections we will refer to two nodes as neighboring nodes when they are
connected by an edge in graph G and connected or matched nodes when
they are matched by a matching algorithm. The problem of trying to find
a many-to-many matching that respects the individual preferences and
connection quotas bi is a form of a generalized stable roommates problem
called the stable fixtures problem [1] or b-matching [2]. We call adaptive
b-matching the dynamic form of b-matching, where nodes can join, leave
or change preferences at any time. In the remaining of this paper we will
refer to these operations simply as changes.

In order to measure the success of a node i’s efforts in establishing
its bi connections, we make use of the notion of satisfaction Si which is



defined in [2] by the following formula:

Si =
ci
bi

+
ci (ci − 1)

2biLi
−

∑
j∈Ci

Ri (j)

biLi
(1)

where Ci (with |Ci| = ci ≤ bi) is an ordered list of node i’s connections
in decreasing preference. Georgiadis et al in [15] modeled the b-matching
problem as an optimizing problem that uses satisfaction to achieve con-
vergence. The authors showed an approximation is possible through the
reduction of the original problem to a many-to-many weighted matching
problem, by forming edge weights w(i, j) according to the formula:

w (i, j) = ∆Sj
i +∆Si

j =

(
1

bi
− Ri (j)

biLi

)
+

(
1

bj
− Rj (i)

bjLj

)
(2)

where ∆Sj
i is an approximation of the marginal satisfaction that node i

gleans by connecting to node j. A simple weighted matching problem is
defined as the problem of finding a set of edges such that their weight
sum is maximized and there are no common endpoints between them.
The many-to-many variant used here replaces the last constraint on no
common endpoints with node capacities that need to be respected, which
in this case are the connection quotas bi per node i.

During the analysis of the distributed algorithm we will also use the
notion of a locally heaviest edge [17]. Let Eij be the set of edges that have
either node i or node j as an endpoint (but not both):

Eij = {(i, ni) |ni ∈ Γi\j} ∪ {(j, nj) |nj ∈ Γj\i} (3)

An edge (i, j) is called locally heaviest if it has the greatest weight among
all edges e ∈ Eij :

w (i, j) > w (e) , e ∈ Eij (4)

In this paper we will present AdaptiveLID, a distributed algorithm
that solves the adaptive b-matching problem and provably converges to
a solution. Through reduction to the adaptive many-to-many weighted

matching problem we will also prove an approximation ratio of 1
4

(
1 + 1

bmax

)
,

where bmax is the maximum quota in the network. Later in the paper we
evaluate experimentally the behavior of the AdaptiveLID algorithm by
studying two performance metrics: convergence time and mean satisfac-
tion. By a similar argument to the one found in the classic Chandy and



Misra [18] Drinking Philosophers algorithm, we expect the convergence
complexity to be bounded by the longest increasing edge weight path in
the network. In the following sections we will consider an asynchronous
model for messages and we will not consider failures, i.e. messages arrive
asynchronously but do not get lost.

3 Dynamic matching algorithm

In this section we present an adaptive algorithm based on a simple scheme
that can find an optimized many-to-many matching in a dynamic network,
where nodes can join, leave or change connection preferences at any time.
Following earlier work on quality metrics [2], we are utilizing the notion
of node satisfaction to optimize the matching: every node maintains a
preference list of all its neighbors and regards every potential connection
as able to give a fraction of satisfaction. This satisfaction can amount to 1
in the case of filling its connection quota with only top choices, otherwise
the node suffers a penalty for each non-optimal (top) connection that can
lower the total to 0 (case where no connections are made). The network
optimization goal we are considering is to maximize the total sum of indi-
vidual node satisfaction while respecting individual node preferences and
connection quotas. We achieve just that in a distributed way and under a

variety of dynamicity conditions with approximation ratio 1
4

(
1 + 1

bmax

)
,

where bmax is the maximum connection quota in the network.

A static many-to-many matching: the LID algorithm The new algorithm
builds on the idea of the modeling in [15]; for self-containment we sum-
marize it here. The core idea of the LID algorithm is to convert the above
mentioned maximizing satisfaction many-to-many matching problem into
a maximum weight many-to-many matching problem. First, every node
calculates the marginal amount of satisfaction to be gleaned by every
connection and exchanges this value with the corresponding one of its
neighbors for all adjacent edges. Using this information, the newly formed
edge weights are the sums of the adjacent endpoint marginal satisfaction
and the resulting matching has a total weight which is the sum weight
of all matched edges. Following the weight formation, each node selects
locally heaviest edges for inclusion in the desired matching, that is edges
that are heaviest in the neighborhoods of both their endpoints. These
two approximations, converting the maximizing satisfaction to maximum
weight many-to-many matching and selecting locally instead of globally

heaviest edges, lead to the resulting 1
4

(
1 + 1

bmax

)
-approximation solution



of the original problem. However, the same approximation also results
in valuable properties for the algorithm: on the one hand they lead to a
simple, fully distributed algorithm and on the other to provable termi-
nation for the algorithm even when cycles are present among the node
preferences (cf lemma 5 in [15]).

Dynamic many-to-many matching: challenges and the AdaptiveLID al-
gorithm In a dynamic setting, where nodes join/leave the network or
change preferences about their neighbors at any time, there is a partial
or full solution that is disturbed by a specific operation. In this case it
is desirable to “repair” the solution instead of recomputing it from the
beginning. It would also be advantageous to limit the repairing in the
neighborhood of the operation, so that far enough nodes would remain
unaffected. Note that the locally heaviest property that we are using here
seems ideal for this purpose: it only makes sense to preserve and use it
further to support dynamicity.

In the dynamic algorithm presented here, all three cases of dynamicity
mentioned above (join/leave/change) are supported and a node is free to
join or depart the network or change its preferences at any time.

– Join: We address the join problem in the common way of having
the new node contact a network node out of bound, get a list of
potential neighbors and connect with them in some arbitrary way,
which is outside the scope of the problem we study here. When the
new node’s neighbors are finalized, it sorts them (e.g. according to its
own metric of preference) into a preference list from the best to the
worst preferred neighbor. Symmetrically, neighboring nodes evaluate
it according to their own criteria and insert it in the appropriate place
in their preference lists.

– Leave: When a node wishes to depart from the network it notifies
its neighbors about its intention and they simply remove it from their
neighborhood and preference lists. Note here that the same result
can be achieved in the case of an unexpected departure (i.e. due to
a crashed node) if nodes search for and remove dead nodes in their
neighborhood at regular intervals. After the departure, the nodes that
were connected with the departed node have now a free slot and re-
sume their regular run of the algorithm.

– Preference change: When a node changes its preferences there is
no change in its neighborhood but its evaluation of neighboring nodes
may change radically: unconnected nodes may be found more prefer-
able than connected ones.



A common thread between these dynamicity cases is that the nodes di-
rectly involved in the operations must recalculate their marginal satis-
factions for their neighbors and exchange them so that their adjacent
edges have the correct weights. Afterwards, they must reevaluate their
connections: if they are not locally heaviest any more, the nodes abandon
the least weighted ones and try to select the locally heaviest. Note here
that this method avoids the recalculation of the solution over the whole
network, instead limiting it in a small neighborhood around the network
area where the dynamic operation took place. An additional benefit is
that the involved nodes maintain their current connections unless proven
to be non-optimal, i.e. they change them only if necessary. Since the
resulting matching is comprised of locally heaviest edges, the previous
approximation ratio and convergence are shown to hold here as well.

The AdaptiveLID algorithm (cf. Algorithm 1 in Appendix for pseu-
docode) uses at each node i five sets (Pi,Ki, Ai, Ri, Bi) and a incoming
message queue queuei, and sends three kinds of messages (PROP,REJ
and WAKE):

– A node i sends PROP messages to propose to its heaviest-weight
neighbors the establishment of a connection with them. If an asked
node also sends a PROP message to node i then the connection is
established (locked): note that this will happen in both endpoints. Set
Pi keeps the neighbors to which node i proposed with a PROP mes-
sage, Ai keeps the neighbors which approached node i with a PROP
message, Ki keeps the locked neighbors, Bi keeps the neighbors that
rejected node i and Ri the neighbors that node i rejected. Sets B∗

i

and A∗
i are copies of sets Bi and Ai respectively that do not con-

tain neighbors of edges heavier than the edge of the worst connected
neighbor.

– A node sends a REJ message when it has locked as many neighbors
as it could. Nodes can send additional PROP messages to available
neighbors if they receive a REJ message. PROP messages are sent to
neighbors in decreasing ranking order and there are at most bi such
unanswered messages originated from i at any time.

– Node i is constantly checking if its PROP messages are addressed
to heaviest-weight neighbors, as ranking can change due to a change
in the network. If it detects a better available node than the cur-
rently proposed ones, it sends a REJ message to the worst connected
neighbor and a PROP to the better candidate. However, if the better
candidate has simultaneously rejected and been rejected by node i,
node i sends only a WAKE message.



4 Analysis

Lemma 1. In a failure free execution, weight updates that are caused
after changes complete in a finite amount of time.1

We define as available with respect to node i, a node j in the neighborhood
of node i that has not been proposed by node i or has rejected node i.

A node j is a locally heaviest node in the neighborhood of node i at
some point in time if there are no available nodes that are endpoints of
heavier edges. Note that when the endpoints of an edge consider simul-
taneously each other locally heaviest, the edge between them is a locally
heaviest edge.

Lemma 2. In a finite amount of time after a change, every node cancels
all proposals towards neighbors that are no longer locally heaviest and is-
sues an equal amount towards available neighbors that are locally heaviest.

Lemma 3. The AdaptiveLID algorithm terminates for every node i ∈
V after the changes complete.

Lemma 4. For every node i, algorithm AdaptiveLID chooses all locally
heaviest edges that are adjacent to it, if there is enough quota bi available,
or otherwise chooses bi of them that are heavier than any unchosen one.

Lemma 5. The AdaptiveLID algorithm when run on a network with
changes produces the same matching with the LID algorithm that is run
on the same network after the changes complete.

From lemma 10 and theorem 3 of [15], we get the following theorem about
the approximation ratio of AdaptiveLID:

Theorem 1. The AdaptiveLID algorithm solves the adaptive b-matching

problem with 1
4

(
1 + 1

bmax

)
-approximation ratio.

5 Experimental study

This section studies the achieved satisfaction and convergence times of the
AdaptiveLID algorithm using random Erdős-Rényi networks [19] with
preferences formed uniformly at random. The choice of random prefer-
ences is only natural since previous research [13,2] showed that a strict
matching solution can not always be found when they are used, and the
measured satisfaction of the unconverged instance can be relatively low.

1 Please find the lemma proofs in the Appendix.



These characteristics make random preferences a challenging test case for
the AdaptiveLID algorithm.

The following experiments were conducted using the PeerSim [20]
platform in a synchronous way2, in order to measure the time needed
by the AdaptiveLID algorithm to converge. For every network used, a
matching was calculated and the following operations performed:

– Joining: A varying amount of new nodes enter the network simulta-
neously and the network is left to reconverge.

– Leaving: A varying amount of existing nodes exit the network simul-
taneously and the network is left to reconverge.

– Preference change: A varying amount of existing nodes change the
ranking of their neighbors in their preference lists simultaneously and
the network is left to reconverge.

– Churn: A varying amount of existing nodes exit and an equal amount
of new nodes enter the network simultaneously. This operation is re-
peated for several rounds and then the network is left to reconverge.

Each of these operations was conducted on networks of size n = 100, 250, 500,
750 and 1000 nodes. For each network size we considered 30 network
instances and the results presented here are mean values over these in-
stances. Also, the amount of affected nodes for each operation varies from
1% to 50% of the network size, in increments of 1%.

5.1 Convergence and reconvergence

The convergence speed for a variety of network sizes can be found in
figure 1 as a mean value of 30 instances for each network size, with the
standard deviation also shown. It is easy to see that convergence of the
AdaptiveLID is sublinear in practice, with networks of size 1000 needing
less than twice the amount of time needed by networks of size 100, and
only slightly higher amount of time than the networks of size 500 and
750.

Likewise, the time needed for reconvergence can be seen in figure 3, for
networks of size 1000 and for the four types of operations under consider-
ation. For the join and leave operations, the time needed for the algorithm
to reconverge is predictably increasing and decreasing respectively when
the amount of affected nodes increases. This happens because the net-
work size is increasing (resp. decreasing) in size (up to 1500 nodes for the

2 i.e. round based, where each node in each round makes a receive-respond-process
step, unless it has nothing to execute.



join operation and 500 nodes for the leave operation) and the algorithm
needs more (resp. less) time to find a solution.

For the preference change and churn operations this looks different:
the network size remains the same either because no node joins or leaves
(preference change case) or the amount of nodes joining and leaving is the
same (churn case). By comparing the appropriate graphs in figure 3 it is
easy to see that, somewhat counterintuitively, it takes progressively more
time for the algorithm to reconverge when more nodes change preferences
but the reconvergence time stays more or less the same even for high
values of churn. Figure 4 shows this phenomenon in more detail for all
network sizes.

The reason behind this behavior is that churn can take better ad-
vantage of the inherent parallelism in the AdaptiveLID algorithm: a
new, joining node that replaces a leaving one starts as an empty slate
and sends an amount of PROP messages equal to the desired number of
connections. On the other hand, a node that changes preferences might
need to repair only some of its connections (which are now suboptimal)
by sending appropriate PROP messages. However, in both cases some
responding nodes might decline, which will lead to additional PROP
messages to be send and so on, until the issuing nodes are satisfied or
no available nodes are left. Comparing the two situations, churn has the
advantage in high values, where more nodes start with no connections
and all possibilities are explored in parallel, over preference change where
more nodes want to repair their connections but other nodes have already
connections that they want to maintain. It could be useful in practical
terms if there was a mechanism able to detect high volume of prefer-
ence changes in the network and enforce a policy of pseudo-churn, with
nodes dropping all connections when changing preferences. However, as
it is shown below, the amount of satisfaction under churn is far less than
the satisfaction under preference change before reconvergence, which is a
significant argument in favor of improving connections (compared to the
option of nodes with changed preferences to leave and come back, thus
causing churn).

5.2 Satisfaction

The mean satisfaction achieved by the AdaptiveLID algorithm for a
variety of network sizes can be found in figure 5. Shown also are the
minimum and maximum satisfaction in the network, while the results
are presented as mean values over 30 network instances along with the
resulting standard deviation.



It is easy to see that the AdaptiveLID algorithm achieves consis-
tently high satisfaction values, which are also increasing as network sizes
increase. Of particular interest is the fact that the minimum satisfaction
in the network is being increased also, meaning that individual nodes
enjoy high levels of satisfaction too, implying a fairness behavior as well.

Even though the reconvergence results showed that the algorithm can
repair efficiently its solution once churn stops, it is interesting to see the
levels of achieved satisfaction when churn is in progress. The relative
satisfaction (to the achieved one before churn starts) under churn can be
found in figure 6: the different graphs from top to bottom correspond to
the relative satisfaction when churn affects 5% to 50% of the network’s
nodes (in steps of 5%), for a network of 100 nodes.

It is obvious that the amount of satisfaction achieved remains fairly
constant during churn and depends greatly on the amount of churn. How-
ever, even though churn is an intense operation, it is possible to retain a
significant percentage of the original satisfaction, even for churn as high
as 50% (i.e. when half of the network is changing at every round).

On the other hand the satisfaction drop is significant compared to the
one caused by preference change. Figure 2 shows the relative satisfaction
for both preference change and churn, right after the change happens, for
various amounts of affected nodes, supporting our argument in favor of
improving connections instead of rebuilding them from the beginning.

6 Conclusions

The adaptive algorithm for distributed matching with preferences pro-
posed in this paper provides a method to form overlays with preferences
with guaranteed satisfaction and convergence, as shown in the analysis.
Besides, its experimental performance study shows even more attractive
properties with respect to the satisfaction it can achieve and the conver-
gence time (and hence overhead) it needs.

To the best of our knowledge it is the first method with guarantees
for this problem. We expect that this contribution will have an inter-
esting impact, since the method can facilitate overlay construction with
guarantees in a wide range of applications, from peer-to-peer resource
sharing, to overlays in “intelligent” transportation systems and adaptive
grid environments.

References

1. Irving, R.W., Scott, S.: The stable fixtures problem - a many-to-many extension
of stable roommates. Discrete Appl. Math. 155(16) (2007) 2118–2129



2. Mathieu, F.: Self-stabilization in preference-based systems. Peer-to-Peer Network-
ing and Applications 1(2) (sept 2008) 104–121

3. Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17
(1965) 449–467

4. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American
Mathematical Monthly 69 (1962) 9–15

5. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms.
MIT Press, Cambridge, MA, USA (1989)

6. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:
SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Dis-
crete algorithms, New York, NY, USA, ACM (2006) 980–989

7. Hoepman, J.H.: Simple distributed weighted matchings. CoRR cs.DC/0410047
(2004)

8. Lotker, Z., Patt-Shamir, B., Rosen, A.: Distributed approximate matching. In:
PODC ’07: Proceedings of the twenty-sixth annual ACM symposium on Principles
of distributed computing, New York, NY, USA, ACM (2007) 167–174

9. Wattenhofer, M., Wattenhofer, R.: Distributed weighted matching. In: 18th An-
nual Conference on Distributed Computing (DISC). (2004) 335–348

10. Manne, F., Mjelde, M.: A self-stabilizing weighted matching algorithm. In Ma-
suzawa, T., Tixeuil, S., eds.: Stabilization, Safety, and Security of Distributed
Systems. Volume 4838 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg (2007) 383–393

11. Koufogiannakis, C., Young, N.E.: Distributed fractional packing and maximum
weighted b-matching via tail-recursive duality. In: Proceedings of the 23rd in-
ternational conference on Distributed computing, Elche, Spain, Springer-Verlag
(2009) 221–238

12. Cechlárová, K., Fleiner, T.: On a generalization of the stable roommates problem.
ACM Trans. Algorithms 1(1) (2005) 143–156

13. Gai, A.T., Lebedev, D., Mathieu, F., de Montgolfier, F., Reynier, J., Viennot,
L.: Acyclic preference systems in p2p networks. In: Proceedings of the 13th
International Parallel Processing Conference (Euro-Par), Rennes, France (2007)
825–834

14. Lee, H.: Online stable matching as a means of allocating distributed resources.
Journal of Systems Architecture 45(15) (1999) 1345–1355

15. Georgiadis, G., Papatriantafilou, M.: Overlays with preferences: Approximation
algorithms for matching with preference lists. In: Proceedings of 24th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS’10), Atlanta,
GA, IEEE Computer Society Press (April 2010)

16. Lotker, Z., Patt-Shamir, B., Pettie, S.: Improved distributed approximate match-
ing. In: SPAA ’08: Proceedings of the twentieth annual symposium on Parallelism
in algorithms and architectures, New York, NY, USA, ACM (2008) 129–136

17. Preis, R.: Linear time 1/2-approximation algorithm for maximum weighted match-
ing in general graphs. STACS 99 (1999) 259–269

18. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Transactions
on Programming Languages and Systems 6(4) (1984) 632–646

19. Bollobás, B.: Random Graphs. Academic Press, New York (1985)
20. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator

http://peersim.sf.net.



7 Appendix

7.1 Proofs

Lemma 6. In a failure free execution, weight updates that are caused
after changes complete in a finite amount of time.

Proof. When a node joins (leaves) the network, it gets inserted to (deleted
from) neighboring nodes’ preference lists, causing changes that need to be
communicated to their own neighbors. The same happens to the node it-
self when it changes its own preference list. Therefore every change causes
a weight update that propagates at maximum distance 2 and to a bounded
amount of nodes (bounded by the size of distance 2 neighborhood from
the originating node). Note that the neighbor’s neighbors (or the imme-
diate neighbors in the case of simple preference change) accept the weight
update passively and do not propagate it further. Since we assumed that
nodes do not fail and messages do not get lost, it is evident that all nodes
are fully updated in a finite amount of time after the change.

Lemma 7. In a finite amount of time after a change, every node cancels
all proposals towards neighbors that are no longer locally heaviest and is-
sues an equal amount towards available neighbors that are locally heaviest.

Proof. Every change triggers weight updates at distance 1 (nodes that the
joining/leaving node connects to/disconnects from or direct neighbors of
a node that changes preferences) and possibly at distance 2 (neighbor’s
neighbors of a joining/leaving node). By lemma 6 the weight updates com-
plete in a finite amount of time. When procedure Processing executes next
in any node i at distance 1 or 2 from the change, it will repeatedly examine
nodes that are either available or have simultaneously rejected and been
rejected by node i, as long as they are heavier than the proposed node
of lowest weight. Every time it encounters a node of the latter category
it sends a WAKE message, prompting the node to revoke its rejection,
whereas every time it encounters a node of the former category it sends
a PROP message, preceded by a REJ to the proposed node of lowest
weight 3. In any case, at the end of Processing’s execution all proposals
from node i to its neighbors that are no longer locally heaviest are can-
celed and complementary proposals are sent to available neighbors that
are locally heaviest, and the same is true for every node in the network.

3 Note that whether a node is considered locally heaviest or not may change during a
single execution of procedure Processing.



Lemma 8. The AdaptiveLID algorithm terminates for every node i ∈
V after the changes complete.

Proof. For the static case, lemma 5 of [15] applies and the algorithm ter-
minates. For the dynamic case, a change may cause some proposals to
be canceled and reissued on nodes at distance 1 or 2 (lemma 7). The
only cases where the algorithm may not terminate on these nodes is
when they wait indefinitely for a neighbor’s answer or their preference
list “oscillates”, with proposals being canceled and reissued on the same
neighbors in an alternatingly way over time. By lemma 6 we can ignore
weight updates since they complete in a finite amount of time.

For the first case, a node can wait indefinitely only if a communica-
tion cycle exists: each node ni mod k in a group of nodes {n0, n1, . . . , nk−1}
sends a PROP message to node n(i+1) mod k and awaits for an answer in
order to reply back to node n(i−1) mod k, that is w(ni mod k, n(i+1) mod k) >
w(ni mod k, n(i−1) mod k). By adding all such equations on the cycle and
using properties of the modulo operator we get

k−1∑
i=0

w
(
ni mod k, n(i+1) mod k

)
>

k−1∑
i=0

w
(
ni mod k, n(i−1) mod k

)
=

=
k−1∑
i=0

w
(
n(i+1) mod k, ni mod k

)
=

=

k−1∑
i=0

w
(
ni mod k, n(i+1) mod k

)
(5)

which is a contradiction.

For the second case, by lemma 7.1 and since we assumed that the
changes are completed, we have that any potential canceling and reissuing
of proposals finishes in a finite amount of time and therefore no oscillations
occur.

Lemma 9. For every node i, algorithm AdaptiveLID chooses all locally
heaviest edges that are adjacent to it, if there is enough quota bi available,
or otherwise chooses bi of them that are heavier than any unchosen one.

Proof. For a static network, lemma 4 of [15] is applicable. For a dynamic
network, by lemma 7, after a finite amount of time every node i cancels
all proposals to neighbors which are no longer locally heaviest after a



change and proposes to locally heaviest ones. Some of these proposals
will result in a match if the receiving node also considers the originating
node locally heaviest. The same will happen to all proposed nodes, as
long as the originating and receiving nodes have available quotas. If some
node lacks in available quota, we know that its matched incident edges are
heavier than its unmatched locally heaviest, since by lemma 7 it would
have to cancel the appropriate proposals and issue new ones towards
locally heaviest neighbors.

Lemma 10. The AdaptiveLID algorithm when run on a network with
changes produces the same matching with the LID algorithm that is run
on the same network after the changes complete.

Proof. By lemma 7.1 we get that theAdaptiveLID algorithm terminates
for every node and by lemma 7.1 we know that at termination it has
chosen only locally heaviest edges of maximum weight. Since by lemma 4
of [15] the static algorithm also selects locally heaviest edges of maximum
weight at termination, it follows that the two algorithms make the same
choices for the same networks.



7.2 Pseudocode of AdaptiveLID algorithm

Procedure ReceiveMessages

begin
for msg ∈ queuei do

if msg.type = PROP then
Ai ← Ai ∪msg.sender
Bi ← Bi −msg.sender

if msg.type = REJ then
Bi ← Bi ∪msg.sender
Ai ← Ai −msg.sender
Ki ← Ki −msg.sender
Pi ← Pi −msg.sender

if msg.type = WAKE then
Bi ← Bi −msg.sender

Procedure SendMessages

begin
while (|Pi| < bi) ∧ (|Γi − Pi − (Bi −Ri)| ̸= 0) do

find heaviest edge neighbor c that belongs in

(Γi − Pi − (Bi −Ri))
if c ̸= null then

if c ∈ Bi then
send a WAKE message to c
Ri ← Ri − c

else
send a PROP message to c
Pi ← Pi ∪ c
Ri ← Ri − c



Procedure Processing

begin
Ti ← (Pi −Ki) ∩Ai

if |Ti| ̸= 0 then
Ai ← Ai − Ti

Ki ← Ki ∩ Ti

match node i to all nodes in Ti

if (|Γi − Pi − (Bi −Ri)| ≠ 0) ∧ (|Pi| ̸= 0) ∧ (|Ki| ̸= 0) then

find

{
l : w (l, i) = min

j∈Pi

w (j, i)

}
find

{
h : w (h, i) = max

j∈(Γi−Pi−(Bi−Ri))
w (j, i)

}
while (l ̸= null) ∧ (h ̸= null) do

if w (h, i) > w (l, i) then
if h ∈ Bi then

send a WAKE message to h
Ri ← Ri − h

else
send a REJ message to l
Ai ← Ai − l
Ri ← Ri ∩ l
Pi ← Pi − l
Ki ← Ki − l
send a PROP message to h
Pi ← Pi ∩ h
Ri ← Ri − h

find

{
l : w (l, i) = min

j∈Pi

w (j, i)

}
find

{
h : w (h, i) = max

j∈(Γi−Pi−(Bi−Ri))
w (j, i)

}
else if Pi = Ki then

for j ∈ (Γi −Ri −B∗
i +A∗

i − Pi) do
send a REJ message to j
Ai ← Ai − lj
Ri ← Ri ∩ j

break

else
break

unmatch node i from all nodes in Bi



Algorithm 1: AdaptiveLID()

begin
ReceiveMessages()

SendMessages()

Processing()

7.3 Figures

100 250 500 750 1000
6

7

8

9

10

11

12

13

14

15

Fig. 1. Convergence speed per network size

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Satisfaction right after preference change or churn per amount of
affected nodes



0 10 20 30 40 50 60
8

10

12

14

16

18

20

0 10 20 30 40 50 60
7

8

9

10

11

12

13

14

15

16

0 10 20 30 40 50 60
9

10

11

12

13

14

15

16

17

18

0 10 20 30 40 50 60
11

12

13

14

15

16

17

18

Fig. 3. Reconvergence speed per operation, n = 1000

0 10 20 30 40 50
2

4

6

8

10

12

14

16

0 10 20 30 40 50
4

6

8

10

12

14

16

18

Fig. 4. Reconvergence speed for preference change and churn



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

100 250 500 750 1000

Fig. 5. Mean satisfaction per network size

0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6. Satisfaction while churn is in progress, affecting 5% to 50% of the
network’s nodes (in steps of 5%, top to bottom)


