
Lecture 6 of TDA384/DIT391
Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider
Chalmers University of Technology | University of Gothenburg

Functional Programming and
Erlang

• What is Erlang?
• Types
• Expressions and patterns
• Function definitions
• Recursion
• Impure and higher-order functions

Today's menu

2

Don't forget

3

(http://learnyousomeerlang.com/)

http://learnyousomeerlang.com/

What is Erlang?

4

Erlang combines a functional language with message-passing features:

• The functional part is sequential, and is used to define the behavior of processes

• The message-passing part is highly concurrent: it implements the actor model, where
actors are Erlang processes

This lecture covers the functional/sequential part of Erlang

What is Erlang?

5

Erlang: A minimal history

6

1973 Hewitt and others develop the actor model – a formal
model of concurrent computation

1985 Agha further refines the actor model

Mid 1980s Armstrong and others at Ericsson prototype the first
version of Erlang (based on the actor model)

Late 1980s Erlang’s implementation becomes efficient; Erlang code
is used in production at Ericsson

1998 Ericsson bans Erlang, which becomes open-source

Late 2000s Erlang and the actor model make a come-back in
mainstream programming

Erlang has made a significant impact in the practice of concurrent programming by
making the formal actor model applicable to real-world scenarios

• Initially, Erlang was mainly used for telecommuncation software:
• Ericsson’s AXD301 switch – includes over one million lines of Erlang code;

achieves “nine 9s” availability (99.9999999%)
• Cellular communication infrastructure (services such as SMSs)

• Recently, it has been rediscovered for Internet communication apps:
• WhatsApp’s communication services are written in Erlang
• Facebook Chat (in the past)

Erlang in the real world

7

Why Erlang?

8

We’ve faced many challenges in meeting the ever-growing demand for [the
WhatsApp] messaging services, but [...] Erlang continues to prove its capability as a
versatile, reliable, high-performance platform.

Rick Reed, 2014 - That’s ‘Billion’ with a ‘B’: Scaling to the next level at WhatsApp

The language itself has many pros and cons, but we chose Erlang to power
[Facebook] Chat because its model lends itself well to concurrent, distributed, and
robust programming.

Chris Piro, 2010 – Chat Stability and Scalability

%25%20%20%20%20%20%25http:/lanyrd.com/2014/erlangfactory/scwqrt/%20%20%20%20%20https:/www.infoq.com/presentations/whatsapp-scalability
%25%20%20%20%20%20https:/www.facebook.com/notes/facebook-engineering/chat-stability-and-scalability/51412338919

Functional languages are based on elements quite different from those imperative
languages are based on

What is a functional language?

9

• state – variables
• state modifications - assignments
• iteration – loops

• data – values
• functions on data – without side effects
• functional forms – function composition,

higher-order functions

Imperative languages (such as Java)
are based on:

Functional languages (such as Erlang)
are based on:

Functional languages are based on elements quite different from those imperative
languages are based on

10

An imperative program is a sequence of state
modifications on variables

// compute xn
int power(int x, int n) {

int result = 1;
for (int i = n; i < n; i++)
result *= x;

return result;
}

A functional program is the side-effect-free
application of functions on values

% compute XN
power(X, 0) -> 1;
power(X, N) -> X * power(X, N-1)

In functional programs, variables store
immutable values, which can be copied but
not modified

Imperative languages (such as Java)
are based on:

Functional languages (such as Erlang)
are based on:

What is a functional language?

You can experiment with Erlang using its shell, which can evaluate expressions on the
fly without need to define complete programs

$ erl
Erlang R16B03 (erts-5.10.4) [source] [64-bit] [smp:2:2]

Eshell V5.10.4 (abort with ^G)

1> 1 + 2. % evaluate expression `1 + 2'
3
2> c(power). % compile file `power.erl'
{ok,power}
3> power:power(2, 3). % evaluate power(2, 3)
8

• Notice you have to terminate all expressions with a period
• Functions are normally defined in external files, and then used in the shell
• Compilation targets bytecode by default

The Erlang shell

11

Types

12

A type constrains:
1.The (kinds) of values that an expression can take
2.The functions that can be applied to expressions of that type

For example, the integer type:
1. includes integer values (1, -100, 234), but not, say, decimal numbers (10.3, -4.3311) or

strings ("hello!", "why not")
2. supports functions such as sum +, but not, say, logical and

• Erlang is dynamically typed:
• programs do not use type declarations
• the type of an expression is only determined at runtime

• when the expression is evaluated
• if there is a type mismatch (for example 3+false) expression evaluation fails

• Erlang types include primitive and compound data types

Types, dynamically

13

An overview of Erlang types

14

And three + two compound types
(a.k.a. type constructors):
• Tuples: fixed-size containers
• Lists: dynamically-sized containers
• Maps: key-value associative tables

(a.k.a. dictionaries) –recent feature,
experimental in Erlang/OTP R17
• Strings: syntactic sugar for sequences of

characters
• Records: syntactic sugar to access tuple

elements by name

Erlang offers eight primitive types:
• Integers: arbitrary-size integers with

the usual operations
• Atoms: roughly corresponding to

identifiers
• Floats: 64-bit floating point numbers
• References: globally unique symbols
• Binaries: sequences of bytes
• Pids: process identifiers
• Ports: for communication
• Funs: function closures

Numeric types include integers and floats
• We will mainly use integers, which are arbitrary-size, and thus do not overflow

Numbers

15

Atoms are used to denote distinguished values
(they are similar to symbolic uninterpreted constants)

An atom can be:
• A sequence of alphanumeric characters and underscores, starting with a

lowercase letter
• An arbitrary sequence of characters (including spaces and escape sequences)

between single quotes
• An atom is to be enclosed in single quotes (') if it does not begin with a lower-case letter or if it

contains other characters than alphanumeric characters, underscore (_), or @

Atoms

16

Examples of valid atoms:
x
a_Longer_Atom
'Uppercase_Ok_in_quotes'
'This is crazy!'
true

In Erlang there is no Boolean type
Instead, the atoms true and false are conventionally used to represent Boolean values

Booleans

17

Examples:

true or (10 + false) % error: type mismatch in second argument
true orelse (10 + false) % true: only evaluates first argument

Erlang’s relational operators have a few syntactic differences with those of most other
programming languages

Relational operators

18

Examples:

3 =:= 3 % true: same value, same type
3 =:= 3.0 % false: same value, different type
3 == 3.0 % true: same value, type not checked

Erlang defines an order relationship between values of any type

When different types are compared, the following order applies:

𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑎𝑡𝑜𝑚 < 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < 𝑓𝑢𝑛 < 𝑝𝑜𝑟𝑡 < 𝑝𝑖𝑑 < 𝑡𝑢𝑝𝑙𝑒 < 𝑚𝑎𝑝 < 𝑙𝑖𝑠𝑡

Thus, the following inequalities hold:

3 < true % number < atom
3 < false % number < atom
999999999 < infinity % number < atom
100000000000000 < epsilon % number < atom

When comparing tuples to tuples:

• comparison is by size first
• two tuples with the same size or two lists are compared element by element, and satisfy the

comparison only if all (existing) pairs satisfy it

Order between different types

19

Tuples denote ordered sequences with a fixed (but arbitrary for each tuple instance) number
of elements (They are written as comma-separated sequences enclosed in curly braces)

Examples of valid tuples:
{ } % empty tuple
{ 10, 12, 98 }
{ 8.88, false, aToM } % elements may have different types
{ 10, { -1, true } } % tuples can be nested

Tuples

20

Examples:

element(2, {a, b, c}) % b: tuples are numbered from 1
setelement(1, {a, b}, z) % {z, b}
tuple_size({ }) % 0

Functions on a tuple T:

Lists denote ordered sequences with a variable (but immutable for any list instance) number
of elements (They are written as comma-separated sequences enclosed in square brackets)

Examples of valid lists:

[] % empty list
[10, 12, 98]
[8.88, false, {1, 2}] % elements may have different type
[10, [-1, true]] % lists can be nested

Lists

21

Some useful functions on lists L:

List operators

22

Operator | is also called cons; using it, we can define any list:

[1, 2, 3, 4] =:= [1 | [2 | [3 | [4 | []]]]]
hd([H | T]) =:= H
tl([H | T]) =:= T
% this is an example of --

[1, 2, 3, 4, 2] -- [1, 5, 2] =:= [3, 4, 2]

Strings are sequences of characters enclosed between double quotation marks
• Strings are just syntactic sugar for lists of character codes

String concatenation is implicit whenever multiple strings are juxtaposed without any
operators in the middle

Using strings ($c denotes the integer code of character c):

"" % empty string =:= empty list
"hello!"
"hello" "world" % =:= "helloworld"
"xyz" =:= [$x, $y, $z] =:= [120, 121, 122] % true
[97, 98, 99] % evaluates to "abc"!

Strings

23

Records are ordered sequences with a fixed number of elements, where each element has an
atom as name

• Records are just syntactic sugar for tuples where positions are named

% define `person' record type
% with two fields: `name' with default value "add name"
% `age' without default value (undefined)

-record(person, { name="add name", age })
% `person' record value with given name and age

#person{name="Joe", age=55}
#person{age=35, name="Jane"} % fields can be given in any order
% when a field is not initialized, the default applies

#person{age=22} =:= #person{name="add name", age=22}
% evaluates to `age' of `Student' (of record type `person')

Student#person.age

• Erlang’s shell does not know about records, which can only be used in modules
• In the shell: #person{age=7,name="x"} is {person, "x", 7}.

Records

24

Expressions and patterns

25

Variables are identifiers that can be bound to values
(they are similar to constants in an imperative programming language)

A variable name is a sequence of alphanumeric characters, underscores, and @, starting with
an uppercase letter or an underscore

In the shell, you can directly bind values to variable:
• Evaluating Var = expr binds the value of expression expr to variable Var, and returns such value as value

of the whole binding expression
• Each variable can only be bound once
• To clear the binding of variable Var evaluate f(Var)
• Evaluating f() clears all variable bindings
• The anonymous variable _ (“any”) is used like a variable whose value can be ignored

In modules, variables are used with pattern matching (which we present later)

Variables

26

• Expressions are evaluated exhaustively to a value – sometimes called (ground) term: a
number, an atom, a list, …

The order of evaluation is given by the usual precedence rules
(using parentheses forces the evaluation order to be inside-out of the nesting structure)

Some precedence rules to be aware of:
• and has higher precedence than or
• andalso has higher precedence than orelse
• when lazy (andalso, orelse) and eager (and, or) Boolean operators are mixed, they all

have the same precedence and are left-associative
• ++ and -- are right-associative (concatenation and substraction in lists)
• relational operators have lower precedence than Boolean operators; thus you have to

use parentheses in expressions such as (3 > 0) and (2 == 2.0)

Expressions and evaluation

27

Precedence rules: Examples

28

3 + 2 * 4 % is 11
3 + (2 * 4) % is 11
(3 + 2) * 4 % is 20
true or false and false % is true
true orelse false andalso false % is true
true or false andalso false % is false
true orelse false and false % is true (why?)

After evaluating the first “true”
there is no need to evaluate the rest

Patterns

29

• Note that a pattern may contain bound variables
• in this case, evaluating the pattern implicitly evaluates its bound variables

Pattern matching is a flexible and concise mechanism to bind values to variables

It is widely used in functional programming languages to define functions on data (especially
lists); Erlang is no exception

A pattern has the same structure as a term, but in a pattern some parts of the term may be
replaced by free variables

3
A
{X, Y}
{X, 3}
[H | T]
[H | [2]]

Examples of patterns:

Pattern matching is the process that, given a pattern P and a term T, binds the variables in P to
match the values in T according to P and T’s structure

If P’s structure (or type) cannot match T’s, pattern matching fails

Pattern matching

30

Pattern matching: Notation

31

Examples:

• (X + Y)⟨{X, Y}≜{3, 2}⟩ is 5
• (T ++ [2])⟨[H|T]≜[8]⟩ is [2]
• H⟨[H|T]≜[]⟩ is undefined

Given a pattern P and a term T, we write ⟨P≜T⟩ to denote the pattern match of T to P

• If the match is successful, it determines bindings of the variables in P to terms

• Given an expression E, we write E⟨P≜T⟩ to denote the term obtained by applying the bindings of
the pattern match ⟨P≜T⟩ to the variables in E with the same names

• If the pattern match fails, E⟨P≜T⟩ is undefined

NOTE: The notation E⟨P≜T⟩ is not valid Erlang, but
we use it to illustrate Erlang’s semantics

Multiple expressions E1, …, En can be combined in a compound expression obtained by
separating them using commas

• Evaluating the compound expression entails evaluating all component expressions in the
order they appear, and returning the value of the last component expression as the value of
the whole compound expression
• A single failing evaluation makes the whole compound expression evaluation fail

Multiple expressions

32

3 < 0, 2. % evaluates 3 < 0
% returns 2

3 + true, 2. % evaluates 3 + true
% fails

R=10, Pi=3.14, 2*Pi*R. % binds 10 to R,
% binds 3.14 to Pi
% returns 62.8…

Examples:

Using blocks delimited by begin... end, we can introduce multiple expressions where
commas would normally be interpreted in a different way

This may be useful in function calls:

power(2, begin X=3, 4*X end) % returns power(2, 12)

Without begin...end, the expression would be interpreted as calling a function power with
three arguments

Multiple expression blocks

33

34

[X*X || X <- [1, 2, 3, 4]] % is [1, 4, 9, 16]
[X || X <- [1, -3, 10], X > 0] % is [1, 10]
[{A, B} || A <- [carl, sven], B <- [carlsson, svensson]]
% is [{carl, carlsson}, {carl, svensson},
% {sven, carlsson}, {sven, svensson}]

List comprehensions
List comprehensions provide a convenient syntax to define lists using pattern matching

It is an expression of the form: [Expression || P1 <- L1, ..., Pm <- Ln, C1, ..., Cn] where:
– each Pk is a pattern
– each Lk is a list expression
– each Ck is a condition (a Boolean expression)

• Intuitively, each pattern Pk is matched to every element of Lk, thus determining a binding B
– if substituting all bound values makes all conditions evaluate to true, the value obtained by substituting all

bound values in Expression is accumulated in the list result;
– otherwise the binding is ignored

Examples:

The main elements of a module are as follows:

-module(foo). % module with name `foo' in file `foo.erl'
-export([double/1,up_to_5/0]). % exported functions
% each f/n refers to the function with name `f' and arity `n'

-import(lists, [seq/2]). % functions imported from module `lists'
% function definitions:

double(X) -> 2*X.
up_to_5() -> seq(1, 5). % uses imported lists:seq

Compiling and using a module in the shell:

1> c(foo). % compile module `foo' in current directory
{ok,foo}. % compilation successful
2> foo:up_to_5(). % call `up_to_5' in module `foo'
[1,2,3,4,5]

Modules

35

A module is a collection of function definitions grouped in a file
Modules are the only places where functions can be defined – they cannot directly be defined in the
shell

Function definitions

36

Function definitions: basics

37

f(P1,…, Pn) -> E.

In Erlang (and all functional prog. lang.) functions are the fundamental units of computation

• A function defines how to map values to other values
– Unlike in imperative programming languages, most functions in Erlang have no side effects: they do not change

the state of the program executing them (especially their arguments)

The basic definition of an n-argument function f (arity n), denoted by f/n, has the form:

– The function name f is an atom
– The function’s formal arguments P1,…, Pn are patterns
– The body E is an expression – normally including variables that appear in the arguments

Head Body

identity(X) -> X. % the identity function
sum(X, Y) -> X + Y. % the sum function

Examples:

The basic definition of an n-argument function f (arity n), denoted by f/n, has the form:

f(P1,…, Pn) -> E.

More examples:

zero() -> 0. % integer zero
identity(X) -> X. % identity
sum(X, Y) -> X + Y. % sum
head([H|_]) -> H. % head
tail([_|T]) -> T. % tail
second({_, Y}) -> Y. % 2nd of pair
positives(L) -> [X || X <- L, X > 0]. % filter positive

Examples of function definitions

38

Given the definition of a function f/n:
f(P1,…,Pn) -> E.

a call expression to f/n has the form:
f(A1,…,An)

and is evaluated as follows:
1. For each 1 ≤ K ≤ n, evaluate Ak, which gives a term Tk
2. For each 1 ≤ K ≤ n, pattern match Tk to Pk
3. If all pattern matches are successful, the call expression evaluates to
E(P1,...,Pn ≜ T1,...,Tn)

4. Otherwise, the evaluation of the call expression fails

Function call/evaluation

39

Examples of function calls

40

Function definitions can include multiple clauses, separated by semicolons:

f(P11,…,P1n) -> E1;

f(P21,…,P2n) -> E2;
.

.

.

f(Pm1,…,Pmn) -> Em.

A call expression is evaluated against each clause in textual order; the first successful match is
returned as the result of the call

Therefore, we should enumerate clauses from more to less specific

lazy_or(true, _) -> true;
lazy_or(_, true) -> true;
lazy_or(_, _) -> false.

Function definition: clauses

41

This function does not work as expected
unless this clause is listed last

Pattern matching an expression R of record type rec

#rec{f1=P1, ..., fn=Pn} = R

succeeds if, for all 1 ≤ k ≤ n, field fk in R’s evaluation (i.e., R#name.fk) matches to pattern Pk

If record type rec has fields other than f1, …, fn, they are ignored in the match

Thanks to this behavior, using arguments of record type provides a simple way to extend data
definitions without having to change the signature of all functions that use that datatype

Pattern matching with records

42

-record(error, {code}).
error_message(#error{code=100}) -> io.format("Wrong address");
error_message(#error{code=101}) -> io.format("Invalid username");

...
error_message(_) -> io.format("Unknown error").

If we want to add more information to the type error, we only have to change the record
definition, and the clauses using the new information:

-record(error, {code, line_number}).
error_message(#error{code=100}) -> io.format("Wrong address");
error_message(#error{code=101}) -> io.format("Invalid username");

...
error_message(#error{code=C, line_number=L}) -> io.format("Unknown error p", [C, L]).

Compare this to the case where we would have had to change error_message from a unary to
a binary function!

Flexible arguments with records: Example

43

Clauses in function definitions can include any number of guards (also called conditions):

f(Pk1, . . . , Pkn) when Ck1, Ck2, . . . -> Ek;

A guarded clause is selected only if all guards Ck1, Ck2,… evaluate to true under the match, that
is if Cki⟨Pk1,...,Pkn ≜ Tk1,...,Tkn⟩ evaluates to true for all guards Cki in the clause

More generally, two guards can be separated by either a comma or a semicolon: commas
behave like lazy and (both guards have to hold); semicolon behave like lazy or (at least one
guard has to hold)

can_drive(Name, Age) when Age >= 18 -> Name ++ " can drive";
can_drive(Name, _) -> Name ++ " cannot drive".

same_sign(X, Y) when X > 0, Y > 0; X < 0, Y < 0 -> true;
same_sign(_, _) -> false.

Function definition: guards

44

Since Erlang is dynamically typed, there are cases where we have to test the actual
type of an expression

• For example, because a certain operation is only applicable to values of a certain type

To this end, Erlang provides several test functions whose names are self-explanatory:

is_atom/1
is_boolean/1
is_float/1
is_integer/1
is_list/1
is_number/1
is_pid/1
is_port/1
is_tuple/1

Use these only when necessary: in most cases defining implicitly partial functions is
enough

Type checking -- at runtime

45

The expression body in a function definition can include compound expressions with
bindings:

f(Pk1,…, Pkn) -> V1=E1,…, Vw=Ew, Ek;

Such bindings are only visible within the function definition

They are useful to define shorthands in the definition of complex expressions

volume({cylinder, Radius, Height}) ->
Pi=3.1415,
BaseArea=Pi*Radius*Radius,
Volume=BaseArea*Height,
Volume.

Function definition: local binding

46

Ifs provide a way to express conditions alternative to guards (in fact, ifs are called – somewhat
confusingly – guard patterns in Erlang)
An if expression:

if

C1 -> E1;

Cm -> Em

end

evaluates to the expression Ek of the first guard Ck in textual order that evaluates to true; if
no guard evaluates to true, evaluating the if expression fails

If expressions (guard patterns)

47

age(Age) ->
if Age > 21 -> adult;

Age > 11 -> adolescent;
Age > 2 -> child;
true -> baby end.

Case expressions

48

years(X) ->
case X of {human, Age} -> Age;

{dog, Age} -> 7*Age;
_ -> cant_say

end.

Cases provide an additional way to use pattern matching to define expressions. A case
expression:

case E of
P1 -> E1;

Pm -> Em
end

evaluates to Ek⟨Pk≜T⟩, where E evaluates to T, and Pk is the first pattern in textual order that T
matches to; if T matches no pattern, evaluating the case expression fails

Patterns may include when clauses, with the same meaning as in function definitions

Having several different ways of defining a function can be confusing. There are no absolute
rules, but here are some guidelines that help you write idiomatic code:

• the first option to try is using pattern matching directly in a function’s arguments, using
different clauses for different cases

• if parts of a pattern expression depend on others, you may consider using case
expressions to have nested patterns

• you do not need if expressions very often (but it’s good to know what they mean, and
sometimes they may be appropriate)

Which one should I use?

49

Recursion

50

• Recursion is a style of programming where functions are defined in terms of
themselves

Recursion in programming

51

Recursive call

% compute Xn

power(X, 0) -> 1;
power(X, N) -> X * power(X, N-1).

The definition of a function f is recursive if it includes a call to f (directly or indirectly)

Recursion in mathematics

52

Definition of natural numbers:
• 0 is a natural number;
• if 𝑛 is a natural number then 𝑛 + 1 is a natural number.

Recursion is a style of programming where functions are defined in terms of themselves

The definition of a function f is recursive if it includes a call to f (directly or indirectly)

Recursive/inductive definition

Recursion: from math to programming

53

Recursion in programming provides a natural way of implementing recursive definitions in
mathematics

Factorial of a nonnegative integer 𝑛:

n terms

= n . (n - 1) … 1

n-1 terms

1 if 0 ≤ n ≤ 1
n! =

n. (n-1)! if n > 1

Base case

Recursive/inductive case

n! = n . (n - 1) … 1

Recursion: from math to programming

54

factorial(N) when N =< 1 -> 1; % base case
factorial(N) -> N *factorial(N-1). % recursive case

Recursion in programming provides a natural way of implementing recursive definitions in
mathematics

Factorial of a nonnegative integer 𝑛:

Recursive call

1 if 0 ≤ n ≤ 1
n! =

n. (n-1)! if n > 1

Base case

Recursive/inductive case

Each recursive call triggers an independent evaluation of the recursive function
(Independent means that it works on its own private copy of actual argument

expressions)

When a recursive instance terminates evaluation, its value is used in the calling instance
for its own evaluation

How does recursion work?

55

call

call

call

useuseuse

entry factorial(3)
eval

3 * factorial(2) factorial(2)
eval

2 * factorial(1) factorial(1)
eval

12 * 13 * 26

Recursion as a programming technique is useful to design programs using the divide and
conquer approach:

To solve a problem instance 𝑃, split 𝑃 into problem instances 𝑃5, … , 𝑃6 chosen such that:
1.Solving 𝑃5, … , 𝑃6 is simpler than solving 𝑃 directly
2.The solution to 𝑃 is a simple combination of the solutions to 𝑃5, … , 𝑃6

In functional programming, recursion goes hand in hand with pattern matching:
• Pattern matching splits a function argument’s into smaller bits according to the input’s

structure
• Recursive function definitions define the base cases directly, and combine simpler cases

into more complex ones

Recursion as a design technique

56

Define a function sum(L) that returns the sum of all numbers in L

1. The base case (the simplest possible) is when L is empty: sum([]) -> 0
2. Let now L be non-empty: a non empty list matches the pattern [H|T]

• H is a single number, which we must add to the result
• T is a list, which we can sum by calling sum recursively

Recursive functions: Sum of list

57

sum([]) -> 0; % base case
sum([H|T]) -> H + sum(T). % recursive case

To make the function more robust, we can skip over all non-numeric elements:

sum([]) -> 0; % base case
sum([H|T]) when is_number(H) -> H + sum(T); % recursive case 1
sum([_|T]) -> sum(T). % recursive case 2

Can we switch the
order of clauses?
In this case, YES

Define a function last(L) that returns the last element of L

1. When L is empty, last is undefined, so we can ignore this case
2. The simplest case is then when L is one element: last([E]) -> E
3. Let now L be non-empty: a non empty list matches the pattern [H|T]

• E is the first element, which we throw away
• T is a list, whose last element we get by calling last recursively

Recursive functions: Last list element

58

last([E]) -> E; % base case
last([_|T]) -> last(T). % recursive case

To make this explicit, we could write:

last([E|[]])-> E; % base case
last([_|T]) -> last(T). % recursive case

Can T match the empty list?

No, because neither of the
clauses match the empty list

A recursive function f is tail recursive if the evaluation of f’s body evaluates the recursive call last

Tail recursion

59

% general recursive:
power(_, 0) ->
1;

power(X, N) ->
X * power(X, N-1).

% tail recursive:
power(X, N) ->
power(X, N, 1).

power(_, 0, Accumulator) ->
Accumulator;

power(X, N, Accumulator) ->
power(X, N-1, X*Accumulator).

• Tail-recursive functions are generally more efficient than general-recursive functions
• When efficiency is not an issue, there is no need to use a tail-recursive style; but we will

use tail-recursive functions extensively (and naturally) when implementing servers

Overloading:
two functions power/2 and power/3

General Recursion vs Tail Recursion

60

General recursion:
% general recursive:
power(_, 0) -> 1;
power(X, N) -> X * power(X, N-1).

power(2,3) = ??

Stack

2 * power(2,2)

2 * power(2,1)

2 * power(2,0)

base case

1248
power(2,3)

power(2,2)

power(2,1)

power(2,0) 1

2

4

8

General Recursion vs Tail Recursion

61

power(2,3) = ??

% tail recursive:
power(X, N) -> power(X, N, 1).
power(_, 0, Accumulator) -> Accumulator;
power(X, N, Accumulator) -> power(X, N-1, X*Accumulator).

Stack

power(2,3,1)

power(2,2,2)

power(2,1,4)

power(2,0,8)

power(2,2,2*1)

power(2,1,2*2)

power(2,0,2*4)

base case

8

power(2,3,1)
8

Tail recursion:

Impure and higher-order
functions

62

Statements, assignments, and loops are not available as such in Erlang

Everything is an expression that gets evaluated:
• (Side-effect free) expressions are used instead of statements
• (Pure) functions return modified copies of their arguments instead of modifying the

arguments themselves
• One-time bindings are used instead of assignments that change values to variables
• Recursion is used instead of loops

The sparse presence of side effects helps make functional programs higher level than
imperative ones

Where are all the statements, assignments, loops?

63

The expressions we have used so far have no side effects, that is they do not
change the state but simply evaluate to a value
• Not all expressions are side-effect free in Erlang

• Input/output is an obvious exception: to print something to screen, we evaluate an expression
call, whose side effect is printing

io:format(Format, Data) % print the string Format, interpreting control sequences on Data

Printing to screen

64

1> io:format("~s ~B. ~p~n~s ~B~n", ["line", 1, true, "line", 2]).
line 1. true
line 2

You can use fwrite
instead of format

try Expr of

Success1 -> Expr1;

…

catch

Error1:Fail1 -> Recov1;

…

after After end

Exception handling

65

Erlang has an exception handling mechanism that is similar to a functional version of Java’s
try/catch/finally blocks:

• The try blocks behaves like a case block
• If evaluating Expr raises an exception, it gets pattern matched against the clauses in
catch (Errork’s are error types, Failk’s are patterns, and Recovk’s are expressions)

• Expression After in the after clause always gets evaluated in the end (but does not
return any value: used to close resources)

Function safe_plus tries to evaluate the sum of its arguments:
• if evaluation succeeds, it returns the result
• if evaluation raises a badarith exception, it returns false

safe_plus(X, Y) ->
try X + Y of

N -> N
catch

error:badarith -> false
end.

Example of using it:

1> safe_plus(2, 3).
5

2> safe_plus(2, []).
false

Exception handling: Example

66

Functions are first-class objects in Erlang: they can be passed around like any other values,
and they can be arguments of functions

• A function f/k defined in module m is passed as argument fun m:f/k

This makes it easy to define functions that apply other functions to values following a pattern

% apply function F to all elements in list L
map(F, []) -> [];
map(F, [H|T]) -> [F(H)|map(F,T)].

1> map(fun m:age/1, [12, 1, 30, 56]).
[adolescent,baby,adult,adult]

A function that takes another function as argument is called higher-order

Functions are values too

67

age(Age) ->
if Age > 21 -> adult;

Age > 11 -> adolescent;
Age > 2 -> child;
true -> baby end.

High-Order Functions

68

Let’s define a function:% apply function F to all elements in list L
map(F, []) -> [];
map(F, [H|T]) -> [F(H)|map(F,T)]. doub(X)-> 2*X;

What is the result of calling map (doub/1, [12,1,30,56]) ?
map (doub/1, [12,1,30,56]) = ??

[doub(12)|map(doub,[1,30,56])]

[doub(12)|[doub(1)|map(doub,[30,56])]]

[doub(12)|[doub(1)|[doub(30)|map(doub,[56])]]]

[doub(12)|[doub(1)|[doub(30)|[doub(56)|map(doub,[])]]]]

[]

[112]

[60,112]

[2,60,112]

[24,2,60,112]

Sometimes it is necessary to define a function directly in an expression where it is used

For this we can use anonymous functions – also called lambdas, closures, or funs (the last is
Erlang jargon):

fun
(A1) -> E1;

(An) -> En
end

where each Ak is a sequence of patterns, and each Ek is a body

% double every number in the list
1> map(fun (X)->2*X end, [12, 1, 30, 56]).
[24,2,50,112]

Inline functions

69

Module lists includes many useful predefined functions to work on lists

These are some you should know about – but check out the full module documentation at
http://erlang.org/doc/man/lists.html:

all(Pred, List) % do all elements E of List satisfy Pred(E)?
any(Pred, List) % does any element E of List satisfy Pred(E)?
filter(Pred, List) % all elements E of List that satisfy Pred(E)
last(List) % last element of List
map(Fun, List) % apply Fun to all elements of List
member(Elem, List) % is Elem an element of List?
reverse(List) % List in reverse order
seq(From, To) % list [From, From+1, ..., To]
seq(From, To, I) % list [From, From+I, ...,

Working on lists

70

http://erlang.org/doc/man/lists.html

Several functions compute their result by recursively accumulating values from a list:

Folds

71

sum([]) -> 0;
sum([H|T]) -> H + sum(T).

len([]) -> 0;
len([H|T]) -> 1 + len(T).

We can generalize this pattern into a single higher-order function fold(F, R, L): starting from
an initial value R, combine all elements of list L using function F and accumulate the result:

fold(_, Result, []) -> Result;
fold(F, Result, [H|T]) -> F(H, fold(F, Result, T)).

Using fold, we can define sum and len:
sum(L) ->

fold(fun (X,Y)->X+Y end, 0, L).
len(L) ->

fold(fun (X,Y)->1+Y end, 0, L).

Erlang module lists offers functions foldr/3 (which behaves like our fold) and foldl/3 (a
tail-recursive version of fold, with the same arguments)

Folds: Example

72

fold(_, Result, []) -> Result;
fold(F, Result, [H|T]) -> F(H, fold(F, Result, T)).

Let’s define a sum of a list using fold

sum(L) -> fold(fun(X,Y)-> X+Y end, 0, L)

Let’s call this function plus

Let’s try it!

sum([4,2,3])

fold(plus,0,[4,2,3])

plus(4,fold(plus,0,[2,3]))

plus(2,fold(plus,0,[3]))

plus(3,fold(plus,0,[]))

base case

03+02+34+59

Erlang tutorial!

73

Friday February 3 at 8:00

Remember:

Quiz
Basic Erlang

74Principles of Concurrent Programming

