
Lecture 9 of TDA384/DIT391
Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider
Chalmers University of Technology | University of Gothenburg

Parallelizing computations

Today’smenu

• Challenges to parallelization

• Fork/join parallelism

• Pools and work stealing

Today’s menu

2

Concurrent programming introduces:

+ the potential for parallel execution (faster, better resource usage)
− the risk of race conditions (incorrect, unpredictable computations)

The main challenge of concurrent programming is thus introducing
parallelism without affecting correctness

Parallelization: risks and opportunities

3

In this class, we explore several general approaches to parallelizing computations in multi-
processor systems

A task (F, D) consists in computing the result
F (D) of applying function F to input data D

A parallelization of (F, D) is a collection (F1, D1), (F2, D2), . . . of tasks such that
F (D) equals the composition of F1(D1), F2(D2),

We first cast the problems and solutions using Erlang’s notation and models: message-
passing between processes (easier to prototype implementations of the solutions)

Then, we apply the same techniques to shared-memory models such as Java threads

General approaches to parallelization

4

Challenges to Parallelization

5

A strategy to parallelize a task (F, D) should be:

• correct: the overall result of the parallelization is F (D)
• efficient: the total resources (time and memory) used to compute the

parallelization are less than those necessary to compute (F, D) sequentially

A number of factors challenge designing correct and efficient parallelizations:

• sequential dependencies
• synchronization costs
• spawning costs
• error proneness and composability

Challenges to parallelization

6

• Some steps in a task computation depend on the result of other steps; this creates
sequential dependencies where one task must wait for another task to run

• Sequential dependencies limit the amount of parallelism that can be achieved
For example, to compute the sum 1 + 2 + · · · + 8 we could split into:

a. computing 1 + 2, 3 + 4, 5 + 6, 7 + 8
b. computing (1 + 2) + (3 + 4) and (5 + 6) + (7 + 8)
c. computing ((1 + 2) + (3 + 4)) + ((5 + 6) + (7 + 8))

The computations in each group depend on the computations in the previous group,
and hence the corresponding tasks must execute after the latter have completed
The synchronization problems (producer-consumer, dining philosophers, etc.) we
discussed capture kinds of sequential dependencies that may occur when parallelizing

Sequential dependencies

7

We represent tasks as the nodes in a graph, with arrows connecting a task to the ones it
depends on

The graph must be acyclic for the decomposition to be executable

Dependency graph

8

+

+

1 2

+

3 4

+

+

5 6

+

7 8

+ It works well here:
there is symmetry
given that ”+” is
associative and
commutative

The time to compute a node is the maximum of the times to compute its children plus
the time computing the node itself
Assuming all operations take a similar time, the longest path from the root to a leaf is
proportional to the optimal running time with parallelization (ignoring overhead and assuming
all processes can run in parallel)

Dependency graph

+

+

1 2

+

3 4

+

+

5 6

+

7 8

+

9

Digression: some latency numbers

Chart by ayshen, based on Peter Norvig’s “Teach Yourself Programming in Ten Years”

10

More numbers at https://gist.github.com/hellerbarde/2843375

Accessing an
instruction in L1:
0.5 ns

If instruction in L2
(eg, different chip):
14 times slower

To lock/unlock
a mutex: 25 ns

Send 1 Kb data on 1Gbps network
takes 10 micro sec (100x more than
accessing main memory) Accessing main

memory: 100 ns

Read 1 MB from an SSD
disk: 1 ms (4 times slower
than from main memory)

Read 1 MB from disk: 20x
slower than from SSD disk

Read 1 MB from main
memory: 250 micro sec

https://gist.github.com/ayshen
http://norvig.com/21-days.html
https://gist.github.com/hellerbarde/2843375

Synchronization is required to preserve correctness, but it also introduces overhead that add
to the overall cost of parallelization

In shared-memory concurrency:

• synchronization is based on locking
• locking synchronizes data from cache to main memory, which may involve a 100x overhead
• other costs associated with locking may include context switching (wait/signal) and system calls

(mutual exclusion primitives)

In message-passing concurrency:

• synchronization is based on messages
• exchanging small messages is efficient, but sending around large data is quite expensive (still

goes through main memory)
• other costs associated with message passing may include extra acknowledgment messages

and mailbox management (removing unprocessed messages)

Synchronization costs

11

https://gist.github.com/jboner/2841832

Creating a new process is generally expensive compared to sequential
function calls within the same process, since it involves:

• reserving memory
• registering the new process with runtime system
• setting up the process’s local memory (stack and mailbox)

Even if process creation is increasingly optimized, the cost of spawning
should be weighted against the speed up that can be obtained by
additional parallelism

In particular, when the processes become way more than the available
processors, there will be diminishing returns with more spawning

Spawning costs

12

Synchronization is prone to errors such as data races, deadlocks, and starvation

Message-based synchronization may improve the situation, but it is far for being
straightforward and problem free

From the point of view of software construction, the lack of composability is a challenge
that prevents us from developing parallelization strategies that are generally applicable

Error proneness and composability

13

Consider an Account class with methods deposit and withdraw that execute atomically
What happens if we combine the two methods to implement a transfer operation?

Method transfer does not execute uninterruptedly: other threads can execute between the call to
withdraw and the call to deposit, possibly preventing the transfer from succeeding
(For example, Account other may be closed; or the total balance temporarily looks lower than it is!)

Error proneness and composability

class TransferAccount

extends Account {

// transfer from ‘this’ to ‘other’

void transfer(int amount, Account other)

{ this.withdraw(amount);

other.deposit(amount); }

}

class Account {

synchronized void

deposit(int amount)

{ balance += amount; }

synchronized void

withdraw(int amount)

{ balance -= amount; }

}
execute uninterruptedly

14

None of the natural solutions to composing is fully satisfactory:

• let clients of Account do the locking where needed –error proneness, revealing
implementation details, scalability

• recursive locking – risk of deadlock, performance overhead

Even if there is no locking with message passing, we still encounter similar problems –
synchronizing the effects of messaging two independent processes

Composability
class Account {

void // thread unsafe!

deposit(int amount)

{ balance += amount; }

void // thread unsafe!

withdraw(int amount)

{ balance -= amount; }

}

class TransferAccount

extends Account {

// transfer from ‘this’ to ‘other’

synchronized void

transfer(int amount, Account other)

{ this.withdraw(amount);

other.deposit(amount); }

}

15

A number of factors challenge designing correct and efficient parallelizations:

• sequential dependencies
• synchronization costs
• spawning costs
• error proneness and composability

In the rest of this class, we present:

• fork/join parallelism techniques, which help naturally capture sequential dependencies

• pools, which help curb the spawning costs

In future lectures we will address the remaining problems of reducing synchronization costs and
achieving composability

Sequential dependencies and spawning costs

16

Fork/join parallelism

17

A server’s event loop offers clear opportunities for parallelism:

• each request sent to the server is independent of the others
• instead of serving requests sequentially, a server spawns a new process for every request
• a child processes computes, sends response to the client, and terminates

Parallel servers

loop(State, Operation) ->

receive

{request, From, Ref, Data} ->

From ! {reply, Ref,

Operation(Data)},

loop(new_state(State));

% other operations...

end.

ploop(State, Operation) ->

receive

{request, From, Ref, Data} ->

spawn(fun ()->

Result = Operation(Data),

From ! {reply, Ref, Result}

end),

loop(new_state(State));

% other operations...

end.
18

The structure of recursive functions lends itself to parallelization according to the
structure of recursion

Recursion is easier to parallelize when it is expressed in a mostly side-effect free
language like sequential Erlang:

• spawn a process for every recursive call
• no side effects means no hidden dependencies – a process’ results only depends on

its explicit input

Parallel recursion

19

Parallel recursion: merge sort
merge_sort(List)

when length(List) =< 1 -> List;

merge_sort(List) ->

Mid = length(List) div 2,

% split in two halves

{L, R} = lists:split(Mid, List),

% recursively sort each half

SL = merge_sort(L),

SR = merge_sort(R),

% merge sorted halves

merge(SL, SR).

pmerge_sort(List)

when length(List) =< 1 -> List;

pmerge_sort(List) ->

Mid = length(List) div 2,

{L, R} = lists:split(Mid, List),

Pid = self(),

spawn(fun ()-> Pid !

{sl, pmerge_sort(L)} end),

spawn(fun ()-> Pid !

{sr, pmerge_sort(R)} end),

receive {sl, SL} -> sl end,

receive {sr, SR} -> sr end,

merge(SL, SR).

20

sl: PId comp. left part
sr: Pid comp. right part

SL: result comp. left part
SR: result comp. right part

cannot be computed inside
closure in spawn: must be
the parent’s pid

This recursive subdivision of a task that assigns new processes to smaller tasks is
called fork/join parallelism:

• forking: spawning child processes and assigning them smaller tasks
• joining: waiting for the child processes to complete and combining their results

The order in which we wait at a join node for forked children does not affect the total
waiting time: if we wait for a slower process first, we won’t wait for the others later

Fork/join parallelism

fork

fork
done

join

join

start end

done

done

21

Function map’s recursive structure lends itself to parallelization
Parallel map

% apply F to all

% elements of list

map(_, []) -> [];

map(F, [H|T]) -> [F(H)|map(F,T)].

% parallel map

pmap(F, L) ->

Me = self(), % my pid

Ref = make_ref(),

% for every E in L:

Children = map(fun(E) ->

% spawn a process:

spawn(fun() ->

% sending Me result of F(E)

Me ! {self(), Ref, F(E)}

end) end, L),

% collect and return results
gather(Children, Ref).

% wait for all Children

% and collect results in order

gather(Children, Ref) ->

[receive {Child, Ref, Res} -> Res end

|| Child <- Children].

22

list comprehension ensures results are collected in order

The parallel version of reduce (aka foldr) uses a halving strategy similar to merge sort

Parallel reduce

23

reduce(_,A,[]) -> A;

reduce(F,A,[H|T]) -> F(H,reduce(F,A,T)).

preduce(F,A,L) equals reduce(F,A,L) if:
• Function F is associative (preduce does not apply F

right-to-left)

• For every list element E: F(E,A)= F(A,E) = E
(preduce reduces A in every base case, not just once)

(The data is a monoid with F as the binary operation and A
its identity element)

preduce(_, A, []) -> A;

preduce(F, A, [E]) -> F(A, E);

preduce(F, A, List) ->

Mid = length(List) div 2,
{L, R} = lists:split(Mid, List),

Me = self(), % L ++ R =:= Listn

Lp = spawn(fun() -> % on left half
Me ! {self(), preduce(F, A, L)} end),

Rp = spawn(fun() -> % on right half

Me ! {self(), preduce(F, A, R)} end),

% combine results of left, right half

F(receive {Lp, Lr} -> Lr end,

receive {Rp, Rr} -> Rr end).

It works with e.g. addition but not division
Lp: PId comp. left part
Rp: Pid comp. right part

Lr: result comp. left part
Rr: result comp. right part

MapReduce is a programming model based on parallel distributed variants of the
primitive operations map and reduce

MapReduce is a somewhat more general model, since it may produce a list of values
from a list of key/value pairs, but the underlying ideas are the same

MapReduce implementations typically work on very large, highly parallel,
distributed databases or filesystems.

• The original MapReduce implementation was proprietary developed at Google
• Apache Hadoop offers a widely-used open-source Java implementation of

MapReduce

MapReduce

24

Java package java.util.concurrent includes a library for fork/join parallelism

To implement a method T m() using fork/join parallelism:

RecursiveAction and RecursiveTask<T> provide methods:
• fork(): schedule for asynchronous parallel execution
• T join(): waits for termination and returns result if T != void

• T invoke(): arranges synchronous parallel execution (fork and join) and returns result if T != void

• invokeAll(Collection<T> tasks): invoke all tasks in collection (fork all and join all), and return
collection of results

Fork/join parallelism in Java

If m is a procedure (T is void):
• create a class that inherits from
RecursiveAction

• override void compute() with m’s computation

If m is a function:
• create a class that inherits from
RecursiveTask<T>

• override T compute() with m’s computation

25

public class PMergeSort

extends RecursiveAction {

// values to be sorted:

private Integer[] data;

// to be sorted: data[low..high):

private int low, high;

Parallel merge sort using fork/join

26

@Override

protected void compute() {

if (high - low <= 1) return; // size<=1: sorted already

int mid = low + (high - low)/2; // mid point

// left and right halves:

PMergeSort left = new PMergeSort(data, low, mid);

PMergeSort right = new PMergeSort(data, mid, high);

left.fork(); // fork thread working on left

right.fork(); // fork thread working on right

left.join(); // wait for sorted left half

right.join(); // wait for sorted right half

merge(mid); // merge halves

}

The top computation of a fork/join task is started by a pool object:

// to sort array ‘numbers’ using PMergeSort:

RecursiveAction sorter = new PMergeSort(numbers, 0, numbers.length);

// schedule ‘sorter’ for execution, and wait for computation to finish:

ForkJoinPool.commonPool().invoke(sorter);

// now ‘numbers’ is sorted

The pool takes care of efficiently dispatching work to threads

The framework introduces a layer of abstraction between computational tasks and
actual running threads that execute the tasks

This way, the fork/join model simplifies parallelizing computations, since we can focus
on how to split data among tasks in a way that avoids race conditions

Running a fork/join task

27

ForkJoinPool makes top invocation:
• it launchs a pool object, a

synchronous parallel execution of all
threads which will fork and join

• it terminates once all the threads
join and terminate

There are a number of things that should be improved in the parallel merge sort
example:

Revisiting parallel merge sort

protected void compute() {

if (high - low <= 1) return; // size <= 1: sorted already

int mid = low + (high - low)/2; // mid point
// left and right halves:
PMergeSort left = new PMergeSort(data, low, mid);

PMergeSort right = new PMergeSort(data, mid, high);

left.fork(); // fork thread working on left
right.fork(); // fork thread working on right
left.join(); // wait for sorted left half
right.join(); // wait for sorted right half
merge(mid); // merge halves

}

granularity too small!

28

the forking thread is idle!

In order to obtain good performance using fork/join parallelism:

• After forking children tasks, keep some work for the parent task before it joins the
children

• For the same reason, use invoke and invokeAllonly at the top level as a norm
• Perform small enough tasks sequentially in the parent task, and fork children tasks

only when there is a substantial chunk of work left
• Java’s fork/join framework recommends that each task be assigned between 100 and

10’000 basic computational steps
• Make sure different tasks can proceed independently – minimize data dependencies

The advantages of parallelism may only be visible with several physical processors, and
on very large inputs

(The Java runtime may need to warm up before it optimizes the parallel code more aggressively)

Fork/join good practices

29/43

29

To take advantage of the number of available cores (in Java):

“In Java, the fork/join framework provides support for parallel
programming by splitting up a task into smaller tasks to process them

using the available CPU cores.

When you execute ForkJoinPool() it creates an instance with a number of
threads equal to the number returned by the method

Runtime.getRuntime().availableProcessors(), using defaults for all the
other parameters.”

Fork/join good practices

30/43

30

(Taken from https://www.pluralsight.com/guides/introduction-to-the-fork-join-framework)

https://www.pluralsight.com/guides/introduction-to-the-fork-join-framework

Revisited parallel merge sort using fork/join

protected void compute() {

if (high - low <= THRESHOLD)

sequential_sort(data, low, high);

else {

int mid = low + (high - low)/2; // mid point
// left and right halves
PMergeSort left = new PMergeSort(data, low, mid);

PMergeSort right = new PMergeSort(data, mid, high);

left.fork(); // fork thread working on left
right.compute(); // continue work on right
left.join(); // when done, wait for sorted left half
merge(mid); // merge halves

}

choose experimentally (at least 1000)

before joining, do more work in current task

31

Pools and work stealing

32

Parallelizing by following the recursive structure of a task is simple and
appealing
However, the potential performance gains should be weighted against the
overhead of creating and running many processes

How many processes is lagom?

• Process creation in Erlang is lightweight:
1 GB of memory fits about 432’000
processes, so one million processes is
quite feasible

33

Parallelizing by following the recursive structure of a task is simple and
appealing
However, the potential performance gains should be weighted against the
overhead of creating and running many processes

How many processes is lagom?

• There are still limits to how many processes
fit in memory

• Besides, even if we have enough memory,
more processes don’t improve performance
if their number greatly exceeds the number
of available physical processors

34

Remember Amdahl’s law

Process pools are a technique to address the problem of using an appropriate
number of processes
A pool creates a number of worker processes upon initialization
The number of workers is chosen according to the actual available resources to
run them in parallel – a detail which pool users need not know about:

• As long as more work is available, the pool deals a work assignment to
a worker that is available

• The pool collects the results of the workers’ computations
• When all work is completed, the pool terminates and returns the overall result

This kind of pool is called a dealing pool: it actively deals work to workers

Workers and pools

35

Workers are servers that run as long as the pool that created them does
A worker can be in one of two states:

• idle: waiting for work assignments from the pool
• busy: computing a work assignment

Workers

36

% create worker for ‘Pool’ computing ‘Function’

init_worker(Pool, Function) ->

spawn(fun ()-> worker(Pool, Function) end).

worker(Pool, Function) ->

receive {Pool, Data} -> % assignment from pool

Result = Function(Data), % compute work

Pool ! {self(), Result}, % send result to pool

worker(Pool, Function) % back to idle

end.

As soon as a worker
completes its work
assignments, it sends the
result to the pool and
goes back to being idle

A pool keeps track of:

• the remaining work – not assigned yet
• the busy workers
• the idle workers

-record(pool, {work, busy, idle}).

The pool also stores:

• a split function, used to extract a single work item
• a join function, used to combine partial results
• the overall result of the computation that is underway

pool(Pool#pool, Split, Join, Result) -> todo.

Pool state

state of record type pool
37

The pool terminates and returns the result of the computation when there are no
pending work items, and all workers are idle (thus all work has been done)

% work completed, no busy workers: return result

pool(#pool{work = [], busy = []}, _Split, _Join, Result) -> Result;

Pool termination

38

As long as there is some pending work and some idle workers, the pool deals work
to some of those idle workers

% work pending, some idle workers: assign work
pool(Pool = #pool{work = Work = [_|_], busy = Busy, idle = [Worker|Idle]},

Split, Join, Result) ->

{Chunk, Remaining} = Split(Work), % split pending work

Worker ! {self(), Chunk}, % send chunk to worker

pool(Pool#pool{work = Remaining, busy = [Worker|Busy], idle = Idle},

Split, Join, Result);

Using a function Split provides flexibility in splitting work intochunks

Dealing work

% matches if Work not empty

39

When there are no pending work items or all workers are busy, the pool can only wait
for workers to send back results

% Work completed or no idle workers: wait for results

pool(Pool = #pool{busy = Busy, idle = Idle}, Split, Join, Result) ->

% get result from worker

receive {Worker, PartialResult} -> ok end,

% Join worker’s result and current result:

NewResult = Join(PartialResult, Result),

pool(Pool#pool{busy = lists:delete(Worker, Busy),idle = Idle ++ [Worker]},
Split, Join, NewResult).

Note that the condition “no pending work or all workers busy” is implicit because this clause
comes last in the definition of pool

Collecting results

40

Initializing a pool requires a function to be computed, a workload, split and join
functions, an initial value and a number of worker threads
init_pool(Function, Work, Split, Join, Initial, N) ->

Pool = self(),

% spawn N workers for the same pool:

Workers = [init_worker(Pool, Function) || _ <- lists:seq(1, N)],

[link(W) || W <- Workers], % link workers to pool

% initially all work is pending, all workers are idle:

pool(#pool{work = Work, busy = [], idle = Workers}, Split, Join, Initial).

The function link ensures that the worker processes are terminated as soon as the
process running the pool does
In practice we would set N to an optimal number based on the available resources, and
export init_pool working with that number

Pool creation

41

We can define a parallel version of map using a pool:

pmap(F, L, N) -> init_pool(F, % function to be mapped

L, % workload: list to be mapped

fun ([H|T]) -> {H,T} end, % split: take first element

fun (R,Res) -> [R|Res] end, % join: cons with list

[], % initial value

N % number of workers

).

Note that the order of the results may change from run to run
It is possible to restore the original order by using a more complex join function

Parallel map with workers

42

map: apply function F to
all elements in list L
(independently)

We can define a parallel version of reduce using apool:

preduce(F, I, L, N) ->

init_pool(fun ({X,Y}) -> F(X,Y) end, % so that a chunk is a pair
L, % workload: list to be reduced
fun (W) -> chunk_two(I,W) end, % split: take first two elements
F, % join: folding function!
I, % initial value

N). % #of workers

chunk_two(_, [Fst|[Snd|R]]) -> {{Fst,Snd}, R};

chunk_two(I, [Fst|R]) -> {{Fst,I}, R}.

This works correctly under the same conditions as the direct recursive version of preduce shown
before: F should be associative, and I should be a neutral element under F
The syntax is a bit clunky, but the basic idea is that preduce assigns to each worker the reduction of two
consecutive input elements

Parallel reduce with workers

43

reduce: apply function F
to all elements in list L
(right to left starting with I)

In our version of preduce using a dealing pool, a lot of reduction work is actually done
by the pool process when executing join for each result
In the dependency graph, the bottom level is computed by the workers; the upper
levels are computed by the pool while joining

Joining is working too

F

F

v1 v2

F

v3 v4

F

F

v5 v6

F

v7 v8

F

44

The dealing process pool we have designed works well if joining is a lightweight
operation compared to computing the work function
A more flexible solution subdivides work in tasks: Each task consists of a function to
be applied to a list of data

-record(task, {function, data}).

• The split function extracts a smaller task from a bigger one
• The join function creates a task consisting of computing the join

This approach: the pool can delegate joining to the workers or do it directly if little work

By creating suitable join and split functions we can make a better usage of workers and
achieve a better parallelization
We call this kind of pool recursive (dealing) pool, because it may recursively generate
new work while combining intermediate results

Recursive dealing pools

45

Dealing pools work well if:
• the workload can be split in even chunks, and
• the workload does not change over time (for example if users send new

tasks or cancel tasks dynamically)

Under these conditions, the workload is balanced evenly between workers, so
as to maximize the amount of parallel computation
In realistic applications, however, these conditions are not met:

• it may be hard to predict reliably which tasks take more time to compute the
workload is highly dynamic

Stealing pools use a different approach to allocating tasks to workers that better
addresses these challenging conditions

From dealing to stealing

46

A stealing pool associates a queue to every worker process
The pool distributes new tasks by adding them to the workers’ queues
When a worker becomes idle:
• first, it gets the next task from its own queue
• if its queue is empty, it can directly steal tasks from the queue of another

worker that is currently busy

With this approach, workers adjust dynamically to the current working conditions
without requiring a supervisor that can reliably predict the workload required by
each task

With stealing, the pool may even send all tasks to one default thread, letting other
idle threads steal directly from it, simplifying the pool and reducing the
synchronization costs it incurs

Work stealing

47

Outline of the algorithm
for work stealing

It assumes the queue
array queue can be
accessed by concurrent
threads without race
conditions

Work stealing algorithm

48

public class WorkStealingThread

{ Queue [] queue; // queues of all worker threads

public void run() {

{ int me = ThreadID.get(); // my thread id

while (true) {

for (Task task: queue[me]) // run all tasks in my queue

task.run();

// now my queue is empty: select another random thread

int victim = random.nextInt(queue.length);

// try to take a task out of the victim’s queue

Task stolen = queue[victim].pop();

// if the victim’s queue was not empty, run the stolen task

if (stolen != null) stolen.run();

} } }

Java offers efficient implementations of thread pools in package java.util.concurrent

The interface ExecutorService provides:

• void execute(Runnable thread): schedule thread for execution
• Future submit(Runnable thread): schedule thread for execution, and return a
Future object (to cancel the execution, or wait for termination)

Implementations of ExecutorService with different characteristics can also be
obtained by factory methods of class Executors:

• CachedThreadPool: thread pool of dynamically variable size
• WorkStealingPool: thread pool using work stealing
• ForkJoinPool: work-stealing pool for running fork/join tasks

Thread pools in Java

49

Thread pools in Java: example
Without thread pools:
Counter counter = new Counter();

// threads t and u

Thread t = new Thread(counter);

Thread u = new Thread(counter);

t.start(); // increment once

u.start(); // increment twice

try { // wait for termination

t.join(); u.join();
}

catch (InterruptedException e)

{

System.out.println("Int!");

}

With thread pools:
Counter counter = new Counter();

// threads t and u

Thread t = new Thread(counter);

Thread u = new Thread(counter);

ExecutorService pool = Executors.newWorkStealingPool();

// schedule t and u for execution

Future<?> ft = pool.submit(t);

Future<?> fu = pool.submit(u);

try {

ft.get(); fu.get();
}

catch (InterruptedException | ExecutionException e){

System.out.println("Int!");

}

50

we use “?” since we are not
interested in the result but
use the future just for the
sake of cancelling the task

“A Future represents the result of an asynchronous computation.
Methods are provided to check if the computation is complete, to wait for its completion,

and to retrieve the result of the computation.
The result can only be retrieved using method get when the computation has completed,

blocking if necessary until it is ready.
Cancellation is performed by the cancel method.

Additional methods are provided to determine if the task completed normally or was
cancelled.

Once a computation has completed, the computation cannot be cancelled.
If you would like to use a Future for the sake of cancellability but not provide a usable
result, you can declare types of the form Future<?> and return null as a result of the

underlying task.”

Thread pools in Java

51

From the Java documentation about “public interface Future<V>”

Erlang provides some load distribution services in the system module
pool

These are aimed at distributing the load between different nodes, each a
full-fledged collection of processes

Process pools in Erlang

52

53

